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Abstract
In neuro-biology, the 3D reconstruction of neurons followed by the identification of dendritic spines
is essential for studying neuronal morphology, function and biophysical properties. Most existing
methods suffer from problems of low reliability, poor accuracy and require much user interaction.
In this paper, we present a method to reconstruct dendrites using a surface representation of the
neuron. The skeleton of the dendrite is extracted by a procedure based on the medial geodesic function
that is robust and topologically correct, and it is used to accurately identify spines. The sensitivity
of the algorithm on the various parameters is explored in detail and the method is shown to be robust.

Keywords
Neuron; dendrite; spine; 3D reconstruction; curve-skeleton; medial geodesic function

1 Introduction
In neurobiology, 3D reconstruction of neuronal structures such as dendrites and spines is
essential for understanding the relationship between their morphology and functions (Dima et
al., 2001) and helps us understand neuronal circuitry and behaviour in neurodegenerative
diseases. Dendritic spines, or spines in short, play a significant role in many neurological
conditions (Kasai et al., 2003; Nimchinsky et al., 2002). These conditions include Alzheimer’s
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disease (Spires et al., 2005), Parkinson’s disease (Comery et al., 1997), tuberous sclerosis
complex syndrome (Tavazoie et al., 2005), and other neurological diseases. Dendrites are tree-
like structure of a neuronal cell and spines are small protrusions formed on the surface of a
dendrite. Spines can assume different shapes and appear and disappear totally (Hering and
Sheng, 2001) and their morphological changes have been proven to be associated with synaptic
plasticity (Yuste and Bonhoeffer, 2001). Important aspects of cognitive function, such as
experience-based learning (Engert and Bonhoeffer, 1999), attention and memory (Moser et al.,
1994) are correlated with variations in dendritic arborescence and with spine density and
distribution (Glantz and Lewis, 2000; Zito et al., 2004). It is hypothesized that the dendritic
spine structure affects the physiological properties of synapses located on them (Harris et al.,
1992; Benshalom and White, 1988; Harris and Stevens, 1988). The topology (branching
structure) of neuronal dendrites and their spines underlie the connectivity of neural networks
and may therefore be important predictors of their function (Koh et al., 2002).

3D light microscopy images of neurons have a significant amount of information that is lost
when projecting to 2D. For example, structures that are orthogonal to the imaging plane, or
structures that overlap each other along the imaging axis cannot be identified. See Fig. 2 for
an illustration of this. The preferred method for detailed study of cell morphology and topology
is from 3D reconstructions (Stevens and Trogadis, 1984;Wilson et al., 1987). Automatic
reconstruction aids in the analysis of a large number of neurons and the mapping of the spatial
relationships between different tracts and neuropiles, such that detailed mathematical and
physical models can be constructed to estimate those physiological parameters which can not
be otherwise measured easily (Dima, 2002). Graph models (dendrograms) of the neuron, which
concisely capture the neuron geometry and topology, are extremely valuable for analyzing the
structure of the neuron backbone and the dendritic spines (Weaver et al., 2004) and elucidate
their synapses and neurological functions (Zito et al., 2004). As discussed above, many
neuronal functions are observed to be correlated with the appearance or disappearance of
neuronal structures and the morphology of the spines. It is therefore important to develop robust
3D reconstruction method to trace the dendrites and detect the dendritic spines on them. There
has been extensive research in the field of neuron reconstruction, dendrite tracing and spine
identification. However, most of these methods suffer from low reliability and poor accuracy
and have heavy requirements of manual supervision.

In a related work (Mosaliganti et al., 2006), we developed a method to perform automatic
temporal tracking and matching of spine evolution. Our method, however, suffered from poor
spine detection, and the inadequacies of existing methods to meet these needs has motivated
our current work on developing robust algorithms for spine identification and morphometry.
Whereas existing methods for neuron reconstruction treat the neuron as a volume, we choose
to represent the dendrite and the spines as a surface (2–manifold). The advantages of a surface
representation are that it lets us enforce physically plausible smoothness constraints on the
shape of the neuron, and it facilitates the extraction of the neuronal skeleton. There are a large
number of algorithms and heuristics in literature for skeletonisation, each of which produce
different results and do not provide guarantees of correctness (Cornea et al., 2005; Ma et al.,
2003). We use a geometric skeletonisation method by Dey and Sun (2006b) based on the medial
geodesic function. This algorithm has been proved to be well-posed and robust against noise,
and produces curve-skeletons that preserve the topology of the original object (homotopic
equivalence). The surface model of the dendrite along with the information computed by the
skeletonizing procedure allows for the accurate identification of spines, and for morphological
measurements like the spine diameter and eccentricity at the base and tip, spine length, volume,
etc. The parameters in the spine identification procedure are intuitive, easy to understand,
robust, and are motivated by the biology of the neuron being studied.
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This paper is organized as follows: In Section 2, we review some important contributions in
neuron reconstruction, tracing, dendrogram construction and spine identification. Next, we
describe the data-set, image acquisition and processing methods in Section 3 (see Fig. 3(a)).
The surface extraction, neuron reconstruction, skeletonisation and spine identification pipeline
is explained in Section 4 (see Fig. 3(b)). In Section 5 we demonstrate the results of our method
applied on the data-set, and quantitatively evaluate the accuracy of spine detection and
morphometry. We also explore the implications of the various parameters in detail and make
recommendations for selecting their values. Finally, in Section 6 we conclude by discussing
some thoughts on our current method and directions of future work.

