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Abstract
In this paper we present a high-throughput system for detecting regions of carcinoma of the
prostate (CaP) in HSs from radical prostatectomies (RPs) using probabilistic pairwise Markov
models (PPMMs), a novel type of Markov random field (MRF). At diagnostic resolution a
digitized HS can contain 80K×70K pixels — far too many for current automated Gleason grading
algorithms to process. However, grading can be separated into two distinct steps: 1) detecting
cancerous regions and 2) then grading these regions. The detection step does not require
diagnostic resolution and can be performed much more quickly. Thus, we introduce a CaP
detection system capable of analyzing an entire digitized whole-mount HS (2×1.75 cm2) in under
three minutes (on a desktop computer) while achieving a CaP detection sensitivity and specificity
of 0.87 and 0.90, respectively. We obtain this high-throughput by tailoring the system to analyze
the HSs at low resolution (8 µm per pixel). This motivates the following algorithm: Step 1) glands
are segmented, Step 2) the segmented glands are classified as malignant or benign, and Step 3) the
malignant glands are consolidated into continuous regions. The classification of individual glands
leverages two features: gland size and the tendency for proximate glands to share the same class.
The latter feature describes a spatial dependency which we model using a Markov prior. Typically,
Markov priors are expressed as the product of potential functions. Unfortunately, potential
functions are mathematical abstractions, and constructing priors through their selection becomes
an ad hoc procedure, resulting in simplistic models such as the Potts. Addressing this problem, we
introduce PPMMs which formulate priors in terms of probability density functions, allowing the
creation of more sophisticated models. To demonstrate the efficacy of our CaP detection system
and assess the advantages of using a PPMM prior instead of the Potts, we alternately incorporate
both priors into our algorithm and rigorously evaluate system performance, extracting statistics
from over 6000 simulations run across 40 RP specimens. Perhaps the most indicative result is as
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follows: at a CaP sensitivity of 0.87 the accompanying false positive rates of the system when
alternately employing the PPMM and Potts priors are 0.10 and 0.20, respectively.
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1. Introduction
Prostate cancer poses a serious health problem for men: the American Cancer Society (ACS)
estimates that in 2009 over 192,000 men will be diagnosed with carcinoma of the prostate
(CaP) and 27,000 will die from it. Prostate cancer is typically detected (in the U.S.) through
routine screening which includes a digital rectal exam and prostate-specific antigen test. If
these tests reveal abnormalities, current screening protocol requires a trans-rectal ultrasound
guided biopsy to remove tissue for histological examination. If this histological analysis
reveals the presence of cancer, a surgeon may perform a radical prostatectomy (RP),
excising the entire gland. Following prostatectomy, the prostate is sliced into histological
sections (typically whole or quarter sections). The analysis of these histological sections
(HSs) is important for several reasons: The spatial extent of CaP, as established by the
analysis of HSs, can be registered to other modalities (eg. MRI), providing a “ground truth”
for the evaluation of computer-aided diagnosis (CAD) systems that operate on these
modalities (Madabhushi et al., 2005; Tiwari et al., 2009). Most importantly, grading (e.g.
Gleason grading (Gleason, 1966)) the HSs helps determine patient prognosis and treatment
(Heidenreich et al., 2008).

Though the grading of HSs1 is currently performed by clinicians, the advantages of
automation have motivated the development of computerized systems (Naik et al.,
2007;Tabesh et al., 2007;Doyle et al., 2008;Huang and Lee, 2009;Smith et al., 1999;Farjam
et al., 2007). These advantages are as follows: 1) automated systems offer a viable means for
analyzing the vast amount of the data present in HSs, a time-consuming task currently
performed by pathologists, 2) the extraction of reproducible, quantifiable features can help
refine our own understanding of prostate histopathology, thereby helping doctors improve
performance and reduce variability in grading (Doyle et al., 2007;Montironi et al.,
2005;Epstein et al., 2006), and 3) the data mining of quantified morphometric features may
provide means for biomarker discovery, facilitating, for example, the identification of
aggressive cancers, i.e. those cancers associated with a high likelihood of metastasis or post-
treatment recurrence (Donovan et al., 2008;Cordon-Cardo et al., 2007).

Grading HSs, whether performed by a clinician or a machine, requires high-resolution
images: the current clinical standard for Gleason grading (Epstein et al., 2006) recommends
magnifications of 20× or 40× which correspond to resolutions of 0.5 µm and 0.25 µm per
pixel, respectively. Unfortunately, at 0.25 µm per pixel a typical 2×1.75 cm2 digitized
whole-mount histological section (WMHS) contains 80K×70K pixels — approximately 500
times the number pixels in a digital mammogram. Clearly, the automated grading of such an
image in a reasonable time is untenable. Consequently, previous automated schemes have
restricted their analysis to selected regions of the HSs. Typically, theses regions constitute
less than 1/1000 of a WMHS. For example, Tabesh et al. (Tabesh et al., 2007) used textural
features to Gleason grade tissue micro-arrays (TMAs) digitized at 20× magnification,
yielding 1600 × 1200 images. In (Jafari-Khouzani and Soltanian-Zadeh, 2003) the authors

1When we refer to a histological section (HS) we will always be implying a quarter or whole-mount section from a radical
prostatectomy.
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used multi-wavelets to grade selected tissue samples at 100× magnification. Though the
specific sizes were not mentioned, their illustrations suggest the samples were much smaller
than TMA cores. Using fractal analysis, Huang et al. (Huang and Lee, 2009) graded
512×384 images with a resolution of approximately 0.25 µm per pixel (exact specifications
were not provided). Farjam et al. (Farjam et al., 2007) constructed a biologically motivated
system to grade small tissue samples imaged at 100× magnification. Smith et al. (Smith et
al., 1999) performed Gleason grading on tissue samples digitized at 10× magnification,
producing 64×64 images.

Data volume precludes the application of current Gleason grading algorithms directly to
HSs. Fortunately, the grading procedure for HSs is inherently different than that for selected
tissue samples such as TMA cores: only a small portion of each HS will, on average, contain
cancer. Thus, grading can be separated into two distinct steps: 1) detecting CaP regions and
2) grading these detected regions. Therefore, if detection can be performed more quickly
than grading, the execution time of entire process can be reduced. Though others have
considered automated CaP detection (Roula et al., 2002; Diamond et al., 2004), no current
system is capable of rapidly detecting cancer in an entire WMHS. In previous systems CaP
detection was viewed as the end goal, and not as a possible precursor to further analysis; and
consequently, high-throughput was not a priority. For example, Diamond et al. (Diamond et
al., 2004) identified CaP in a WMHS digitized at 40× magnification. Dividing the WMHS
into small 100×100 patches, they classified each patch individually using a single Haralick
feature. However, the algorithm required manual segmentation and classification of the
glands. Additionally, the processing time for the digitized WMHS (58K×42K pixels) was
5.5 hours.

