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Abstract
In this paper a minimally interactive high-throughput system which employs a color gradient
based active contour model for rapid and accurate segmentation of multiple target objects on very
large images is presented. While geodesic active contours (GAC) have become very popular tools
for image segmentation, they tend to be sensitive to model initialization. A second limitation of
GAC models is that the edge detector function typically involves use of gray scale gradients; color
images usually being converted to gray scale, prior to gradient computation. For color images,
however, the gray scale gradient image results in broken edges and weak boundaries, since the
other channels are not exploited in the gradient computation. To cope with these limitations, we
present a new GAC model that is driven by an accurate and rapid object initialization scheme;
hierarchical normalized cuts (HNCut). HNCut draws its strength from the integration of two
powerful segmentation strategies—mean shift clustering and normalized cuts. HNCut involves
first defining a color swatch (typically a few pixels) from the object of interest. A multi-scale,
mean shift coupled normalized cuts algorithm then rapidly yields an initial accurate detection of
all objects in the scene corresponding to the colors in the swatch. This detection result provides the
initial contour for a GAC model. The edge-detector function of the GAC model employs a local
structure tensor based color gradient, obtained by calculating the local min/max variations
contributed from each color channel. We show that the color gradient based edge-detector function
results in more prominent boundaries compared to the classical gray scale gradient based function.
By integrating the HNCut initialization scheme with color gradient based GAC (CGAC), HNCut-
CGAC embodies five unique and novel attributes: 1) Efficiency in segmenting multiple target
structures; 2) The ability to segment multiple objects from very large images; 3) Minimal human
interaction; 4) Accuracy; and 5) Reproducibility. A quantitative and qualitative comparison of the
HNCut-CGAC model against other state of the art active contour schemes (including a Hybrid
Active Contour model (Paragios-Deriche) and a region based AC model (Rousson-Deriche)),
across 196 digitized prostate histopathology images, suggests that HNCut-CGAC is able to
outperform state of the art hybrid and region based AC techniques. Our results show that HNCut-
CGAC is computationally efficient and may be easily applied to a variety of different problems
and applications.
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1. Introduction
With the recent advent and cost-effectiveness of whole-slide digital scanners, histopathology
glass slides can be easily converted into digital slides and stored as high resolution digital
images (May, 2010). Pathologists can now analyze the digitized slides, thereby making their
diagnoses on the computer monitor instead of the traditional microscope. More importantly,
this technology makes the computerized quantitative image analysis of digitized
histopathology possible (Gurcan et al., 2009). In histopathology specimens, the
morphological appearance of different structures, such as as glands or nuclei, are often
highly reflective of disease outcome. For example, each gland in normal prostate
histopathology is comprised of a central lumen area, surrounding epithelial cytoplasm, and a
ring of epithelial nuclei defining the outer boundary of the gland (Doyle et al., In Press).
However, in low grade prostate cancer (CaP) the central lumen area shrinks and is almost
completely absent in high grade CaP. Additionally, gland morphology is known to
progressively change from low (less aggressive) to high grade (poor outcome) prostate
cancer (Montironi et al., 2005). Additional visual changes include changes in the area of the
epithelium or lumen, the shape, the size, the number, and differentiation of the glands
(Gleason, 1992). In the case of several diseases, such as prostate, breast, and ovarian cancer,
shape and morphological attributes of glands, tubules, and nuclei on the tissue specimens
correlate with disease aggressiveness (Venkataraman et al., 2009; Karpinska-Kaczmarczyk
et al., 2009; Farjam et al., 2007; Haba et al., 1993). Hence, an important pre-requisite to
predicting disease outcome is the ability to accurately and efficiently detect the location of
glands and segment them so that important morphological features pertaining to disease
outcome may be obtained. Therefore, there is a clear need to develop high-throughput
computer-assisted analytical tools for segmenting histological structures on digital pathology
slides, which can be as large as several thousand by several thousand pixels.

Active contour (AC) models have emerged as popular segmentation tools for separating the
objects/structures of interest from the background via continuously deformable curves. Most
AC models deform in order to delineate the boundaries of the desired objects in the image
through minimizing an energy functional (Caselles et al., 1997). While AC models are able
to accurately capture the shape of the object, thereby enabling extraction of higher-level
shape and morphological features, most AC models are not able to simultaneously segment
multiple structures on very large images. This is primarily due to the fact that most
boundary-based AC models require accurate model initialization in order to be able to
handle very large images (Fatakdawala et al., 2010). Though region-based models do not
require accurate initialization (as we will discuss later), simultaneous and concurrent
segmentation of multiple structures on very large images is still a challenge for region based
models, especially in the presence of a complicated background. For example, a prostate
needle core biopsy digitized at 40x magnification results in an image that is greater than
2GB in size. A single prostate biopsy core could comprise several thousand glands. If the
objective is to simultaneously segment boundaries of all glands in such an image, most AC
schemes would require careful model initialization in the proximity of each object of
interest. If the objective were to segment all glands in the image, this could involve multiple,
careful initializations of the AC model to segment the thousands of glands that might be
present on a single prostate biopsy core image. Since most AC models are unable to handle
the simultaneous segmentation of so many structures of interest from such large images,
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there is a need for rapid identification of the objects of interests in order to initialize the AC
model. Manual initialization of thousands of objects simultaneously is clearly not feasible.
Consequently, a deformable AC model would ideally require automated initialization of the
objects of interest. Additionally, for most boundary based AC models, the evolution function
is dependent on the gray scale intensity gradient. Most AC models convert color images into
an equivalent gray scale representation and hence do not exploit the color tensor information
present in these images (Caselles et al., 1997).

