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Abstract
We describe here a method, Quarc, for accurately quantifying structural changes in organs, based
on serial MRI scans. The procedure can be used to measure deformations globally or in regions of
interest (ROIs), including large-scale changes in the whole organ, and subtle changes in small-
scale structures. We validate the method with model studies, and provide an illustrative analysis
using the brain. We apply the method to the large, publicly available ADNI database of serial
brain scans, and calculate Cohen’s d effect sizes for several ROIs. Using publicly available
derived-data, we directly compare effect sizes from Quarc with those from four existing methods
that quantify cerebral structural change. Quarc produced a slightly improved, though not
significantly different, whole brain effect size compared with the standard KN-BSI method, but in
all other cases it produced significantly larger effect sizes.
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Introduction
Structural change in organs takes place on many time scales, and can often be seen on
Magnetic Resonance Imaging (MRI) scans. In the brain, for example, normal aging,
neonatal development, and many neurological disorders are associated with structural
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change. Individual disorders will have their own patterns of tissue deformation and
evolution of tissue atrophy or hypertrophy, though with variability across subjects. To
discriminate pathologies, especially for early diagnosis, patterns in the onset and
development of change need to be understood quantitatively. This requires precise in vivo
detection and measurement of structural changes in individuals. Alzheimer’s disease (AD),
for example, is believed to be irreversible, so early diagnosis is key for therapeutic e orts
aimed at slowing or halting its development to be successful (DeKosky and Marek, 2003).
Progressive atrophy in AD arises from dendrite and neuron loss (Bobinski et al., 2000;
Braak and Braak, 1991), and can be seen on structural MRI scans (Atiya et al., 2003;
Ramani et al., 2006). Currently, however, longitudinal structural scans are typically not used
for diagnosis, a situation that does not reflect inherent or technological limitations in MRI.
To the contrary, tremendous anatomical detail can be obtained from MRI, but is by no
means fully exploited clinically—even something as relatively simple as rigid body
alignment of a subject’s serial scans is not routinely performed, yet its utility is obvious
(Bradley and Bydder, 1997).

We report here on a numerical method based on serial MRI scans that allows for early
detection of anatomical changes (Murphy et al., 2010), including those of small ROIs, and
their quantification over time. This computational MR image processing application, called
Quarc (quantitative anatomical regional change), involves image smoothing and
minimization of a regularized merit function for the displacement field that locally registers
the serial images (Ashburner et al., 1999). It has been applied extensively to serial pairs of
scans in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (McEvoy et al.,
2011, 2010; Fjell et al., 2010c,b,a; Murphy et al., 2010; McDonald et al., 2010; Holland et
al., 2009; Fjell et al., 2009; McDonald et al., 2009; McEvoy et al., 2009), and is one of
several methods already used in research that tackle the problem of volumetric change and
local longitudinal registration, e.g., fluid registration (Christensen et al., 1996; Miller et al.,
1993; Freeborough and Fox, 1998), Tensor Based Morphometry (TBM) (Leow et al., 2007;
Yanovsky et al., 2009; Hua et al., 2010), Voxel based Morphometry (VBM) (Ashburner and
Friston, 2000; Tzourio-Mazoyer et al., 2002), and the Boundary Shift Integral (BSI)
(Freeborough and Fox, 1997; Leung et al., 2010). Here we describe the method in detail,
validate it with model studies, and directly compare with several of the existing methods—
using results of power calculations on Cohen’s d effect size estimates for detecting ROI
change, relative to normal aging, in AD.

Methods
ADNI

All data used in the preparation of this article were obtained from the ADNI database
(www.loni.ucla.edu/ADNI). ADNI was launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public-private partnership. ADNI’s goal is to test
whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as well as lessen the time and cost
of clinical trials. ADNI is the result of e orts of many co-investigators from a broad range of
academic institutions and private corporations. ADNI has recruited 229 cognitively normal
individuals to be followed for 3 years, 398 people with MCI to be followed for 3 years, and
192 with mild AD to be followed for 2 years (see www.adniinfo.org). The research protocol
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was approved by each local institutional review board and written informed consent is
obtained from each participant.

