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Abstract
External beam radiotherapy (EBRT) has become the preferred options for non-surgical treatment
of prostate cancer and cervix cancer. In order to deliver higher doses to cancerous regions within
these pelvic structures (i.e. prostate or cervix) while maintaining or lowering the doses to
surrounding non-cancerous regions, it is critical to account for setup variation, organ motion,
anatomical changes due to treatment and intra-fraction motion. In previous work, manual
segmentation of the soft tissues is performed and then images are registered based on the manual
segmentation. In this paper, we present an integrated automatic approach to multiple organ
segmentation and nonrigid constrained registration, which can achieve these two aims
simultaneously. The segmentation and registration steps are both formulated using a Bayesian
framework, and they constrain each other using an iterative conditional model strategy. We also
propose a new strategy to assess cumulative actual dose for this novel integrated algorithm, in
order to both determine whether the intended treatment is being delivered and, potentially,
whether or not a plan should be adjusted for future treatment fractions. Quantitative results show
that the automatic segmentation produced results that have an accuracy comparable to manual
segmentation, while the registration part significantly outperforms both rigid and non-rigid
registration. Clinical application and evaluation of dose delivery show the superiority of proposed
method to the procedure currently used in clinical practice, i.e. manual segmentation followed by
rigid registration.
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1. Introduction
Each year in the United States about 217,000 men are diagnosed with prostate cancer
(American Cancer Society, Atlanta, GA (2010b)), and about 12,200 women are diagnosed
with invasive cervical cancer (American Cancer Society, Atlanta, GA (2010a)). The
traditional treatment for these carcinomas has been by surgery or external beam radiation
therapy(EBRT), however, when the disease is on an advanced stage, EBRT is the primary
modality of treatment. Radiotherapy is feasible, effective, and is used to treat over 80% of
such patients (Potosky et al. (2000); Nag et al. (2002)).

Recent advances in prostate EBRT have led to three-dimensional conformal radiotherapy
(3DCRT) and intensity modulated radiotherapy(IMRT). Prostate 3DCRT requires a precise
delineation of the target volume and the adjacent critical organs in order to deliver an
optimal dose to the prostate with minimal side effect on nearby normal tissues. The latest
advancement of Image-guided radiotherapy (IGRT) integrates an in-room cone-beam CT
(CBCT) with radio-therapy linear accelerators for treatment day imaging. With both
imaging and radiotherapy available on the same platform, daily CBCTs can now be acquired
and used by the radiotherapist to rigidly adjust the position of the patient to best align the
patient to the position used during planning. Treatment-day images allow changes in tumor
position, size, and shape that take place over the course of radiotherapy to be measured and
accounted for in order to boost geometric accuracy and precision of radiation delivery. Fig.
1 presents an example of the same slice acquired using two different CT modalities, fan-
beam CT on the left and cone-beam CT on the right. The anatomical structures in the fan-
beam CT are sharp and clearly delineated, where as the same anatomical structures in the
cone-beam CT are not as distinguishable as a result of poor contrast and blurring due to X-
ray scatter (Letourneau et al. (2005); Siewerdsen and Jaffray (2001)).

For cervical cancer, T2-weighted MR provides superior visualization and differentiation of
normal soft tissue and tumor-infiltrated soft tissue (van de Bunt et al. (2006)). In addition,
advanced MR imaging with modalities such as diffusion, perfusion and spectroscopic
imaging has the potential to better localize and understand the disease and its response to
treatment. MR integrated with the radiotherapy system while not currently available is now
on the horizon (Kirkby et al. (2008)). In the work by our collaborators (Jaffray et al. (2010))
for cervical cancer, magnetic resonance guided radiation therapy (MRgRT) systems with
integrated MR imaging in the treatment room are now being developed as an advanced
system in radiation therapy (Jaffray et al. (2010)).

However, when higher doses are to be delivered, precise and accurate targeting is essential
because of unpredictable inter- and intra-fractional organ motion over the process of the
daily treatments that often last more than one month. Patient setup errors, internal organ and
tumor motions must be taken into account in the treatment plan before dose-escalation trials
are implemented. Therefore, a non-rigid registration problem must be solved in order to map
the planning setup information into each treatment day image (Dawson and Sharpe (2006)).
Meanwhile, accurate segmentation of the soft tissue structure over the course of EBRT is
essential but challenging due to structure adjacency and deformation over treatment. CBCT
image quality makes these goals more challenging. Increased precision and accuracy are
expected to augment tumor control, reduce incidence and severity of unintentional toxicity,
and facilitate development of more efficient treatment methods than currently available
(Dawson and Sharpe (2006)).

Very little work has been done to develop an on-line method to non-rigidly update dose
plans. Foskey et al. (2005) developed a non-rigid registration (NRR) technique which first
shrinks bowel gas prior to registration, allowing for a dif-feomorphism between the domain
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of the two images. Here, the authors used the resulting non-rigid transformation to segment
the organs from the treatment-day CT, in order to determine the dosimetric effect of a given
plan in the presence of non-rigid tissue motion, not to update the dose plan to account for
such motion. Greene et al. (2009) performed manual segmentation and then performed a
softly-constrained registration based on the organ mapping. Lu et al. (2010b) proposed a
similar registration algorithm using the method of Lagrange multipliers to incorporate hard
constraints. Some initial work has been performed in simultaneously integrating registration
and segmentation. Chelikani et al. (2006) integrated rigid 2D portal to 3D CT registration
and pixel classification in an entropy-based formulation. Yezzi et al. (2003) integrated
segmentation using level sets with rigid and affine registration. A similar method is
proposed by Song et al. (2006), which could only correct rigid rotation and translation
motion. Chen et al. (2004) incorporated a Markov Random Field model into the framework
which could improve the segmentation performance. Unal and Slabaugh (2005) proposed a
PDE-based method without shape priors. Pohl et al. (2005) performed voxel-wise
classification and registration which could align an atlas to MRI. Chen et al. (2009) used a
3D meshless segmentation framework to retrieve clinically critical objects in CT and CBCT
data , but no registration result was given.