In this paper we present a new high-throughput segmentation tool for accurate, efficient and
automated extraction of contours of histological structures (e.g. glands) so that the
morphological information from histological images can be employed for building
diagnostic and prognostic classifiers. We will show the application of a new color gradient
based AC model with minimal user interaction for rapid, accurate model initialization in the
context of gland segmentation on digitized prostate histopathology. The scheme, as we will
show, is readily extensible to a variety of domains and applications both within and outside
digital pathology.

The rest of this paper is organized as follows: In Section 2, we discuss previous related
work. In Section 3, a brief overview of the new color gradient based AC scheme with
minimally interactive object initialization, along with the novel contributions of this work
are presented. In Section 4, we present the methodological details of our AC model. In
Section 5, we describe the data sets and experimental design. In Section 6, we present the
results of qualitative and quantitative evaluation of our AC mode. Concluding remarks are
presented in Section 7.

2. Previous Related Work
Based on the type of image information used to drive the model, AC schemes may be
categorized as either (a) boundary- (Caselles et al., 1997) or (b) region-based (Chan and
Vese, 2001). The geodesic active contour (GAC) model proposed by Caselles et. al.
(Caselles et al., 1997) is an important boundary-based AC model. Beginning with a user
specified initial boundary, GAC models utilize a positive-decreasing gradient function as the
stopping criterion. This attracts the contour towards the edges of the target objects. The
edge-detector function is a positive-decreasing function, defined as , where s(f
(c)) is the magnitude of the gradient at every pixel c in the image. The minima of the
function g(f (c)) is achieved as the gradient magnitude, s(f (c)), approaches the maximal
value at the object boundaries. When this happens, the curve stops its evolution, right at the
edge of the desired object. One limitation of boundary-based GAC models is that they are
highly dependent on the edge-detector function. Most boundary based AC models (Cohen,
1991; Caselles et al., 1997; Malladi et al., 1995) define the function g(f (c)) as the gradient
of the gray scale image. For color images, the most common approach in computing the
image gradient involves first converting the vector image to a scalar (gray-scale) image by
eliminating 2 of the 3 color channels (e.g. removing the hue and saturation channels while
retaining the luminance channel) (Sapiro, 1997). The directional gradient is then calculated
from this single channel image. However, this color conversion procedure results in broken
edges and weak boundaries due to the loss of information from the other channels. This
limitation of GAC models in exploiting gray scale gradients can be appreciated in Figure
2(c). Broken edges and weak boundaries adversely affect the curves’ evolvement, such as
causing it to miss the boundaries of objects whose gradients are not large enough (see
Figures 5(e), (f) and Figures 6(e), (f)). Consequently, there is a need for the computation of
color gradients directly from the color image.

Xu et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



As mentioned in Section 1, a major limitation of boundary-based AC models is the need for
explicit initialization in the vicinity of the target object of interest (Cohen and Kimmel,
1997). Recently, region-based AC (RAC) models have been proposed to address some of the
limitations of GAC models. The region-based model essentially employs statistical
information derived from different regions (foreground and background) to drive the AC
model, which is independent of the edge-detector function and does not require precise
initialization. One important RAC model is the Rousson-Deriche (RD) model (Rousson and
Deriche, 2002). The RD model assumes that the image plane comprises two regions and the
intensities of pixels within each region satisfy a Gaussian distribution. The contour evolves
as a result of competition between the log probability of current pixels c belonging to the
foreground and background regions. However, RD and other RAC models have their own
limitations. For instance, the model may lead to inaccurate boundaries if the boundary
information is ignored. RAC models may also require more computations for the randomly
initialized contour to converge to the boundaries of the objects. Moreover, most of the
models make a strong assumption that the number of distinct regions in the scene is known.
Further, if the background of the image is too complicated, such as in digitized
histopathology, the RAC model may not be able to segment the regions of interest (see
Figures 5(i), (j) and Figures 6(i), (j)). In fact, even in scenarios where the background is not
very complicated, the RAC model may latch onto the incorrect object boundary.