In this paper we introduce a system for rapidly detecting CaP regions in hematoxylin and
eosin (H&E) stained histological sections from radical prostatectomies. We envision this
system constituting the initial stage of a comprehensive, hierarchical algorithm that quickly
detects cancerous regions at lower resolutions, and then refines and ultimately Gleason
grades these regions at higher resolutions. Our CaP detection system requires less than three
minutes to process an entire WMHS (2×1.75 cm2) on a standard desktop computer (2.4 GHz
Intel Core 2 processor, 4GB RAM). We achieve this high throughput by tailoring the
algorithm to accurately analyze the HSs at low resolution (8 µm per pixel). For even at low
resolution, gland size and morphology remain noticeably different in cancerous and benign
regions (Kumar et al., 2004). This motivates the following algorithm: Step 1) glands are
identified and segmented, Step 2) the segmented glands are classified as malignant or
benign, and Step 3) the malignant glands are consolidated into continuous regions indicating
the spatial extent of CaP.

Consistent with our goal of minimizing execution time, the classification of individual
glands (Step 2) leverages two simple, but effective, features of biological relevance: 1)
glands size and 2) the tendency for proximate glands to share the same class. The second
feature describes a spatial dependency that exists among the glands. Accordingly, we choose
to model this dependency using a Markov prior distribution, i.e. the glands will be modeled
as a Markov random field. The merits of using MRFs to incorporate spatial dependencies
have been demonstrated in a variety of computer vision tasks such as clustering (Pappas,
1992), denoising (Besag, 1986; Figueiredo and Leitao, 1997), and texture synthesis (Paget
and Longstaff, 1998; Zalesny and Gool, 2001). MRFs are also prevalent in several medical
imaging applications: detecting tumors in mammography (Li et al., 1995), identifying cancer
in prostate MR imaging (Liu et al., 2009), and segmenting MR images of the brain (Zhang et
al., 2001; Awate et al., 2006) and lung (Farag et al., 2006).
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MRF priors are established through the construction of local conditional probability density
functions (LCPDFs). These LCPDFs — one centered about each site — describe the local
inter-site dependencies of a random process. In combination, these LCPDFs can establish a
joint probability density function (JPDF) relating all sites. (This JPDF is the Markov prior.)
However, only LCPDFs of certain functional forms will reconstitute a valid JPDF.
Specifically, the Gibbs-Markov equivalence theorem (Besag, 1974) states that the JPDF will
be valid if (and only if) it, and transitively the LCPDFs, can be represented as Gibbs
distributions. That is, representing the JPDF as a Gibbs distribution guarantees that the
attendant LCPDFs satisfy the Markov property and form a viable JPDF. However, since
Gibbs distributions are expressed as a product of potential functions, tailoring LCPDFs to
model a specific process devolves into the selection of these functions. Unfortunately,
potential functions are mathematical abstractions, lacking intuition and physical meaning.
Consequently, constructing LCPDFs through their selection becomes an ad hoc procedure,
usually resulting in generic and/or heuristic models such as the prevalent Potts (Potts, 1952)
prior.

Consequently, an important contribution of this work is the introduction of an intuitive MRF
model — called a probabilistic pairwise Markov model (PPMM) — whose performance
exceeds that of the Potts. In place of potential functions, PPMMs formulate the LCPDFs in
terms of pairwise probability density functions (PDFs), each of which models the interaction
between two neighboring sites. This formulation facilitates the creation of relatively
sophisticated LCPDFs (and hence priors), increasing our ability to model complex
processes.

To demonstrate the efficacy of our CaP detection system and assess the advantages of using
a PPMM prior instead of the Potts, we alternately integrate both Markov priors into our
algorithm and then conduct over 6000 simulations to rigorously evaluate system
performance with respect to accuracy and computation time. We perform this evaluation
across a cohort of 40 HSs obtained from 20 patients across two separate clinics. Thirteen are
WMHSs, while the remaining 27 are quarter sections. The HSs predominately contain
Gleason grade three and/or four tumors, as do over 80% of all specimens from RPs (Kattan
et al., 1999; Stephenson et al., 2005; Roehl et al., 2004). These grades draw the most interest
from researchers as they are the grades for which the predictive value of Gleason score is
least effective (Andrn et al., 2006), and consequently, for which additional prognostic
markers must be identified. In fact, current research indicates that several such prognostic
markers reside in the morphological and architectural signatures of the glands, and yet, are
not captured by the Gleason grade (Donovan et al., 2008; Cordon-Cardo et al., 2007).

The remainder of the paper proceeds as follows: We begin with a brief review of MRFs in
Section 2. This review provides the context necessary for developing the PPMMs and
discussing the glandular classification procedure. Section 3 then explicates our novel PPMM
model. In Section 4 we present our comprehensive CaP detection system. A quantitative and
qualitative evaluation of the detection algorithm is provided in Section 5. Concluding
remarks are presented in Section 6.

2. Review of Markov Random Fields
2.1. Random Field Nomenclature

We first establish the general MRF terminology and notation that will be used throughout
the paper. Let the set S = {1, 2,…,N} reference N sites to be classified. Each site s ∈ S has
two associated random variables: Xs ∈ Λ indicating its state (class) and Ys ∈ ℝD

representing its D-dimensional feature vector. Particular instances of Xs and Ys are denoted
by the lowercase variables xs ∈ Λ and ys ∈ ℝD. Let X = (X1, X2,…,XN) and Y =(Y1, Y2,
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…,YN) refer to all random variables Xs and Ys in aggregate. The state spaces of X and Y are
the Cartesian products Ω = ΛN and ℝD×N. Instances of X and Y are denoted by the
lowercase variables x =(x1, x2,…,xN) ∈ Ω and y = (y1, y2,…,yN) ∈ ℝD×N. See Table 1 for a
list and description of the commonly used notations and symbols in this paper.

Let G = {S, E} establish an undirected graph structure on the sites, where S and E are the
vertices (sites) and edges, respectively. A clique c is any subset of S which constitutes a
fully connected subgraph of G, i.e. each site in c shares an edge with every other site. The
set  contains all possible cliques. A neighborhood ηs is the set containing all sites that share
an edge with s, i.e. ηs = {r : r ∈ S, r ≠ s, {r, s} ∈ E}. If P is a probability measure defined
over Ω then the triplet (G, Ω, P) is called a random field.

