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Abstract
This paper addresses the problem of indexing shapes in medical image databases. Shapes of organs
are often indicative of disease, making shape similarity queries important in medical image databases.
Mathematically, shapes with landmarks belong to shape spaces which are curved manifolds with a
well defined metric. The challenge in shape indexing is to index data in such curved spaces. One
natural indexing scheme is to use metric trees, but metric trees are prone to inefficiency. This paper
proposes a more efficient alternative.

We show that it is possible to optimally embed finite sets of shapes in shape space into a Euclidean
space. After embedding, classical coordinate-based trees can be used for efficient shape retrieval.
The embedding proposed in the paper is optimal in the sense that it least distorts the partial Procrustes
shape distance.

The proposed indexing technique is used to retrieve images by vertebral shape from the NHANES
II database of cervical and lumbar spine x-ray images maintained at the National Library of Medicine.
Vertebral shape strongly correlates with the presence of osteophytes, and shape similarity retrieval
is proposed as a tool for retrieval by osteophyte presence and severity.

Experimental results included in the paper evaluate (1) the usefulness of shape-similarity as a proxy
for osteophytes, (2) the computational and disk access efficiency of the new indexing scheme, (3)
the relative performance of indexing with embedding to the performance of indexing without
embedding, and (4) the computational cost of indexing using the proposed embedding versus the
cost of an alternate embedding. The experimental results clearly show the relevance of shape indexing
and the advantage of using the proposed embedding.

1 Introduction
This paper is concerned with shape indexing of medical image databases containing two-
dimensional shapes with landmarks. Shape indexing is relevant to medical image databases
because shapes of organs are indicators of abnormality and disease.
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There are many different notions of shape in the image processing literature. We adopt the
notion developed by Kendall [26]. This is a very precise mathematical notion of shape in which
two configurations of points have the same shape if they can be mapped onto each other by
translation, rotation, and scaling. The shape of a configuration is defined as the equivalence
class under this relation. Kendall showed that shapes defined in this manner belong to a shape
space which is a high-dimensional curved manifold with many natural shape distances. Our
goal is to index shapes in this manifold in order to carry out nearest–neighbor shape queries.
Our indexing strategy may be used in any database that uses Kendall’s notion of shape space
and is not restricted to our database. Our framework can be easily extended to index size-and-
shape space [3,10,26,29] when size carries critical clinical information.

Nearest–neighbor shape queries can be satisfied by a brute–force search through the database.
Brute–force search is used in most of the existing research prototype image databases [11,12,
17,20,52]. These databases handle at most a few thousand images and brute–force search is
not too expensive. However, the computational cost of a brute–force search becomes
prohibitive as the size of the database increases. To speed up the response – i.e. to get sub-
linear complexity – brute–force search has to be replaced by indexing 1.

Indexing in shape spaces is challenging because they are high dimensional as well as curved.
Classical coordinate-based indexing trees - which work in flat vector spaces - cannot be easily
used in these curved spaces. Although metric-based trees can be used in shape spaces, their
performance degrades substantially because of the high dimension of shape spaces. Our
innovation is to show how finite sets of shapes in shape spaces may be embedded into a vector
space and how coordinate indexing trees can be used after embedding. Embedding a curved
space into a vector space distorts the space (because the underlying metric must change) and
we find the least distorting embedding. This is our main theoretical result. Using the least
distorting embedding, it is possible to index shapes with coordinate-based trees. Our
experiments show that these coordinate-based trees outperform metric trees in the original
shape space.

The embedding idea has a second advantage as well. Indexing trees created with embedding
allow efficient retrieval with respect to a weighted shape distance without re-indexing. The
weights can be freely adjusted to emphasize only a portion of the organ shape. Thus, the same
indexing tree can be used to retrieve images with respect to complete or partial shape. It is not
possible to do this with the same metric tree.

1.1 NHANES II
The database we use is the Second National Health and Nutrition Examination Survey
(NHANES II) database maintained by the National Library of Medicine at the National
Institutes of Health. NHANES II contains data about the health and nutrition of the U.S.
population. Because of the prevalence of neck and back pain, the survey collected 17,000
images, approximately 10,000 of which are cervical spine x-rays and 7,000 are lumbar spine
x-rays. Figure 1a shows an example image from NHANES II.

One marker of spine disease is an osteophyte [32,37]. Osteophytes are the outgrowth or
excrescence of bone. They form in response to repetitive strain at the sites of ligamentous
insertion [2,36]. They usually develop as bony prominences along the anterior, lateral, and
posterior aspects of the vertebral body. Two workshops held at the National Institutes of Health
(NIH) and sponsored by the National Institute of Arthrtitis and Musculoskeletal and Skin
Diseases (NIAMS) identified anterior osteophytes as the one of most important features of

1The term “indexing” can be confusing. In the library sciences, it refers to the creation of textual terms that are used as an index. In
engineering and computer science, it refers to the creation of data structures for fast retrieval. We use it exclusively in the latter sense.
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NHANES II images. Osteophtyes are the sharp prominences at the bottom left of the outlines
in Figure 1 b to d. It is quite clear from these figures that the presence and severity of osteophytes
affects the shape of the vertebral boundary. Thus retrieval by shape of the vertebral boundary
is one means for retrieval by osteophyte severity.

1.1.1 Shape query in NHANES II—Given a query shape q we would like to retrieve images
with k most similar shapes u according to a shape distance D(q, u). This is the k-nearest
neighbor query. We expect the retrieved vertebrae to have osteophyte severity that is similar
to the osteophyte severity in the query vertebra.

