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Abstract 

Unsupervised decomposition of static linear mixture model (SLMM) with ill-

conditioned basis matrix and statistically dependent sources is considered. Such 

situation arises when low-dimensional low-intensity multi-spectral image of the 

tumour in the early stage of development is represented by the SLMM, wherein 

tumour is spectrally similar to the surrounding tissue. The original contribution 

of this paper is in proposing an algorithm for unsupervised decomposition of 

low-dimensional multi-spectral image for high-contrast tumour visualisation. It 

combines nonlinear band generation (NBG) and dependent component analysis 

(DCA) that itself combines linear pre-processing transform and independent 

component analysis (ICA). NBG is necessary to improve conditioning of the 

extended mixing matrix in the SLMM, while DCA is necessary to increase 

statistical independence between spectrally similar sources. We demonstrate 

good performance of the method on both computational model and experimental 

low-intensity red-green-blue fluorescent image of the surface tumour (basal cell 
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carcinoma). We believe that presented method can be of use in other multi-

channel medical imaging systems. 

 

Keywords: Unsupervised decomposition; Ill-conditioned static linear mixture models; 

Multi-spectral imaging; Tumour demarcation; Multi-channel medical imaging.  

 

1.0 Introduction 

Methods for tumour demarcation include examples with visualisation based on: 

fluorophores (Koenig et al., 2001; Bäumler et al., 2003), green fluorescent protein 

gene tumour transduction system (Hasegawa et al., 2000; Hoffman, 2002) or 

fluorescent nanoparticles (Tréhin et al., 2006). In the case of fluorophores, contrast 

visualisation is obtained under optimal combination of parameters such as 

concentration of photo-synthesiser, duration of treatment with photo-synthesiser and 

intensity of illuminating light. Under these conditions a few well-established methods 

can be used for tumour visualisation (Scott et al., 2000; Ericson et al., 2003; Fischer et 

al., 2001). However, variability in some of the parameters will cause fluctuation of the 

intensity level of the acquired fluorescent image, causing predefined threshold 

constants not being optimal any more. Here we propose a high-contrast tumour 

visualisation algorithm that is based on unsupervised decomposition of a low-

dimensional multi-spectral fluorescent image. It exhibits a high level of robustness 

with respect to the fluctuation of the intensity level. That is achieved due to the 

unsupervised nature of the algorithm and the scale invariance property of the 

independent component analysis algorithm (ICA) (Jutten and Herault, 1991; Bell and 

Sejnowski, 1995; Hyvärinen et al., 2001; Cichocki and Amari, 2002) that forms the 

heart of the proposed method. However, spectral similarity between the tumour and 

surrounding tissue causes an ill-conditioning of the basis matrix as well as statistical 

dependence between the sources in the hypothetical linear mixture model of the 
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fluorescent image. Therefore, ICA fails to yield accurate demarcation. Here we show 

that by nonlinear band generation (NBG), (Ren and Chang, 20001; Du et al., 2004), 

and dependent component analysis (DCA), (Cichocki and Amari, 2002; Cichocki and 

Georgiev, 2003; Cichocki, 2007; Hyvärinen, 1998; Kopriva and Seršić, 2008), we can 

fix ill-conditioning problem and increase statistical independence between the 

sources, hence creating an environment for the ICA to work more accurately. This 

newly proposed method exhibits improved performance over number of state-of-the-

art multi-channel blind decomposition algorithms on both computational and 

experimental multi-spectral images.  

 

2.0 Methods 

The unsupervised decomposition problem consists in finding the basis matrix 

MN
RA  and matrix of hidden components or sources TM

RS given only the 

matrix of observed data TN
RX such that the following static linear mixture model 

(SLMM) holds 

X=AS (1) 

 

Each row of X and S is a signal or 1D image representation, N is the number of 

observed signals, M is the number of hidden components (sources) and T is the 

number of samples. Because we are concerned with an unsupervised image 

decomposition problem, we have assumed X, A and S to be nonnegative.  
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2.1 Independent component analysis 

The unsupervised decomposition problem (1), also known as a static blind 

source separation problem, is efficiently solved by ICA (Hyvärinen et al., 2001; 

Cichocki and Amari, 2002), provided that the sources are statistically independent, at 

most one source has Gaussian distribution, and the number of sources M is less than 

or equal to the number of observed signals N. Then a solution to the unsupervised 

decomposition problem (1) is obtained with scale and permutation indeterminacy, i.e.,  

WXS ˆ  (2) 

with WA=PΛ, where W represents the un-mixing matrix, P is a general permutation 

matrix and Λ is a diagonal matrix. This implies that ICA-based solution of the 

unsupervised decomposition problem is unique up to the ordering, scale and sign. 

Thus, ICA algorithms possess a scale invariance property that makes them attractive 

for use in tumour visualisation and demarcation from the multi-spectral fluorescent 

image, when the level of the fluorescence may vary from measurement to 

measurement for the reasons already discussed.  

It is assumed by many ICA algorithms that sources are zero mean as well as 

that data are whitened (spatially uncorrelated). Most algorithms include mean removal 

and data whitening as a first phase in the algorithm development. Mean removal is 

achieved very simple through  

 

  
1

N

n n n n
E


 x x x  (3) 
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where xn denotes rows of X and E[xn] denotes mathematical expectation of xn. Data 

whitening is achieved through 

 

1/2 TX Λ E X  (4) 

where  and E respectively stand for diagonal matrix of eigenvalues and matrix of 

eigenvectors of the sample data covariance matrix RXX=E[XXT]. Since in the muti-

spectral image decomposition problem source signals represent spatial maps of the 

materials resident in the image, we have always rescaled extracted sources to the [0,1] 

interval such that probability of the source being present (that is maximally 1 and 

minimally 0) can be assigned at each pixel level. 