2 Related Work
Most of the current methods of reconstruction are semi-automatic and require user guidance
to identify salient structures and deal with ambiguities in each confocal microscopy data-set
independently (Glaser and Glaser, 1990; Garvey et al., 1973; Carlbom et al., 1994). These
techniques demand several weeks of a specialist’s time for one neuronal reconstruction, and
do not have the objectivity of automated methods. The goal of decreasing the expense of user
interaction often acts contrary to that of ensuring the accuracy and the topological correctness
of the result. Consequently, a few recent methods (e.g. Schmitt et al., 2004) seek for an optimal
compromise been automatic segmentation and manual reconstruction.

Some reconstruction methods represent neuronal (and other tubular branching) structures as a
tree of connected cylinders or similar mathematical objects (Urban et al., 2006; Al-Kofahi et
al., 2002; Uehara et al., 2004; Tyrrell et al., 2006; Schmitt et al., 2001; Herzog et al., 1997,
1998, etc.), which detracts from the capability of the model to provide accurate quantitative
measurement of the underlying cellular morphology, and require strong assumptions about the
objects of interest. Due to the morphologic complexity and variety of neuronal cell types, no
general models are suggested in literature.

Other methods (Cohen et al., 1994; Goldbaum et al., 1990a,b; Clark et al., 1992; Chaudhuri et
al., 1989; Dima et al., 2001; He et al., 2003; Can et al., 1999; Gerig et al., 1993, etc.) employ
curve-skeleton methods to build a linear graph representation of dendritic structures. These
methods conform to a weak model, which implies that only very weak assumptions are made
about the objects of interest. However, the curve-skeletonisation algorithms employed tend to
be very sensitive to small changes in the object shape, and moreover do not provide topological
guarantees about the resulting 1D skeleton. We discuss this some more in Section 4.2.

The analysis of dendritic structure and morphology is largely accomplished manually and is
extremely time consuming, not reproducible, and its accuracy is dependent on the skill of the
user. A few spine identification and quantification techniques of varying degrees of automation
have been suggested to reduce manual labour and improve the accuracy and reproducibility of
the result, none of which has apparently been used and verified on large data sets. Some authors
(Rusakov and Stewart, 1995; Weaver et al., 2004; Mosaliganti et al., 2006, etc.) use the medial
axis to identify spines in 2D as protrusions relative to dendritic skeleton. We have noticed from
our earlier work that there is significant information in the 3D image which is lost when
projecting to 2D, and the accuracy of such methods is limited. Others (Watzel et al., 1995;
Koh, 2001) use 3D medial axis-based strategies to extract a skeleton, and identify spurs as
potential spines. Medial axis based methods suffer from the general problems of sensitivity to
noise and spurious spine detections, and have to use heuristics to eliminate false positives.
Model based spine identification techniques (Herzog et al., 1998; Al-Kofahi et al., 2002) have
trouble detecting thin-necked and short spines and have to be manually supervised. In Koh et
al. (2002), the authors devise a 3D technique in which spines are not detected using the medial
axis branches emerging from the backbone, but instead, as geometric protrusions relative to
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the backbone. The method contains several parameter settings that require extensive fine
tuning.

3 Image Acquisition and Processing
In this section we describe the data-set (Section 3.1), followed by the image processing pipeline
that corrects for the anisotropy in the sampling resolution (Section 3.2) and segments out the
neuronal cytoplasm from the background phase (Section 3.3). This is followed by a step to join
the floating spine heads and to remove spurious tissue fragments in the sample (Section 3.4).

3.1 Data-set
3D images of pyramidal neurons in rat hippocampi expressing GFP were acquired by the
digitization of neuronal cultures using a two-photon laser scanning microscopy with a 40×
objective and 0.8 NA (Zito et al., 2004). The image stacks have dimension 512×512×12 voxels
at 0.07 μm×0.07 μm×1 μm resolution. For high content neuron screening green fluorescent
protein (GFP) is used to mark neurons in vitro. GFP absorbs blue light and converts it to green
light which is of lower energy. The emitted green light is then captured by an optical microscope
such as a two-photon laser scanning microscope (2PLSM).