These concepts are best understood in the context of an example. The graph in Figure 1 has
sites S = {1,2,3,4,5,6} and edges E = {{1,2} , {1,4}, {1,5}, {2,3}, {2,6}, {4,5}}. The
neighborhood of site 5, for example, is η5 = {1,4}. There are six one-element cliques 1 =
{{1}, {2}, {3}, {4}, {5}, {6}}, six two-element cliques 2 = E, and one three-element
clique 3 = {{1,4,5}}. The set 6 is the union of 1, 2, and 3. The set of possible states for
each Xs is Λ= {b,w}, where b and w represent black and white, respectively. The diameter of
site s reflects the magnitude of the random variable Ys ∈ ℝ. For this example we have x =
(w, b, b, b, w, b) and y = (0.9, 1.5, 1.6, 1.4, 1.1, 1.3).

We also establish a convention for representing probabilities. Let P(·) indicate the
probability of event {·}. For instance, P(Xs = xs) and P(X = x) signify the probabilities of the
events {Xs = xs} and {X = x}. Whenever appropriate we will simplify such notations by
omitting the random variable, e.g. P(x) ≡ P(X = x). Let p(·) represent a probability density
function (PDF)2; for example, pg might indicate a Gaussian PDF. The notations P(·) and p(·)
are useful in differentiating P(xs) which indicates the probability that {Xs = xs} from pg(xs)
which refers to the probability that a Gaussian random variable assumes the value xs.

2.2. Maximum a Posteriori Estimation
Given an observation of the feature vectors Y, the objective is to estimate the states X. The
preferred method is maximum a posteriori (MAP) estimation (Duda et al., 2001), which
entails maximizing the following quantity over all x ∈ Ω:

(1)

The first term in (1) reflects the influence of the feature vectors. It can be simplified by
assuming that all Ys are conditionally independent and identically distributed given their
associated Xs. This assumption implies that if the class Xs of site s is known then 1) the
classes and features of the remaining sites provide no additional information when
estimating Ys and 2) the conditional distribution of Ys is identical for all s ∈ S. As a result we
have

(2)

2For convenience, we will refer to all the probability functions as densities, whether or not the domains of the functions are discrete or
continuous.
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where the use of the single PDF pf indicates that P(ys|xs) is identically distributed across S.
The second term in (1) — the prior distribution — reflects the expected homogeneity or
texture pattern of the labels. In general, modeling this high-dimensional PDF is intractable.
However, if the Markov property is assumed its formulation simplifies. This topic is
discussed next.

2.3. Gibbs-Markov Equivalence
The random field (G, Ω, P) is a Markov random field (MRF) if all of its local conditional
probability density functions (LCPDFs) satisfy the Markov property: P(xs|x−s)= P(xs|xηs),
where x−s = (x1,…,xs−1, xs+1,…,xN), xηs = (xηs(1),…,xηs(|ηs|)), ηs(i) ∈ S is the ith element of
the set ηs, and |ηs| is the cardinality of the set ηs. Thus, the Markov property simplifies the
forms of the LCPDFs.

The connection between the Markov property and the joint probability density function
(JPDF) of X is revealed by the Hammersley-Clifford (Gibbs-Markov equivalence) theorem
(Besag, 1974). This theorem states that a random field (G, Ω, P) with P(x) > 0 for all x ∈ Ω
satisfies the Markov property if, and only if, it can be expressed as a Gibbs distribution:

(3)

where Z = ∑x∈Ω Πc∈  Vc(x) is the normalizing constant and Vc are positive functions, called
clique potentials, that depend only on those xs such that s ∈ c. The following reveals the
simplified forms of the LCPDFs:

(4)

where s represents {c∈ : s ∈ c} and Zs = Σxs∈Λ ∏c∈ s Vc(x). For proofs of all preceding
Markov formulations and theorems, see Geman (Geman, 1991).

2.4. Potts Models
Though (3) and (4) provide the requisite forms of the JPDF and LCPDFs for any MRF, they
offer little insight into means for selecting potential functions that will adequately model a
given random process. To facilitate the selection of these potential functions, two
simplifying assumptions are typically invoked. First, we assume that only the pairwise
interactions among sites are significant. Second, we assume that the LCPDFs are stationary,
i.e. P (xs|xηs) is identical for each site s ∈ S having |ηs| neighbors. Mathematically, these
assumptions equate to the following simplification of (4):

(5)

where V1 and V2 are the site-invariant potential functions for one- and two-element cliques,
respectively. Furthermore, V2 is symmetric in the sense that V2(xs,xr) = V2(xr,xs); this
symmetry is needed to ensure the stationarity of P(xs|xηs).
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Even with this simplification, the means for selecting V1 and V2 are not obvious. This lack
of clarity has lead to the prevalence of the simplistic Potts model (Potts, 1952), whose
potential functions are V1(x) ≡ 1 and

(6)

where β > 0. Since typically β > 1, neighboring sites with identical states will contribute
more to the JPDF (and their respective LCPDFs) than neighboring pixels with differing
states. The degree of contribution is a function of β, with greater values of β producing
“smoother” solutions. To see this, consider the MAP estimation in (1). Increasing β
increases the weight of the second term, further encouraging neighboring sites to share the
same label.

3. Probabilistic Pairwise Markov Models
To arrive at more complex and intuitive MRF models we recognize that (5) can be expressed
in terms of PDFs, instead of potential functions:

(7)

where p0 is the PDF describing the stationary site s and p1|0 represents the conditional PDF
describing the pairwise relationship between site s and its neighboring site r. The numbers 0
and 1 replace the letters s and r to indicate that the probabilities are identical across all sites,
i.e. the MRF is stationary. Furthermore, p0 and p1|0 are related in the sense that they are a
marginal and conditional distribution of the joint distribution p0,1, i.e. p0,1(xs,xr) =
p0(xs)p1|0(xr,xs). The single caveat is that p0,1 must be symmetric to ensure stationarity. We
refer to MRFs whose LCPDFs can be expressed using (7) as probabilistic pairwise Markov
models (PPMMs).

Below we provide a proof to show that the LCPDFs given in (7) are consistent in the sense
that they define a unique and valid JPDF, i.e. they combine to form a Gibbs distribution.

Theorem 1. Let (G, Ω, P) be a random field such that P (X = x) > 0 for all x ∈ Ω. If
p0,1(xs,xr) is a PDF such that p0,1(xs,xr)= p0,1(xr,xs) and

for all s ∈ S, then X is a MRF.