The strategy of the ICA algorithms in solving blind decomposition problem is 

to find linear transform W such that components of Ŝ  are as much statistically 

independent as possible. Depending on available type of a priori information about 

the sources various approaches are exploited by ICA algorithms. Number of ICA 

methods requires a priori information about the class of distributions to which source 

signals belong (Bell and Sejnowski, 1995; Pham, 1997; Choi et al., 2000). Such 

information is however not readily available. One alternation is to derive methods that 

are adaptive to the unknown source distributions. The representatives of such class of 

methods are kernel density methods (Xue et al., 2008; Principe and Xu, 1999; 

Principe et al., 2000). Main disadvantage of the kernel density based ICA methods is 

their computational complexity that is O(T2N2) where T represents number of 

samples. In application domain considered in this paper T represents number of pixels 

and can take value of even 107. Hence, the computational complexity in such a case 
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would be huge. It has been pointed out recently (Xue et al., 2008) that computational 

complexity of the kernel density methods can be reduced by fast Fourier transform 

(Sliverman, 1982). Other approaches to reduce computational complexity of kernel 

density-based ICA methods were also proposed (Pham, 2003; Schwartz et al., 2004) 

yielding respectively computational complexity of O(3NT + N2T) and O(NTlogT + 

N2T). If we consider multi-spectral image to be an RGB image, then N=3. Assuming 

T4106
 (that is today normal size of the RGB images from commercial digital 

cameras) we arrive at still very large numbers for computational complexity of the 

kernel density-based ICA methods. Due to computational complexity reasons we have 

relied in this manuscript on ICA methods that are also source distribution independent 

but solve blind decomposition problem through minimization of the statistical 

dependence between the sources up to the fourth order (FO) (Cardoso and 

Soulomniac, 1993) or through minimization of the statistical dependence between the 

sources of the second order but for different lags (Belouchrani et al., 1997; Stone, 

2001).  

Representative of the first group is FO cumulant based ICA algorithm JADE 

(Cardoso and Soulomniac, 1993) that stands for Joint Approximate Diagonalisation of 

the Eigen-matrices, where statistical independence is achieved through minimisation 

of the squares of the FO cross-cumulants between the components ˆ
ms  

 

  T
4

, , ,

ˆ ˆ ˆ ˆ ˆarg min ( , , , )i j k l
i j k l

C W off W s s s s W      (5) 

 



7 

where off(A) is measure for the off-diagonality of a matrix defined as 


 Nji1

2

ija)(Aoff . 4
ˆ ˆ ˆ ˆ ˆ( , , , )i j k lC s s s s  are sample estimates of the related FO cross-

cumulants (Mendel, 1991; McCullagh, 1995) i.e. 

 

     
4

ˆ ˆ ˆ ˆ ˆ( , , , )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

i j k l

i j k l i j k l i k j l i l j k

C

E E E E E E E



                

s s s s

s s s s s s s s s s s s s s s s
   (6) 

 

The additional advantage of using FO cumulants based ICA algorithm is its capability 

to suppress additive Gaussian noise based on the known property that FO cumulants 

are blind with respect to Gaussian noise (Mendel, 1991). Disadvantage of the use of 

FO statistics based methods is their sensitivity to outliers as well as requirement that 

FO cumulants for the source signals in consideration must exist. On the other side SO 

statistics based methods are more robust with respect to outliers. If the source signals 

have certain structure (temporal or spatial) it is possible to obtain demixing matrix W 

as the solution of the following joint diagonalization problem 

 

  T( ) off
S

J 


  sW WC W         (7) 

where 
sC are symmetrical one-lag covariance matrices of the sources  

 

    T T( ) ( ) ( ) ( )E t t E t t     sC S S S S  

Since by assumption source signals are statistically independent it applies that 
sC  

must be a diagonal matrix. Thus, it follows from (7) that W is matrix of eigen-vectors  
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that jointly diagonilize set of matrices  
S 

sC . This is how the SOBI algorithm that 

stands for Second Order Blind Identification is formulated (Belouchrani et al., 1997).  

 For predictable signals it is further possible to obtain demixing matrix W as 

the solution of the generalized eigen-decomposition problem by maximizing 

predictability measure (Stone, 2001) 

 

      
  
  

 

 

max

max

2

2

( ) ( )( )
( ) log log

( ) ( ) ( )

k

m k m km k k
m k k

m k m k m kk

s t s tV s t
F s t

U s t s t s t


 




 

                       (8) 

 

where V reflects the extent to which sm(tk) is predicted by a long term moving average 

( )m ks t  and U reflects the extent to which sm(tk) is predicted by a short term moving 

average ( )m ks t . Since source signals in the problem considered in this paper are 

predictable (pixel values are locally correlated) we shall use this method, coined as 

"temporal" predictability maximization ICA algorithm, in blind multi-spectral image 

decomposition problem.   

 

2.2 Dependent component analysis 

 The basic idea behind DCA (Cichocki and Amari, 2002; Cichocki and 

Georgiev, 2003; Hyvärinen, 1998; Kopriva and Seršić, 2008) is to find a linear 

transform   that can improve statistical independence between the sources but leave 

the basis matrix unchanged, i.e.,  

 

     H H H X AS A S                                                                              (9) 
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Since the sources in this new representation space will be less statistically dependent, 

any standard ICA algorithm can in principle be used to learn the mixing matrix A or 

demixing matrix W. Once they are estimated, the sources S can be recovered by 

applying W the multi-spectral image X in (1). Examples of linear transforms that have 

such a required invariance property and generate less dependent sources in the new 

representation space include: high-pass filtering (Cichocki and Georgiev, 2003), 

innovations (Hyvärinen, 1998) and wavelet transforms (Kopriva and Seršić, 2008). 