To correct the images for the microscope’s point spread function (PSF), which causes out-of-
focus objects to appear in the optical slices, we use the de-convolution package AutoDeblur
1 to restore the image. Fig. 4 shows raw and deblurred images. The deblurred image was
obtained after ten iterations. The parameters of the de-convolution algorithm depend on the
setup of the microscopy.

The nature of the image acquisition process and photo-bleaching effects introduces the
following types of artifacts: (i) photon shot noise (ii) presence of unrelated structures, and (iii)
floating spine heads. These artifacts require the additional processing steps described next.

3.2 De-noising and Re-sampling
The intensity profile in neuronal regions exhibits noise and sharp variations in contrast,
especially along the cell boundaries. Figs. 5(a) and 5(b) show a small portion of an X − Y slice
from a 3D neuron image, and the corresponding Monge map (intensity map). To de-noise the
image, non-linear diffusion filtering (Perona and Malik, 1990) is used, which removes high-
frequency noise while avoiding the blurring and localization problems of linear Gaussian
smoothing (Witkin, 1983). If Ω denotes the domain of the image g(x): Ω → ℝ then the filtered
image u(x, t) is the solution to the non-linear diffusion equation:

(1)

(2)

with the original image as the initial condition u(x, 0) = g(x) on Ω, and Neumann boundary
conditions ∂nu = 0 on ∂Ω × (0, ∞) 2. Here λnl plays the role of a contrast parameter (Weickert,
1996) smoothing low contrast areas (|∇u| ≤ λnl) and enhancing high contrast areas (|∇u| > λnl).

1AutoDeblur is a product of AutoQuant Image Inc.
2∂n denotes the derivative normal to the image boundary.
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Unfortunately, this diffusion equation is numerically unstable and Catté et al. (1992) propose
a regularization by convolving u with a Gaussian Kσ to compute the gradient ∇uσ. To account
for the 1:1:10 anisotropy in the imaging resolution, we modify the Catté-Lions filter to use an
anisotropic Gaussian KΣ with a 10:10:1 ratio of scales σx, σy, σz. The non-linear diffusion
equation with anisotropic regularization has the form:

(3)

where 

(4)

Here, ★ represents convolution. Figs. 5(c) and 5(d) show a 2D section of the results of (3D)
non-linear filtering. For comparison, the results of standard Gaussian filtering (with anisotropic
scales) are shown in Figs. 5(e) and 5(f). We see that the non-linear diffusion method has
effectively removed noise, while preserving tissue boundaries.

After smoothing, the image is re-sampled to 1:1:1 resolution by down-sampling by 3 in the
X and Y, while up-sampling by a factor of 3.5 in the Z directions. We found that quartic (fourth
order) B-spline interpolation provides the best results, by visually examining the Monge maps
before and after interpolation. Figs. 6(a)–(b) show the results at the end of the de-noising and
re-sampling stage.

3.3 Segmenting the Neuron
Because of the edge enhancing property of non-linear diffusion, global thresholding of the
intensity field gives a reliable and accurate segmentation of the neuron. This is because the
variations in the intensity field outside the neuron become almost zero and hence any threshold
Ω above zero is very effective suppressing the artifacts from random intensity fluctuations in
the background image. At the same time, the filter sharpens edges at the boundaries of the
neuronal objects thereby making the segmentation more robust to variations in the threshold
parameter Ω. The conditioning of the thresholding operation is quantified by the relative change
in the size of the segmented object with respect to a relative change in Ω. Assuming that the
neurons are approximately cylindrical objects, the condition number cond(Ω) is given by:

(5)

where r is the radius of the cylinder. The value of δr/r is approximated by:

(6)

where V is the volume of the segmented dendritic tissue. We present our investigation into the
sensitivity of Ω in Section 5.2. Fig. 7 shows volumetric renderings of segmented neuronal
objects from two data-sets.

Janoos et al. Page 5

Med Image Anal. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.4 Floating Spine Heads
The neuron images contain floating spine heads, separated from the main dendritic backbone,
due to photo-bleaching effects and limited microscope resolution. The neuron sample also
contains unrelated tissue fragments that show up as disconnected blobs during imaging (Fig.
7). While the spurious fragments should be removed, the floating spine heads must be identified
and connected back to the main dendrite. An important consideration when making this join
is that the true topology of the dendrite be recreated as best as possible. At the same time,
approximating the morphology of such spines is acceptable, since this information is
fundamentally not present in the acquired images.

It has been observed that the floating spine heads tend to point towards the dendrite, while the
dendrite too has a protrusion pointing towards the spine, and both are in close proximity of
each other. Fig. 8(a) shows a 2D projection of a segmented neuron image with three detached
spine heads (circled in red) and a few spurious fragments. For spine heads 1 and 3 locating the
closest point on the main backbone is sufficient to determine the connection between the two.
However, for case 2, a join to the closest point (yellow arrow) is incorrect. Here, along with
the orientation of the spine head itself, the protuberance in the dendrite (green arrow) must
used to guide the connection. This suggests a method of connecting floating spine heads by
growing the spine and the dendrite along the directions in which they protrude. If a join occurs
within a certain number of time-steps it is a valid spine, else it is spurious fragment.