1.1.2 Boundaries and shapes in NHANES II—Boundaries of vertebrae in NHANES II
images are already available as a result of a previous interactive segmentation which uses a
dynamic programming template deformation algorithm [49]. The segmentation starts with an
initial template placed close to vertebrae and segments vertebrae based on an active contour
energy function. In this paper, the vertebral contours are represented by a set of 34 ordered
landmarks sampled around the boundary in a homologous manner. Further, the landmarks are
indexed such that the index i = 1 is located at the top right corner. The index increments counter-
clockwise along the boundary. By the shape of a vertebra we mean the shape of the 34 ordered
points in the plane obtained by the segmentation. The precise definition of shape and shape
distance is given in section 3.

It might appear that the requirement of interactive segmentation of each image is limiting, but
interactive segmentation is a common situation in many medical image databases. In medical
databases, the images are often carefully acquired from previous research or historical teaching
files, and the addition of images into the archive is subject to quality control. Also, because
medical image databases are often used for future research, the creators of the database are
quite willing to assist in segmentation and annotation of images as they are entered into the
database. And in return, they expect retrievals that are precise enough for use in research. This
is the situation that we address.

1.2 Organization of the paper
The paper is organized as follows: Section 2 reviews the literature on shape descriptors and
indexing structures. Section 3 introduces shape space theory and identifies various spaces used
in embedding. Section 4 describes our shape embedding algorithm and proves its optimality
on minimizing metric distortion before and after embedding. Section 5 reviews indexing and
how it is used after shape embedding. Section 6 reports experimental results. Section 7
concludes the paper.

2 Literature Review
Shape is commonly understood as a property of a figure that is independent of similarity
transformations. Many shape descriptors of objects have been proposed and they can be loosely
categorized as boundary or region based. Boundary based shape descriptors include Fourier
and wavelet coefficients [6,17,44], scale space techniques [34], medical axis representations
[25,41] and shape matching methods [8]. Region based methods mainly uses moment
descriptors, e.g., Zernike moments [18,31,44].

In this paper, we adopt shape space theory as proposed by Kendall [10,26]. This theory is
appropriate because in our case the boundary is available as a fixed set of points whose index
begins at homologous locations. Shape analysis of continuous, closed planar curves has also
been recently proposed in [28] but the distance calculation between shapes is computationally
expensive.
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Schemes for comparing partial shapes have also been proposed, e.g. [19,35,40,43]. These
schemes are based on a dynamic programming alignment of curve fragments, which is quite
time-consuming when the number of points is large.

While shape descriptors abound, there are very few shape indexing algorithms [39]. Most of
the current shape retrieval systems simply apply a brute-force search of all the images/shapes
in the database (e.g. [11,12,17,20,52]). Brute-force search scales only linearly with the size of
the database, and can be limiting as the database grows. A few researchers use kd-trees or R-
trees to index other features, e.g. Fourier shape descriptors [15,33] and quasi-invariants [45].
However, we are not aware of any serious indexing attempts to index shape in Kendall’s shape
space.

Indexing has a rich history. For data in vector spaces, a variety of coordinate based indexing
trees have been proposed in the literature, e.g., kd-tree [16], R-tree [21] and their extensions
[1,46]. There are also metric based indexing trees [5,7,43,51] when data belongs to metric
spaces. There are very few efficient indexing algorithms for similarity retrieval in non-
Euclidean space [39]. Different embedding techniques have been proposed to speed up
indexing by mapping non-Euclidean spaces to vector spaces, including FastMap [14],
SparseMap [4], and MetricMap [50] as described in excellent surveys [23,24]. These
embedding algorithms are designed for a fixed distance metric in original spaces and their
corresponding indexing techniques thereafter are also only effective for this metric. To our
knowledge, there is no published research on embedding shape spaces for indexing. As
mentioned earlier, we derive an embedding algorithm which allows efficient indexing and
retrieval with user adjustable weighted shape distances.

The algorithms for shape embedding derived in this paper are similar to those used for general
Procrustes analysis in statistical shape analysis [8,10] and multi-view registration techniques
in computer vision [9,30,38,47]. The proof of optimality for our embedding algorithm is novel
and our idea of embedding shape space for indexing is also novel.

3 Shape Space
This section is technical and tutorial. We begin with basic definitions of shape space which are
critical to shape indexing. The essential idea of shape space theory is to define shape as what
is left when one quotients out the action of a transformation group on an ordered set of n
landmarks in the same space. In 3– or higher dimensional spaces, the calculations for shape
distances involve eigen-system analysis and are usually complicated [10,26,27,30]. For 2–d,
calculations are based on complex numbers and are significantly simpler. In this paper, we
focus on 2–d shape indexing. Our algorithms can be generalized to higher dimensional
problems with increased complexity.

3.1 What is shape?
In shape space theory [26], shape is defined as all the geometric information that remains when
location, scale, and rotational effects are filtered out. Hence, two sets of n ordered landmarks
(contour points) in the plane have the same shape if they can be made to coincide exactly by
some translation, rotation, and scale change of the plane. The idea is that translation changes
the location of the set of points, rotation changes their orientation, and scale changes their size,
thereas shape is a property that is independent of location, orientation, and size.

The plane is easily identified with , the set of complex numbers taken as a complex vector
space. This is done in the standard fashion by identifying the point x, y with the complex number
z = x + iy. Any set of n points in the plane u = (z1, ⋯, zn) is similarly identified as an element
of n. The space n has a natural Euclidean metric defined by
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where, u* is the complex conjugate transpose of u.