However, to get optimal performance out of DCA algorithm, chosen ICA algorithm 

should be tuned to the chosen statistical independence enhancement transform. One 

computationally efficient approach to solve the blind separation problem with 

statistically dependent sources is based on the use of innovations. The arguments for 

using innovations are that they are more independent from each other and more non-

Gaussian than original processes. The innovation process is referred to as prediction 

error that is defined as:  

 

     
1

,    1, ,
l

m m mi m
i

s t s t b s t i m M


                   (10) 

 

where sm(t i) is the i-th sample of a source process sm(t) at location (t i) and bm is a 

vector of prediction coefficients.  ms t  represents the new information that sm(t) has 

but is not contained in the past l samples. It has been proved in (Hyvärinen, 1998) that 

if X and S follow the linear mixture model (1), their innovation processes X  and S  

(in matrix form) follow the same model as well, i.e.,  
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X AS  (11) 

 

Because innovation basically removes predictable, or slow varying, part of the signal 

it is super-Gaussian and close to independent and identically distributed (i.i.d.) signal. 

This is especially true if order of the prediction error filter in (10) is high. Thus, FO 

cumulants are expected to be well defined for when high-order innovations are used. 

Therefore, it is justified in DCA algorithm to combine JADE ICA algorithm with 

high-order innovations based linear transform in order to achieve good performance. 

First order high pass filter can be thought as the first order innovation of the signal. In 

such a case significant part of the predictable signal component will still remain in its 

innovation. Therefore, it is justified in DCA algorithm to combine SOBI-like ICA 

algorithms (Molgedy and Schuster, 1994; Ziehe et al., 1998) with low-order 

innovations based linear transform to achieve good performance. Due to the reasons 

discussed, we shall apply these two DCA algorithms in the comparative performance 

analysis presented in section 3. At this place we would also like to explain why, by 

means of innovations or high-pass filtering, removing statistical dependence between 

the source pixels also increases statistical independence between the sources. Both 

high-pass filtering and innovations, they can be viewed as source adaptive high-pass 

filtering, remove low-frequency part of the source spectrum. It is low-frequency part 

of the source spectrum that is a cause for eventual statistical dependence among the 

sources. This empirical observation has been brought out in (Cichocki and Amari, 

2002; Cichocki and Georgiev, 2003; Cichocki, 2007). It represents basis for 

construction of various DCA algorithms and explains why all of them are looking for 

high-frequency part of the source spectrum in order to learn a mixing matrix more 
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accurately by applying ICA algorithms on high-pass filtered version of the mixtures, 

see (9) and (11). Hence by removing low-frequency part of the source spectrum 

innovation process also removes eventual cause of statistical dependence among the 

sources. 

 

2.3 Nonnegative matrix factorization 

 Alternatives to the ICA or ICA-based DCA include algorithms for nonnegative 

matrix factorisation (NMF), (Lee and Seung, 1999; Zdunek and Cichocki, 2007; 

Cichocki et al., 2008), which are also applicable to the SLMM (1) because the 

variables in the model are nonnegative. Unlike ICA, the NMF algorithms do not 

impose statistical independence and non-Gaussianity requirements on the sources. 

However they do generally require N>>M, which makes them not good candidate for 

unsupervised decomposition problems when X represents a low-dimensional multi-

spectral image, such as a red-green-blue (RGB) image in which case N=3 can even be 

less than M. In addition to that, NMF algorithms are quite sensitive to the choice of 

initial conditions that often yields suboptimal performance. Various strategies are 

under investigation, including even ICA algorithms, to estimate good initial points for 

A and S. The basic approach to NMF, that is described in general algorithmic form 

below, is alternating minimization of a chosen cost function (Zdunek and Cichocki, 

2007; Cichocki et al., 2008). 

Set Randomly initialize: A(0), S(0), 

For k=1,2,…, until convergence do 

  Step 1:   ( )

( 1) ( )

0

arg min
k

mt

k k

s

D




S

S X A S  
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  Step 2:   ( )

( 1) ( 1)

0

arg min
k

nm

k k

a

D 




A

A X AS  

End 

 In general, the cost function  D X AS  in Step 1 can be different than the cost 

function  D X AS  in Step 2, however, usually    D DX AS X AS . In (Lee and 

Seung, 1999) the algorithm was first applied to two different cost functions: squared 

Euclidean distance (Frobenius norm) and Kullback-Leibler divergence. Using a 

gradient descent approach to perform Steps 1 and 2, they obtained multiplicative 

algorithms.  However, the multiplicative algorithms are known to be very slowly 

convergent and easily get stuck in local minima. Therefore, in (Zdunek and Cichocki, 

2007) an algorithm was recently derived that is based on the use of second-order 

terms, Hessian, in the Taylor expansion of a cost function to speed up convergence. 

Specifically, the NMF algorithm used in the experiments in the cited paper combines 

quasi-Newton optimisation for basis matrix A and a fixed-point regularised least-

square algorithm for S, with computer code provided in the appendix in (Zdunek and 

Cichocki, 2007). Excellent performance of this algorithm has been demonstrated in 

(Zdunek and Cichocki, 2007; Cichocki et al., 2008). This algorithm will be used in the 

comparative performance analysis in section 3. We shall refer to this algorithm 

through the rest of the paper as the SO NMF algorithm. 

2.4 SLMM and multi-spectral imaging 

The SLMM (1) is widely used in multi-spectral and hyper-spectral remote 

sensing, (Adams et al., 1993; Settle and Drake, 1993; Du et al., 2006; Du and 

Kopriva, 2008), where 3D image cube contains co-registered spectral images of the 

same scene. Within this application field, N represents the number of spectral bands; 

rows  N

nn 1
x of X represent spectral images, and columns of X represent multi-spectral 
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pixel vectors at particular spatial locations, tT, in the image; T represents the number 

of pixels in the image, while column vectors  M

mm 1
a  of the basis or mixing matrix 

represent spectral responses of the corresponding sources M

mm 1
s  that themselves are 

rows of S that represent spatial distributions of the sources. Assuming that X 

represents an RGB fluorescent image the number of spectral bands N equals 3. In 

order to relate the SLMM (1) to the tumour visualisation, we point out again that 

sources sm represent spatial maps of the tumour, surrounding healthy tissue and 

possibly some other material resident in the multi-spectral fluorescent image, while 

corresponding column vectors am of the basis or mixing matrix represent their spectral 

responses. Following this interpretation we immediately see that spectral similarity of 

the sources sm and sn will affect the condition number of the basis matrix, because the 

corresponding column vectors am and an become close to collinear. This is elaborated 

in great details in the appendix where effects of the NBG transform on the condition 

number of the extended mixing matrix are evaluated analytically and numerically. 