Active contour shape models (Malladi et al., 1995) are a level-set approach that enables us to
achieve these goals, by using shape information to control the evolution of iso-contours. The
boundary ζ(t) = {x|ψ(x, t) = 0} of the neuron at time t is encoded as the zero level-set of the
field ψ(x, t). The update equation of the level-set is given by:

(7)

The parameter κ is the curvature along the normal to the level-set contour and c is a balloon
force that evolves the level-set front outwards. The term κ|∇ψ| guides the evolution of the front
using the local curvature.

Therefore, the complete algorithm to connect floating spine heads and discard fragments is as
follows:

i. From the segmented image I, identify dendrites and potential floating spines by
thresholding the volume of the connected components with respect to a reference
volume ϑ (see Section 5.2 for more details).

ii. Set the signed distance map D(I) of the neuron image as the level-set function ψ(x,
0).

iii. Evolve the level-set (eqn. 7) to move in the directions of high curvature for a specified
number of time-steps τgac (Fig. 8(b))

iv. If the level-sets originating from spine heads and dendritic backbones meet within
τgac, then determine the location of their join point and connect them up at that point
(Fig. 8(c)).

v. Tag all remaining fragments as spurious, and discard them.

Because of the proximity constraint, the level-set needs to be evolved only over a very few
number of time-steps (τgac ≈ 5) for a valid join to occur. The distance transform, too, needs to
be computed only in the close vicinity of the edges and can be done very efficiently in linear
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time (Breu et al., 1997). Therefore, the overall computation cost is of this procedure is relatively
low.

4 Neuron Reconstruction and Analysis
After the image processing pipeline, the connected components are identified as separate
dendrites and are analyzed independently. Existing neuron reconstruction methods use signal
processing and image processing techniques, followed either by model fitting or
skeletonisation for neuron reconstruction (Section 2). We represent the dendrite by a surface
model because (a) it allows us to control the smoothness of the neuron surface thereby imposing
a physically plausible constraint on the reconstruction, and (b) it lets us perform detailed
morphological measurements.

4.1 Surfacing and Surface Fairing
The surface of the segmented dendrite is obtained by iso-surfacing at any value between (0,
1), using extended marching cubes (Nielson and Hamann, 1991). This surface is over tesselated
and suffers from artifacts of staircase noise (Fig. 9(a)). In signal processing terms, we need to
first low pass filter the surface to remove the high frequency noise, and then down-sample it
to a sufficient resolution.

Low-pass filtering is effected using the two-step surface fairing method described by Taubin
(1995). Let x = (x1, x2, x3)T be the 3D coordinates defined at the vertices of a polyhedral surface.
The Laplacian of the a point xi on the surface is defined by the weighted average over its
neighbourhood ℕi as:

(8)

The fairing process is a smoothing step that also causes surface shrinkage (eqn. 9) followed by
an expansion step (eqn. 10), applied iteratively N times:

(9)

(10)

The transfer function f(k) of the filter, with respect to surface frequency k, has the following
property:

(11)

Here (1/α + 1/μ) > 0 is the cut-off frequency, and N, the number of iterations, controls the rate
of decrease in the stop band. This algorithm is fast (linear time), produces smoothing without
shrinkage, and quickly achieves a stable solution with respect to N.

Next, the tessellation density is reduced by decimating the mesh using the quadric error metric
(Garland and Heckbert, 1998). Here, every edge is assigned a cost function, namely the error
resulting from its contraction, and the lowest cost edges are iteratively selected and collapsed.
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Each vertex is associated with a set of planes, and the error at the vertex is defined to be the
sum of squared distances from it to all the planes in its set. Each set is initialized with the faces
incident to the vertex in the original surface. When an edge is contracted into a single vertex,
the resulting set is the union of the two sets associated with the endpoints. The cost of
contracting an edge (υ1, υ2) to a single vertex ῡ is now the error at ῡ. This decimation technique
does not prevent changes of topology in the mesh, and it suffers from small inaccuracies.
However, given the simple topology of a dendrite, and the speed and simplicity of the
algorithm, this method is very appropriate for our application. Fig. 9(b) shows the result of this
decimation step.

Increasing the surface decimation factor ρ has two benefits: (i) it simplifies the model and
makes further computations more efficient, and (ii) it allows us to impose smoothness
constraints on the model. The smoothness of the surface is measured by the average dihedral
angle (φ ̄

) of the edges in the mesh. This is further elaborated upon is Section 5.2.