In general, one or more of the n points in u = (z1, ⋯, zn) may be coincident. The case where
all n points are coincident is not very interesting and may cause problems in embedding by
introducing discontinuity. Hence, this situation is deleted from consideration. We are only
interested in configurations of n points where at most n − 1 of them are coincident.

Definition: The configuration space of n points in the plane is Cn = n − {(w, ⋯,w)∥w ∈ }.

Translations, rotations, and scalings of the plane generate the similarity group. A similarity
acts on the plane by z ↦ αz + t, where α and t are complex numbers with ∥α∥ ≠ 0. The translation
is given by t, and the rotation and scaling given by α = ∥α∥eiθ. The effect of a similarity on a
configuration u = (z1, ⋯, zn) is

where 1n = (1, ⋯, 1).

Now suppose G = {g} is a group whose elements act on a set S. That is, every g ∈ G gives a
map g : S → S. Let ~G be a relation between elements of S such that for u, v ∈ S the relation
u ~G v holds when u = g(v) for some g ∈ G. The relation ~G is an equivalence relation on S
and therefore partitions S into equivalence classes. The equivalence class of any u ∈ S is called
the orbit of u and is denoted [u]G. Thus, [u]G = {v | v ~G u}. The orbits in S can be used to
create a new space called the quotient space, denoted S\ ~G. Each element of the new space is
an equivalence class of S, i.e. S\ ~G= {[u]G | u ∈ S}. A natural topology for the quotient space
is the quotient topology derived from S.

For planar shapes, the above definitions manifest as follows:

Definitions: Denote the similarity group as s. Two configurations u, v ∈ Cn have the same
shape, denoted u ~s v, if v is in the orbit of u under the action of the similarity group s, i.e., if
v = αu + 1nt for some ∥α∥ ≠ 0. Having the same shape is an equivalent relation, and each
equivalence class under this relation is called a shape. The quotient space Cn\ ~s with the
quotient topology is the shape space of Cn. We denote the shape space by SSn (SSN = Cn\ ~s),
and the map that takes a configuration u to its shape [u]s by σ : Cn → SSn.

Kendall showed that SSn with the quotient topology has a particularly simple structure – it is
a complex projective space of complex dimensions n − 2 [10,26] where n is the number of
landmarks and a similarity transform has 2 complex degrees of freedom. Complex projective
spaces are differentiable manifolds of constant sectional curvature. The reader is referred to
[48] for details.

3.2 Pre-shape space
Although the above is a direct path to the definition of shape space, an alternate approach in
which we obtain the shape equivalence class in two steps is more relevant to our work. First,
an equivalence class is obtained only by considering translation and scaling. Then, a second
equivalence class is obtained by rotation. Figure 2 illustrates the different steps, which we now
elaborate.
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3.2.1 Equivalence under translation and scaling—Two configurations u, v ∈ Cn are
equivalent under translation and scaling if v = αu + 1nt, for some real number α > 0, and complex
translation t.

Definitions: The set of translations and scalings (i.e. similarities with zero rotation) forms a
subgroup of the similarity group. This is the pre-shape group. The action of the pre-shape
group on Cn partitions Cn into equivalence classes. This equivalence relation is denoted ~p.
The equivalence class of u ∈ Cn under the action of the pre-shape group is denoted [u]p and
is the pre-shape of u. The quotient space PSn = Cn\ ~p is the pre-shape space. The map from
the configuration space to its pre-shape is denoted ψ : Cn → PSn.

The pre-shape space PSn is easily identified with the unit complex sphere in n. To see this,
consider the map

This map has the following properties

1. It maps the configuration u to the configuration ū where the mean of the new
configuration is at the origin and the scale (as measured by ∥u∥ n) is set to unity. The
image of Cn under this map is the unit sphere in n.

2. All configurations that are equivalent under translation and scaling are mapped to the
same ū. Thus, ū is identified with [u]p and we can take the unit sphere in n to be
PSn and set ψ : Cn → PSn to

Figure 2 illustrates this. The figure shows a configuration u in Cn and the orbit of the
configuration under translation and scaling. The map ψ takes this entire orbit to [u]p which is
a point in the pre-shape space PSn; the pre-shape space itself being the unit sphere in n.

3.2.2 Equivalence under rotation—Planar rotations form a group (the subgroup of
similarities with zero translation and unit scaling) which we call the rotation group. The
rotation group acts on the pre-shape space in the following manner: Rotation by θ maps [u]p
to [eiθu]p.

Definitions: The action of the rotation group on PSn gives the equivalence relation ~r. The
equivalence class of [u]p under this relation is denoted [[u]p]r. The quotient space under this
relation is PSn\ ~r, and the map ρ : PSn → PSn\ ~r takes [u]p to [[u]p]r.

Of course, PSn / ~r is the shape space, i.e., PSn / ~r≡ SSn. Equivalent ways of saying this are,
(Cn/ ~p)/ ~r= Cn / ~s, σ = ρ ○ ψ, and [[u]p]r = [u]s.

In figure 2 equivalence classes in the pre-shape space under rotation are shown as curves on
the sphere. The map ρ takes each equivalence class into the shape space SSn.

As an aside, we note that scale (the size of object configurations) is an important property that
carries critical information for applications in some medical image databases. There is in fact
well established notion of size-and-shape space [3,10,26,29] which is obtained by modifying
the above definitions without factoring out scaling. In this paper, we do not address size-and-
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shape indexing. We only focus on indexing shape space. However, our framework can be easily
extended to index size-and-shape space.