Simulation example in section 3.1 based on the computational model of the RGB 

image also demonstrates that condition number of the mixing matrix is increasing 

from 11.7 to 117 when angle between two spectral vectors decreases from 10 degrees 

to 1 degree. In addition to deteriorate conditioning of the mixing matrix spectral 

similarity between the sources makes them statistically dependent. This is easily 

verified by assuming that sources sm and sn are spectrally very similar. Then ancam, 

where c represents the intensity scaling factor. The contribution of these two sources 

at any pixel location t is amsmt + ansnt  amsmt + amcsnt, implying that sm and csn are 

indistinguishable i.e. sm and sn are statistically dependent. Hence, two fundamental 

requirements imposed by the ICA algorithms on the SLMM fail when the sources 

become spectrally highly similar. We point out that spectral similarity among the 

sources also affects the performance of the NMF algorithms due to the ill-

conditioning of the basis matrix. It is NBG transform that is necessary to improve 
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conditioning of the extended basis matrix. However, as it will be demonstrated in 

section 3, it is also DCA that is necessary to be used in combination with NBG 

transform in order to account for statistical dependence induced by spectral similarity 

between the sources. 

2.5 New algorithm: NBG and DCA 

Here we propose a novel solution for unsupervised decomposition of the SLMM 

(1) for the case of ill-conditioned basis matrix and statistically dependent sources, by 

combining NBG transform (Ren and Chang, 2000; Du et al., 2004), that increases the 

dimensionality of the original multi-spectral image X and decreases the condition 

number of the extended basis matrix, and DCA (Cichocki and Georgiev, 2003; 

Hyvärinen, 1998; Kopriva and Seršić, 2008) that increases the level of statistical 

independence between the spectrally similar sources. This combined use of two 

transforms is original contribution of this paper that is important for robust blind 

decomposition of low-dimensional multi-spectral images such as RGB image for 

example. It is demonstrated on computational model and experimental data that 

proposed algorithm yields high-contrast tumour maps when intensity of the acquired 

fluorescent image is fluctuating more than 10 times causing increased spectral 

similarity between tumour and surrounding tissue.  

 The NBG process was originally proposed in (Ren and Chang, 2000) with the 

aim of increasing the accuracy of the orthogonal subspace projection method in 

decomposition and classification of the multi-spectral images and also used for the 

same purpose in (Du et al., 2004), when the number of sources M to be classified 

exceeds the number of spectral bands N.  The same limitation, NM, also applies to 

the ICA and DCA algorithms in unsupervised decomposition of the SLMM (1). 
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According to (Ren and Chang, 2000) the basic idea behind the NBG approach arises 

from the fact that a second-order random process is generally specified by its first-

order and second-order statistics. Looking at the original spectral images  N

nn 1
x  as 

the first-order statistical images, a set of second-order statistical spectral images can 

be generated by capturing the correlation between the spectral bands. They provide 

useful second-order statistical information about spectral bands that is missing in the 

set of original spectral images. Theoretically, any nonlinear function can be used to 

generate set of artificial images with linearly independent spectral measurements. 

Previous experimental studies (Du et al., 2004) have shown that nonlinear function 

that enlarges or emphasizes discrepancy between original spectral measurements will 

help to improve classification performance, since the technique applied here uses 

spectral information. A simplest but effective choice is multiplication. When two 

original spectral images are multiplied together a new artificial spectral image is 

generated. Here, multiplication acts as matched filtering. When multiplicant and 

multiplier are equal, the product is the maximum. So multiplication can emphasize the 

spectral similarity between two spectral measurements of the same pixel, which is 

equivalent to emphasizing their dissimilarity or discrepancy. Multiplication can be 

also used for a single band. Then, it emphasizes a single spectral measurement itself, 

which is also equivalent to enlarging the spectral difference from other spectral 

measurements of this pixel. Thus, second-order statistics, which include auto-

correlation, cross-correlation and nonlinear correlation, are used to create nonlinearly 

correlated spectral images and increase the dimensionality of the original image X. 

The set of auto-correlated spectral images is obtained as   N

nn 1

2


x  while the set of 
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cross-correlated spectral images is obtained as  N

nmnmmn  ,1,
xx . The dimensionality of 

the original image X is extended from N to 2N + 








2

N
. Thus the dimensionality of an 

RGB image is increased from 3 to 9. Although dimensionality increase is important, 

especially when the number of spectral bands is small, there is another important 

property of the NBG technique presented here for the first time. Namely, the NBG 

technique causes the two angularly close spectral vectors am and an to become more 

separated in the band-expanded version of the original image. We denote the band-

expanded image as X . This is achieved provided that the two corresponding sources 

sm and sn do not have exactly the same intensity. Detailed demonstrations for 2D and 

3D problems with cross-correlated and auto-correlated bands are presented in 

appendix. Thus the NBG technique significantly improves conditioning of the original 

basis or mixing matrix caused by spectral similarity between the sources. Since in a 

tumour demarcation problem we are interested in spatial localisation of the tumour 

class, we shall impose a special constraint on the sources in the SLMM (1): sm  {0,1} 

i.e. we presume quasi-binary nature of the spatial maps of the sources, where 1 

indicates source presence and 0 indicates source absence at the pixel level. However, 

the truth is that sources are continuous and not binary. But if blind decomposition is 

reasonably successful other sources present in each extracted source spatial map will 

be suppressed significantly. Thus, the extracted sources could be, at least as the first 

approximation, modeled as quasi-binary. This assumption is necessary to make 

analytical and numerical quantification of the effects of NBG transform 

mathematically tractable. The analysis itself is in presented in the appendix for 2D 

and 3D problems, where it is demonstrated that NBG transform really improves 
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conditioning of the extended mixing matrix in relation to the original mixing matrix. 