4.2 Curve Skeletonisation
A curve-skeleton is a 1D curve, possibly with branches, in the ‘center’ of the shape. A related
and much more well defined concept is the medial axis which is also referred to as the skeleton.
For a 3D shape, however, the medial axis has two dimensional components (medial surface).
Therefore, the medial axis cannot be a substitute for a 1D skeleton. Another disadvantage of
the medial surface (axis) is its intrinsic sensitivity to small changes in the objects surface (Choi
and Seidel, 2002). Essentially, any curve-skeleton should satisfy the following basic properties
(Cornea et al., 2005):

1. homotopic to the original object (topology preservation)

2. invariant under isometric transformations

3. allow recovery of the original object (reconstruction)

4. 1D (thin)

5. centered within the object

6. visibility of every boundary point on the object from at least one curve-skeleton
location (reliable)

7. ablity to distinguish different components of the original object, reflecting its part/
component structure (junction detection)

8. preservation of the connectedness of the original object

9. small changes in the skeleton for small changes in object surface (robust)

We use the definition of curve skeletons based on the medial geodesic function by Dey and
Sun (2006b), which combines the intrinsic property of the surface (the geodesic distances)
along with its embedding in ℝ3 (the medial axis) thereby capturing the shape information
comprehensively. The medial geodesic function gives the shortest geodesic distances between
the points where the maximal balls centered at the medial axis touch the surface. Formally, if
O ⊂ ℝ3 is a space called shape bounded by a connected 2-manifold surface S, then the medial
axis M ⊂ O is the set of centers of the maximal balls inscribed in O. Let M2 ⊂ M be the set
of points on the medial axis whose maximal balls touch the surface S at two distinct points. It
can be shown that M2 is also a 2-manifold and covers most of M (i.e. M\M2 has measure 0).

3MATLAB® is a product of The Mathworks, Inc.
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For a point x ∈ M2, let Bx be the maximal inscribed ball centered at x and ax and bx be the two
touching points where Bx meets S. Then f(x), the length of the geodesic path on S between ax
and bx, is the medial geodesic function (MGF). The curve-skeleton is defined as the singular
set (maxima or saddle points) of f(x) for x ∈ M2.

It is mathematically shown that this definition of a curve-skeleton has properties of homotopic
equivalence, isometric invariance, thinness (1-D), centered-ness, junction detection, stability
(robustness) and connectedness. The MGF values at each point on the skeleton give the size
information of the shape. Also the ratio ε between the geodesic and Euclidean circles passing
through the touching points quantify how different the shape is from a tubular one
(eccentricity).

The algorithm has one parameter −1.1 ≤ θ ≤ 0.0 that controls the strictness for selecting points
from the medial axis M2 as being skeleton points. As θ decreases the curve skeleton becomes
less detailed. Formally, if  is the curve skeleton for surface S extracted with parameter θ,
then  if θ1 < θ2. The selection of this parameter is explained in Section 5.2. Figs.
10(a)–(c) show the results of curve-skeleton extraction for a few values of θ.

4.3 Dendrite Tree Model

The curve-skeleton  of the neuron is represented by an attributed tree structure  ≡ { ,
ℰ} which compactly encodes the geometry and topology of the dendrite. The set of vertices
is:

(12)

where x ∈ ℝ3 are the spatial coordinates, and d ∈ ℕ is the degree of the vertex. The set of
edges is:

(13)

where υi, υj ∈  are its vertices, γ is the length of the edge, [a, b] ∈ ℝ3 are the touching points
of medial ball with the surface, r is the radius of the medial ball, f ∈ ℝ is the medial geodesic
length for the edge, and ε is the eccentricity.

The dendrite tree has two types of chains of edges {e1(υ1, υ2), e2(υ2, υ3) … en(υn, υn+1}):

1. branch chains that start at leaf node (υ1|d(υ1) = 1) and end at a branch node (υn+1|d
(υn+1) > 2)

2. backbone chains that run between two branch nodes

Fig. 10(d) shows the graph of the dendrite in Fig. 10(b). The dendrite tree is pruned of those

branch chains whose cumulative length  is less than a threshold length Γmin. This step
eliminates spurious branches in the curve-skeleton by imposing restrictions on the minimum
length of potential spines in the dendrite.

4.4 Morphometry and Spine Identification
For each branch β in the dendrogram model we compute the following morphological features:

•
length γβ as the cumulative lengths  of the edges e1…en from the base (branch
nodes) to the apex (leaf nodes),
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•
radius  of the medial ball and eccentricity  at the base of the branch,

•
maximum radius ,

•
minimum radius ,

•
average weighted radius ,

•
volume Vβ as the cumulative volume of the edges  (approximating each
edge by a cylinder),

• the angle φβ the branch chain makes with the backbone edge at the base,
• the curvature κβ of the backbone at the base of the branch chain.