Proof 1. It suffices to show that (7) can be expressed in the form given by (5). Consider the
following one- and two-element potential functions:

and
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where the symmetry of p0,1 ensures that V2 is also symmetric. Inserting these into (5) yields

The significance of PPMMs lies is their ability to formulate the LCPDFs in terms of a single
PDF instead of potential functions. Unlike V1 and V2 which have little intuitive value,
p0,1(xs,xr) describes the probability that two neighboring sites s and r have states xs and xr.
Or, perhaps even more insightful is p1|0(xr|xs), which indicates the probability that r has state
xr given site s has state xs

3.

On a final note, it is worth pointing out that the Potts model can be reformulated as a PPMM
as follows:

(8)

Notice that probability function p0,1 has the required symmetry. We will further discuss the
significance of this formulation in Section 4.4.

4. Detecting Cancer in Histological Sections
In this section we present our novel classification system for detecting CaP on digitized
histological sections of the prostate. We first provide a basic outline of the algorithm and
then discuss each component in detail.

4.1. Algorithm Overview
Figure 3(a) illustrates an H&E stained prostate histological (tissue) section. The
hematoxylin colors the nucleic material blue, while eosin stains the cytoplasmic
structures and extracellular matrix red. The superimposed black line delimits the spatial
extent of CaP as determined by a pathologist. The numerous white regions are the gland
lumens, i.e. cavities in the prostate through which fluid flows. Our system identifies CaP by
leveraging two biological properties: 1) cancerous glands (and hence their lumens) tend to
be smaller in cancerous than benign regions and 2) malignant/benign glands tend to be
proximate to other malignant/benign glands (Kumar et al., 2004).

3Note that p0,1(xs,xr) is not precisely equal to the probability of the event {Xs = xs, Xr = r} unless X is a strong MRF (Paget, 2004).
However, pragmatically this interpretation is acceptable.

Monaco et al. Page 8

Med Image Anal. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The basic algorithm, illustrated in Figure 2, proceeds as follows: Step 1) The glands (or,
more precisely, the gland lumens) are identified and segmented. Figure 3(b) illustrates the
segmented gland boundaries in light green. Figure 3(c) shows a magnified view of the white
box in Figure 3(b). Step 2) Morphological features are extracted from the segmented
boundaries. Currently, we consider only one feature: glandular area. Step 3) Using this
feature and an MRF prior (PPMM or Potts) which encourages neighboring glands to share
the same label, a Bayesian estimator classifies each gland as either malignant or benign. The
blue dots in Figure 3(d) indicate the centroids of those glands classified as malignant. Step
4) The cancerous glands are consolidated into continuous regions. The red polygons in
Figure 3(e) depict the regions resulting from the consolidation process.

Before describing each component in detail, we recapitulate the gland classification problem
in terms of the MRF nomenclature in Section 2. Let the set S = {1, 2,…,N} reference the N
segmented glands in the HS. The random variable Ys ∈ ℝ indicates the square root of the
area of gland s. The label Xs of gland s corresponds to one of two possible classes: Xs ∈ Λ ≡
{ω1,ω2}, where ω1 and ω2 indicate malignancy and benignity. Two glands are neighbors if
the distance between their centroids is less than R.

4.2. Gland Segmentation
Since color information is not needed to identify gland lumens on digitized HSs, all
segmentation is performed using the luminance channel in CIE Lab color space. The CIE
Lab color space is known to be more perceptually uniform than the RGB color space (Jain,
1989). In the luminance images glands appear as regions of contiguous, high intensity pixels
circumscribed by sharp, pronounced boundaries. Our procedure to segment these glands
proceeds as follows: The luminance image is convolved with a Gaussian kernel at multiple
scales σg ∈ {0.2, 0.1, 0.05, 0.025}mm to account for varying gland size. Peaks (maxima) in
the smoothed images are considered candidate gland centers. These single pixel peaks serve
as seeds for the following region growing procedure (which operates on the original image)
(Hojjatoleslami and Kittler, 1998):

Step 1: Initialize the current region (CR) to the specified seed pixel and establish a 12σg ×
12σg bounding box centered about it. Initialize the current boundary (CB) to the 8-connected
pixels neighboring CR (Figure 4(a)).

Step 2: Identity the pixel in CB with the highest intensity. Remove this pixel from CB and
add it to CR. Revise CB to include all 8-connected neighbors of the aggregated pixel which
are not in CR (Figures 4(b) and (c)).

Step 3: Define the internal boundary (IB) as all pixels in CR that are 8-connected with the
pixels in CB (Figure 4). Compute the current boundary strength which is defined as the
mean intensity of the pixels in IB minus the mean intensity of the pixels in CB.

Step 4: Repeat steps 2 and 3 until the algorithm attempts to add a pixel outside the bounding
box.

Step 5: Identify the iteration step at which the maximum boundary strength was attained.
Define the optimal region as CR at this step.

The final segmented regions may overlap; this is resolved by discarding the region with the
lower boundary strength. Figure 3(b) illustrates the gland boundaries (light green) after
segmentation. A magnified view of the white box in Figure 3(b) is shown in Figure 3(c).
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4.3. Feature Extraction and Modeling
4.3.1. Modeling Gland Area—Gland area is a feature known to discriminate benign from
malignant glands (Kumar et al., 2004). The MRF framework, specifically Equation (2),
requires estimates of the conditional PDFs of gland area for both malignant ω1 and benign
ω2 glands. Using the equivalent square root of gland area (SRGA) which is easier to model
parametrically, the PDFs pf (ys|ω1) and pf (ys|ω2) can be accurately fit with a mixture of
Gamma distributions (Papoulis, 1965):

(9)

where y > 0 is the SRGA, α ∈ [0,1] is the mixing parameter, k1, k2 > 0 are the shape
parameters, θ1, θ2 > 0 are the scale parameters, and Γ is the Gamma function (Papoulis,
1965). Figure 5 illustrates the normalized histograms (i.e. their areas sum to one) for the
malignant (5(a)) and benign (5(b)) glands. The solid lines superimposed over each histogram
represent their corresponding fits with the mixtures of Gamma distributions. For reference,
we also include the mixtures of Gamma distributions for the opposing classes (dotted lines).
All distributions were fit using maximum likelihood estimation.

4.3.2. Homogeneity of Neighboring Glands—We now discuss the formulation of the
Markov prior which encourages neighboring glands to share the same label. We propose to
model this PDF using a PPMM. Accordingly, the most general forms of p0 and p1|0 for
binary classes (i.e. malignant/benign) are as follows:

(10)

and

(11)

The required symmetry of p0,1 necessitates that c(1−a) = (1−c) b, yielding c = b/(1+b−a).
Values for a and b are obtained from training data. Though (11) and (10) are nonparametric
distributions in the sense that there is no assumed model, the limited degrees of freedom
allow the use of parametric estimation techniques. Since maximum likelihood estimation
(MLE) is numerically untenable for MRFs, maximum pseudo-likelihood estimation (MPLE)
(Geman and Graffigne, 1986;Besag, 1986) is the preferred alternative. MPLE maximizes the
product of the LCPDFs over all samples, and unlike MLE, does not require computing the
intractable normalizing factor Z in (3). A detailed discussion of our MPLE implementation
can be found in Appendix A.