3.3 Shape space distances
Shape space has several natural shape distances, including full Procrustes distance, partial
Procrustes distance, and Procrustes distance. These distances are topologically equivalent and
have a simple monotonic functional relationship between them (page 64, [10]). When the
shapes [u]s and [v]s ∈ SSn are similar, the numerical values of the these distances are similar
(page 73, [10]). The full Procrustes distance between two shapes [u]s and [v]s is the minimal
Euclidean distance between the pre-shape [u]p and the elements of the equivalence class of
[v]p under rotation and scaling:

(1)

where the real number β > 0 [10].

In this paper, we study shape embedding and indexing using the partial Procrustes distance
dP ([u]s, [v]s) between two shapes [u]s and [v]s, which is defined as the closest Euclidean
distance between the pre-shape [u]p and the elements of the equivalence class of [v]p under
rotation:

(2)

This distance is symmetric and satisfies the triangle inequality [10].

4 Embedding Shape into a Vector Space
As we mentioned in Section 1, our goal is to embed shapes into a vector space and use
coordinate trees for efficient indexing. By embedding, we search for a mapping of a finite set
of shapes from the original shape space to a vector space so that the Euclidean distance in the
vector space between embedded shapes is similar to the original shape distance.

Before deriving a new shape embedding, we first review a previously suggested embedding
technique based on full Procrustes distance.

4.1 Equivariant embedding
For full Procrustes distance, there exists a distance preserving embedding of shape spaces called
equivariant embedding [27], in which the Euclidean distance between embedded shapes is
equal to the full Procrustes distance in the original shape space. The embedding is constructed
as follows: the configuration u ∈ Cn is mapped into a point in n×n by φ : Cn → n×n defined

by  is a n × n complex matrix. The Euclidean distance in

n×n gives , where ∥ ∥ n×n is the usual
Euclidean or Frobenius norm of the matrix. After some algebraic manipulations, it can be
shown that  (see Appendix).

On the face of it, this embedding seems useful for shape indexing as coordinate-based trees
can be used in n×n with well defined Euclidean distance, but as we show in section 6, it has
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severe computational limitations. The limitations arise from the fact that the embedding
increases the dimension of the space from n to n × n. This significantly increases the
computational cost of constructing the indexing tree and of retrieval.

In contrast, below we propose an embedding that does not increase the dimension of the space.
The embedding is approximate in that it does not exactly preserve distance. However of all
possible embeddings into the vector space, we find the one that least distorts the distance.
Experimental results show that the approximation is very good and causes no significant change
in k-nearest neighbor retrievals; and of course, the computational cost of using this embedding
is much smaller.

4.2 The class of embeddings
Recall that the pre-shape space PSn is the unit sphere in n (see fig. 2) and that the map ρ :
PSn → SSn takes the entire equivalence class of pre-shapes [u]p/ ~r to the shape [u]s = ρ
([u]p). One natural way to embed the shape space SSn into the vector space n is to “invert”
the map ρ. That is, we re-embed the shape [u]s in the orbit of the pre-shape [u]p at some point
eiθ[u]p (see fig. 3). We note here that it is generally not possible to find this “inverting” map
from the full shape space to pre-shape space as established by the theory of fibre bundles
[26,27,30,48]. We focus on constructing such an optimal embedding for a finite set of shapes
that are tightly clustered, which is the typical case in many medical applications.

Let uk, k = 1, ⋯, N be the configurations in the database, and let [uk]p and [uk]s be their preshapes
and shapes respectively. We embed [uk]s at the point in the pre-shape orbit given by eiθk[uk]p
for some θk. After embedding, the Euclidean distance between shapes [uk]s and [ul]s is

(3)

where, ∥ ∥ n is the usual Euclidean norm in n. In general, this shape distance is different from
the partial Procrustes distance, and we would like to choose an embedding such that the
difference between the distances is as small as possible.

One measure of the difference between the distances is

(4)

where dE is the Euclidean distance and dP is the partial Procrustes distance. We would like to
choose the embeddings eiθ1 [u1]p, eiθ2 [u2]p, ⋯, eiθN [uN]p, or alternatively, choose the angles
Θ = (θ1, θ2, ⋯, θN) such that J is minimized as a function of Θ. From now on we will write J
as J(Θ) explicitly showing dependence on Θ.

The next step is to note that we do not need to know the values of the partial Procrustes distances
to find the minimizing Θ.

Proposition 1: A Θ minimizes J(Θ) if and only if it minimizes

(5)

Proof: For any given Θ, dE([uk]s, [ul]s) is the Euclidean distance between two fixed point
eiθk [uk]p and eiθl [ul]p in the pre-shape orbits of [uk]p and [ul]p. But the partial Procrustes
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distance dP([uk]s, [ul]s) is the shortest distance between pre-shape orbits of [uk]p and [ul]p.
Thus, dE([uk]s, [ul]s) ≥ dP([uk]s, [ul]s), and therefore

, giving

Now, note that the  term is independent of Θ and can be dropped from J(Θ),
giving

This proves the proposition.

To proceed further, a simple algebraic manipulation of J1(Θ) gives:

(6)

Now consider a second objective function

(7)

We have:

Proposition 2: If H1(Θ, μ), has a minimizer (Θ*, μ*), then Θ* also minimizes J1(Θ).