Participants
The ADNI general eligibility criteria have been described elsewhere (Petersen et al., 2010).
Briefly, subjects are not depressed, have a modified Hachinski score of 4 or less, and have a
study partner able to provide an independent evaluation of functioning. Healthy control
(HC) subjects have a Clinical Dementia Rating (CDR) of 0. Subjects with MCI have a
subjective memory complaint, objective memory loss measured by education-adjusted
scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, preserved activities of
daily living, and absence of dementia. Subjects with AD have a CDR of 0.5 or 1.0 and meet
National Institute of Neurological Disorders and Stroke and Alzheimer’s Disease and
Related Disorders Association criteria for probable AD.

Subject Data Acquisition and Preparation
Subjects are scanned twice with a 3D MPRAGE protocol at 1.5T every six-months. Double
scanning allows up to a  increase in signal-to-noise. At each time point, to provide a
faithful geometric representation of the subject, reduce noise, and be in a position to
consistently determine over time what parts of the brain are growing, shrinking, or merely
being displaced, and by how much, several processing steps are required. In general for any
subject, no two images will be in register, they will be spatially distorted (see below), have
different intensity ranges since there is no standard for scanners, and suffer from local
intensity and contrast variability due to magnetic susceptibility of the subject and
inhomogeneities in the radio-frequency magnetic field pulse (B1 RF-field) excitation and
signal detection.

Before images can be registered in any way, they first must be corrected for deformation
artifacts resulting from nonlinearities in the space-encoding gradient magnetic field in the
scanner (Wald et al., 2001). The effect can be significant, with distortion of the field of view
up to a few centimeters, depending on the scanner. The correction method is based on a
spherical harmonic description of the gradient magnetic field that requires vendor-supplied
coeffcients (Jovicich et al., 2006). Any remaining distortions in structural images are affne.
Corrected images are written out in a 2563 voxel cube, where each voxel is a 1mm3 cube.

One of the images from a subject’s baseline pair is automatically segmented (Fischl et al.,
2002), and a simply connected uniform brain mask, covering all sulci, is built from the
segmentation by repeatedly smoothing with a Gaussian kernel. The mask is used to assist in
registering, and the segmentation is used later to quantify ROI change.

At each subject-visit, gradient-corrected image pairs are rigid registered by minimizing a
cost function:

(1)

N is the number of voxels in the image;  is the location of the center of voxel i, whose

intensity in the source image is denoted by , and in the target image is denoted ;

α1, …, α6 are the translation and rotation parameters, with  the current estimate of the
rigid body transformation operator (Ashburner et al., 1997; Frackowiak et al., 2004a) which
acts on the spatial coordinates of voxels in S; mi is the target mask value for voxel i (equal to
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1 inside the skull, tapering to 0 over the length of a few voxels outside the skull and inferior
to the brain. As this is a highly over-determined problem, the sum need only be carried out
over every second or even fourth voxel along each dimension. Registered images are then
averaged. For purposes of non-rigid affne registration, the brain mask is enlarged, again
using Gaussian smoothing, to include the scalp (bright on T1 MPRAGE). Using the larger
mask, each subject’s followup averaged image is fully (12-parameter) affne registered to the
subject’s baseline. The larger mask is used because, when affne registering severely
atrophied brains to baseline, care must be taken to include the skull (or more specifically, the
sharply contrasting outer-skull/scalp interface) so as not to subsume an anatomical effect in
a scanner artifact. The assumption underlying this is that the skull has not changed its
overall shape and size during the followup period and that, in general, there will be non-rigid
affne differences between scans acquired at serial scanning sessions. It is appropriate to use
the full 12-parameters, without making any assumption that only 9-parameters are all that
are required: if it so happens that only 9 are needed, only 9 will be fit if the affne registration
algorithm is working correctly. Full affne registration can be carried out by minimizing a
cost function similar to Eq. 1 with respect to a 12-parameter L: translations, rotations,
uniaxial strains and shears. After this step, skulls (on T1 MPRAGE, black outer shell and
thicker inner regions of medium intensity arising from cranial bone marrow) at followup
times should match baseline skulls with high fidelity. Cubic interpolation, indistinguishable
from sinc interpolation, is used throughout for resampling (Hajnal et al., 1995). The
intensities are then globally rescaled by bringing the cumulative probability distribution of
brain voxel intensities (within the brain mask) into close agreement with that of a standard,
where cerebrospinal fluid ~25 and white matter ~150 (arbitrary scale).