Since we will be comparing the performance of our CaP detection system when alternately
incorporating the PPMM and the Potts priors, it is instructive to present the formulation of
the Potts model for binary classes (expressed as a PPMM):

(12)

and
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(13)

The following assumptions are implicit when using the Potts formulation to model gland
interactions: First, p0 is uniform, indicating that both benign and malignant glands should
occur with equal frequency. Second, the symmetry of p1|0 implies that malignant glands are
just as likely to neighbor benign glands as benign glands are to neighbor malignant glands.
Both of these assumptions seem at odds with the true behavior of glands in a HS. In fact, we
will show that employing the Potts model instead of the more general PPMM degrades the
accuracy of our CaP detection system.

4.4. Gland Classification
In Section 2.2 we defined the optimal states x (i.e. classes for the glands) as those that
maximize the a posteriori probability in (1). The literature provides several means for
performing this maximization (Szeliski et al., 2006;Dubes et al., 1990;Geman and Geman,
1984). We have selected iterated conditional modes (Besag, 1986) (ICM), a deterministic (as
opposed to stochastic) relaxation technique. ICM is popular because of its rapid
convergence, which can be an order of magnitude less than other popular methods such as
simulated annealing (Geman and Geman, 1984) or maximum posterior marginals
(Marroquin et al., 1987).

Since our system requires the ability to favor certain classification results (e.g.
misclassifying a malignant gland might be more serious than misclassifying a benign one),
we must slightly adapt ICM. Before discussing this adaptation we review the basic ICM
algorithm. ICM is based on the following reformulation of (1):

(14)

Increasing the first term of (14) necessarily increases P(x|y). Since this term depends only
on s and its neighborhood, it can be easily evaluated. This suggests a global optimization
strategy that sequentially visits each site s ∈ S, determining the label xs ∈ Λ that maximizes
the first term of (14). In the case of binary classes this reduces to the following decision:

(15)

where τicm = 1/2. Note that P(ω1|xηs, ys) ∝ P(ys|xs) P(xs|xηs). ICM, after several iterations,
converges to a local maximum of (1). This local maximum is a function of the initial labels,
which we determine using MLE (i.e. assuming non-informative priors). Using MLE to
provide an initial labeling is a commonly accepted procedure, and we have empirically
confirmed its effectiveness for our application.

An examination of (15) immediately suggests varying τicm as a means of favoring one class
over the other. As τicm decreases, (15) will increasingly prefer ω1. By contrast, increasing
τicm will favor ω2. Since the value of τicm implicitly weights the importance of each class,
we refer to the modified algorithm as weighted iterated conditional modes (WICM). Figure
3(d) illustrates the result of applying WICM with τicm = 0.825. (The MRF prior was
modeled using PPMMs.) It is worth noting that the WICM algorithm can be derived in a
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more general and mathematically rigorous fashion using Bayesian cost functions (Monaco et
al., 2009). However, such analysis is beyond the scope of this paper. For a general
discussion of Bayesian risk analysis see (Duda et al., 2001).

4.5. Consolidation of Gland into Regions
The final stage of the algorithm consolidates the malignant glands into continuous regions.
This process involves two steps. First, the glands are separated into distinct groups. Two
glands are defined as belonging to the same group if the distance between their centroids is
less than R. This R is the same R used in Section 4.1 to determine if two glands are
neighbors. Thus, two glands belong in the same group if they are neighbors. This definition
naturally partitions the glands. The second step combines each group of glands into a single
continuous region. One method for performing this encapsulation might be to form the
convex hull of the gland centroids. Unfortunately, since the true spatial extent of the CaP
rarely forms convex hulls, using such an algorithm will typically overestimate the sizes of
the regions. To rectify this we introduce the distance-hull or Dhull, a novel extension of the
convex hull that better conforms to the contours of the CaP. Figure 3(e) illustrates the three
continuous regions that result from first grouping the malignant glands in Figure 3(d) and
then finding the Dhulls of their centroids. The remainder of this section describes the general
Dhull algorithm.

Dhull performs a modified version of the Jarvis march (Jarvis, 1973) (gift-wrapping
algorithm) used to find convex hulls. This modification is as follows: whereas a convex hull
places no restriction on the distance between consecutive points on the hull, Dhull allows a
maximum distance of Δ. More formally, let Z = {z1,…,zK} represent a set containing K
points that satisfy the following path constraint: for every zi, zj ∈ Z there exists one or more
paths zizm…zlzj for which the distance between any two consecutive points is less than or
equal to R. Let H = {h1,…,hM} be an ordered set indicating the points in Z that constitute the
Dhull. The following steps, using the terminology in (Jarvis, 1973), detail the Dhull
algorithm; Figure 6 provides a graphical interpretation.

Step 1: Arbitrarily choose an exterior point z ∈ Z (e.g. the left-most point). This is the first
point on the hull: h1 = z.

Step 2: Extend a radial arm of length Δ beginning at h1, and extending away from the
remaining points (e.g. horizontal line to the left). Rotate the radial arm in an arbitrary
direction (e.g. clockwise) until it intersects with another point z ∈ Z. This is next point on the
Dhull: h2 = z.

Step 3: Let hi indicate the last point added to the the hull. Extend a radial arm of length Δ in

the direction of the vector . Rotate the radial arm — using the direction established in
Step 2 — until it intersects with a point z ∈ Z that satisfies the following: the line segment
(hi, z) does not intersect with any previous Dhull line segment (hj, hj−1), where j ∈ {1,…,i
−1} and (·, ·) indicates the exclusive interval. The next point on the Dhull is hi+1 = z.

Step 4: Repeat Step 3 until every point lies within the Dhull.

In order to guarantee that Dhull will enclose all points in Z, we must have . This
can be seen by constructing the Dhull of four points that form the vertices of a quadrilateral
whose diagonals are perpendicular (i.e. a diamond shape) and of length R, and whose edge
lengths ensure the satisfaction of the path constraint. On a final note, if Δ is infinite then
Dhull produces a convex hull.
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5. Results and Discussion
5.1. Preliminaries

5.1.1. Description of Data—The dataset consists of 40 H&E stained histological
sections from radical prostatectomies obtained from 20 patients at two separate
institutions (University of Pennsylvania and Queens University in Canada). Thirteen of
the HSs are whole-mounts, while the remaining 27 are quarter sections. The HSs
primarily contain CaP with Gleason scores ranging from six to eight.