Proof: The embedding points eiθk [uk]p are in the vector space n. Further, ∥ ∥ n is the usual
Euclidean norm in this space. Consequently, for a fixed Θ, H1(Θ, μ) is a quadratic function of
μ. Hence (for a fixed Θ), the function H1(Θ, μ) has a unique minimum with respect to μ. The

minimum is given by . The value of H1 at the minimum is

(8)

Since H1 is a continuous function of Θ and μ, if (Θ*, μ*) minimize H1, then Θ* by itself
minimizes the function H1(Θ, μ*) = minμ H1(Θ, μ) = J1(Θ), where the last step follows from
(8). This proves the proposition.

4.2.1 Existence and uniqueness of μ*—The existence of solution for (7) is obvious since
the problem is the minimization of a continuous function over a compact set. The μ that
minimizes H1 is known in the shape space literature as the Procrustean mean size-and-shape
of the pre-shapes [uk]p. Conditions for a unique Procrustean mean size-and-shape are given in
[29]. A unique mean exists if the distribution of the size-and-shape of uk is contained in a
geodesic ball of radius r centered at μ such that the larger geodesic ball of radius 2r centered
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at μ is regular. Loosely speaking, this means that a unique μ exists if the distribution of the
size-and-shapes of uk is not too broad. In practice, this condition almost always holds and a
unique μ exists. We assume this to be the case.

4.2.2 Numerical algorithm—Algorithmically, we can find the minimizer of H1(Θ, μ) by
alternately minimizing with respect to Θ and μ as follows:

1.
Set m = 1, and initialize Θ[m] = (0, ⋯, 0), and .

2. Set m = m + 1.

Calculate Θ[m] = argΘ min H1(Θ, μ[m−1]). The minimizer  is
given by

(9)

where,  is the complex conjugate transpose of [uk]p. Note that μ[m−1] in the right
hand side cannot be orthogonal to the pre-shape representing [uk]p in order to

guarantee that  is well defined. Otherwise there will be ambiguities, which may
cause a problem if one tries to extend the embedding to the entire shape space.

Calculate μ[m] = argμ min H1(Θ[m], μ). This is given by

(10)

where,  are components of Θ[m] as given above.

3. Terminate if a fixed point is reached (i.e. if (Θ[m], μ[m]) = (Θ[m−1], μ[m−1])). Else, go
to 2.

Upon termination Θ[m] gives the optimal embedding angles. The shapes [uk]s are optimally

embedded as . We denote this embedding function by γ; and any shape [u]s in a
compact subspace can be optimally embedded in the pre-shape space as γ([u]s) = eiθ[m] [u]p,
where .

4.3 Embedded representation and distance
Using the optimal embedding, the shape of a configuration u can be represented as the vector
γ([u]s), and the Euclidean distance

can be taken as the shape distance between the configurations u and v.

It is also useful to consider a weighted Euclidean distance between configurations where the
shape contribution of some subset of points in the configuration is more important. For this,
we define a weighted Euclidean distance between two embedded shapes as
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where, W is a real positive definite matrix of weights. We always take W to be a diagonal matrix
with non-zero diagonal terms {wkk}.

The main use for the weighted distance is to emphasize the contribution of a part of the shape.
In NHANES II, for example, anterior osteophytes occur in a known subset of the boundary
points (in figure 1, these points are marked with heavy dots). And to retrieve with respect to
osteophyte severity, the shape of these points is more important than the shape of the rest of
the boundary. To emphasize the shape of osteophyte, we set the diagonal terms wkk in the region
of the osteophyte to 1 and other diagonal terms to 0.01 2.

In principle, having defined a weighted partial Procrustes distance, the previous embedding
framework should be extended to find the optimal embedding with respect to the weighted
partial Procrustes distance. However, it is desirable to allow users to adaptively decide W in
an interactive fashion. In this setting, recomputing the embedding every time for different users
and images is time consuming for each possible weighting matrix W. Instead, we continue to
use the indexing tree created without weights to retrieve weighted shapes. Our experiments
show that this heuristic method is efficient.

4.4 Embedding with shape queries
Finally, before we discuss shape indexing, we address another implementation heuristic of our
embedding algorithm that is relevant to shape indexing.

A k-nearest neighbor query asks for k-closest shapes to the query shape q. In the original shape
space, the appropriate distance for defining these queries is the partial Procrustes distance.
After embedding, the appropriate distance is either the Euclidean or the weighted Euclidean
distance. Ideally, when a new query is being considered, similarity retrievals should be based
on the original partial Procrustes distance. However, after embedding, we take the Euclidean
distance in the embedding space to retrieve nearest neighbors. Theoretically, in order to
preserve the ranking order of the retrieved results based on their proximity in the original shape
space, we have to recompute the least distorting embedding taking this new query point into
account. But it is clear from the above algorithm that adding one more shape to the calculation

will have an extremely small effect (roughly , where N is the size of the database) on the
calculation for μ and Θ. In addition, for many medical applications, the query shape comes
from the same distribution as the shapes in the database and the recomputed embedding with
the query point is very similar to the embedding without the query point. Hence, there is no
real need to recalculate the embedding. The query shape [q]s can be embedded as γ([q]s) =
eiθq [q]p, where,  and μ[m] is the terminating mean in the algorithm given above.