Nonlinear Registration Cost Function
Nonlinear registration involves finding the individual three-dimensional displacements at
each voxel that map the source image to the target (Frackowiak et al., 2004b). This is also
carried out by minimizing a cost function, in general depending on 3N variables, where N is
the total number of voxels in the image problem. A suitable cost function f is

(2)

It is assumed here that the images S and T have been affne aligned and spatially normalized

(discussed in detail below).  is the displacement at voxel i such that at the
correct local registration, the resampled image S′ will look practically identical to T, where

. For highest accuracy, the sum now involves all voxels. λ1 and
λ2 are regularization parameters of the model that control the quality of the registration.
They will generally have a wide range of valid values, but that range depends on the scale of
intensities. With the standardized images in this study, we used λ1 = 0 and λ2 = 1500. Serial
images that involve local change in T1, T2, or proton density, or that are topologically
distinct, for example where a tumor is present in one but not the other, introduce additional
complexity which requires modeling tissue contrast change and the use of mutual
information (Studholme et al., 2006).
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Minimization
Since the images being locally registered are already tightly affne registered, if each is
heavily smoothed or blurred, e.g., by convolving with an isotropic Gaussian kernel of
standard deviation ≃4–5 mm, they will look rather similar, even though the unsmoothed
images may have relative internal deformations on the order of a centimeter. The
minimization carried out at any level of image smoothing will be done most expeditiously if
as much gradient information as possible is taken into account—conjugate directions in a
second-order Newton’s method (Gershenfeld, 1999). The high smoothing and overall
similarity of the images means a second-order Taylor expansion of f is a reasonable
approximation—with enough smoothing one is in a concave basin of attraction. So one can
perturb the quadratic form approximation for f around the current best estimate

 of the system displacement vector, and one has a large, sparse,
symmetric linear algebra problem:

(3)

where  is the Hessian of f at ,  is the gradient of f at , and the unknown

quantity  is the displacement around  that nudges f toward the
new global minimum  at the new (lower) level of smoothing. The sparseness results
from the coupling only of neighboring voxels through the derivative terms in H. There exist
several effcient iterative methods for finding the solution  of Eq. 3, e.g., conjugate
gradients squared (CGS), generalized minimal residuals (GMRES), and biconjugate
gradients stabilized method (Bi-CGSTAB) (van der Vorst, 1992, 2003). All results
presented here were obtained using Bi-CGSTAB. The cumulative minimization thus carried
out over a series of images of decreasing smoothness constitutes a single nonlinear
registration step.

In summary, nonlinear registration is carried out as follows: (0) initialize the displacement
field  to zero, and the standard deviation σ of the smoothing kernel to 4–5 mm; (1) smooth

the affne registered images; (2) set up the Hessian  and gradient  for the current
net displacement field; (3) register the smooth images, i.e., calculate the refinement  to the
deformation field by solving Eq. 3; (4) update the deformation field: ; (5)
decrease the width of the smoothing kernel by 0.25–0.5 mm. Repeat (1)–(5) until there is
only a little smoothing, σ ≈ 1mm.

More accurate registration can be achieved by performing multiple nonlinear registration
steps, as described above, but where the image being transformed is updated from the
previous step, essentially greedy nonlinear registration. Note that successive displacement
fields (and affne transformations) can be combined into a single deformation field so that
only a single resampling from the starting image need take place at any stage, thus avoiding
cumulative blurring. Fold-over in the deformation field, or negative Jacobian of the
transformation, can be detected by reporting hexahedral volume elements with negative
volume. It is not explicitly precluded by Eq. 2—a regularization term of the form λln(∣Ji∣),

for example, where λ is a regularization parameter and Ji is the Jacobian of  at ,
would facilitate this (Ashburner et al., 2000)—but can be avoided entirely in practice by sti
ening the deformation field, i.e., by having a suffciently large λ2.
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Local Intensity Normalization
Images are not always uniformly bright due both to variations in the local flip angle—
nonuniform excitation caused mainly by RF-field (B1) inhomogeneities and the subject’s
own magnetic susceptibility—and to nonuniform detection sensitivity of the receiver coil
(Liang and Lauterbur, 2000), with the nonuniform brightness pattern potentially varying
substantially from scan to scan. Use of head coils instead of body coils for brain imaging,
though allowing better signal-to-noise ratio, can lead to images with pronounced intensity
variation. If uncorrected, this will result in false expansion or contraction when performing
nonlinear registration. Many methods have been developed over the years to ameliorate this
situation, e.g., Sled et al. (1998), but subtle variation can remain that would corrupt sensitive
measures of change. One can, however, with high accuracy make the images consistent
(Lewis and Fox, 2004).