This is especially the case when the column vectors of the original mixing matrix 

become close to collinear (the angular separation between the column vectors is 

small), see Figures 7 to 9.    

 Another assumption that is necessary to carry on analysis discussed above is 

that sources do not overlap in the spatial domain: smtsnt=mn, where t denotes pixel 

location and mn represents Kronecker’s delta symbol. This helps to get rid out of the 

cross-terms that show up in nonlinear band expansion process. This no-overlapping 

assumption is however not pure mathematical construct. It has justification in tumour 

demarcation problem due to the fact that the pixel footprint is small, usually less than 

a square mm, and it is highly unlikely that the tumour occupies the same pixel 

location with some other source resident in the multi-spectral image. Under these two 

assumptions (quasi-binary and no-overlapping sources) it is straightforward to show 

that the NBG technique applied to the SLMM (1) produces the following result:  

 

 
1

M

mt nt mk nk ktk
x x a a s


  

  

Thus in matrix notation model (1) is transformed into 

SAX   (12) 

 

Spectral similarity between the sources sm and sn makes them also statistically 

dependent. A few approaches that deal with the problem of statistically dependent 

sources are presented in (Cichocki and Amari, 2002; Cichocki and Georgiev, 2003; 
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Hyvärinen, 1998; Kopriva and Seršić, 2008, Kopriva, 2007) and references cited 

therein. As elaborated in section 2.2, the problem is fixed by finding a linear operator 

  with the property  

     H H H X AS A S   (13) 

such that the transformed sources (S) are more statistically independent than the 

original sources S. We have been already discussed the reasons for choosing high-

order innovations transform with JADE ICA algorithm to form DCA algorithm, as 

well as to choosing first order innovation transform (first order high-pass filter) with 

the SOBI ICA algorithm to form another DCA algorithm. Coefficients of prediction-

error filter bm in (10) are efficiently estimated by means of the Levinson algorithm 

(Orfanidis, 1988). The filter is applied row-wise on the image X  and is obtained as an 

average of the prediction-error filters estimated for each image 
1

N

n n
x . Depending on 

the order of the prediction error filter used, either JADE or SOBI ICA algorithms are 

applied to the SLMM (13) in order to learn more accurately the extended basis matrix 

A  or its inverse W  than would be possible from (12). Sources S are then recovered 

by applying W  to the band-expanded image given by (12).  

Before proceeding to the presentation of the results, we briefly comment on two 

important remaining issues: estimation of the unknown number of sources M, and 

prioritisation of the extracted sources by the measure of information contained in 

them. Determination of the number of sources is a very old problem in multivariate 

data analysis, and is also known as intrinsic dimensionality problem (Fukunaga and 

Olsen, 1971). Several methods for estimating the number of sources in a hyperspectral 

image have been tested in (Chang and Du, 2004). Malinowski’s method (Malinowski, 

1977a; Malinowski, 1977b) developed for determination of the number of factors in 

absorption spectroscopy, mass spectra, and chromatography has been demonstrated in 

(Chang and Du, 2004) to give a good result in estimating the number of sources 
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resident in the hyper-spectral image. We have used this method in estimating the 

number of sources in the band-expanded version of the multi-spectral image given by 

(5). When dealing with the original RGB image given by (1), estimating the number 

of sources was not an issue, because a priori knowledge and the fact that maximal 

number of sources is limited by the number of spectral bands, that is 3, narrowed 

down the number of sources to 1, 2 or 3. To prioritise the extracted sources we used 

the high-order statistics-based approximation of the negentropy measure (Wang and 

Chang, 2006) and Eq.(5), p. 115 in (Hyvärinen et al., 2001):  

    2423 3
48

1

12

1
)(  mmmJ s        (14) 

where     


T

t mtm sTk
1

33 1 and     


T

t mtm sTk
1

44 1 are sample means of third and 

fourth order statistics of sm.  

 

 

3. Results 

We now execute comparative performance evaluation of the presented method 

on the computational model of an RGB fluorescent image of a surface tumour as well 

as on experimental RGB fluorescent images of the surface tumour (basal cell 

carcinoma). For this purpose two experiments have been carried out. In first 

experiment we have recorded an image of a skin tumour after being treated for 4h 

with -5-aminolaevulinic acid. This is a photo-synthesiser that, through the process of 

biosynthesis, causes formation of the fluorophore protoporphyrin IX (PpIX), (Koenig 

et al., 2001). The tumour was illuminated with 405 nm light, which induces 
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fluorescence of the PpIX. The fluorescent image was recorded by a camera with an 

attached filter used to filter out the reflected 405 nm light. In order to simulate effects 

of variability of the parameters such as concentration of the photo-synthesiser, 

intensity of illumination light and duration of the treatment with the photo-

synthesiser, on the variation of the fluorescent image intensity, we acquired a 

fluorescent RGB image after illumination with high-intensity light as well as with 

light with a weak intensity level. The high-intensity fluorescent image shown in Fig. 1 

was used to extract spatial binary maps of the tumour and surrounding healthy tissue 

that served as a ground truth in the comparative performance evaluation.  

In second experiment we have acquired a sequence of RGB fluorescent images 

of the patient with histologically verified diagnoses of superficial multicentric basal 

cell carcinoma in the lower right part of the back. As before, skin of the tumour was 

treated for 4h with -5-aminolaevulinic acid before images have been acquired and 

the tumour was illuminated with 405 nm light.The intensity of the illuminating light 

has been gradually varied over 10 times. Two RGB fluorescent images with 

illumination intensity that differs 10.91 times are shown in Figures 4a and 4b.  