5 Indexing
Having discussed optimal embedding of shape space into a vector space, we turn to discussing
indexing.

2We do not set wkk to 0 to preserve the metric properties of weighted Euclidean distance.
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5.1 Coordinate trees
n has real dimension 2n and each embedded shape γ([u]s) in the database can be represented

by 2n real numbers. Coordinate indexing trees recursively partition n into cubes whose sides
are perpendicular to the coordinate system (fig. 4). The partitioning is arranged in a kd-tree,
where each node of the tree represents a cube. The root node of the tree represents the largest
cube and it contains all of the embedded shapes. The partitioning continues recursively till the
size of the cubes (measured either by their longest side, by their volume, or by the number of
database features in the cube) falls below a threshold. At that point, the node becomes a leaf
node. Variants of this idea give R-trees, R+-trees, etc [46].

We call the cube at each node a cover, since it covers all of the data contained in the leaf nodes
below the node. The cover at each node is defined by the set of inequalities

(11)

where, xi are the 2n real coordinates in n; xi with odd index is the real part of complex number
and xi with even index is the imaginary part; ai ≤ bi are the bounds that define the cover.

The minimum Euclidean distance from a query shape γ([q]s) in n to the cover defined by
equation (11) is

(12)

where,  Here, qk is one of 2n real
coordinates of the embedded shape γ([q]s).

The minimum weighted Euclidean minimum distance from a query shape γ([q]s) in n to the
cover is

(13)

where, , where

wij is the matrix entry at the i-th row and j-th column in W and  is the smallest integer larger

than .

For a k-nearest neighbor query, the user provides a configuration q and asks for k images whose
configurations u are most similar to the query. There is a standard retrieval procedure [22] that
can satisfy this query. The procedure traverses the tree by visiting its nodes. At every visited
node, it calculates the minimum distance to the node cover and compares it with a threshold.
If the distance is greater than the threshold the entire subtree rooted at the node is discarded
(i.e. its nodes are not visited). A key part of the procedure is to dynamically update the threshold
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such that the surviving leaf nodes are guaranteed to contain the k-nearest neighbors. The
complete procedure is available in [22].

We call the test applied to each node to compare the minimum distance to the node with a
threshold, a node test.

5.2 Metric trees
Since the shape space SSn is endowed with the partial Procrustes distance - dP ([u]s, [v]s), where
u, v are configurations in the database, shapes can be indexed in SSn using a metric tree.

A metric indexing tree has spheres as node covers, with the root node covering the entire data.
Each node cover is a sphere (according to the metric dP ) with a finite radius. Figure 5 illustrates
the idea. The simplest way of constructing metric trees is to hierarchically cluster the features
top-down or bottom-up [46,53]. In this paper, the metric tree is constructed using bottom-up
clustering.

The k-nearest neighbor retrieval procedure is exactly the same as before with the node test
comparing the minimum distance from the query to the spherical node cover.

5.3 Indexing performance
The performance of coordinate and metric trees is evaluated by two criteria: Computational
Cost and Disk Access Cost.

Computational cost refers to the computation incurred by the retrieval algorithm as it descends
to find the surviving leaf nodes. One measure of this is the average number of node tests per
query as a function of the size of the database.

Disk access cost refers to the amount of disk access carried out per query. The leaf nodes of
indexing trees point to data. When a leaf node passes the node test, the retrieval procedure
accesses this data. Thus, one measure of disk access cost is the average number of surviving
leaf nodes per query as a function of the size of the database.

6 Experiments
In the experiments, we evaluated the main claims of this paper: (1) The shape of the vertebra
captures the presence and severity of osteophytes, (2) Optimal shape embedding gives a good
approximation to the partial Procrustes distance, (3) Indexing shape using embedding gives
more efficient retrieval than metric tree indexing, (4) Optimal shape embedding gives more
efficient retrieval than the equivariant embedding.

All experiments were done with a subset of NHANES II images. At the present, a total of 2812
vertebral boundaries are available. We used all boundaries in the experiments.

6.1 Shape distance and osteophyte severity
The first set of experiments determined how well the shape of the boundary captures the notion
of osteophyte severity. Since there is no universally accepted standard for grading osteophyte
severity, we asked an experienced neuro-radiologist to create osteophyte grades based on his
clinical experience. The expert manually graded a subset of 169 vertebrae. The grading is from
0 to 5, where “0” represents normal vertebrae without osteophyte; “1” indicates sharp
protuberance that is barely visible; “2” means a short osteophyte with length less than 1/2 disk
spacing; “3” implies longer and thicker osteophyte with length greater than 1/2 disk spacing;
“4” and “5” are rare cases of large osteophytes that can bridge or extend to the next vertebra
but have osteophyte that are straight or bent respectively.
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Five vertebrae of rank 0 and five vertebrae of rank 3 were chosen as query vertebrae. The rank
0 vertebrae simulate queries with normal vertebrae and rank 3 vertebrae simulate queries with
osteophytes. For each query, different shape distances between the query and the 169 expert
graded vertebrae were calculated and ranked according to increasing distance from the query
shape. Since the closest neighbor of any query shape is the query itself, we excluded the closest
neighbor from the following analysis.

Suppose q is the query vertebra and k = 1, ⋯, 169 are the ranked vertebrae. Let g(q) and g(k)
refer to the expert grading of the query and kth ranked vertebra. We expect g(k) to be similar
to g(q) for low values of k. To measure this, we calculated the average grade up to rank i as

. We expect this number to be close to the grade of the query g(q). Of
course, the grades of the ranked vertebrae are never exactly the same as the grade of query
vertebra. To evaluate the difference, we calculated the average positive difference of the grades

as , where (g(k) − g(q))+ = (g(k) − g(q)) if (g(k) − g(q)) > 0, else
(g(k) − g(q))+ = 0. The average positive difference tells us the number of more severe grades

up to i. We also calculated the average negative difference as ,
where (g(k) − g(q))− = −(g(k) − g(q)) if (g(k) − g(q)) < 0, else (g(k) − g(q))− = 0. The average
negative difference should tell us the number of less severe grades up to i.