Fig. 2 shows an example of a 3DCRT dose plan created for a patient undergoing EBRT for
prostate cancer at Yale-New Haven Hospital. The dose plan is overlaid on the planning-day
CT image, with the prostate outlined in red and the rectum outlined in blue. EBRT
evaluation can be performed by overlaying the planned dose distribution profiles on the
acquired reference image data using a treatment planning platform. This analysis typically
includes the calculation of dose-volume histograms, which plot the percentage of a
previously-segmented volume in the image data receiving a certain dose from the treatment
beams. One could define dose-guided radiotherapy (Chen et al. (2006)) as an extension of
adaptive radiotherapy where dosimetric considerations are the basis for decisions about
whether future treatment fractions should be reoptimized, readjusted or re-planned to
compensate for dosimetric errors.

In this paper, we present an integrated constrained nonrigid registration and automatic
segmentation algorithm designed to meet the demands of IGRT. Our model is based on a
Maximum A Posterior (MAP) framework while the automatic segmentation part extends a
previous level set deformable model with shape prior information, and the constrained
nonrigid registration part is based on a multi-resolution cubic B-spline Free Form
Deformation (FFD) transformation to capture the internal organ deformation. These two
issues are intimately related: by combining segmentation and registration, we can recover
the treatment fraction image region that corresponds to the organs of interest by
incorporating transformed planning day image to guide and constrain the segmentation
process; and conversely, accurate knowledge of important soft tissue structures will enable
us to achieve more precise nonrigid registration which allows the clinician to set tighter
planning margins around the target volume in the treatment plan.

This paper is an extended version of our previous conference paper (Lu et al. (2010a)). This
paper presents the application to CBCT based prostate cancer radiotherapy as well as MR
based cervical cancer treatment. Furthermore, in Section 3.4.1, we propose a new strategy to
assess cumulative actual dose for this novel integrated algorithm. Escalated dosages can then
be administered while maintaining or lowering normal tissue irradiation, compared to the
procedure currently used in clinical practice (Ghilezan et al. (2004)), i.e. manual
segmentation followed by rigid registration.
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2. Description of the Model
The integrated segmentation/registration algorithm was developed using Bayesian analysis
to calculate the most likely segmentation in treatment day fractions Sd and the mapping field
between the planning day data and treatment day data T0d. This algorithm requires: (1) a
planning day 3DCT/MR image I0, (2) a treatment day 3DCBCT/MR image Id, and (3) the
segmented planning day organs S0, (i.e. prostate, bladder, rectum or bladder, uterus).

Fig. 3 illustrates the workflow of the image-guided integrated algorithm. First, a pre-
procedural (planning day) pelvic CT/MR image is captured before the treatment. Then, the
prostate, bladder, rectum/bladder, uterus and bones can be segmented for therapy planning.
During the treatment prodedure, the weekly intra-procedural CBCT/MR image is first
obtained, and our proposed method is then performed. These 3D registration and
segmentation precedures can be performed iteratively, and the algorithm converges when
the difference between two consequent iterations is smaller than a prescribed threshold.

2.1. MAP Framework
The appearance of an object is always dependent on the gray level variation in an image.
Segmentation can be made easier if suitable models containing such relationship priors and
likelihoods are available. Meanwhile, registration can be achieved more precisely by
incorporating both intensity matching and segmented organ matching constraints. A
probabilistic formulation is a powerful approach to realize these two aims. Deformable
models can be fit to the image data by finding the model shape parameters that maximize the
posterior probability. Follow a Bayesian line of thinking, assuming Sd is independent from
I0, S0, we have:

(1)

This multiparameter MAP estimation problem in general is difficult to solve, however, we
reformulate this problem such that it can be solved in two basic iterative computational
stages using an iterative conditional mode (ICM) strategy (Besag (1986)). This
reformulation then reduces to a framework where we simultaneously maximize over a range
of possible segmentations (using a trial registration to pass initialization information) in one
stage, and perform a nonrigid registration in a second stage (using a fixed segmentation in
the reference image and the current segmentation estimate in the second image as key
constraints). With k indexing each iterative step, we have:

(2)

(3)

These two equations represent the key problems we are addressing: i.) in Equation 2, the
estimation of the segmentation of the important day d structure ( ) and ii.) in Equation 3,
the estimation at the next iterative step of the mapping  between the day 0 and day d
spaces (Lu et al. (2010a)).
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2.2. Segmentation Module
We first apply Bayes rule to Eq.(2) to get:

(4)

The three terms in (4) corresponds to the first, second and third term in Eq.(1), which are
described in details as follows.

2.2.1. Prior Model—Here we assume that the priors are stationary over the iterations, so
we can drop the k index for that term only, i.e. . Instead of using a point model
to represent the object as was done in (Cootes et al. (1999)), we choose level sets (Osher and
Sethian (1988)) as the representation of the object to build a model for the shape prior (Yang
and Duncan (2004)), and then define the joint probability density function in Eq.(4).

Statistical models for images based on a sample or database can be powerful tools to directly
capture the variability for structures being modeled. It is our goal to construct a model based
on a database of dynamic pelvic structures from radiotherapy subjects that will provide us
with a dynamic shape model (characterized by a probability density function, pdf) for use in
integrated segmentation/registration and dose evaluation. First, we assemble a training
database of images over many or all treatment fractions from a collection of subjects
intended to represent a range of patients. For all images and all fractions, the images are
carefully manually segmented by a medical physicist. The segmented structures are then
assembled and rigidly aligned. This becomes the statistical shape database to be used for all
further analysis, as shown in Figure 4.