To distinguishing between branch chains that belong to end segments of the dendritic backbone
and those that belong to the spines (see Fig. 10(d)) in the pruned dendrite tree, we use the
following decision sequence:

1. If β is a branch chain of cumulative length γβ greater than a threshold length Γmax,
then mark it as dendritic backbone.

2. Else:

[2.i] If the average weighted radius rβ is greater than a threshold Rmax, mark it as
a backbone chain βbb.

[2.ii] Else mark it as spine chain βs.

The threshold Γmax enforces a maximum length constraint on valid spines, while Rmax enforces
a maximum radius constraint. While this framework allows for more sophisticated
morphological models when checking for spines, we find that the above model performs well
for our data-sets.

5 Results
Our method was implemented in a combination of MATLAB® 33, C++, ITK 4 and VTK 5. We
used the CurveSkel software package (Dey and Sun, 2006a) to calculate the curve skeleton of
the dendrites. Our algorithm was deployed on a PC with an Intel® Core2™Duo 1.8GHz
processor and 2GB RAM. The running time to process one neuron image is approximately 12
minutes. In Section 5.1 we explain the procedure used for validating the method, and show the
results. Then, in Section 5.2 we explain the selection of parameters and quantitatively measure
their effects on neuron reconstruction and spine-identification.

5.1 Validation
The results of the spine-identification procedure were validated on a data-set of 20 image stacks
of pyramidal neuron cultures. Each 3D image contained multiple independent dendritic
backbones with branching topology, an approximately fifteen spines per dendrite. Four expert
users examined the original microscopy images and identified the dendritic spines. They then
examined the dendrogram overlaid on the de-noised neuron 3D image (Figs. 11(a)–(b)), and
the number of false positives (Type I error) and false negatives (Type II error) were tabulated
across the users. The average sensitivity 6 and specificity 7 were then computed. These
experiments were repeated for a number of parameter settings (See Fig. 15).

4Insight Segmentation and Registration Toolkit from the National Library of Medicine (NIH/NLM) (www.itk.org).
5Visualization Toolkit from Kitware Inc. (www.vtk.org).

Janoos et al. Page 10

Med Image Anal. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



With regards to measuring the morphological features of dendrites, manual morphometry has
been traditionally performed in 2D. It must be noted that there are no widely accepted methods
of performing dendritic morphometry from 3D images. As a result, the manually measured
values themselves are not accurate. Also, the measurements are subject to wide variation
between the users. On our data-sets, the following morphological features were measured
manually by the four users:

Length Measured as the straight line distance between base of the spine and its apex, located
in the 3D segmented volume,

Volume Measured as the number of voxels in the spine enclosed by a plane marking the base
of the spine in the 3D segmented volume,

Basal Radius Measured in the 2D maximum intensity projection of the dendrite at the base of
the spine,

Maximum Radius Measured in the 2D maximum intensity projection of the dendrite at a point
along the spine judged by the user to have maximum radius,

Minimum Radius Measured in the 2D maximum intensity projection of the dendrite at a point
along the spine judged by the user to have minimum radius.

The dendritic spines were roughly grouped into two sets: short spines and long spines based
on their length, and each set was evaluated separately. As the spine length reduces, the natural
variability in locating the spine base and maximum (minimum) radius has a greater impact on
the relative error (standard score). Therefore for shorter spines, the relative variability across
human users in morphological measurements increases, making evaluation of the machine
measurements less reliable. The accuracy of the machine morphometry for each feature
(Length, Volume, Basal Radius, Maximum Radius, Minimum Radius) was computed using a
MANOVA test (Krzanowski, 1988). Each spine in the set (short or long spines) was an
independent variate, while the two samples to be tested were (a) the four manual measurements
and (b) the four manual measurements along with the machine measurement. The difference
between the means of the two samples was not found to be statistically significant (significance
level of α = 0.05). The Mahalanobis distance between the two sample means for each feature
are tabulated in Table 1.

Given the small size of each sample (4 or 5 data-points), the Mahalanobis distances observed
are reasonable. The higher error in length measurement is explained by the fact that manually
it was measured as the straight line distance between base to apex. Similarly, the higher errors
in radius measurements are because the manual verification was done in 2D. In all cases, it
was observed that the machine measurements were slightly larger than the manual
measurements, confirming this conclusion.

5.2 Parameter Selection
Table 2 gives a list of the parameters in the pipeline, their optimal values, and the conditions
under which they need to be tuned. Parameters of type “Setup” depend upon either the
properties of the image acquisition process or the digitization process and would need to be
changed only if this setup were to change. The parameters of type “Data-set” depend on the
characteristics of the neurons being analyzed, and can be kept the same for the entire data-set.