Figure 6 shows the average AG, Δ+, and Δ− for the partial Procrustes distance, the Euclidean
and weighted Euclidean shape distances after embedding for grade 0 and 3 queries. The grade
0 results are somewhat special. Because there is no grade lower than 0, it does not have any
non-zero Δ−, hence its AG and Δ+ are identical. Thus we only plot the AG, which is shown in
Figure 6(a) for grade 0. Figures 6(b) and (c) show the AG and the Δ+ and Δ− for the grade 3
retrievals.

We can infer the following from the figure:

1. The partial Procrustes distance and the Euclidean distance are almost identical in
behavior. This is not too surprising considering that the embedding is designed to
keep these distances as close to each other as possible.

2. The grading obtained by the weighted Euclidean distance has a closer match to expert
grades than the partial Procrustes or the Euclidean distance. The improvement is
particularly obvious for grade 0 queries.

3. The grading obtained by the weighted Euclidean distance is very close to expert
grading in all queries. For grade 0 queries the average grade is between 0.4 and 0.5
even for the 10th nearest neighbor. For grade 3 queries the average grade is around
2.13 for the 10th nearest neighbor.

This shows clearly that the weighted Euclidean distance mimics expert grading, and that shape
can indeed be used to retrieve by osteophyte presence and severity.

6.2 Comparing embedding distance with partial Procrustes distance
Next, we evaluated the closeness of the Euclidean distance after embedding to the partial
Procrustes distance. The results of section 4 indicate that our embedding is optimal but do not
provide numerical estimates of how close the two distances are. We measured this
experimentally.

To measure the similarity between the two distances we calculated fraction squared difference
(FSD)
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as well as the fractional difference (FD)

between pairs [zi]s, [zj]s from the database. A set of 1000 vertebrae were randomly chosen from
the database and the FSD and FD was calculated for all pairs of vertebrae from this set ( total
number of pairs = 1000 × 999 ≃ 106).

The average and standard deviation of the FSD and FD are given in Table 1 and histograms of
FSD and FD are shown in figure 7(a), (b). From the table and the figures, it is clear that the
Euclidean distance following optimal embedding is very similar to the partial Procrustes
distance.

This explains why the performance of partial Procrustes distance and Euclidean distance are
virtually identical in the previous experiment.

Next, we compared the nearest neighbor structure of the data set before and after embedding.
This was done as follows: From the set of 1000 vertebrae used in the above experiment, 100
vertebrae were randomly chosen as query vertebrae. For each query vertebra, the set of 20
nearest vertebrae was found according to the partial Procrustes distance dP and the embedded
Euclidean distance dE. Let these sets be SP and SE respectively. Then SP ∩ SE is the set of
vertebrae that are common to both retrievals in the query. The distribution of the number of
elements in SP ∩ SE over the 100 queries is shown in figure 7(c). For 97 of 100 queries the sets
SP and SE were identical, and for 3 queries they differed by a single image.

A more sensitive measure of nearest neighbor structure was also created. Elements of each set
SP and SE were ranked in increasing distance from the query. Let rP : SP → {1, ⋯, 20} be the
rank function of SP, i.e. the rank of [z]s ∈ SP is rP ([z]s) (rank 1 is the nearest neighbor to the
query and rank 20 is the 20th-nearest neighbor), and let rE : SE → {1, ⋯, 20} be the rank function
of SE. For each i ∈ {1, ⋯, 20}, if  is the difference in the
rank of the vertebra that was in the ith position in SP. Figure 7(d) shows the average value of

 over the 100 queries as a function of i. The figure shows that the first 5 neighbors
were identical over the 100 queries, and the average difference in the rank was ≤ 0.1 for the
first 20 neighbors.

These experiments show that the embedded Euclidean distance is a very good approximation
to the partial Procrustes distance and can be used in shape retrieval queries.

6.3 Indexing performance
We also evaluated the efficiency of the indexing scheme using kd-tree after shape embedding
and compared it to a metric tree in the original metric space. The 2812 shapes were randomly
sampled into sets of size 434, 902, 1654 and 2812. Each set was indexed in the original shape
space by a metric tree and after embedding by a kd-tree. Every shape in each database was
used as a query shape and k-nearest neighbor vertebral images were retrieved using the
Euclidean shape distance for k = 10 and 20 neighbors. The average number of node tests per
query and the average number of surviving leaf nodes were recorded. Recall that the first
measures the computational burden of indexing while the second measures the disk access
performance.
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Table 2 shows the performance measures as a function of the database size and k for kd- and
metric trees. The performance measures are expressed as absolute numbers and as a fraction
of the database size. The fractions should remain constant for an indexing scheme with linear
complexity and should decrease with the size of the database for sub-linear complexity. Figure
8 shows the fractions FNT and FDA (defined in the caption of Table 2), for the k=10 nearest
neighbors case, as a function of database size. It is clear from the figure that the indexing
algorithms are sub-linear in complexity.

Recall that the kd-tree can be used for retrieval with respect to weighted Euclidean distance.
In a separate experiment we evaluated the relative performance of the kd-tree for this. We used
a diagonal weight matrix W in which all entries were set to 0.01 except those corresponding
to indices i = 14–24, which were set to 1.0. These indices are the ones that fall on an anterior
osteophyte.