Consider a database of N subjects, each with a sequence of F = dmax temporal frames (or
fractions), with each fraction consisting of a set S of several segmented object surfaces: S1,
S2, etc. In the current project, the 3D segmentations (S) of the bladder, prostate, rectum or
bladder, uterus are determined from a sequence of images (F) acquired on each treatment
day for N patients, as shown in Figure 4. In the prostate case, we have N = 4 patients and F =
8 temporal fractions per patient, we develop the initial prostate radiotherapy object database
using 24 aligned images from 3 patients, and the fourth patient is used to test our method.
Similarly, the initial cervix radiotherapy object database is also constructed using 24 aligned
images (4 patients and 6 fractions each). The shape prior p(Sd) is constructed using the
database, so our approach is a non-patient-specific statistical model, i.e. the general database
is assembled offline once and is stored; it does not change for each new test patient/subject.
In future clinical practice, users of our approach could use a database that we have
assembled or could create their own local database.

Consider a training set of n aligned images, with M objects or structures in each image. Each
object in the training set is embedded as the zero level set of a higher dimensional level set
Ψ . Our goal is to build the shape model over these distributions of the level set functions.
Using the technique developed by Leventon et al. (2000), the mean and variance of the
boundary of each object can be computed using principal component analysis (PCA). The

mean level set,  is subtracted from each Ψ to create the deviation from the mean.
Each such deviation is placed as a column vector in a Nd×n-dimensional matrix Q where d is
the number of spatial dimensions and Nd is the number of samples of each level set function.
Using Singular Value Decomposition (SVD), Q = UΣV T. U is a matrix whose column
vectors represent the set of orthogonal modes of shape variation and Σ is a diagonal matrix
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of corresponding singular values. An estimate of the object shape Ψi can be represented by k
principal components and a k-dimensional vector of coefficients (where k < n) αi

(5)

where Uk is a Nd × k matrix consisting of the first k columns of matrix U.

Under the assumption of a Gaussian distribution of object represented by αi, we can
compute the probability of a certain shape

(6)

The use of principal component analysis to model level set based shape distributions has
some limitations, but researchers have found the PCA representation to work fairly well in
practical applications (Tsai et al. (2003); Yang and Duncan (2004); Cremers et al. (2007);
Heimann and Meinzer (2009)). Fig. 5 shows a training set of bladder in 4 CBCT pelvic
images. By using PCA, we can build a model of the shape profile of the bladder, prostate,
rectum, respectively.

Fig. 6 illustrates the zero level sets corresponding to the mean and three primary modes of
variance of the distribution of the level set of bladder.

In our deformable model, we also add some regularizing terms (Yang and Duncan (2004)): a
general boundary smoothness prior, pB(Sd) = e−μi∮Sids, and a prior for the size of the region,

, where Ai is the size of the region of shape i, c is a constant and μi and νi are
scalar factors. Here we assume the boundary smoothness and the region size of all the
objects are independent. Thus, the prior probability p(Sd) in Eq.(4) can be approximated by a
product of the following probabilities:

(7)

2.2.2. Segmentation Likelihood Model—Here we have imposed a key assumption (Lu
et al. (2010a)): the likelihood term is separable into two independent data-related
likelihoods, requiring that the estimate of the structure at day d be close to: i.) the same
structure segmented at day 0, but mapped to a new estimated position at day d by the current
iterative mapping estimate  and ii.) the intensity-based feature information derived from
the day d image.

In Equation (4),  is the Day 0 segmentation likelihood term, which constrains
the organ segmentation in day d to be adherent to the transformed day 0 organs by current
mapping estimate . The segmented object is still embedded as the zero level set of a
higher dimensional level set Ψ . Thus, we made the assumption about the probability density
of day 0 segmentation likelihood term:
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(8)

where Z is a normalizing constant that can be removed once the logarithm is taken.

In equation (4),  is the intensity – based image feature likelihood, which indicates
the probability of producing an image Id given . In three-dimensions, assuming gray level
homogeneity within each object, we use the imaging model defined by Chan and Vese
(2001) in Eq.(9), where c1 and σ1 are the average and standard deviation of Id inside , c2

and σ2 are the average and standard deviation of Id outside .

(9)

In practice, gas bubbles are a significant content of the rectum. In our work, the clinicians
use a clinical protocol to eliminate the bowel gas prior to the imaging. Furthermore, the
image quality of CBCT makes this assumption also applicable to the rectal tissue.

2.2.3. Energy Function of the Segmentation Module—Combining(4),(7),(8),(9), we
introduce the segmentation energy function Eseg defined by

(10)

Notice that the MAP estimation of the objects in Eq.(4), , is also the minimizer of the
above energy functional Eseg. This minimization problem can be formulated and solved
using the level set surface evolving method, which is described in Section 2.4.1.

2.3. Registration Module
The goal here is to register the planning day (0) data to the treatment day (d) data and carry
the planning information forward, as well as to carry forward segmentation constraints. To
do this, the second stage of the ICM strategy described above in equation (3) can be further
developed using Bayes rule as follows:

(11)
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The first two terms on the right hand side of this expression represent conditional
likelihoods related to first registering the three segmented soft tissue structures at days 0 and
d, and second registering the intensities of the image between days 0 and d. The third term
represents prior assumptions on the overall nonrigid mapping, which is captured with
smoothness model and is assumed to be stationary over the iterations. Each of the three
logarithm components in the above equation will be further simplified into computational
equivalents as follows.

2.3.1. Segmented Organ Matching—To begin breaking down the organ matching term,
, it must be assumed that the different organs can be registered respectively,

which is reasonable.

(12)

with M represents the number of objects in each image.

As described in the segmentation section, each object is represented by the zero level set of a
higher dimensional level set Ψ . Assuming the objects vary during the treatment process
according to a Gaussian distribution, further simplifies the problem as follows:

(13)

where ωobj are used to weight different organs, and . Therefore, choosing a
specific ωobj also means choosing a σobj. When minimized, the organ matching term ensures
the transformed day 0 organs and the segmented day d organs align over the regions.