If the only assumption about the relative intensity variation between a pair of images is that
it is spatially smooth, an accurate map of it can be made by minimizing a cost function of
the form (in notation analogous to Eq. 2)

(4)

in the manner used for nonlinear registration, where bi is the intensity scaling factor at voxel
i in image S that makes the intensity at that location closely agree with the intensity at voxel
i in registered image T; γ1 and γ2 are regularization parameters. Since intensity
nonuniformity in practice varies only very gently across images, this procedure promises to
be very precise and robust. Intensity normalization and structural registration should be run
iteratively in a self-consistent manner until convergence is reached—one helping perfect the
other. Optimal γ1 and γ2 can be found simply by numerically exploring their impact on
intensity normalization for geometrically almost identical images suffering from intensity
distortion; typical values for the standard images used here are 0 and 105, respectively. Note
that the smoothness of the intensity variation means that the sum in Eq. 4 need not be carried
out over all voxels—every second voxel is reasonable. Results for a baseline and two-year
followup scan-pair involving large structural change (e.g., left lateral ventricle expanded by
33%) are shown in Fig. 1.

For each ADNI subject used in this study, the 12-month time point was intensity normalized
to the baseline image using this method, using up to five relaxation steps. The followup time
point thus normalized could then directly be nonlinearly registered to the baseline image,
using multiple (usually five) relaxation steps, with the incremental updates to the
displacement field becoming exponentially smaller.

A single cost function, combining Eq. 2 and Eq. 4, that takes into account the coupled
problems of structural change and mutual intensity inhomogeneity is
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(5)

The b-u coupling makes the Hessian more complicated, and the problem space potentially
grows to 4N dimensions, but this approach allows for the true displacement field to be
calculated in a straightforward manner while simultaneously correcting for variations in
intensity.

ROI Volume

The displacement field  specifies where to locate voxel centers in the S image, in general
turning cubic voxels into displaced irregular hexahedra. Given the corners of a hexahedron,
which can be determined by trilinear interpolation of the displacements at the voxel centers,
it is straightforward to calculate its volume—this can be done in several ways (Garg, 1998;
Davies and Salmond, 1985), the most efficient being Grandy (1997), where it is given by
one-sixth the sum of three determinants of 3 × 3 matrices built from the coordinates of the
vertices. So the displacement field tells you how to locate the eight corner points of the
hexahedral volume element in S that correspond to the corners of a particular cubic voxel in
T. Though it is more usual in morphometric methods to calculate the fractional volume
change by calculating the Jacobian of the transformation, it should be noted that here we
directly calculate the hexahedral volumes, and knowing the original voxel volumes, the
fractional volume change can immediately be found. Either way, a volume-change field is
produced. Note also that hexahedral facets will in general not be planar, but volume can
nevertheless be defined unambiguously leaving no interstitial gaps (Grandy, 1997).

Regions of interest in the brain can be specified by automated segmentation (Fischl et al.,
2002). This method defines voxels as either fully in or not in a particular anatomical ROI—
with current versions of automatic segmentation software, ROI boundaries do not traverse
voxels.

The volume change for a whole anatomical ROI is obtained by averaging the volume
changes for all the voxels identified as being in the ROI, ignoring a thin layer (about a voxel
thick) on the boundary—to account for voxels being wholly misidentified, and voxels that
inevitably will straddle tissue boundaries. Since the deformation field is designed to be
uniform over the ROI, averaging over the interior of the ROI is reasonable.

Bias
To accurately quantify change, it is essential to control for potential bias that can arise in
image analysis (Thompson and Holland, 2011). The problem of bias in image registration
has been known since the early days of nonrigid morphometric methods (Christensen, 1999;
Ashburner et al., 2000; Christensen and Johnson, 2001) and has received a great deal of
attention recently, including the development of some general and implementation-specific
solutions (Leow et al., 2007; Yanovsky et al., 2009; Reuter et al., 2010). Sources of bias
include asymmetries in image smoothing and/or interpolation, and asymmetry in the image
matching or regularization term in the cost function employed in image registration. Such
bias can be accentuated to varying degrees depending on the interpolation and minimization

Holland et al. Page 7

Med Image Anal. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scheme used (Yushkevich et al., 2010). Bias can also arise simply when averaging the
volume-change field over an ROI, due to edge-effects between growing and shrinking
regions.