6defined as TP/(TP + FN), where TP: count of true positives, TN: count of true negatives, FP: count of false positives, FN: count of false
negatives.
7defined as TN/(TN + FP).
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Edges with gradient value less than the diffusion conductance parameter λnl are smoothed while
those above it are enhanced. Given the nature of the intensity field in a neuron image, we find
a large difference between the gradients of valid edges and noise edges, and the smoothing
step is not sensitive to the selection of λnl. Perona and Malik (1990) have shown that edges
remains stable over a long period of time in the non-linear diffusion process, while the solution
gradually converges to a steady state. We too observe that after 10 iterations, most of the noise
is removed and the edges remain stable up to 200 iterations (Fig. 12). Consequently, the number
of time steps Nnl is fixed at 15 for all data-sets. The regularization scale σ depends upon the
physical spacing between the voxels. For our microscopy setup, a value of σ between 2 to 5
was found to be satisfactory.

The condition number cond(Ω) (eqn. 5) quantifies the sensitivity of the segmentation threshold
Ω (Section 3.3). As seen in Fig. 13(a), the condition number is low for Ω < 300, and once the
background tissue is segmented out (Ω > 50), the approximate radius (in voxels) of the
segmented neuron stabilizes (Fig. 13(b)). As a result of this large range in acceptable values
of Ω, the algorithm is robust with respect to it and it does not have to be fine tuned.

The τgac parameter enforces a proximity constraint (Section 3.4), between valid floating spine
heads and the dendritic back-bone, and depends upon the characteristics of the imaging process
and the underlying tissue, which are responsible for this disconnect. We find that τgac ≈ 5 is
appropriate for all cases in our data-set. The volumes of the smallest dendrite (> 120, 000
voxels) and the largest floating tissue fragment (≪ 5000 voxels) differ by two orders of
magnitude, and therefore the volume threshold ϑ has a lot of slack in its selection.

The two parameters α and μ of the surface fairing step affect the pass-band and stop-band of
the surface frequencies (Section 4.1). The parameter N controls the sharpness of the cut-off
frequency. Their value can be kept fixed and does not have to be tuned. This is because the
scale of the noise in the iso-surface is many orders of magnitude smaller than the scale of the
features (spines) in the neurons, as can be clearly seen from Fig. 9(a).

To select the best quadric error decimation factor ρ we use the average dihedral angle φ ̄

of the surface mesh  to quantify smoothness. Fig. 14 shows the value of φ ̄

with respect to the decimation factor ρ. Initially, as number of polygons in the original mesh
starts reducing, φ ̄

of the remains fairly constant. However, after a certain percentage of the faces are removed,
the surface begins to develop sharp edges and φ ̄

begins to rise sharply. The optimal value of ρ is in the region where the knee point occurs. We
have found a factor of 0.8 to 0.95 to produce good results.

The skeletonisation strictness parameter θ (Section 4.2), the spine length thresholds Γmin
(Section 4.3), Γmax and maximum spine radius threshold Rmax (Section 4.4) work in
conjunction to directly influence the sensitivity and specificity of the spine identification
process. The values of Γmin, Γmax and Rmax serve to impose biologically meaningful constraints
on the size of the spines, and are known a priori, while θ is set constant for the entire data-set.
From the ROC 8 curves (Fig. 15) we observe the effect of variations in Γmin, Γmax and Rmax
on the accuracy of the algorithm. We obtained optimal sensitivity (0.953) and specificity
(0.901) at θ = 0.05, Γmin = 12, Γmax = 38 and Rmax = 17 for our data-set.

8Receiver Operating Characteristic.
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6 Conclusion
In this paper we have presented a method to robustly reconstruct neuronal dendrites in 3D and
to accurately identify spines on the dendrites. We developed a surface representation of the
neuron that is compact and allows us control over the smoothness of the reconstructed surface.
The curve-skeleton of the neuron was extracted using a procedure based on the medial geodesic
function, which is robust to noise and correct in the sense of topological preservation. Based
on the surface representation and the curve-skeleton we could accurately detect spines and
measure spine length, volume, radius and other morphological features. Such features, in
combination with other experimental information, may help researchers to delineate the
mechanisms and pathways of neurological conditions such as Alzheimer’s disease and tuberous
sclerosis complex syndrome. The parameters of our method are easy to understand and
biologically motivated. The accuracy of the system for spine identification and morphometry
was demonstrated through a quantitative evaluation. We also presented a detailed study of the
effect of the various parameters on the image processing, reconstruction and spine
identification procedures that shows the robustness of this approach to parameter selection.