The average number of node tests and the average number of disk accesses for 10- and 20-
nearest neighbor queries using the weighted Euclidean distance are shown in Table 3. A
comparison with Table 2 shows that the performance of the kd-tree for weighted Euclidean
distance is comparable to the performance for Euclidean distance. This is also clear in figure
8 where the fractions are plotted as a function of the database size.

We can draw several conclusions from this experiment:

1. All three indexing and retrieval strategies are sub-linear in complexity. That is,
indexing with any of these strategies is effective and useful.

2. The kd-tree after embedding outperforms the metric tree. The average number of node
tests for the kd-tree is only 2/3 of that of the metric tree. The reason for the difference
is that the intermediate nodes in the metric tree overlap with each other while the kd-
tree has disjoint nodes and has the better pruning capability.

3. The performance of the kd-tree with weighted Euclidean metric is similar to the
performance with the Euclidean metric. This suggests that the same kd-tree is useful
for retrieval in both cases.

6.4 Examples of retrievals
As an illustration of the use of the shape retrieval system, figure 9 (a)–(b) shows some retrievals
using query images containing a lumbar (Fig. 9(a)) and cervical (Fig. 9(b)) vertebrate,
respectively. In each row of figure 9 the leftmost image is the query image and the subsequent
images are retrievals ranked by increased distance from the query image. The (a) and (b) parts
of the figure show two queries. Within the (a) and (b) parts of the figure, the first row shows
retrieval with respect to Euclidean metric and the second row shows retrieval with respect to
the weighted Euclidean metric.

6.5 Comparison with equivariant embedding
Finally, we compared the efficiency of equivariant embedding (section 4.1) with optimal
embedding. The comparison experiment used a set of 434 vertebral boundaries, and as before,
kd-trees were used after the data was embedded using equivariant embedding (EE) and optimal
embedding (OE).

The execution time on a P4 1.8GHz Dell desktop computer for indexing after equivariant
embedding was 41.42 hours to construct the tree. On the other hand, it only took 2.11
minutes to construct the tree after optimal embedding. The difference in these timings reflects
the additional computational cost of significantly higher dimension of equivariant embedding.
Similarly, the average query time (all 434 images used one at a time for querying) for 10 nearest
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neighbor retrieval were 319.42 seconds and 0.29 seconds respectively for equivariant
embedding and optimal embedding. From this it is clear that the optimal embedding is
significantly faster than equivariant embedding.

This was also the reason for only using 434 boundaries in these experiments. The tree
construction cost of equivariant embedding was prohibitive for equivariant embedding with
the entire data set.

7 Conclusions
Efficient shape indexing for similarity retrieval is important in medical image databases. We
report an optimal shape embedding procedure to index shapes for complete and partial shape
similarity retrieval. The technique optimally embeds shapes back into pre-shape spaces.
Experimental results show that (1) Shape retrieval is useful in retrieving vertebrae with expert
grades similar to the query vertebra, (2) The optimal embedding gives distances that are very
close to the original partial Procrustes distances, (3) Indexing with kd-tree after embedding
outperforms indexing with metric tree while simultaneously supporting Euclidean and
weighted Euclidean retrieval, (4) The optimal embedding gives significantly faster algorithms
than equivariant embedding.

One alternative to the technique presented in this paper is to use density-based clustering
methods to derive a piecewise embedding [13,42]. We hope to investigate this and other
possibilities in the future.
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Appendix

Appendix A: Proof of  for the equivariant embedding φ
In this section, we prove that the equivariant embedding φ defined in Section 4.1 preserves full
Procrustes distance after embedding for 2-d object configurations. We start with computing
the full Procrustes distance between two shapes [u]s and [v]s. As given in Section 3.3,

. We first compute the full Procrustes fit and distance
through the procedure given in [10] by expanding :

Denote  where the real number . We have
 as these are pre-shapes. Hence,

(14)
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Clearly, to minimize (14), we need to maximize 2βλ cos (θ + ϕ) so that the minimizing θ* = −
ϕ. For the minimizing β*, we need to minimize 1 + β2 − 2βλ. Hence, .

Substituting β* and θ* into (14), we have .

We now prove . Using
 with Tr( ) as the

matrix trace, we have

, Tr(A + B)
= Tr(A) + Tr(B) and Tr(AB) = Tr(BA) for A,B ∈ n×n. While

, we finally have

.

Appendix B: Proof of (6) in Section 4.2
Here we give the proof for

:
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Figure 1.
One example image from NHANES II and several vertebrae with osteophyte severity
increasing from left to right
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Figure 2.
Pre-Shape and Shape spaces

Qian et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Embed shape space back in pre-shape space
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Figure 4.
Coordinate Tree
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Figure 5.
Metric Tree
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Figure 6.
Comparison the Efficacy of Different Distance Metrics: a) AG and Δ+ for Grade 0 Queries;
(b) AG for Grade 3 Queries; (c) Δ+ and Δ− for Grade 3 Queries
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Figure 7.
Metric distortion after optimal shape embedding: (a) Histogram of FSD of pairs from a set of
1000 vertebrae; (b) Histogram of FD; (c) Histogram of SP ∩ SE for 100 queries; (d) Average
rank difference for 100 queries
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Figure 8.
Comparison of indexing performance
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Figure 9.
Shape query samples
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Table 1

Mean and standard deviation (STD) of FSD and FD of pairs from a set of 1000 vertebrae

Quantity Mean STD

FSD 9.19 × 10−4 1.43 × 10−3

FD 4.59 × 10−4 7.22 × 10−4
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