Multiple relaxation steps, as described above, enable high-fidelity registration, as can be
seen in Fig. 3 (F’-B), thereby maintaining high accuracy as regards inverse-consistency.
However, to guard against potential measurement bias, the entire registration procedure is
also run with the images switched, and the average of the volume-change fields in the
baseline space is used for subsequent quantification of change.

Results and discussion
Model Studies

To test the accuracy and robustness of the registration method, it was applied to models of
two relatively extreme situations that are likely to arise in the context of brain registration:
(A) large regions undergoing large volume change, e.g., ventricular expansion and
contraction, and (B) small nestled regions involving several subregions of distinct
intensities, undergoing small volume changes, e.g., a hippocampus on white matter in the
temporal horn of a lateral ventricle. Nested spheres of different intensities were used to test
both these cases, Fig. 2. The natural length unit in these studies is the length of a side of a
cubic voxel, vl; in the neuroanatomies considered below, a voxel is cubic and of length 1
mm. The scale used for the models’ intensities was set by the standardized images of the
brains: CSF ~25, hippocampus ~100, white matter ~150. Rician noise (Gudbjartsson and
Patz, 1995;Pannalal, 1998) was added to the intensities, the two Gaussian components of
which had a standard deviation of 5, approximately corresponding to noise in the brain
images.

Each model consists of a pair of volume images to be mutually registered. For model-A,
only one pair of images was studied. Fig. 2(A) shows a slice through one of these images:
the inner sphere’s radius is 25 vl, and the outer radius is 50 vl. The inner sphere in the
second image is 30% larger (a radius increase of 2.28 vl); the outer radius did not change.
Noisy intensities were distributed around intensity magnitude 25 (inner sphere) and 120
(outer shell).

For model-B, a series of image pairs was studied. Fig. 2(B) shows a slice through one image
for one of the pairs: the inner sphere’s radius is 10 vl, the inner radius of the outer shell is 14
vl, and the outermost radius is 20 vl. The inner sphere in the second image is 5% smaller (a
radius decrease of 0.17 vl); the outer radii remained fixed. Note that the shell immediately
surrounding the center sphere comprises two half-shells, one of which has the same intensity
as the outer shell. Noisy intensities were distributed around intensity magnitude 100 (inner
sphere), 150 (outer shell), and 25 (half-shell). The series of image pairs were similar except
for the inner radius of the outer shell varying from 18 vl down to 11 vl, Table 1.

For each configuration, simulations were performed on twenty pairs of images—unique
noisy instantiations—and the volume of the interior expanding or contracting sphere
calculated. Since the volume change for a brain ROI is calculated by averaging the volume
changes of all the voxels in the ROI (as identified by automatic segmentation), this method
was also used for the models. The issue is how to handle the boundary voxels, which may be
partly outside the ROI. Since the deformation field that effects registration is fairly uniform
over the ROI, one only needs to average over voxels that are fully within the ROI—and the
more of these that are included the more correctly the volume change thus calculated will
reflect the actual volume change induced by the deformation field. If a mask is built from
voxels identified as belonging in whole or in part to the ROI, this should be shrunk slightly,
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and the ROI volume change averaged over voxels within the shrunken mask. There will be
slight variation in the estimated volume change, depending on the mask. More important,
however, one can be consistent across ROIs by building the shrunken mask in a consistent
way—e.g., by smoothing and thresholding a binary mask built from voxels identified as ROI
tissue by automatic segmentation.

For model-A, where a 30% volume increase for the inner sphere is expected, a single
nonlinear registration gives 27.8%, slightly underestimating the correct result: uniform
expansion or contraction isn’t penalized but nonuniform deformation is, and this can happen
near tissue boundaries. The gradient in the deformation field there effectively acts as a
spring restricting deformation, thus leading to an underestimate of the true displacement.
This underestimate could be reduced by using a smaller spring constant (λ2 in Eq. 2).
However, a reduced spring constant means greater sensitivity to noise and other
imperfections in the data, and so is not always desirable. A way around this limitation is to
update the image undergoing transformation given the estimated deformation field, and then
register the updated image to the original target—i.e., perform two relaxation steps. The
calculated volume increase then is 29.7%. The standard deviation in both calculations is zero
to one decimal place.