The gold standard defining the spatial extent of CaP was determined as follows: For
the 13 WMHSs a pathologist circumscribed the cancerous regions on the physical
slides. All 40 slides were then digitized at 40× magnification (0.25 µm per pixel) with an
Aperio scanner. Thus, the annotations (for the 13 WMHSs) were necessarily captured
in the digital images as illustrated in Figure 8(a). Following digitization, a second
pathologist delineated the cancerous regions in all 40 digitized images using the
ImageScope software package from Aperio. ImageScope produces digital annotations
that are overlaid on the image for viewing, but are not present during automated
analysis. The delineations from the first pathologist (for the 13 WMHSs) were used
only as a guide. Finally, to ensure the fidelity of these annotations a third pathologist
reexamined all 40 images along with their associated annotations. If errors or
omissions were detected the annotations were corrected appropriately4. These final
delineations are considered the gold standard by which CAD performance is assessed.
An example of a digital annotation is shown in Figure 8(b). (Note that Figure 8(a) also
contains a digital annotation; however, since it overlays the black ink mark, it is
difficult to see.)

The Aperio scanner provides a multiresolution image pyramid for each digitized HS. The
CAD procedure processes the single image whose pixel width is 8 µm. This resolution is
1/32 of that available to the pathologist during “ground truthing.” That is, the images
analyzed by the pathologist contain 1024 times more pixels than those considered by the
CAD system. Furthermore, the automated system only processes the luminance channel in
the CIE Lab color space as discussed in Section 4.2.

5.1.2. Training—The training procedure begins by segmenting the glands in each training
image and then calculating their areas and centroids. Segmented glands whose centroids fall
within the pathologist provided truth are labeled malignant; otherwise they are labeled
benign. A MLE procedure uses these labeled samples to estimate the parameters for the
mixtures of Gamma distributions used to model pf, the PDF describing the glandular area
(see Section 4.3). The graph structure connecting the glands is determined from the gland
centroids: two glands share an edge if the distance between their centroids is less than R. A
MPLE procedure (see Appendix A) uses the graph structure and gland labels to estimate
parameters for both the PPMM (a and b) and Potts model (β).

5.1.3. Testing—For each test image the algorithm segments the glands and then extracts
their areas and centroids. Using these area measurements, a maximum likelihood estimator
assigns an initial label to each gland. These classification results are passed to the MRF
estimator — weighted iterated conditional modes. A graph structure over the glands is
established using the identical methodology described in the training procedure. In addition
to this graph structure, the WICM algorithm requires the threshold τicm and the conditional
distribution P(xs|xηs). The value selected for τicm determines the sensitivity/specificity of the

4The kappa value measuring the inter-rater agreement between the second and third pathologists was κ = 0.9921.
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gland classification, and transitively, the entire algorithm. The distribution P(xs|xηs) is
provided by either the PPMM or Potts model. Consequently, we will have two CaP
detection systems, which we will refer to simply as PPMM and Potts. After gland
classification, the centroids of the malignant glands are consolidated into continuous
regions; the Dhull algorithm uses the value .

5.2. Quantitative Results
5.2.1. Accuracy of Cancerous Regions—We begin by defining several measures. Let
the true positives (TP) indicate the area of the HSs denoted as cancerous by both the expert
pathologist and the CAD system. Let the true negatives (TN) indicate the area of the HSs
denoted as benign by both the pathologist and the CAD system. Let the false positives (FP)
indicate the area of the HSs denoted as benign by the pathologist and malignant by the CAD
system. Let the false negatives (FN) indicate the area of the HSs denoted as malignant by the
pathologist and benign by the CAD system. Having established these terms, we define two
additional measures: the true positive rate TP/(TP+FN) and the false positive rate FP/(TN
+FP). These are synonymous with the sensitivity and one minus the specificity, respectively.

All preceding measures are influenced by four factors: τicm, the radius R, the composition of
the test/training sets, and the Markov prior (Potts/PPMM). Varying τicm from zero to one
alters system performance, yielding receiver operator characteristic (ROC) curves (i.e. plots
of the true positive rate versus the false positive rate). In practice we construct each ROC
curve by assessing sensitivity/specificity at certain discrete values of τicm, specifically τicm =
0, 0.025, 0.05,…1; intermediate performance measures (i.e. those falling in between the
samples) are linearly interpolated. The total area under the ROC curve (AUC) provides a
performance measure that is independent of τicm. To account for differences in training/test
sets we will assess the mean and standard error of the AUC over 15 trials using randomized
3-fold cross-validation.

To determine the effect of varying the radius R we perform the following: for each prior
(PPMM/Potts) and for each R ∈ {0.5, 0.7, 0.9, 1.1, 1.3} we compute the mean and standard
error of the AUCs generated from the 15 trials. (Thus, we generate a total of 2×5×15= 150

ROC curves5.) The results are presented as Table 2. Let  indicate the
mean AUC at radius R using the PPMM and Potts priors, respectively. Measuring statistical
significance using a paired t-test with a significance level of 0.01, we can conclude the

following: 1) for all R ∈ {0.5, 0.7, 0.9, 1.1, 1.3} the value  is
statistically significant under the null hypothesis that ΦR = 0, 2) if R2 > R1 and R1, R2 ∈

{0.5, 0.7, 0.9} then both  are

statistically significant under the null hypotheses that , and 3) if R2 >
R1 and R1, R2 ∈ {0.9, 0.1, 1.3} then both

 are not statistically

significant under the null hypotheses that . It is worth recapitulating
these statements less formally: 1) at each radius the mean AUC using the PPMM prior
exceeds that of the Potts, 2) each increase in radius from 0.5 mm to 0.9 mm increases the
mean AUC of both priors, and 3) increasing the radius beyond 0.9 mm offers no
improvement in mean AUC for either prior.

5Since generating each ROC requires running the algorithm for each of the 41 different values of τicm, the total number of simulations
is 41 × 150 = 6150.
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5.2.2. Computation Time—We measured the execution time of the four major
components of the algorithm: gland segmentation, feature extraction, classification, and
consolidation. These measurements were obtained using the following system configuration:
training/test sets established using a leave-one-out strategy, PPMM used for the Markov
prior, sensitivity set to 0.87, and R = 0.9 mm. The execution times for each component,
averaged over all quarter and whole-mount HSs, are provided in Table 3. All timing was
performed using a 2.40 GHz Intel Core2 processor with 4 GB of RAM. Note that over 90%
of the computation time is dedicated to gland segmentation; and consequently, varying the
Markov prior, radius R, and/or value of τicm has little impact on overall timing.