While hybrid AC models (Paragios and Deriche, 2002a,b) have been proposed to combine
the strengths of boundary-based and region-based models, like RAC models, they too might
sometimes fail without accurate initialization. Even though the edge detection function is
incorporated into the regularization term, the hybrid model is actually a variant of the
region-based model. Since the region term in the hybrid model tends to dominate the driving
forces during curve evolution, the hybrid model shares most of the limitations of region-
based models (see Figures 5(k), (l) and Figures 6(k), (l)). Therefore, the hybrid AC model is
plagued by many of the limitations that afflict region-based models. Hybrid AC models are
also constrained, like most boundary and region based models, in their inability to
simultaneously segment multiple objects in very large images. This may explain why, up
until now, relatively few shape-based segmentation tools have been proposed for the
automated analysis of digitized histopathology imagery (Gurcan et al., 2009). In
Fatakdawala et al. (2010), an expectation-maximization (EM) algorithm based method was
utilized for automatically detecting the centers of lymphocytes on breast cancer
histopathology images. The initial contours for the curve evolution function were defined
with these detected centers. However, only image patches of size 200 × 200 pixels were
considered in this study. In Hafiane et al. (2008), the results from fuzzy c-means clustering
were employed to initialize the active contour model for segmenting the nuclei on prostate
histopathology.

None of the initialization schemes proposed above, however, are able to address the
demands of on the fly, rapid and efficient segmentation of a specific target of interest on
very large images. In Janowczyk et al. (2009), Janowczyk et. al. introduced hierarchical
normalized cut (HNCut), an object detection scheme that integrated the mean-shift
clustering (Comaniciu and Meer, 2002) scheme with the normalized cuts algorithm (Shi and
Malik, 2000) within a multi-resolution framework. The HNCut scheme used a hierarchically
represented data structure to bridge the mean shift clustering and normalized cuts
algorithms. This allows HNCut to efficiently traverse a pyramid of the input image at
various color resolutions, efficiently and accurately pre-segmenting the object class of
interest. By simply specifying a few pixels from the object of interest, the HNCut scheme
can be used to rapidly identify all related and similar objects within the image. By
specifying representative pixels from a different object, the HNCut scheme can be used to
rapidly identify all image pixels corresponding to the target of interest.
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3. Overview and Novel Contribution
Figure 1 illustrates the flowchart showing the working of the HNCut-CGAC model in the
context of gland segmentation on prostate histopathological imagery. As the flowchart
shows, the model includes two modules. In the first module, a HNCut initialization scheme
(Janowczyk et al., 2009) is employed for rapid, minimally supervised, specification of the
target object of interest. Based on the pre-segmentation results from the first module, a level
set functional is initialized in the second module. The AC model employs a novel color
gradient based function as its edge detection function. The color gradient is based on the
local structure tensor, which is obtained by calculating the local min/max variations
contributed from each color channel (e.g. R, G, B or H, S, V). This results in significantly
stronger object boundaries compared to those obtainable via the gray scale gradient alone.
By integrating the HNCut initialization scheme with the color gradient based GAC model,
our high-throughput system has five unique and novel attributes:

1. Efficiency in segmenting multiple target structures. The HN-Cut initialization
scheme allows for rapid detection of the locations of the target structures, thereby
providing an initialization for the AC model. The level set representation of color
gradient based AC model evolves the embedded level set functional, which is able
to automatically handle changes in contour topology. The scheme can thus handle
the simultaneous segmentation of multiple objects in parallel.

2. The ability to handle large images. The integration of the HNCut initialization
within the GAC framework allows our scheme to segment multiple instances of the
target object on arbitrarily large images.

3. Minimal human interaction. The system requires minimal human intervention
during the HNCut stage. This intervention is in the form of a user selected swatch
that reflects the color contained in the target object of interest. The subsequent steps
are completely free of any human intervention.

4. Accuracy. The system is able to segment structures in the image with an accuracy
comparable to that of a human expert. This is particularly relevant in
histopathology imagery where a human expert may simply be unable to manually
segment thousands of instances of the target object on a very large digital slide.

5. Reproducibility. The model comprises very few free parameters and, except for
the user selected swatch for the HNCut module, requires no additional user
intervention. This makes the scheme robust and highly reproducible.

4. HNCut initialized active contour scheme
4.1. Notation

Let  =(C, f) (or  =(C, f )) define a color (or gray scale) image, where C is a 2D Cartesian
grid of pixels c = (x, y) and f(c) ∈ ℝ3 (or f (c) ∈ ℝ1) is a function that assigns intensity
values (or an intensity value) to pixel c ∈ C. A list of commonly used notations and symbols
in this paper is illustrated in Table 1.

4.2. Hierarchical Mean Shift based Normalized Cuts initialization scheme
The HNCut scheme draws its strength from the integration of two powerful segmentation
strategies—frequency weighted mean shift clustering and normalized cuts. The scheme is
outlined in the following three steps:

1. User selects the domain swatch
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A user, via manual selection, defines a color swatch S from the color function f
such that S1 = {f1,α|α ∈ {1, …, N}} creates a selection of color values that are
representative of the object of interest from C.