For situations as in model-B, the underestimation of the volume change is generally greater
than in model-A, and up to 5 relaxation steps may be needed to get the correct result, as can
be seen in the rows of Table 1 where R2 − R1 is 8, 6, and 4 vl. When only one voxel
separates the structures, R2 − R1 = 1 vl, relaxation alone will not suffice: the images must be
zoomed, i.e., more degrees of freedom are needed, and then several relaxation steps
performed. In the last three rows, note that zooming with only one relaxation step is already
a significant improvement on one relaxation step with no zooming. The row R2 − R1 = 4 vl
shows that zooming is unnecessary when enough degrees of freedom are present, so that 5
relaxation steps with or without zooming gets the correct result.

Application to Subject Data
For each subject in the ADNI database, followup images were nonlinearly registered to the
baseline and the volume-change field calculated from the displacement field. Example
results for a subject, initially diagnosed with MCI, are shown in Fig. 3: B is the baseline, F is
the two-year followup affine registered to baseline, and F’ is the followup nonlinearly
registered to baseline; F-B is the followup minus baseline subtraction image, and F’-B the
subtraction image for the nonlinearly registered followup. Though far more informative than
“eyeballing” affine registered serial scans (let alone unregistered scans, as is more the norm
in radiological practice), interpretation of the monophasic and biphasic signals in F-B
images in terms of shifts, expansions, and contractions can be subtle due to the 3D nature of
the images—see Bydder (1995) for a detailed discussion. The Ux, Uy, and Uz panes in Fig. 3
are the x-, y-, and z-displacement fields that register F to B. The dVol pane shows the
corresponding volume-change field overlaid on the baseline image; the color scale ranges
from about 20% shrinkage (blue) to 60% expansion (yellow) (this is reproduced in SI Fig.
S3 which also provides the color-scale bar).

After baseline, this subject had scans at six-month intervals through two years. (SI Figs. S1
and S2 are similar to Fig. 3 but for change at 6-months and 1-year from baseline,
respectively). SI Fig. S4 shows the automatic cortical and subcortical tissue segmentation at
baseline (ROIs are defined using FreeSurfer version 3.02 (Fischl et al., 2002)), and the
volume-change field, coronally and on the left hemispheric cortical surface, for 6- and 12-
month followups. The left lateral ventricle (subject’s left is on the right of the brain image),
for example, expanded by 10%, 20%, 25% and (Fig. 3) 33%, at 6, 12, 18, and 24 months,
respectively. For the left hippocampus, the decrease in volume at six month intervals was
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3.4%, 3.9%, 5.5%, and 6.3%. Note in particular the localized cortical gray matter shrinkage
—up to about 20% at 24 months—on the lateral and inferior temporal lobes, quite distinct
from the adjacent and less pronounced white matter shrinkage.

Comparison with Standard Methods
To assess the performance on anatomical images of Quarc vis-à-vis standard methodologies,
we analyzed disease-specific e ect sizes, using Cohen’s d, on publicly available data sets
from research groups funded by ADNI (Jack et al., 2010), downloaded from
www.loni.ucla.edu/ADNI /Data through 09/22/2010. Along with Quarc, these data sets
comprise measures derived from longitudinal structural MRI processed with: (1) standard
FreeSurfer v4.3 (Dale et al., 1999; Fischl et al., 1999, 2002; Desikan et al., 2006; Tosun et
al., 2010); (2) Boundary Shift Integral (BSI) (Freeborough and Fox, 1997; Leung et al.,
2010); (3) Tensor Based Morphometry (TBM) (Hua et al., 2008a,b, 2009, 2010); and (4)
Voxel Based Morphometry (VBM) (Ashburner and Friston, 2000; Tzourio-Mazoyer et al.,
2002; Alexander and Chen, 2010). The measures in these data sets are for various ROIs,
both pre-defined tissue regions and data-driven regions, at baseline and followup (generally
6-months apart, as described in the Methods section).