5.3. Qualitative Results
The training and test sets were established using a leave-one-out strategy with R = 0. 9 mm.
The performances of the systems (i.e. PPMM/Potts) were varied by adjusting τicm (for each
algorithm independently) until their respective sensitivities equaled 0.87. That is, when τicm
= 0.715 the PPMM detected 87% of the malignant glands; to achieve the same sensitivity,
the Potts required τicm = 0.455. At these sensitivities the corresponding false positive rates
for the PPMM and Potts systems were 0.10 and 0.20, respectively. This is depicted
graphically in Figure 7 using ROC curves.

Figures 8(a)–(d) show four histological sections, the first of which is a whole-mount
histological section. The black lines enclose the spatial extent of the CaP. The blue dots in
Figures 8(e)–(h) indicate the centroids of those glands labeled as malignant after
classification using the PPMM model; the boundaries resulting from consolidation are also
shown. Figures 8(i)–(l) provide the comparable results using the Potts system. Clearly, the
PPMM provides superior specificity when the sensitivity of both systems are equivalent.

5.4. Discussion
As previously stated, the primary goal of this algorithm is to eliminate regions that are not
likely to be cancerous, thereby reducing the computational load of further, more
sophisticated analyses. Consequently, the algorithm should necessarily operate at a high
sensitivity (true positive rate), ensuring that very little CaP is discarded. The concomitant
specificity then indicates the expected reduction in computational load at any later stage.
Accordingly, when determining the qualitative and computational results reported in
Sections 5.3 and 5.2.2 we adjusted the sensitivity to 0.87 — a relatively high value. At this
sensitivity the accompanying false positive rates for the PPMM and Potts systems were 0.10
and 0.20, respectively. Thus, with the PPMM prior the CaP detection system eliminates 90%
of the benign regions; using the Potts prior this percentage falls to 80.

Finally, it is interesting to examine the specific values assigned to the pairwise PDFs p0 and
p1|0 for the PPMM and Potts model (see Section 4.3.2). These values were determined using
MPLE (see Appendix A) over the entire dataset. For the PPMM we have the following:

(16)

and

(17)

The Potts model yields
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(18)

and

(19)

The marginal distribution in (16) indicates that, as expected, the occurrence of benign glands
is more frequent than malignant glands. Compare this with the (necessarily) uniform
distribution of Potts in (18). Also, note the asymmetry in the conditional distribution of the
PPMM in (17). This asymmetry allows malignant and benign glands to affect their
neighbors differently. The (necessarily) symmetric conditional distribution for the Potts in
(19) does not possess this capability.

It is worth discussing why no explicit evaluation of the gland segmentation and
classification procedures was presented. As mentioned previously, the ultimate goal of
this system is to identify cancerous regions, and not cancerous glands. Thus, the
performances of intermediate steps such as gland segmentation and classification
become irrelevant in and of themselves. That is, such steps are effective only to the
degree to which they help to detect CaP regions. Consequently, their efficacy is
measured implicitly — and most appropriately — by assessing the system’s ability to
identify these cancerous regions.

Finally, we would like to note that our automated system can operate at any image
resolution. In general, the higher the resolution, the longer the computation time and
the greater the detection accuracy. Consequently, the appropriate resolution is a
function of the processing speed of the hardware, allowable execution time, and desired
detection accuracy. For the specific goals of this paper, 8 µm per pixel proved most
advantageous. This conclusion was reached from the following procedure: We visually
inspected images at different resolutions to ascertain the lowest resolution that
qualitatively preserved the salient glandular morphology, and then validated the choice
by confirming a satisfactory algorithm performance. In future work, we will
methodically investigate the relationship between computational complexity, system
performance, and resolution. It should be noted that even with specialized hardware,
the analysis of an entire WMHS at maximum resolution (0.25 µm per pixel) will be
prohibitive for the foreseeable future. At present this analysis (with our algorithm)
requires nearly two days using a high-performance desktop computer.

6. Concluding Remarks
In this work we introduced the first system for rapidly detecting CaP regions in a whole-
mount (or quarter) histological section. Specifically, we demonstrated that our system can
process an entire WMHS (2×1.75 cm2) in an average of 165 seconds. We achieved this high
throughput by tailoring the algorithm to operate at 8 µm per pixel. At this resolution the
primary visible structure are the glands. Consequently, we constructed a system that first
segments glands, then classifies them, and finally consolidates the malignant glands into
continuous regions. We extensively evaluated the algorithm, performing over 6000
simulations across a dataset of 40 HS from 20 patients. Most notably, we demonstrated that
at an appropriate operating point our system detects CaP regions with a sensitivity of 0.87
and a specificity of 0.90.
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To effectively model the tendency of nearby glands to share the same class, we introduced
probabilistic pairwise Markov models. Unlike typical MRF formulations which express
local conditional probability functions in terms of clique potentials, PPMMs represent the
LCPDFs using probability functions. These probability functions immediately provide
insight into the expected behavior of the resulting MRF and suggest means for creating more
sophisticated models. Incorporating PPMMs into our CaP detection system we demonstrated
their superiority to the ubiquitous Potts model. Specifically, when the two models were
alternately integrated into the algorithm, the AUC of the system employing the PPMM prior
exceeded that of the Potts (by a margin that statistically significant) in every experiment.
Most significantly, when the detection sensitivity was adjusted to 0.87, employing the
PPMM prior resulted in a false positive rate less than half that of the Potts.

The construction the CaP detection system required the development of two additional novel
contributions: weighted iterated conditional modes and Dhull. WICM, a deterministic
estimation procedure for MRFs, provides a means for varying the performance of MRF-
based systems, a capability previously absent from the MRF literature. This capability is
essential for systems, such as ours, which require the ability to adjust their sensitivity with
respect to a specified class. The Dhull algorithm, a novel extension of the Jarvis march used
to construct convex hulls, offers a quick method for enclosing points in a hull. Most
importantly, the resulting boundary, unlike the convex hull, conforms well to the contours
established by the points.

Clearly, operating at a resolution of 8 µm per pixel, we can not hope to perform as well as a
pathologist with access to an image digitized at 0.25 µm per pixel. Nevertheless, to be of
clinical value the sensitivity of our algorithm would likely need to be increased. Fortunately,
since our system follows the methodology supported by clinicians (i.e. it considers glandular
morphology and architecture), additional means for improving performance are already well
established in the medical literature (Epstein et al., 2005; Kumar et al., 2004). These include
the consideration of gland shape, variation in gland size, and the architectural arrangement
of the glands. Fortunately, both the gland segmentation and the MRF framework make
incorporating these features relatively straightforward. Additionally, the computational load
of extracting glandular features is insignificant compared to the burden of segmentation.
Thus, we can expect little difference in execution time with the incorporation of such
features.