2. Frequency weighted mean-shift clustering for generating a multi-resolution
color pyramid.

The mean shift algorithm is a non-parametric clustering technique (Co-maniciu and
Meer, 2002). It can be employed to identify the local maxima of a density function
and detect modes of clusters by using a density gradient estimator. In this step, an
improved version of the mean-shift algorithm called frequency weighted mean-shift
(FWMS) algorithm is employed to generate multiple levels of a pyramidal scene
representation  = (C, fk), where k ∈ {1, …, K} represent the k-th levels of a color
pyramid produced at each iteration of the FWMS algorithm. At each level k, the
unique values in the color vector Fk = {fk,1, fk,2, …, fk,|Fk|} are determined under
the constraint that any two values are equivalent if ||fk,i − fk,j || ≤ ε, where ε is a pre-
defined similarity constraint. As a result, the vector F̂k can be constructed from Fk,
where F̂k ⊂ Fk and F̂k is a set of only the unique values present in Fk, where the
cardinality of set F̂k is defined as

(1)

For all fk,i = F̂k,j, the element of the weight vector wk = {wk,1, …, wk,Mk} associated
with F̂k is computed as

(2)

where i, j ∈ {1, …, Mk}. Intuitively, wk,j in (2) is summing the weights from the
previous level into the new unique values. Additionally, the weights satisfy the
equation

(3)

As a result, wk,j is a count of the number of original colors that have migrated to F̂k
through mean shifting (Comaniciu and Meer, 2002). Then, based on the weight
vector wk, the fixed point iteration update becomes

(4)

where the Gaussian function G, with a bandwidth parameter σ, is defined as

(5)

The function G(·) is used to estimate the kernel density at color data point F̂k,j.
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3. Normalized cuts segmentation on frequency weight mean shift reduced color
space.

Normalized cuts (NCuts) is a graph partitioning method (Wu and Leahy, 1993).
The hierarchical pyramid created by mean shift and corresponding to various levels
of color resolution serves as the initial input to the NCuts algorithm. NCuts takes a
connected graph with vertices and edges and partitions the vertices into disjoint
groups. By setting vertices to the set of color values and having the edges represent
the similarity (or affinity) between the color values, the vertices can be separated
into distinct groups, each of which is comprised of similar colors. By operating in
the color space, as opposed to the spatial domain (on pixels), the scheme is very
fast. Normalized Cuts (Shi and Malik, 2000) is employed on the small number of
unique values in the bottom color level F̂K to remove those colors that are not
contained within the object specific color swatch. Let GK = {VK, WK} be an
undirected weighted graph with vertex set VK and similarity matrix WK constructed
on  at the lowest level of the color pyramid. VK is comprised of unique color
values in F̂K. Assuming there are N unique color values in F̂K, WK ∈ ℝN×N is a
similarity/adjacency matrix of the graph that measures the similarity of color value
among any two vertices/points, whose elements are defined as (Shi and Malik,
2000)

(6)

where ci, cj are in , and θ is a pre-defined spatial radius threshold. In (6), the first
Gaussian function measures intensity similarity between vertices ci and cj and σ1 is
a bandwidth parameter. The second Gaussian function measures spatial distance
between ci and cj, and σ2 controls the width of the neighborhoods. The
segmentation problem is transformed into finding a vector that can optimally
bipartition graph GK, which in turn is equivalent to solving the following
generalized eigenvalue system (Shi and Malik, 2000):

(7)

where DK is called the degree matrix. The entries of diagonal matrix DK are column
(or row, since WK is symmetric) sums of WK. The optimal bipartition of the graph
is the eigenvector with the second smallest eigenvalue (7). The NCut algorithm

partitions F̂K into two color sets  and . After the partition,  or  are
matched against the colors in swatch S1 (selected in Step 1). After subsequent

iterations, the segmentation results are obtained from one of  and  that
uniquely contains all colors in color swatch S1, the other set of colors is discarded.
The resulting detection results make for an excellent initialization for the
subsequent application of the color gradient based AC model.

4.3. Local Structure Tensor Based Color Gradient
Color gradient based AC models have been proposed previously in Sapiro (1997) and Yang
et al. (2005). A major difference between the HNCut-CGAC model and the color gradient
vector flow snake in Yang et al. (2005) (where the color gradient serves as an external force
to drive the snake) is that in HNCut-CGAC, the color gradient serves as the edge detector
function. The color gradient function employed in HNCut-CGAC is inspired by the Cumani
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operator (Aldo, 1991), a second-order differential operator for vectorial images. The Cumani
operator is based on Di Zenzo multi-valued geometry (Di Zenzo, 1986). For a color image 
= (C, f), the L2 norm of f can be written in matrix form as

(8)

where

(9)

The matrix  contains the coefficients of the first fundamental form in the
color space and is also referred to as the local structure tensor. It locally sums the gradient
contributions from each image channel. Here f1, f2 and f3 are intensities of each channel for
any pixel c in . For the matrix [gij ], the maximum and minimum eigenvalues of the matrix
(λ+ and λ−) represent the extreme rates of change in the direction of their corresponding
eigenvectors. λ+ and λ− may be formally expressed by

(10)

where

(11)

The color gradient at any c ∈  may hence be expressed as (Sapiro, 1997)

(12)

From equations (8)-(12), it is easy to show that the gray scale gradient , where i ∈
{1, 2, 3}, (widely employed for edge detection (Caselles et al., 1997)) is a special case of the
color gradient s(·). Note that the methodology for computing the color gradient described
above could be easily applied to different vectorial color representations such as RGB, HSV,
and Luv (Gonzalez and Woods, 2008). Figure 2 illustrates the role and importance of the
color gradient function (12) in driving the curve evolution function for an AC model. The
color gradient representation (Figure 2(b)) for the digitized prostate histopathology image
(Figure 2(a)) results in more prominent boundaries compared to the corresponding gray
scale gradient (Figure 2(c)). Figure 2(c) was generated with the MATLAB function
rgb2gray, where the RGB color image is first transformed into HSV color space. The hue
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and saturation channels are then eliminated to yield a scalar luminance, gray-scale image
(Caselles et al., 1997).