2.3.2. Image Intensity Matching—To determine the relationship between a planning
day image and a treatment day image, a similarity criterion which determines the amount of
overlap between the two images must be defined. For prostate cancer, given that we are
trying to perform an inter-modality registration between CT and CBCT, we can not use a
direct comparison of image intensities, i.e., sum of squared differences, as a similarity
measure. Although the image intensities for both imaging modalities are in CT numbers,
their intensities differ by a linear transformation and Gaussian noise due to X-ray scatter
during CBCT acquisition. An alternative voxel-based similarity measure is normalized
cross-correlation (NCC) which has been shown to accurately and robustly align inter-
modality images (Hill et al. (2001); Holden et al. (2000)). Since NCC has successfully been
tested in prostate IGRT (Greene et al. (2009); Lu et al. (2010a)),it is used to address such
intensity matching objective in this paper. Furthermore, NCC has been recommended over
Mutual Information (MI) for registering CT to CBCT because it is computationally more
efficient (Thilmann et al. (2006)).
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(14)

where Ī0 and Īd are the mean intensities. Similarly,  and σId represent the standard
deviation of the image intensities.

For the cervical cancer, since we are registering MR to MR in the problem, sum of squared
differences, which directly compares image intensities, is used. Different from the prostate
problem which only use a single NCC similarity metric, we take into consideration the
intensity matching both inside and outside the organs, because complex and large
deformations are often seen in the uterus.

(15)

When minimized, this term ensures the intensities of two images match within all the organs
and outside.

2.3.3. Transformation Smoothing Prior—To constrain a transformation to be smooth,
a penalty term which regularizes the transformation is introduced. The penalty term will
disfavor impossible or unlikely transformation, promoting a smooth transformation field and
local volume conservation. In 3D, the penalty term is written as

(16)

where V denotes the volume of the image domain. This regularization measure is based on
the 2D bending energy of a thin-plate of metal. The regularization term is zero for any affine
transformations and, therefore, penalizes only non-affine transformations (Rueckert et al.
(1999b)). In addition, we enforce a hard constraint to each control point of the tensor B-
Spline FFD to move within a local sphere of radius r < R where R ≈ 0.4033 of the control
point spacing. This condition guarantees T0d to be locally injective (Choi and Lee (1999);
Greene et al. (2009); Lu et al. (2010b)).

2.3.4. Transformation Model—The registration module is implemented using a
hierarchical multi-resolution FFD transformation model based on cubic B-splines. A FFD
based transform was chosen because a FFD is locally controllable due to the underlying
mesh of control points which are used to manipulate the image (Rogers (2001)). B-splines
are locally controlled, which makes them computationally efficient, even for a large number
of control points. Local control means that cubic B-splines have limited support, such that
changing one control point only affects the transformation in the local neighborhood of the
manipulated control point (Rueckert et al. (1999a); Rogers (2001); Greene et al. (2009); Lu
et al. (2010a)).
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The degree of non-rigid motion captured depends on the spacing of the control points in the
mesh Ω. In order to create an algorithm with an adequate degree of non-rigid deformation, a
hierarchical multi-resolution approach is implemented in which the control point resolution
is increased in a coarse to fine fashion at each iteration, as was done in the previous work in
our laboratory (Greene et al. (2009, 2008); Lu et al. (2010a,b)).

2.3.5. Energy Function of Registration Module—Combining the above equations, we
introduce the registration energy function Ereg defined by the following Eq.(17). Notice that

the MAP estimation of the mapping, , is also the minimizer of the following energy
functional Ereg.

(17)

where  can be replaced by Eq.(14) or Eq.(15) accordingly. In this expression,

a new transformation field  is estimated at the next iteration (k + 1) based on current
estimates of the object segmentations and their object-by-object mappings, overall intensity
matching of the day 0 and day d images and a local transformation smoothing term, with the
tensor B-Spline FFD parameterization.

2.4. Implementation
The practical implementation of the algorithm described by the solution of equations (2) and
(3) using the ICM strategy will proceed as follows. i.)Initialization. First, an expert manually
segmented the key soft tissue structures (S0) in the planning 3DCT/MR data, i.e. the
prostate, bladder, rectum or the bladder, uterus. Then, the first iterative estimate (k = 1) of a
nonrigid mapping from day 0 to day d ( ) will be formed. This is done by performing a
conventional nonrigid registration, which is similar to Eq. (17) without the soft tissue
structure constraints. ii.) Iterative Solution. Here we alternately perform: (a)Segmentation:
Using the current transformation estimated, the soft tissue segmentations obtained at day 0
will be mapped into day d , thus forming . Now using this information as a
constraint, as well as the likelihood information and shape prior model defined in Section
2.2, the segmentation module of ICM strategy (Eq. 10) is run, producing the soft tissue
segmentations at day d ( ). (b)Registration: A full 3D nonrigid mapping of the 3DCT/MR
data from day 0 to the day d 3DCBCT/MR data will be estimated in the second stage of
ICM strategy using Eq. (17), producing a newer mapping estimation ( ). The two steps
run alternatively until convergence. Finally, when the convergence is achieved, we run the
Eq.(17) again but switching the reference space and transform space, in order to get a
backward transformation, i.e. mapping from the treatment day d to planning day 0.
Thereafter, the soft tissue segmentation in day d as well as the bi-directional transformations
(forward: from day 0 to day d, backward: from day d to day 0) are estimated simultaneously.
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2.4.1. Level Set Formulation and Evolving the Surface—Here, we describe the
optimization of the segmentation module energy functional Eseg in Eq.(10) using level sets.
In the level set method, Si is the zero level set of a higher dimensional level set function Ψ i
corresponding to the ith object being segmented, i.e., Si = {(x, y, z)| Ψi (x, y, z) = 0}. The
evolution of the surface Si is given by the zero-level surface at time t of the function Ψi (t, x,
y, z). We define Ψi to be positive outside Si and negative inside Si.

For the level set formulation of our model, we replace Si with Ψi n the energy functional in
Eq.(10) using regularized versions of the Heaviside function H and the Dirac function δ,
denoted by Hε and δε(Chan and Vese (2001))(described below).