 

 

Figure 1. RGB fluorescent image of 

the skin tumour acquired after 

illumination with high-intensity light.  
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3.1 Simulation results 

To carry out comparative performance analysis we have first created a 

computational model of an RGB image based on (1) in order to produce a synthetic 

fluorescent image with a controlled degree of spectral similarity between the tumour 

and surrounding healthy tissue. Thus, we have M=2 sources and by convention we 

choose source s1 to represent the tumour and source s2 to represent the surrounding 

healthy tissue. In the corresponding column vectors a1 and a2 we set the components 

that correspond with the blue colour to be equal. Projections of both vectors into the 

red-green plane were separated by angle , where the spectral response of the healthy 

tissue was 21 degrees apart from the green axis. Thus by changing the angle  we 

were able to control the degree of spectral similarity between tumour and healthy 

tissue. In addition to that, the intensity of the tumour was related to the intensity of the 

healthy tissue through 21 c aa  . The intensity of the extracted tumour map was 

rescaled to [0, 1] interval such that interpretation of probability could be assigned to 

it. As a figure of merit we have selected probability margin, p, defined as the 

difference between the minimal probability that the tumour is present in the tumour 

region and the maximal probability that the tumour is present in the surrounding 

healthy tissue region. As seen from Fig. 2a, where p is plotted vs.  for signal-to-

noise ratio (SNR) equal 30dB and c=1.1, the proposed method (it combines NBG and 

DCA with higher order innovations and JADE ICA algorithm) exhibits high contrast 

level even with extremely small values of angle  (=0.01 degree) when the tumour 

and surrounding tissue are spectrally practically the same. The condition number of 

the corresponding mixing matrix was 11708. We point out that even when =0 

degrees and c=1.01 the separation margin achieved by the proposed algorithm was 

p=0.8624 with SNR=30dB. All other state-of-the-art methods under consideration 
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failed due to the rank deficiency problem of the basis matrix in the SLMM (1). We 

have also applied DCA algorithm directly (it combines higher order innovations and 

JADE ICA algorithm) to the original RGB image (1). The "temporal" predictability-

based ICA algorithm (Stone, 2001) has been also applied directly to the original RGB 

image. Finally, original RGB image has been also decomposed by the SO NMF 

algorithm (Zdunek and Cichocki, 2007). The performance of the SO NMF and DCA 

algorithms is similar, and improves when the level of spectral dissimilarity increases. 

Once innovations-based pre-processing has increased statistical independence 

between the sources, ICA exhibits the same performance level as SO NMF, which is 

not sensitive to statistical dependence between the sources. However, both methods 

are sensitive to the ill-conditioning of the basis matrix and that is why proposed 

algorithm outperforms all other methods considered. Improved conditioning also 

gives the proposed algorithm a higher robustness level against additive noise, which is 

demonstrated in Fig. 2b where p is plotted vs. SNR for =10 degrees and c=1.1. For 

the purpose of visual demonstration, Fig. 2c and Fig. 2d show synthetic RGB images 

for =1 degree and =10 degrees respectively with SNR=30dB and c=1.1. The visual 

contrast is very poor in Fig. 2c. Fig. 2e and Fig. 2f show tumour maps extracted from 

Fig. 2c by the proposed algorithm and the SO NMF algorithm after 2000 iterations, 

respectively. Note the very high contrast in Fig. 2e with p=0.866, while for Fig. 2f 

p=0.4648. The condition numbers of the corresponding basis matrices were 117 and 

11.7. For the sake of comparison we mention that the condition numbers of the 

mixing matrices in the benchmark experiments used to test the SO NMF algorithm in 

(Zdunek and Cichocki, 2007) were between 4 and 10. It is noteworthy that 

computation time for Fig. 2e was around 30s, and for Fig. 2f around 330s in a 

MATLAB environment on a desktop computer with 3GHz clock speed and 4GB of 

RAM.  
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Figure 2. Computational model of fluorescent RGB image. (a) Probability margin p 

vs. angle  for the tumour map extracted by the proposed method (light blue 

triangles), by the SO NMF method (red squares), by DCA (green circles) and by 

"temporal" predictability maximization ICA algorithm (dark blue stars). SNR at the 

sensor level was 30dB. (b) probability margin p vs. SNR for =10 degrees. (c) 

simulated RGB image for =1 degree, SNR=30dB and c=1.1. (d) simulated RGB 

image for =10 degrees, SNR=30dB and c=1.1. (e) tumour map extracted by the 

proposed algorithm from (c) with probability margin p=0.866. (f) tumour map 

extracted by the SO NMF algorithm from (c) with probability margin p=0.4648. 
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3.2 Results for experiment 1 

We now present the results of the comparative performance analysis for the 

low-intensity version of the RGB fluorescent image shown in Fig. 1. The low-

intensity image itself is shown in Fig. 3a. The receiver-operating-characteristic (ROC) 

curves selected for this experimental example as a figure of merit, that show 

probability of detection vs. probability of false alarm, are shown in Fig. 3b for the 

same algorithms as in Fig. 2. Note that the proposed algorithm exhibits significantly 

better performance in the region of small probability of false alarm than other 

methods in consideration. DCA, SO NMF and ICA performed similarly. Performance 

of the higher order statistics based ICA algorithms is inferior in relation to the second 

order statistics based method used here (Stone, 2001). Fig. 3c and Fig. 3d show 

tumour maps extracted from Fig. 3a by the proposed algorithm and by the SO NMF 

algorithm, respectively. The contrast of the tumour map in Fig. 3c is much better. 

That is confirmed in Fig. 3e and Fig. 3f, which show tumour demarcation lines 

calculated from Fig. 3c and Fig. 3d by Canny’s edge extraction method with threshold 

set to 0.5. In relation to the experimental image shown in Fig. 3a, we make another 

comment: that its complexity was artificially increased by adding a ruler in to the 

scene. Because the ruler is not spectrally homogenous, it increased the number of 

sources resident in the image, probably to four, which exceeded the number of 

spectral bands of the original image. Despite that, and despite the fact that intensity 

was low, the proposed method performed well.  
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Figure 3. Experimental fluorescent image of skin tumour. (a) Low-intensity version 

of the RGB fluorescent image of the tumour shown in Fig. 1. (b) ROC curves with the 

legend described for Fig. 2a. (c) tumour map extracted by the proposed algorithm. (d) 

tumour map extracted by the SO NMF algorithm. Assigned probabilities in the grey 

scale colour are shown on vertical bars. (e) tumour demarcation line calculated by 