Pairwise head-to-head comparisons with Quarc were performed for each of the four other
methodologies, using only measures for baseline and 12-month followup. Publicly available
FreeSurfer Longitudinal (v4.4) baseline and 12-month data for any subject implicitly
involve the subject’s full available data set, up to 3 years, while baseline and 12-month data
for all other methodologies involve those two time-points only; with this caveat, however,
results for FreeSurfer Longitudinal are in SI. Explicit quality control (QC) information was
provided for FreeSurfer, BSI, and Quarc data, and used for filtering out subject visits that
did not have values as follows: FreeSurfer QVERALLQC=“Pass” or “Partial”; BSI
KMNREGRATING≤3; and Quarc QCPASS=1; for TBM and VBM, QC was implicit in that
only subject-visits that passed QC were publicly available. The total numbers of remaining
subjects in common with Quarc for FreeSurfer, BSI, TBM, and VBM, individually, are
shown in Table 2. For agiven methodology and ROI, the disease-specific effect size was
defined as

(6)

also known as Glass’s, where μAD is the average annual change in the AD cohort, μHC is the
average annual change in the healthy control (HC) cohort, and σAD is the standard deviation
in the AD cohort. A posteriori distributions for the AD and HC means can be built from
sampling Student’s t distributions, and an a posteriori distribution for the AD standard
deviation can be built from sampling a chi-square distribution for the variance (Rosner,
2006). An a posteriori distribution for d can then be built from the ratio of the a posteriori
distribution for the difference in AD and HC means, and the a posteriori distribution for the
standard deviation. The 95% confidence interval on d can then be calculated from the
cumulative distribution for d. Effect sizes from Quarc with 95% confidence intervals for a
global measure (whole brain), a cortical measure (entorhinal), and a subcortical measure
(hippocampus) that are important biomarkers for AD (Holland et al., 2009) are shown in
Fig. 4; numerical values are in Table 3, and results for FreeSurfer Longitudinal are in SI
Table 1. Of these three ROIs, whole brain was available for KN-BSI, and hippocampus was
available for VBM; all three were available for FreeSurfer; for TBM, data were available
only for the statistically-defined temporal lobe “Stat-ROI”—the optimal ROI for TBM (Hua
et al., 2010). Statistical comparisons of Cohen’s d effect sizes were performed using 107

samples drawn from the a posteriori distributions of means and standard deviations. P-
values are provided in Table 3 for same-ROI effect size comparisons of methodologies with
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Quarc; for TBM, where there was no tissue ROI in common with Quarc, the p-value is for a
comparison of the Stat-ROI effect size with the Quarc whole brain effect size.

The Quarc measures present a significant improvement over those of FreeSurfer,
particularly the entorhinal cortex (p≤1.0e-6). The KN-BSI effect size for whole brain,
though lower, is not significantly different from the Quarc whole brain effect size (p=0.38).
The TBM Stat-ROI has a significantly smaller effect size that the Quarc whole brain
(p=0.0016). For VBM, hippocampal data were not meaningful: HCs changed slightly more
than AD subjects. It should be noted that official ADNI data from VBM and FreeSurfer
were provided by groups that were not developers of these methods, and thus may not
accurately reflect the capability of these methods.

Conclusion
The nonlinear registration method presented here enables very precise quantification of large
whole brain deformations, cortical surface shrinkage, and subtle sub-cortical changes in
small ROIs, based on serial MRI scans of an individual. The method’s precision, however,
relies on tissue intensity signatures not changing over time. Therefore, application of the
method, Quarc, to quantifying structural development in neonatal brains, or to progression
of diseases such as multiple sclerosis, will require modeling of associated MRI contrast
changes (Studholme et al., 2006).