(18)

where Ω denotes the image domain. In this paper, we define Ωi to be the domain where the
level set distance is no more than 10 voxels considering that the size of objects of interest in
our data is less than 40–50 voxels. Let G(·) be an operator to generate the vector
representation (as in Eq.(5)) of a matrix by column scanning, and let g(·) be the inverse
operator of G(·). To compute the associated Euler-Lagrange equation for each unknown

level set function  we keep c1 and c2 fixed, and minimize Eseg with respect to .
Parametrizing the descent direction by artificial time t ≥ 0, the evolution equations in

 are:

(19)

In practice, the Heaviside function Hε and Dirac function δε are slightly smoothed, and c1, c2
are approximated as follows (Chan and Vese (2001)):

(20)

We use the regularized functions with ε = 1.5, for all the experiments in this paper. The
approximation of Eq.(19) by the above difference scheme can be simply written as:

(21)
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where  is the approximation of the right hand side in Eq.(19) by the above spatial
difference scheme. The difference equation (21) can be expressed as the following iteration,
and the level sets are updated after each iteration.

(22)

In implementing the proposed level set surface evolving, thanks to the strong constraint
from the transformed organs, the time step τcan be chosen significantly larger than the time
step used in the traditional level set methods. We have tried a large range of the time step τin
our experiments, from 0.1 to 30.0. A natural question is: what is the range of the time step
τfor which the iteration (22) is stable? From our experiments, we have found that the time
step τand the coefficient γ, which weights the constraint from the transformed organs, must
satisfy τ·γ< 1/2 in the difference scheme described above, in order to maintain stable level
set evolution. Using a larger time step can speed up the evolution, but may cause error in the
boundary location if the time step is chosen too large. There is a tradeoff between choosing
larger time step and accuracy in boundary location. Usually, we use t ≤ 10 for most images.

To simplify the complexity of the segmentation system, we generally choose the parameters
in Eq.(18) as follows: λ1 = λ2 = λ, μ = 0.1, ω = 0.25, and ν = 0 (Chan and Vese (2001); Yang
and Duncan (2004)). This leaves us only two free parameters (λ and γ) to balance the
influence of two terms, the image data term and the constraints term from registration
module. The tradeoff between these two terms depends on the strength of the constraints and
the image quality for a given application. We set these parameters empirically for particular
application.

In the registration system, ωobj are used to weight the tradeoff between transformed organs.
We will discuss the choice of Ωobj in the following section 3.3.

3. Prostate Cancer Application: CBCT results
3.1. Data and Training

We tested our ICM algorithm on 32 kilovolt-CBCT treatment-day images acquired from
four different patients undergoing prostate IGRT at Yale-New Haven Hospital. Each patient
data set consisted of a planning-day CT, eight weekly treatment-day CBCTs, and a
planning-day IMRT dose plan. Please refer to Fig.2 for an example of a planning-day IMRT
dose plan.

The planning-day and treatment-day images as well as the treatment plans were down-
sampled from 1.25mm × 1.25mm × 2.0mm and 2.0mm × 2.0mm × 5.0mm, respectively, to a
clinically applicable spatial resolution of 4.0mm × 4.0mm × 4.0mm using BioImage Suite
(Papademetris et al. (2008)).

The training data were obtained from manual segmentation by a qualified clinician. There
are 8 treatment fractions and 1 planning fraction for each patient. A ”leave-one-out” strategy
was used. One patient was chosen to test the algorithm, and the other 3 patients (24 images
overall) were used as training sequences. All the tested images were not in their training
sets.
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3.2. Segmentation Results
The 3D surfaces of the segmented prostate (red), bladder (blue), rectum (green) using the
proposed algorithm are presented in Fig.7. In Fig.8(a), we show the sagittal view of the
segmentation using only gray level information, by which the surfaces cannot lock onto the
shapes of the objects, since these structures have very poorly defined boundaries in CBCT
images. Fig.8(b) shows the results using image gray level information as well as the shape
prior (active shape model). The results are better, but the boundaries of the organs overlap a
lot where the structures are connected. This is because the three structures are handled
independently in the active shape model here, without the constraints from the transformed
planning day organs. In Fig.8(c), we show results of using our proposed model. Visually, the
three structures can be clearly segmented. The surfaces are able to converge on the desired
boundaries even though some parts of the boundaries are too blurred to be detected using
only gray level information. In practice, we use Eq.(13) to guarantee the adjacent objects
disconnect with each other, therefore, there is no overlap between the boundaries due to the
constraints from transformed planning day organs. Fig.8(d) shows the clinician’s manual
segmentation for comparison.

After the rigid alignment, the initial seeds are placed at the center of organs. In Fig.9, we
show initial seeds as well as the segmentation results after 10, 20, and 30 iterations. The
algorithm typically converges in 25–30 iterations, and it usually takes a couple of hours on a
2.83-GHz Intel XEON CPU using MATLAB.

To validate the segmentation results, we compare the manual results (which are used as
ground truth) to the automatic results using two distance error metrics, namely mean
absolute distance (MAD) and Hausdorff distance (HD). Percentage of true positives (PTP)
which evaluate the volume overlaps are also calculated. Let A = {a1, a2, ..., an}, B = {b1,
b2, ..., bm}, ai, bi representing the boundary of the surfaces, we define:

where d(ai, B) = minj ||bj − ai||. While MAD represents the global disagreement between two
contours, HD compares their local similarities.

Let ΩA and ΩB be two regions enclosed by the surfaces A and B respectively, PTP is defined
as follows:

We test our model on all the 32 treatment day images respectively, and the results (mean and
standard deviation) are summerized in Table 1. Virtually all the boundary points lie within
one or two voxels of the manual segmentation when using our method. Quantitative
validation in Table 1 shows consistent agreement between the proposed method and manual
segmentation by expert.

3.3. Registration Results
The registration performance of the proposed algorithm is also evaluated. For comparison, a
conventional non-rigid registration (NRR) using only intensity matching and rigid
registration (RR) are performed on the same set of real patient data. Organ overlaps between
the ground truth in day d and the transformed organs from day 0 are used as metrics to
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assess the quality of the registration (Table 2). In the experiments here, we choose ωprostate
= 0.5, ωbladder = ωrectum = 0.3.