Canny’s edge extraction method from (c). (f) tumour demarcation line calculated by 

Canny’s edge extraction method from (d). The threshold used in the edge-extraction 

algorithm was set to 0.5. 
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3.3 Results for experiment 2 

In order to quantify robustness of the proposed algorithm against intensity 

fluctuation we have acquired a sequence of RGB fluorescent images of the patient 

with histologically verified diagnoses of superficial multicentric basal cell carcinoma 

in the lower right part of the back. The intensity of the illuminating light has been 

gradually varied over 10 times. Two RGB fluorescent images with illumination 

intensity that differs 10.91 times are shown in Figures 4a and 4b. Figure 4c shows 

demarcation line of the tumour marked manually by red dots. Through biopsy it has 

been verified that there is no tumor outside of the region marked by red dots. Thus, 

Figure 4c can serve as a reference in comparative performance analysis of the tumor 

demarcation methods. Three best results are chosen and shown in Figure 5. It shows 

extracted spatial maps of the tumors rescaled to [0, 1] interval in the pseudo color 

scale, where dark blue color represents 0 (absence of the tumor) and red color 

represents 1 (presence of the tumor). First row shows maps extracted by "temporal" 

predictability-based ICA algorithm. Second row shows maps extracted by proposed 

algorithm where DCA part was composed of tenth order innovation process and 

JADE ICA algorithm. Third row shows maps extracted by proposed algorithm where 

DCA part was composed of first order high-pass filtering and SOBI ICA algorithm. 

First column shows maps extracted from RGB image shown in Figure 4a. Second 

column shows maps extracted from RGB image shown in Figure 4b, whereas 

intensity of the illumination was 10.91 times leas than in Figure 4a. The contrast 

between the tumor area and background area is the best preserved by proposed 

method with DCA algorithm composed of tenth order innovation process and JADE 

ICA algorithm. This statement is further supported by Figure 6, where length of the 

demarcation line in pixels is shown as a function of the relative intensity of the 

illuminating light. Relative intensity has been calculated as I0/In where I0 represented 
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maximal value of the intensity. Demarcation lines were calculated after edges were 

extracted from tumor maps by Canny's edge extraction method with a threshold 

varying in the interval [0.4, 0.6]. This small deviation of the threshold from the 

unbiased value of 0.5 was necessary to account for the quasi-binary nature of the 

sources. Note that high quality binary spatial maps of the tumor can be obtained from 

maps extracted by blind decomposition methods if some reasonably advance 

clustering algorithm is applied to them. Here we were applying Canny's edge 

extraction method with basically fixed threshold in order to emphasize good and 

robust performance of the proposed method against intensity fluctuation. Proposed 

method with DCA algorithm composed of tenth order innovation process and JADE 

ICA algorithm exhibited the best performance in term of the stability of demarcation 

line. Standard deviation for this case was estimated as 127.1 pixels. Version of the 

proposed algorithm when DCA was composed of first order high-pass filtering and 

SOBI ICA method yielded standard deviation of 263.8 pixels. "Temporal" 

predictability-based ICA algorithm when applied to RGB image directly yielded 

standard deviation of 327.8 pixels. When the same algorithm was applied to band 

expanded image it yielded standard deviation of 1157.6 pixels.  

 

Figure 4. a) RGB image with maximal intensity; b) RGB image with 10.91 smaller 

intensity; c) RGB image with manually marked tumour demarcation lines (red dots). 
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Figure 5. Spatial maps of the BCC extracted by 'temporal' predictability-based ICA 

algorithm (a and b), NBG algorithm with innovations-based preprocessing and JADE 

(c and d) and NBG algorithm with the first order high-pass filter-based preprocessing 

and SOBI (e and f) from RGB fluorescent images illuminated by light with maximal 

intensity (a, c and e) and by light with 10.91 times smaller intensity (b, d and f). Dark 

blue colour indicates that tumour is present with probability 0, while red colour 

indicates that tumour is present with probability 1. 
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Figure 6. Length of the demarcation lines, in pixels, of the tumour spatial maps 

extracted from RGB fluorescent images illuminated by light with different intensity 

levels. Horizontal axis from left to right represents ratio between maximal intensity 

and intensity of each particular illumination. Legend: sky blue stars-'temporal' 

predictability-based ICA algorithm applied to band expanded RGB image; dark blue 

circles- 'temporal' predictability-based ICA algorithm applied on original RGB image; 

red squares- SOBI ICA algorithm applied on first order high pass filter-based pre-

processed band expanded RGB image; green diamonds-JADE ICA algorithm applied 

on innovations-based pre-processed band expanded RGB image. 

4.0 Discussion  

We have presented an algorithm for high-contrast tumour visualisation and 

demarcation through unsupervised decomposition of a low-intensity low-dimensional 

(RGB) multi-spectral fluorescent image of the tumour. Coarse spectral resolution of 

the RGB-like images in combination with the low-intensity of the fluorescence yields 
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ill-conditioned SLMM with statistically dependent sources. This represents a great 

challenge for many state-of-the-art blind image decomposition algorithms. Proposed 

method is composed of two algorithms: NBG transform that improves conditioning of 

the extended basis matrix and DCA that increases statistical independence between 

the sources. We have demonstrated good performance of this method on experimental 

RGB fluorescent images of the BCC. High-contrast tumour maps were extracted 

when the intensity of the illuminating light was varied more than 10 times causing 

spectral similarity between the tumour and surrounding tissue. There are various 

situations in clinical practice that could benefit from these results: (i) concentration of 

the photo- synthesiser can be reduced; (ii) duration of treatment with the photo-

synthesiser can be reduced; (iii) intensity of the illumination light can be reduced; (iv) 

tumour detection in the early stage of development should be possible. Reduced 

intensity of the illuminating light could be important, for example in surgery on brain 

tumours, which can last for several hours, and where high intensity of the illuminating 

light can cause damage to healthy tissue. Although the method is demonstrated for the 

visualisation and demarcation of a surface tumour, it ought to be equally applicable to 

visualisation and demarcation of other types of tumours, for example tumours at the 

cell level, where fluorescent nanoparticle markers are used to label the tumour cells 

(Tréhin et al., 2006), or where visualisation is based on a green fluorescent protein 

gene tumour transduction system (Hasegawa et al., 2000; Hoffman, 2002). Extraction 

of the tumour map from the spectrally similar surrounding tissue can efficiently be 

executed by the ICA algorithms alone and hyper-spectral imaging technology. 