4.4. Geodesic Active Contour Model
4.4.1. Energy functional—We assume that the image plane Ω ∈ ℝ2 is partitioned into 2
non-overlapping regions by a curve ℂ. The foreground region Ωf, background region Ωb and
the curve ℂ have been defined in Table 1. The relationship among them are

(13)

and

(14)

where Ωf and Ωb represent the set of image locations corresponding to the target regions of
interest (or foreground) and the other non-target regions (or background), respectively. The
optimal partition of the image plane Ω by a curve ℂ can be obtained through minimizing the
energy functional

(15)

In Equation (15), the first term E1(φ) is the energy functional of a traditional GAC model,
obtained as the integral of an edge detector function g(f(c)), for each pixel c over the curve
ℂ. This external image force pushes or attracts the curve ℂ to the high gradient regions.
Minimization of this energy term is equivalent to minimizing the weighted Euclidean length
of the curve ℂ. The second term E2(φ) which is an area minimization term is inspired by the
balloon force proposed in Cohen (1991). The inflation force, like a balloon, stops the curve
ℂ when the object edges are strong. Alternatively, the curve may pass through the object
border if the edge is too weak with respect to the inflation force (Cohen, 1991).
Minimization of this term is equivalent to minimizing the weighted foreground areas
enclosed by the curve ℂ. Note that the edge detector function in the traditional GAC model
and the balloon force are based on the calculation of the gray level gradient of the image,
such as the Canny-Deriche edge in Cohen (1991). In this paper, the edge-detector function
g(f(c)) is based on the color gradient, which is defined as

(16)

where s(f(c)) is the local structure tensor based color gradient, previously defined in Section
4.3.

In traditional level set methods, a re-initialization phase is required as a numerical remedy
for maintaining stable curve evolution (Li et al., 2010). To overcome this drawback, an
additional energy term (Li et al., 2010) is added to remove the re-initialization phase
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(17)

The combined energy functional in this paper is hence defined as

(18)

By employing the Heavside function H(φ), we can unify integrals in Equation (18) as (Chan
and Vese, 2001; Zhao et al., 1996)

(19)

where c ∈ Ω. Using the fact that ||∇H(φ)|| = δ( φ(f(c)))||∇φ|| (Chan and Vese, 2001; Vese and
Chan, 2002), the energy functional reduces to

(20)

4.4.2. Curve evolution function of GAC model—Based on the theory of the calculus
of variations (Gelfand and Fomin, 2000), the curve evolution function can be derived from
the level set framework by minimizing the energy functional in Equation (20). The curve
evolution function is now defined by the following partial differential equation (PDE):

(21)

where α, β, and γ are positive constant parameters defined empirically as α = 4, β = 0.5, and
γ = 0.04, respectively. δ(φ) is the Delta function (see Table 1), div(·) is the divergence
operator, and φ0(c) is the initial evolution functional that is obtained from the HNCut
segmentation result (see Section 4.2). φ0 is defined as a piecewise linear function:

(22)

where Ωf, ℂ and Ωb represent the target regions of interest, the boundaries of the target
regions, and the other non-target regions, respectively. In Equation (22), Ωf, ℂ, and Ωb are
all obtained via the application of the HNCut scheme. ξ is a positive constant and set
empirically to ξ = 4.
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5. Experimental Design
5.1. Datasets

We quantitatively and qualitatively compared the performance of the HNCut-CGAC model
against other AC schemes (see Table 3) on a total of 196 images obtained from two different
patient cohorts from the Hospital at the University of Pennsylvania (UPENN). In Table 2,
the first cohort comprised 126 Hematoxylin & Eosin (H&E) stained and digitized prostate
needle core biopsy specimens. Each of the 126 images was obtained by digitizing the
corresponding glass slide at 20x optical magnification using an Aperio whole-slide digital
scanner. The second data set is comprised of 70 H&E stained images of quadrant
histological sections obtained from radical prostatectomy studies.

5.2. Ground truth generation
For all 196 images considered in this study, the objective was to segment the boundaries of
the glandular regions. Since it was impossible to have an expert pathologist manually
segment each and every gland in each of the 196 images (to provide ground truth for
quantitative evaluation), the expert was asked to randomly pick region of interests on the
digitized image where clusters of glands were visible. The expert then proceeded to
meticulously segment gland boundaries from within the randomly chosen ROI on each of
the 196 digitized images considered in this study. Consequently, quantitative evaluation of
the different AC models was limited to these ROI’s across the 196 images.

5.3. Comparative strategies
Table 3 lists four AC models that we implemented, solely for the purpose of quantitative
comparison with the HNCut-CGAC model.