We also track the registration error percentage between the ground truth in day d and the
transformed organs from day 0, as shown in Table 3. The registration error is represented as
percentage of false positives (PFP), which calculates the percentage of a non-match being
declared to be a match (Zhu et al. (2010)). Let ΩA and ΩB be two regions enclosed by the
surfaces A and B respectively, PFP is defined as follows:

Here, we define A is the ground truth at day d, and B is the transformed organ from day 0.

From the Table 2 and Table 3, we found that the RR performed the poorest out of all the
registrations algorithms, generating an identity transform for all sets of patient data, while
the proposed method significantly outperformed the NRR at aligning segmented organs.
Ideally, the last columns of Table 1 and Table 2 should equal to the other, since T0d(S0) = Sd
theoretically. When comparing Table 1 and Table 2, we find that the results of Table 2 are
slightly better, but the difference is non-significant(less than 2%).

From our prior experience with radiotherapy research (Greene et al. (2009); Lu et al.
(2010a,b)), the best organ registration results occur when the organ is used as the only
constraint or one of the main constraints. In our work, the segmented prostate, bladder,
rectum are all used as constraints. On average, the prostate overlap increases from 45.32% to
87.24%. The volume of the bladder varies from day to day and from time to time, however,
the shape remains similar and the bladder is an easily segmented structure. Both of these
situations lead to excellent registration results for the bladder. The bladder overlap increases
from 61.85% to 91.38% after applying our method. The rectum is an odd shape which varies
everyday because gas bubbles are a significant content of the rectum. In practice, our
clinicians used a protocol to eliminate the bowel gas prior to the imaging, which contributes
to the accurate segmentation and registration using our model. The rectum overlap goes
from 41.96% to 86.41% after applying proposed method.

We also perform a sensitivity analysis on the weights of the transformed organs (i.e. ωobj).
Previous research result shows that the best prostate registration results occurs when prostate
is used as the strongest constraints (Greene et al. (2009); Lu et al. (2010b)), and since the
prostate is the key organ for EBRT treatment, so ωprostate is weighted more than ωbladder
and ωrectum. We test the influence of the variation of ωobj on the registration performance,
the choices of ωobj are lists in Table 4, and the registration results are shown in Fig.10. From
Table 4 and Fig.10, we can see the large variation of ωobj changes registration results (organ
overlaps) by no more than 8%. Thus, our method is not sensitive to the balance of the
weights. In the application of prostate cancer, Test 4 is the scenario we use.

3.4. Evaluation of Dose in the Presence of Organ Deformation
3.4.1. Quantification—We desire to use our strategy for assessing cumulative dose
delivery in EBRT treatment of prostate cancer. Our integrated multi-object segmentation/
nonrigid registration algorithm can be used to map from a fixed dose plan and the anatomy
at each treatment day back to a reference planning day image in order to compute the dose
delivered to each voxel of tissue (or organ) by properly integrating the warped dose over
treatment fractions.
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For this work, we performed the following operations, which were used to obtain the
cumulative dose result from actual image data. First, an IMRT treatment plan with dose
distribution  is developed in the planning space (  day 0). Then, at each treatment
day, the original dose plan  is rigidly translated (as would be done clinically,
described in Ghilezan et al. (2004)) to re-center it on the centroid of the CTV using a
centering transformation R0d. Thus, the delivered dose plan at day d:  is
generated. In order to compute the dose delivered to each location at day d in the planning
day coordinates , we need to use the determinant of the Jacobian of the transformation |
J(T0d)| to properly account for the volumetric change:

(23)

where the first term represents the mapping of the dose plan ”back” to reference space using
the transformation T0d, and the second term is the determinant of the Jacobian of the
transformation T0d which accounts for the dilution or concentration of the dose in the event
that one voxel expands to cover more than one voxel or vice-versa. (Note that |R0d| = 1.)
Finally, we obtain a cumulative dose distribution over all available treatment days d = d1, ...,
dmax by nonrigidly mapping each treatment day to the planning day using the mappings T0d
estimated our by integrated segmentation/registration algorithm described above, and then
summing over all treatment days:

(24)

where J = the Jacobian of T0d. This actual delivered dose  can now be compared to the
planned dose in the planning day coordinate system.

3.4.2. Dose Results—We have applied the strategy outlined in Section 3.4.1 for
developing cumulative dose distributions in the planning day space based on our integrated
segmentation/registration algorithm described in Section 2.

Fig.11 shows a 2D slice through 3D cumulative dose distribution when typical treatment
dose plans (12 mm margin) were mapped and summed across 8 weekly treatment fractions
from a single patient. While it is apparent that the prostate is receiving nearly 90% of the
dose, it can be seen that the bladder and the rectum are also receiving substantial amounts.
The excess doses received by the bladder and rectum are a consequence of the large margins
(12 mm) that are prescribed around the CTV to generate the Planning Target Volume (PTV).

Since our method can achieve a more accurate segmentation and registration, it enables the
clinician to set a tighter margin (4 mm) prescribed around the Clinical Tumor Volume
(CTV), to ensure accurate delivery of the planned dose to the prostate (still around 90 %)
and to minimize the dose received by the rectum and bladder, as shown in Fig.12.

4. Cervical Cancer Application: MR-Guided Radiotherapy
4.1. Data and Training

We tested our proposed method on 30 sets of MR data acquired from five different patients
undergoing EBRT for cervical cancer at Princess Margret Hospital, Toronto, Canada. Each
of the patients had six weekly 3D MR images. A GE EXCITE 1.5-T magnet with a torso
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coil over the pelvis was used in all cases. T2-weighted, fast spin echo images (echo time/
repetition time 100/5,000 ms, voxel size 0.36mm × 0.36mm × 5mm, and image dimension
512 × 512 × 38) were acquired. The clinician performed the bias field correction so that the
intensities can be directly compared, and the MR images were resliced to be isotropic.
Similar to the work of prostate cancer treatment, we also adopted a ”leave-one-out” test that
alternately chose one patient out of the 30 sequences to validate our algorithm. All the tested
images were not in their training sets.