We are investigating methods to use the rich description of neuronal structure presented here
to track dendrites and spines over time and study their morphological changes. By combining
the 3D reconstruction algorithm with image registration, we plan to study the relationship
between the changes in spines and their synaptic formations dynamically in order to uncover
potentially new mechanisms of neuronal networks and functions. We also believe that the
processing time for one neuron image can be reduced by a factor of 2× by optimizing our
algorithm and implementing it entirely in C/C++.
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Fig. 1.
Fig. (a) shows a 2D maximum intensity projection of a 3D neuron image, in which information
along the imaging axis is lost. Fig. (b) shows the full 3D reconstruction. The 3D reconstruction
captures the branching structure and the morphology of the dendrites with much greater
accuracy, and is used as the basis for spine identification.
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Fig. 2.
Figs. (a) and (b) show 2D projections of the neuron images, with the backbone (blue) and spines
(red) identified by the algorithm overlaid on them. From these images, it can be seen that in
2D a large amount of the neuron structure is lost.
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Fig. 3.
Algorithm Overview.
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Fig. 4.
Volumetric renderings of GFP stained pyramidal neurons from rat hippocampi before (Figs.
(a),(b)) and after (Figs. (c),(d)) de-convolution. The data-set resolution is 512×512×12 at 1:1:10
voxel aspect ratio (0.07 μm×0.07 μm×1 μm).
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Fig. 5.
Results of non-linear diffusion de-noising with anisotropic regularization. The left column
shows a section of 2D slice of the 3D neuron image, and the right shows the corresponding
Monge map. Figs. (a) and (b) show the image before smoothing, Figs. (c) and (d) show the
results for non-linear diffusion, while Figs. (e) and (f) show the result of Gaussian smoothing.
We can see that the non-linear diffusion method de-noises the image while preserving edges.
Both Gaussian and non-linear filtering were carried out in 3D.
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Fig. 6.
Neuron volumes after de-noising and re-sampling (Section 3.2) to 1:1:1 voxel aspect ratio.
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Fig. 7.
Volumetric rendering of segmented neuronal objects.
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Fig. 8.
Illustrative example (in 2D) of the floating spine head problem and its solution. Fig. (a) shows
the neuron image after segmentation with floating spine heads and spurious tissue fragments
in 3D. Fig. (b) shows the speed function that controls the level-set evolution. Fig. (c) shows
the floating spine head connected to the backbone.
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Fig. 9.
Surface model of dendrite. Fig. (a) shows the original iso-surface of the segmented neuron
object. Fig. (b) shows the surface after low-pass filtering and quadric error decimation.
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Fig. 10.
Figs. (a)–(c) show the curve-skeletons for θ = 0.0, −0.2, −0.5 respectively. Fig. (d) shows the
dendrite graph (before pruning) for the skeleton in Fig. (b). The green curve is the skeleton,
the blue lines indicate backbone edge chains, and red lines are branch chains.
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Fig. 11.
Figs. (a) and (b) show 3D visualizations of two dendrites, their backbones (blue) and spines
(red).
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Fig. 12.
The effect of conductance λnl and number of time-steps Nnl on non-linear diffusion filtering of
the neuron images. Figs. (a)–(d) show Monge map (intensity map) for a 2D section of the 3D
volume for varying values of λnl and Nnl.
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Fig. 13.
Fig. (a) shows the condition number with respect to Ω. The red line is a least-squares fit of the
data. Fig. (b) shows the approximate radius (in voxels) of the segmented volume with respect
to Ω.
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Fig. 14.
Average dihedral angle φ ̄

of dendrite surface mesh  vs. decimation factor ρ.
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Fig. 15.
ROC curves with respect to θ. Fig. (a) shows the ROC curve for different values of Γmin. Fig.
(b) shows the ROC curve for different values of Γmax. Fig. (c) shows the ROC curve for different
values of Rmax.
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Table 1
MANOVA results for spine morphometry.

Mahalanobis distance

Feature Long Spines Short Spines

Length 0.51 0.83

Volume 0.22 0.46

Basal Radius 0.65 0.90

Maximum Radius 0.42 0.77

Minimum Radius 0.37 0.68
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Table 2
List of parameters and their optimal values.

Parameter Explanation Values Type

λnl Non-linear diffusion conductance (eqn. 2) 0.5 to 1.5 –

Nnl Non-linear diffusion number of time-steps 15 –

σ Regularization scale (eqn. 4) 2 to 5 Setup

Ω Segmentation threshold (Section 3.3) 50 to 200 –

τgac Level-set time-steps 5 to 10 Setup

ϑ Floating fragment max volume (×103) (Section 3.4) 5 to 1000 –

α Surface fairing smoothing (eqn. 9) 0.3 to 0.7 –

μ Surface fairing expansion (eqn. 10) −0.1 to −0.4 –

N Surface fairing steps (eqn. 11) 20 to 80 –

ρ Surface decimation factor 0.90 to 0.96 Data-set

θ Skeletonisation strictness (Section 4.2) 0.0 to −0.2 Data-set

Γmin Minimum spine length(Section 4.3) 12 ± 3 Data-set

Γmax Maximum spine length(Section 4.4) 38 ± 5 Data-set

Rmax Maximum spine radius (Section 4.4) 17 ± 5 Data-set
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