However, achieving that with RGB images acquired by cheap commercial digital 

cameras is important from the affordability viewpoint. It should enable easier 

dissemination of the tumour visualisation technology presented herein. Application of 

the proposed method for real time tumour demarcation is straightforward and it is 

only a matter of the hardware platform chosen for the algorithm implementation. 



31 

Finally, we note that the general unsupervised decomposition method described above 

in the tumour demarcation and multi-spectral imaging context should be applicable to 

other types of the multi-channel medical imaging systems.  
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Appendix. NBGP applied to 2D and 3D problems of spectrally identical sources 

Let us assume that the SLMM (1) is specified by two spectral bands, N=2, and two 

sources, M=2. Let us also assume that the sources are spectrally identical and differ 

only in the intensity of their spatial distribution by some scale factor c. Under these 

assumptions the model (1) becomes 
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Clearly the rank of the basis matrix in (15) is 1, and the unsupervised decomposition 

problem does not have a solution. Let us now assume that the cross-correlated band 

has been generated. Under the quasi-binary constraint and no-overlapping assumption, 

the NBGP model (12) becomes 
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The cosine of the angle, , between the two column vectors in (16) is given by 
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After some elementary algebra we arrive at the following identity 
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Evidently q=p, implying that column vectors remain collinear, occurs only when c=1. 

That is a trivial case where sources are not only spectrally identical but also have the 

same intensity level. In fact there is only one source in such a case. Otherwise, for c1 

it follows that qp and cos1, implying that the two spectral vectors are not collinear 

any more. 

 The algebraic complexity of the analytical expressions grows very fast with 

the increase of the dimensionality of both original and expanded mixing matrices. 

Therefore, we continue to demonstrate numerically improvement of the conditioning 

of the extended mixing matrix through NBG transform for more complex 2D and 3D 

problems.  We first consider 22 SLMM with the mixing matrix as follows 

 

  
1 cos

0 sin





 
  
 

A        (19) 

Here  is the mixing angle that defines position of the mixing vector in 2D space 

(plane). Obviously, when =00 the two column (also called mixing) vectors are 

collinear, in which case the mixing matrix is singular and the condition number is 

infinite. Let us now assume that the cross-correlated band has been generated. Under 
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the quasi-binary constraint and no-overlapping assumption, the NBGP model (12) 

becomes of the form (16) with the extended mixing matrix as follows 
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Let us now assume that in addition to the cross-correlated spectral band the two auto-

correlated spectral bands have been also generated. Under the quasi-binary constraint 

and no-overlapping assumption the extended mixing matrix becomes 

 

  

T

2 2

1 0 0 0 0

cos sin cos sin cos sin     

 
  
 

A    (21) 

We show in figure 7 condition numbers of the three matrices given by (19), (20) and 

(21) as a function of the mixing angle  . The last transform resulting in 52 extended 

mixing matrix (21) yields small condition number even when mixing angle =00 in 

which case original mixing matrix (19) is singular with infinite condition number. It is 

equivalent to say that NBG transform separated two column vectors in the 5D space 

even though their projections on 2D subspace were collinear. We now carry on this 

numerical demonstration for the 3D problem that corresponds with the RGB 

multispectral imaging case elaborated experimentally in Section 3. The mixing matrix 

of the 32 problem is given as follows 
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In this case two mixing angles: azimuth   and elevation   are necessary to define 

position of the mixing vector in the 3D space. When the two mixing angles are 

==450 the two column vectors will be collinear and the condition number will be 

infinite. Let us now assume that three cross-correlated spectral bands and three auto-

correlated spectral bands have been generated. Under the quasi-binary constraint and 

no-overlapping assumption the extended mixing matrix becomes 
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We show in figure 8 condition numbers of the 32 mixing matrix given by (22) as 

function of the mixing angles   and   . Two avoid infinite condition number that 

occurs at  ==450 mixing angles were varied with the resolution of 20 in the interval 

[300, 600]. Condition numbers are denoted according the colour scheme on vertical 

colour bar. Figure 9 shows condition numbers for extended 92 mixing matrix (23). 

They are more than 10 times less than it is the case with the original mixing matrix 

(22). Even at the position  ==450 condition number of the extended mixing matrix 

(23) remains small. We can again conclude that NBG transform separated two column 

vectors in the 9D space even though their projections on 3D subspace were collinear. 

The above analysis could be in principle carried on for higher-than-3D problems 

wherein hypershperical coordinate system can be used to define position of the 

mixing (column) vectors in higher dimensional space. However, as already discussed 

we are especially interested in low-dimensional multispectral imaging technology 

where, due to the coarse spectral resolution, the problems associated with the 

spectrally similar materials are expected to be present more often.   
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Figure 7. Condition numbers vs. mixing angle for: original 2x2 mixing matrix, 

Eq.(19), (blue circles); expanded 3x2 mixing matrix, Eq.(20), (green squares); 

expanded 5x2 mixing matrix, Eq.(21), (red diamonds). 

 

 

Figure 8. Condition numbers, according to the colour scheme on vertical colour bar, 

for 3x2 mixing matrix, Eq.(22), as a function of elevation and azimuth mixing angles. 

The mixing angles were varied in the two-degrees grid to avoid infinite condition 

number that would occur at 45 degrees of azimuth and elevation. 
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Figure 9. Condition numbers, according to the colour scheme on vertical colour bar, 

for 9x2 mixing matrix, Eq.(23), as a function of elevation and azimuth mixing angles.  
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