4.2. Segmentation Results
In this section, we show the experimental results from our algorithm and compare them with
those obtained from the segmentation using traditional level set deformable model (active
shape model as in Leventon et al. (2000)). Fig.13 shows an example of MR data set with
automatically extracted 3D bladder (red) and uterus (yellow) surfaces using the proposed
method.

Fig.14 shows the axial view of segmented bladder and uterus surfaces overlaid on MR data
in one treatment day, with comparison to manual contours.

Table 5 and 6 use MAD, HD and PTP to quantitatively analyze the segmentation results on
bladder and uterus surfaces respectively. MAD, HD and PTP are defined in Section 3.2.
From the tables, we observe that both MAD and HD decrease with the proposed method
while PTP increasing, which implies that our method has a remarkable and consistent
agreement with the manual segmentation.

We also test the robustness of our algorithm to noise. We add Gaussian noise with different
variances to the MR image, then perform the proposed algorithms. Fig.15 shows the
segmentation errors of the uterus in three cases: with no prior, with shape prior only, and
using our proposed method. As the variance of the noise increases, the error (calculated as
Hausdorff distance) for no prior increases rapidly since the structure is too noisy to be
detected using only gray level information. However, for shape prior method and out
proposed method, the errors are much lower and are locked in a very small range even when
the variance of the noise is large. Note that our integrated segmentation/registration model
achieves the least error among all the cases.

4.3. Registration Results
The mapping performance of the proposed algorithm was also evaluated. For comparison, a
conventional non-rigid registration (NRR) using only intensity matching (described in
Rueckert et al. (1999a)) and rigid registration (RR) were performed on the same sets of real
patient data. The registration results using different transformation models and the
corresponding difference images of the deformed uterus are shown in Fig.16. The check box
of the registered MR image is presented in Fig.17.

Organ overlaps between the ground truth in day d and the transformed organs from day 0
were used as metrics to assess the quality of the registration (Table 7). The registration error
percentage represented as percentage of false positives (PFP) is also tracked in Table 8.
Here, we choose ωbladder = 0.5, ωuterus = 0.3.

The registration results presented in Table 7 and Table 8 are tested across five patient data
sets for a total of 30 different treatment-days. As before, the segmented bladder and uterus
are used as constraints to guide the registration module, both organs significantly increase
overlap and decrease matching error when compared to RR and NRR results (p < 0.001,
paired t-test). The average bladder overlap increases from 65.76% to 91.33%, and average
uterus overlap increases from 68.32% to 87.64%.
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Furthermore, we perform 30 experiments on the same set of data with interactively selected
landmarks to validate the accuracy of 3D registration. The markers are for validation
purposes only and are not used for registration constraint. Fig.18 shows the algorithm’s
registration errors of the markers on the bladder corner, and uterus corner respectively. From
the error distributions, we can see that, in most cases, the registration error in 3D is around
2mm, which is much lower than the marker movement and the registration error of NRR.

The bladder and uterus are adjacent to the tumor(Gross Tumor Volume, GTV), therefore,
the accurate registration of these organs would help aligning the tumor/GTV (Lu et al.
(2010b)). Fig. 19 shows a representative slice from the planning day MRI with overlaid five
treatment day tumor/GTV deformed contours. It can be seen that the tumor appears in the
same slice and the same location in the registered serial treatment images, though tumor
regression process is clearly visible from the contours. Using this technique, we can easily
calculate the location changes of the GTV for diagnosis and assessment, and also precisely
guide the interventional devices toward the tumor during image-guided therapy.

5. Conclusion and Discussion
Our proposed integration algorithm allows accurate segmentation and registration by
iteratively running the two stages of ICM model. We define a MAP estimation framework
combining both the level set based deformable segmentation model as well as the
constrained nonrigid registration. By combining segmentation and registration, we can
recover the treatment fraction image region that corresponds to the organs of interest by
incorporating transformed planning day image to guide and constrain the segmentation
process; and conversely, accurate knowledge of important soft tissue structures will enable
us to achieve more precise nonrigid registration. Testing of our approach on both prostate
cancer treatment CT-CBCT data and cervical cancer treatment MR data shows that our new
method produces results that have an accuracy comparable to that obtained by manual
segmentation. For each patient data tested, the proposed method proves to be highly robust
and significantly improves the overlap for each soft tissue compared to traditional rigid and
multiresolution non-rigid alignment.

A key goal of image-guided adaptive radiotherapy is to more fully characterize the dose
delivered to the patient and each region of interest. In this paper, we also propose a new
strategy to assess cumulative actual dose for this novel integrated algorithm. Clinical
application and evaluation of dose delivery show that the proposed method allows the
clinician to set tighter PTV margin, which proves the superiority of this method to the
procedure currently used in clinical practice (Ghilezan et al. (2004)), i.e. manual
segmentation followed by rigid registration.

Dose-guided radiotherapy (Chen et al. (2006)) can be defined as an extension of adaptive
radiotherapy where dosimetric considerations are the basis for decisions about whether
future treatment fractions should be re-optimized, readjusted or re-planned to compensate
for dosimetric errors.