5.3.1. Rousson-Deriche model (Rousson and Deriche, 2002)—Most region-based
AC models are inspired by the Mumford-Shah functional (Mumford and Shah, 1989).
Mumford-Shah functionals approximate image intensities via a piecewise smooth (or
constant) function. In Zhu and Yuille (1996), the authors established relations between
statistical methods and the piecewise constant model by a more general energy functional,
where the image intensities within each region are approximated by a statistical distribution.
The Rousson-Deriche model assumes that the image plane Ω is partitioned into two regions
Ωf and Ωb by contour ℂ. If we further assume that image intensities in each region are
statistically homogeneous and the intensities of each region are approximated by a Gaussian
distribution, the energy functional can be derived as follows:

(23)

where H(φ) is the Heaviside function and p(f(c)|θi) (i ∈ {f, b}) are the multivariate Gaussian
distribution function with parameter θi = {μi, Σi}, where μi and Σi are the mean and
covariance of the intensity in the region i(i ∈ {f, b}) and are estimated by

(24)

By minimizing the energy functional (23) via the variational principle, the optimal
bipartitioning of the image plane Ω can be obtained by evolving the curve evolution
functional as follows
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(25)

where φ0(c) is the initial contour, which is generated randomly. From Equation (25), the
contour evolves as a result of competition between the log probability of current pixel c
belonging to foreground Ωf and background region Ωb.

5.3.2. Hybrid AC (HAC) model (Paragios and Deriche)—Since region-based AC
models do not typically include boundary information, Paragios and Deriche presented a
hybrid AC model in Paragios and Deriche (2002a,b) by incorporating a gradient-based edge
detection function into the regularization term of region-based model. By incorporating
g(f(c)) into the second term of Equation (25), the RD model reduces to the HAC model as
follows:

(26)

The major difference between (26) and the HAC model presented in Paragios and Deriche
(2002a,b) is that g(f(c)) is based on the color gradient whereas the edge detection function
employed in Paragios and Deriche (2002a,b) are based on the gray scale image gradient. The
corresponding curve evolution function can be derived as

(27)

5.4. Experiments performed
A total of five experiments were designed to showcase the different attributes of the HNCut-
CGAC scheme. A total of 5 AC models (HNCut-CGAC, HNCut-GAC, CGAC, HAC, and
RD) were evaluated in terms of their gland segmentation ability across 196 images.

5.4.1. Experiment 1: Robustness of HNCut to choice of swatch—The aim of this
experiment was to demonstrate that the HNCut-CGAC model requires minimal human
interaction and is robust to the choice of the color swatch. In our experiments we employed
six different color swatch selection methods.

A. In the first experiment, color swatch S0 is selected from a single randomly chosen
gland from a randomly selected image. S0 is then employed across all of the images
in the two data sets.

B. In the second experiment, 10 images were randomly selected across the two data
sets. For each of the 10 randomly selected images, color swatches S1–S4 are
randomly selected from multiple glands. Then HNCut-CGAC model with color
swatches S1–S4 is applied to segment the gland regions across 196 images.

C. In the third experiment, the color swatch S5 is selected from multiple glands from a
randomly selected image in the data sets.

5.4.2. Experiment 2: Comparison of HNCut-CGAC against CGAC model—The
aim of this experiment was to show the efficiency and accuracy of HNCut-CGAC over the
CGAC model with random initialization. Here CGAC refers to the color gradient based
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geodesic active contour model. The CGAC model is randomly initialized with circles that
are evenly distributed across the image. The model is then applied for gland segmentation
across all 196 images.

5.4.3. Experiment 3: Comparison of HNCut-CGAC against Rousson-Deriche
(RD) model (Rousson and Deriche, 2002)—The aim of this experiment was to
compare the accuracy of the HNCut-CGAC model with respect to a state-of-the-art region
based AC model (RD). The RD model is a popular region-based AC model where the model
is driven by the Gaussian distributions of both foreground and background (Rousson and
Deriche, 2002). Though region-based models have the advantage of being an initialization-
free scheme, the GAC model with accurate initialization and efficient edge detection
function is able to outperform the RD model in segmenting glands structures from
histological images. In this experiment, the RD model is initialized via multiple random
circles evenly distributed across whole-slide images.

5.4.4. Experiment 4: Comparison of HNCut-CGAC against Hybrid Active
Contour (HAC) model (Paragios and Deriche)—The aim of this experiment was to
compare the accuracy of the HNCut-CGAC model with respect to a state-of-the-art hybrid
AC model (HAC). In this experiment, the HAC model is initialized via multiple random
circles evenly distributed across the whole-slide images.

5.4.5. Experiment 5: Evaluating GAC performance with color and gray scale
gradients—The aim of this experiment was to show the accuracy of the HNCut-CGAC
model over the HNCut-GAC model. HNCut-GAC refers to a gray scale gradient based
geodesic AC model with HNCut initialization. Since our aim is to demonstrate the
advantages in using color gradient based edge-detection function for GAC model, we
replace the color gradient with gray-scale gradient in the edge-detection function for the
HNCut-CGAC model. In order to make a fair comparison, the gray scale gradient based
GAC (HNCut-GAC) model is initialized by the HNCut scheme as well.