Though presented here with a focus on the brain, Quarc is applicable to deformation and
structural change in organs generally. For example, imaging livers requires breath-holding,
but from breath-hold to breath-hold the organ will be non-affinely deformed, necessitating
nonlinear transformation to a chosen target. As another example, when tumor image contrast
remains fairly constant over time, tumor growth or shrinkage detectable on T1- or T2-
weighted scans could accurately be tracked (Wang et al., 2009). As a visual aid in detecting
organ changes over time, the method should greatly assist clinical assessment of subjects.
Moreover, its quantitative precision should facilitate early clinical diagnosis, accurate
treatment monitoring, and assessing efficacy in clinical trials. Indeed, as demonstrated for
AD, in locating potential surrogate, complementary, disease-specific biomarkers (Holland et
al., 2009; Jack et al., 2010), the precision will allow for smaller sample sizes in AD clinical
trials, and/or shorter trials. The ability to track subtle changes over time throughout an organ
may enable determination of disease-specific deformation patterns, and given a pair of serial
scans for a subject, perhaps along with genetic information or other biomarkers, assess
where the subject is on a disease trajectory.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Mutual bias field correction: local intensity scaling of two-year followup image required to
make anatomically identical points in it and the baseline image have similar intensities. The
opacity of the intensity scaling field is reduced to show brain structure underneath.
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Figure 2.
Slices through spherical models, with Rician noise, undergoing volume change: (A) central
sphere “ventricle” (radius R1 = 25 vl), outer shell “white matter” (radius R2 = 50 vl); (B)
central sphere “hippocampus” (radius R1 = 10 vl), outer shell “white matter” (inner radius
R2 = 14 vl, outer radius R3 = 20 vl), dark semi-shell “temporal horn of lateral ventricle”.
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Figure 3.
Nonlinear registration for a subject initially diagnosed with MCI: Baseline B, two-year
followup F, and the followup nonlinearly registered back to baseline, F’. F-B is the
subtraction of the baseline from the followup, clearly showing the ventricular expansion,
along with white matter and cortical shrinkage. The signal in F’-B is reduced close to the
noise floor, showing that F’ is a high fidelity registration of F to B. Ux, Uy, and Uz, are the
displacement fields effecting the registration; the scale is ±2 voxel lengths (gray background
is zero, black is negative, white is positive). dVol is the volume-change field built from the
displacement field, overlaid on the baseline image; yellow shows expansion of ~60%, and
blue shows shrinkage of ~20% (dVol is reproduced in SI Fig. S3(A), which also provides
the color-scale bar).
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Figure 4.
Head-to-head comparison of Quarc with FreeSurfer, KN-BSI, and TBM, using (absolute)
Cohen’s d effect size estimates for annual change in AD controlled for normal aging (Eq. 6),
with 95% confidence intervals. Numerical values, including p-values, are in Table 3;
numbers of subjects are in Table 2. Stat-ROI is the optimal ROI for TBM.
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Table 2

Number of subjects for head-to-head comparisons of Quarc with four standard methodologies used in ADNI
(Jack et al., 2010).

Methodology AD HC

FreeSurfer 96 140

KN-BSI 87 127

TBM 57 108

VBM 88 134
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Table 3

Cohen’s d effect size estimates for annual regional change in AD controlled for normal aging (Eq. 6), from a
head-to-head comparison of Quarc with FreeSurfer, KN-BSI, TBM, and VBM, using data for baseline and 12-
months only. Values in brackets are 95% confidence intervals.

ROI Quarc FreeSurfer p

Entorhinal −2.11 [ −2.56 −1.75 ] −0.56 [ −0.78 −0.35 ] ≤1.0e-6

Hippocampus −1.81 [ −2.20 −1.50 ] −0.94 [ −1.19 −0.72 ] 1.6e-5

Whole Brain −1.46 [ −1.81 −1.17 ] −0.90 [ −1.16 −0.68 ] 0.0051

ROI Quarc KN-BSI p

Entorhinal −2.13 [ −2.61 −1.76 ]

Hippocampus −1.79 [ −2.20 −1.47 ]

Whole Brain −1.44 [ −1.80 −1.14 ] −1.25 [ −1.53 −1.02 ] 0.38

ROI Quarc TBM p†

Entorhinal −2.28 [ −2.92 −1.82 ]

Hippocampus −1.80 [ −2.32 −1.41 ]

Whole Brain −1.79 [ −2.32 −1.39 ]

Stat-ROI −0.98 [ −1.29 −0.72 ] 0.0016

ROI Quarc VBM† p

Entorhinal −2.09 [ −2.56 −1.72 ]

Hippocampus −1.82 [ −2.23 −1.50 ] 0.32 [ 0.07 0.59 ] ≤1.0e-6

Whole Brain −1.40 [ −1.76 −1.10 ]

*
p-value for Stat-ROI compares the best TBM measure (Hua et al., 2010) with the Quarc whole brain measure.

†
For VBM, HC change more than AD, giving positive d.
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