It is important to mention possible limitations of our system. First, some advanced tumors
(i.e. some Gleason grade five) completely disrupt normal glandular formations, and thus, the
system may have difficulty identifying them. However, studies suggest that less than two
percent of radical prostatectomy specimens exhibit such cancers (Kattan et al., 1999;
Stephenson et al., 2005; Roehl et al., 2004). Nonetheless, we will consider adding the
capability of detecting these Gleason grade five tumors in the future. Second, since tears in
the HSs, like glandular lumens, manifest as holes in the tissue, the algorithm can mistakenly
detect and segment them as glands. However, unless the prevalence of such tears approaches
that of the glands, we would not expect them to impact performance. We have yet to
encounter any problems due to tears.

On a final note we reiterate that we do not consider the system presented in this paper as an
end in and of itself. Instead, we envision this system as the initial stage of a comprehensive,
hierarchical algorithm that quickly detects cancerous regions at lower resolutions, and then
refines and ultimately Gleason grades these regions at higher resolutions.
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A. Maximum Pseudo-Likelihood Estimation
We consider estimation of the PPMMs for binary classes using maximum pseudo-likelihood
estimation (MPLE). Specifically, we wish to determine a, b, and c in (10) and (11). MPLE
maximizes the product of the LCPDFs:

(20)

The direct maximization of (20) can be computationally expensive and numerically unstable
when |S| is large. These problems can be mitigated with the proper reformulation. The
following simplification, similar to that of Levada (Levada et al., 2008), provides a tractable
means for estimating a and b (c is a function of a and b) using the logarithm of (20):

(21)

where

(22)

m = maxs |ηs|, and  is the number of sites s ∈ S that have the following properties: xs =

ωk, i = |{r : r ∈ ηs, xr = ω1}|, and j = |{r : r ∈ ηs, xr = ω2}|. For example,  is the number
of sites with label ω1 that have three neighbors, two of which are labeled ω1 and one of
which is labeled ω2. The quantity in (21) can be optimized using a constrained nonlinear
numerical maximization procedure (Baldick, 2006).

Since the Potts model can be expressed as a PPMM, estimating its β parameter proceeds
similarly. We have a = eβ/(1+eβ), b = 1/(1+eβ), and b =1−a. After substituting these
equalities into (22) and maximizing (21) over a we can recover β as follows: β = ln [a/
(1−a)].
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Figure 1.
Graph with six sites and different binary states. Each site has an associated feature Ys ∈ ℝ.
This is illustrated graphically by varying the diameter of each circle in accordance with the
magnitude of its associated feature.
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Figure 2.
Overview of classification algorithm for detecting CaP regions from digitized WMHSs
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Figure 3.
(a) H&E stained prostate histology section; superimposed black ink mark provided by
pathologist indicates CaP extent. (b) Gland segmentation boundaries. (c). Magnified view of
white box in (b). (d) Centroids of glands labeled as cancerous. (e) Continuous regions
formed by gland consolidation.
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Figure 4.
Region growing examples. (a) Seed pixel with CB. (b) IB, CB, and CR at step j in the
growing procedure. (c) IB, CB, and CR at step j + 1. The white box indicates the aggregated
pixel.
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Figure 5.
Normalized histograms for the malignant (a) and benign (b) glands overlaid with
corresponding mixtures of Gamma distributions (solid lines). Dotted lines represent
mixtures of Gamma distributions for opposing classes.
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Figure 6.
Graphical illustration of Dhull algorithm. Black dots represent the points to encapsulate.
h1−h4 indicate the first four points added to the Dhull.
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Figure 7.
Partial receiver operator characteristic (ROC) curves for PPMM (solid) and Potts (dashed)
algorithms determined using leave-one-out cross-validation with R = 0.9 mm. The black and
white circles indicate the points where the PPMM and Potts systems attain a true positive
rate of 0.87.
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Figure 8.
Results from CaP detection algorithm. (a) H&E stained WMHS. Black ink mark delineating
CaP extent is an indelible part of the image. (b)-(d) H&E stained quarter HSs. Superimposed
black lines delineate CaP extent. PPMM ((e)-(h)) and Potts ((i)-(l)) results with sensitivity
adjusted to 87%. This sensitivity corresponds to the thresholds τicm = 0.455 and τicm = 0.715
for the Potts and PPMM models, respectively.
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Table 1

List of notation and symbols commonly employed in this paper.

Symbol Description Symbol Description

S Set referencing N sites X ∈ Ω Collection of all Xs : X =(X1, X2,…,XN)

E Set of edges connecting sites x ∈ Ω Instance of X: x =(x1, x2,…,xN)

D Number of dimensions in feature space Ω Domain of X and x: Ω = ΛN

Λ Domain of Xs and xs Y ∈ ℝD×N Collection of all Ys : Y =(Y1, Y2,…,YN)

Xs ∈ Λ Random variable indicating state at site s y ∈ ℝD×N Instance of Y: y =(y1, y2,…,yN)

xs ∈ Λ Instance of Xs ηs Set of sites that neighbor s ∈S

Ys ∈ ℝD Random variable indicating feature vector at site s x−s States of all sites r ∈S except s

ys ∈ ℝD Instance of Ys xηs States of all sites such that r ∈ ηs

c Clique, i.e. any fully connected subset of G s {c ∈  : s ∈ c}

Set containing all cliques Vc Potential function on clique c
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Table 2

Mean plus/minus standard error of AUC for PPMM and Potts systems over 15 trials using randomized 3-fold
cross-validation.

Radius R 0.5 mm 0.7 mm 0.9 mm 1.1 mm 1.3 mm

PPMM 0.891 ± .004 0.919 ± .006 0.930 ± .006 0.934 ± .006 0.935 ± .007

Potts 0.885 ± .004 0.905 ± .005 0.911 ± .006 0.914 ± .006 0.916 ± .006
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Table 3

Mean execution time for CaP detection algorithm over 13 WMHSs and 27 quarter HSs using a 2.40 GHz Intel
Core2 processor with 4 GB of RAM.

Segmentation Feature Extraction Classification Consolidation Total

Whole-mounts 156 sec 1.76 sec 6.11 sec 1.28 sec 165 sec

Quarters 63 sec 0.76 sec 1.43 sec 0.64 sec 66 sec
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