5.5. Performance measures
The performance of each model is evaluated based on the boundary-based measurements
and region-based overlapping measurements:

5.5.1. Boundary-based measurement—The gland segmentation results of the HNCut-
CGAC, HNCut-GAC, CGAC, RD, and HAC models were evaluated in terms of mean
absolute distance (MAD). We define  = { |  ∈ {1, …, N}} and  = {cw|w ∈ {1, …, M}}
as closed boundaries of manual and automated segmentation, respectively. N and M are
numbers of pixels on the boundaries of the manual and automated segmentations,
respectively. MAD may then be defined as

In this paper, the boundaries of the automated segmentation result are defined as the
contours of zero level set function of AC models after convergence. An MAD value of 0
reflects perfect segmentation.

5.5.2. Region-based overlapping measurements—Gland segmentation results of the
HNCut-CGAC, HNCut-GAC, CGAC, RD, and HAC models were evaluated in terms of
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overlap (OL), sensitivity (SN), specificity (SP) and positive predictive value (PPV). For
each image, the set of pixels lying within the manual delineations of the glands is denoted as

(G). The set of pixels lying within any boundary resulting from the HNCut-GAC, CGAC,
RD, and HAC models are denoted as (S). (S) is comprised of those pixels whose level set
functions are positive after convergence of AC models. | · | represents the number of pixels
in a region. For example, |C| represents the total number of pixels in the image . OL, SN,
SP, and PPV are then defined as

1. ,

2. ,

3. , and

4. .

An OL = SN = SP = PPV = 1 is indicative of perfect segmentation.

5.5.3. Computational Time—We measure the execution time of the three major
components of the HNCut-CGAC model: the HNCut initialization scheme, local tensor-
based color gradient algorithm, and active contour model for segmentation. The software
implementation for each component was performed using MATLAB (Mathworks, Inc.). The
execution time in seconds for each component of HNCut-CGAC, as well as the total
execution time for the model, for digitized prostate histopathology images with different
resolutions, is reported in Table 4. All operations were performed on a 2.6GHz Intel Core 8
processor with 72GB of RAM. Note that even for images with over 25 million pixels, the
total run time is only in the order of 10–12 minutes.

6. Results and Discussion
Qualitative results of HNCut-CGAC, HNCut-GAC, CGAC, RD, and HAC models on two
different studies are illustrated in Figures 5(b)–(l) and Figures 6(b)–(l). In order to better
compare the segmentation results, two magnified regions in each whole-slide image have
been shown. The magnified regions in Figures 5(e), (f) and Figures 6(e), (f) reveal the
inability of the HNCut-GAC model in accurately segmenting the glands. The reason is that
the gray scale gradient based edge-detection function results in inaccurate and spurious
boundaries. The magnified regions in Figures 5(g)–(l) and Figures 6(g)–(l) illustrate that the
CGAC model, RD model, and HAC model with random initialization are unable to
accurately segment all the glands in the image. On account of the accurate HNCut based
initialization and the improved robustness due to the color gradient based edge-detection
function, the HNCut-CGAC model outperforms the other 4 AC models.

Table 5 shows the results of quantitative evaluation of segmentation by HNCut-CGAC,
HNCut-GAC, CGAC, RD, and HAC models in terms of MAD, OL, SN, SP and PPV across
196 whole-slide images. For HNCut-CGAC and HNCut-GAC models, color swatch S0 is
used. The mean and standard deviation values for MAD, OL, SN, SP, and PPV in Table 5
show that the HNCut-CGAC outperforms the HNCut-GAC, CGAC, RD, and HAC models.
While the HNCut-GAC yielded a higher SN value compared to the HNCut-CGAC model,
the improvement came at the cost of a lower OL, SP, and PPV. Figures 3(a)–(d) show the
distribution of the region based performance measures (OL, SN, SP, PPV) for the HNCut-
CGAC (using swatch S0) model across all 196 images.

The comparison of segmentation on HNCut-CGAC model with different color swatch
selection methods in Experiment 1 are shown in Table 6. As evidenced by the results in
Table 6, no significant differences in either the region or boundary based performance
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measures were observed across the different color swatches (S1–S5). There are no
significant differences in segmentation results of HNCut-CGAC model over 196 images for
S0 and S5 as well. The MAD results of two color swatch selection methods S0 and S5 in
Experiment 1 are illustrated using frequency histogram plots (see Figures 4) which shows no
significant difference in the segmentation of HNCut-CGAC model for S0 and S5 across all
196 images.

7. Concluding remarks
In this paper we presented a high-throughput geodesic active contour model with minimal
human intervention for rapid and accurate segmentation of multiple objects on very large
imagery. An accurate and efficient initialization scheme is employed for detecting the
locations of the objects, which allows a color gradient based geodesic active contour model
segment the object boundaries. While hybrid and region based AC models are typically
initialization free, in the case of very large images and where multiple objects have to be
segmented concurrently, they may under-perform since both the Rousson-Deriche and the
hybrid AC models make strong assumptions regarding a priori knowledge about the number
of target objects in the scene to be segmented. This is evidenced by the poor performance of
the Rousson-Deriche model and the hybrid active contour model on very large digitized
prostate histological images. An additional novel aspect of our new AC scheme is the use of
a local structure tensor based color gradient in the edge-detector function for GAC model,
which allows for more prominent boundaries compared to the traditional gray scale gradient.
A quantitative and qualitative comparison between the HNCut-CGAC, HNCut-GAC,
CGAC, RD, and HAC models for the task of gland segmentation across 196 prostate
histopathology images revealed that the HNCut-CGAC model easily outperformed other AC
schemes. The HNCut-CGAC model presented in this paper offers an easy, accurate,
minimally interactive, reproducible and efficient scheme for general object segmentation,
especially on very large images.
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Figure 1.
The flowchart of HNCut-CGAC model shown in the context of gland segmentation on
prostate histopathology imagery.
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Figure 2.
(a) Original color image of needle core biopsy histopathology image, and corresponding (b)
color gradient and (c) gray scale gradient obtained after converting the color image in (a) to
its gray scale representation with the MATLAB function rgb2gray.
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Figure 3.
The histogram for segmentation accuracy evaluation of HNCut-CGAC model with color
swatch S0 over 196 images are plotted. The plots reflect the number of studies (y-axis) for
which (a) Overlap, (b) Sensitivity, (c) Specificity, and (d) Positive Predictive Value (PPV)
values were below certain number(x-axis).
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Figure 4.
A histogram plot showing the distribution in the values of MAD, for the HNCut-CGAC
model using swatches (a) S0 and (b) S5 across 196 images. Note that there are no significant
differences in MAD values for the two different swatches.
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Figure 5.
The gland segmentation results (boundaries in green) of HNCut-CGAC, HNCut-GAC,
CGAC, RD, and HAC models for a whole-slide needle core biopsy (a). (c) and (d) are two
different patches (I) and (II) from the segmentation result (b) of the HNCut-CGAC model
which have been magnified to show gland details. (e) and (f) are two magnified patches
selected from the same location (I, II) (b) and showing the segmentation result of the
HNCut-GAC model. (g) and (h) show corresponding results for the CGAC model. (i) and (j)
show corresponding results for the RD model. (k) and (l) show corresponding results for the
HAC model.
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Figure 6.
The gland segmentation results (boundaries in green) of HNCut-CGAC, HNCut-GAC,
CGAC, RD, and HAC models from a whole-slide needle core biopsy (a) in study 2. (c) and
(d) are two different patches (I) and (II) from the segmentation result (b) of the HNCut-
CGAC model which have been magnified to show gland details. (e) and (f) are two
magnified patches selected from the same location (I, II) (b) and showing the segmentation
result of the HNCut-GAC model. (g) and (h) show corresponding results for the CGAC
model. (i) and (j) show corresponding results for the RD model. (k) and (l) show
corresponding results for the HAC model.
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Table 1

Description of Notation

Symbol Description

2D image scene

C 2D Cartesian grid of pixels c = (x, y)

f(c) function that assigns intensity values to pixel c

wk,j the j-th element of weight vector wk at level k

φ(t, c) the level set function

ℂ the zero level set ℂ = {c ∈ Ω:φ(c) = 0}

Ω bounded open set in ℝ2

H(φ)

Heavside function H (φ) = {1, φ(c) ≥ 0;
0, φ(c) < 0.

δ(φ)

Delta function δ(φ) = {+ ∞ , φ(c) = 0;
0, φ(c) ≠ 0.

Ωf foreground region Ωf = {c ∈ Ω:φ(c) > 0}

Ωb background region Ωb = {c ∈m Ω:φ(c) < 0}

 (·) the set of pixels contained within the boundary of the object

|| · || the L2 norm

Fk (or F̂k) the set of colors at level k
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Table 2

Description of the different data sets considered in this study.

Name Number

Dataset 1 Hematoxylin & Eosin (H&E) stained prostate needle core biopsy images 126

Dataset 2 H&E stained images of quadrant histological sections of prostate obtained from radical prostatectomy studies 70
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Table 3

The AC models considered in this work for comparison with the HNCut-CGAC model.

HNCut-CGAC Color gradient based GAC model with HNCut initialization

HNCut-GAC Gray scale gradient based GAC model with HNCut initialization

CGAC Color gradient based GAC model with random initialization

RD Rousson & Deriche’s (RD) model with random initialization

HAC Hybrid AC model with random initialization
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Table 4

The execution time in seconds for each component of HNCut-CGAC model as well as the total execution time
for digitized prostate histopathology images corresponding to different image resolutions. The values in the
parentheses reflect the average computation times. All operations were performed using a 2.6GHz Intel Core 8
processor with 72GB of RAM. Here X and Y represent the number of pixel columns (width) and rows (height)
in the image, respectively.

Image Resolution (106 pixels) HNCut (seconds) Color Gradient (seconds) Active Contour (seconds) Total Time (seconds)

5 ≤ X × Y ≤ 9 9–15 (12) 1–2 (1.5) 100–200 (150) 110–217 (163.5)

9 ≤ X × Y ≤ 16 15–24 (19.5) 2–3 (2.5) 200–400 (300) 217–427 (322)

16 ≤ X × Y ≤ 27 24–60 (42) 3–6 (4.5) 400–800 (600) 427–866 (646.5)
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