As shown in Fig.20, in a prostate EBRT application, we can calculate the cumulative dose
delivery after dK fractions using Eq.(24) defined in Section 3.4.1, and then compare the
actual partially delivered dose with the intended dosage. In this way, we may increase the
future dosage for compensation if the actual delivered dose is lower than intended, or vice
versa, as described in Eq. (25).
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(25)

Using the techniques described in this paper, it is possible to easily calculate the location
changes of the key organs for diagnosis and assessment, and also precisely guide the
interventional devices toward the tumor during image-guided therapy. In addition, this
complete, automatically-generated estimated cumulative dose distribution can be utilized to
make decisions about changing margins based on the difference between the computed and
desired treatment. We can potentially adjust the plan to better conform to the dose already
delivered and match the predicted variability in the pelvic anatomy for future fractions.
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Figure 1.
An example of the same CT slice acquired using fan-beam CT (left) and cone-beam CT
(right).
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Figure 2.
An example of a 3DCRT dose plan created for a patient undergoing EBRT for prostate
cancer with the prostate outlined in red and the rectum in blue.The dose plan was created
using the Varian Eclipse Treatment Planning System (Varian Medical Systems, Palo Alto,
CA. (2010)).
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Figure 3.
Flowchart of the integrated segmentation and registration algorithm
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Figure 4.
Training database and global shape alignment.
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Figure 5.
Training set: outlines of bladder in 4 3DCBCT pelvic images. Axial view.
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Figure 6.
The three primary modes of variance of the 3D bladder, showing the mean, ±SD(σ).
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Figure 7.
An example of automatically extracted 3D prostate(red), bladder (blue) and rectum (green)
surfaces.
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Figure 8.
Evaluation of segmentation performance. Red:prostate, Blue:bladder, Green: rectum.
(a)Segmentation using gray level information; (b)With Shape prior; (c)Proposed ICM
algorithm(λ = 0.25, γ = 0.75); (d)Manual segmentation.
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Figure 9.
Detection of three pelvic structures in a CBCT image. Segmentation results after each
iteration are shown. (λ = 0.25, γ = 0.75)
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Figure 10.
Sensitivity analysis of different ωobj. The bars plot organ overlaps for the tests listed in
Table 4
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Figure 11.
Cumulative dose distributions for typical treatment plans: 12 mm margin.
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Figure 12.
Cumulative dose distributions for plans with tighter margin (4 mm).
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Figure 13.
An example of MR data set with automatically extracted bladder (red) and uterus (yellow)
surfaces. λ = γ = 0.5.
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Figure 14.
Comparing segmentation results using the proposed algorithm (green) and manual
segmentation (red).λ = γ = 0.5.
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Figure 15.
Segmentation errors (unit: voxel) with different variance of Gaussian noise for the MR
images.
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Figure 16.
Example of different transformations on the registration for one patient. (a) Difference
image of uterus after rigid registration. (b) After nonrigid registration. (c) After the proposed
method.
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Figure 17.
Registration result: Checkbox of the deformed MR image.
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Figure 18.
Quantitative validation of 3D registration module using the proposed method: Registration
errors of the markers.
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Figure 19.
Tumor/GTV contours from 5 treatment imaging days (shown in 5 colors on a representative
slice) mapped to the planning-day MRI.
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Figure 20.
Dose adjustment or re-planning.
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Table 1

Evaluation of the Segmentation Module

Method MAD(mm) HD(mm) PTP(%)

Prostate Without prior 12.76 ± 4.33 15.42 ± 4.56 47.92 ± 8.15

With shape prior 8.02 ± 2.43 8.73 ± 2.90 60.13 ± 5.53

Proposed method 1.96 ± 0.48 2.83 ± 0.76 85.32 ± 2.83

Bladder Without prior 18.54 ± 5.39 20.13 ± 6.16 38.25 ± 10.28

With shape prior 11.69 ± 4.72 13.18 ± 5.31 65.20 ± 4.01

Proposed method 2.96 ± 0.81 4.31 ± 1.24 90.33 ± 3.28

Rectum Without prior 18.21 ± 4.81 19.87 ± 5.30 32.43 ± 8.92

With shape prior 9.91 ± 4.04 12.25 ± 5.36 54.71 ± 9.43

Proposed method 2.85 ± 0.47 3.69 ± 1.20 84.72 ± 2.83
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Table 2

Evaluation of the Registration: Organ Overlap/PTP (%)

Rigid Registration Nonrigid Registration Proposed Method

Prostate 45.32 ± 2.45 77.58 ± 4.14 87.24 ± 1.90

Bladder 61.85 ± 3.73 73.23 ± 8.28 91.38 ± 2.42

Rectum 41.96 ± 4.16 64.27 ± 6.32 86.41 ± 3.04
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Table 3

Evaluation of Registration Error: PFP (%)

Rigid Registration Nonrigid Registration Proposed Method

Prostate 54.27 ± 3.18 24.56 ± 4.32 13.35 ± 1.96

Bladder 40.94 ± 4.07 28.85 ± 7.63 9.71 ± 2.81

Rectum 61.33 ± 5.83 35.76 ± 7.78 15.82 ± 4.03
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Table 4

Sensitivity analysis of different ωobj.

Registration test ωprostate: ωbladder: ωrectum

Test 1 0.5:0.5:0.5

Test 2 0.5:0.5:0.3

Test 3 0.5:0.5:0.1

Test 4 0.5:0.3:0.3

Test 5 0.5:0.3:0.1

Test 6 0.5:0.1:0.3

Test 7 0.5:0.1:0.1
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Table 5

Evaluation of Segmentation of Bladder

MAD(mm) HD(mm) PTP (%)

Without prior 7.61 ± 2.69 8.63 ± 3.18 43.18 ± 7.92

With shape prior 3.91 ± 1.73 4.54 ± 2.04 72.47 ± 4.91

Proposed method 1.06 ± 0.12 1.29 ± 0.33 86.53 ± 2.18
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Table 6

Evaluation of Segmentation of Uterus

MAD(mm) HD(mm) PTP(%)

Without prior 10.57 ± 6.19 12.13 ± 5.88 35.33 ± 8.19

With shape prior 6.93 ± 1.40 7.52 ± 1.25 71.02 ± 6.88

Proposed method 1.28 ± 0.26 2.01 ± 0.53 84.16 ± 2.39

Med Image Anal. Author manuscript; available in PMC 2012 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lu et al. Page 47

Table 7

Evaluation of Registration: Organ Overlaps/PTP (%)

Bladder Uterus

Rigid Registration 65.76 ± 6.69 68.32 ± 5.18

Nonrigid Registration 80.34 ± 2.39 77.28 ± 3.84

Proposed Method 91.33 ± 1.69 87.64 ± 2.50
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Table 8

Evaluation of Registration Error: PFP (%)

Bladder Uterus

Rigid Registration 33.57 ± 5.34 30.92 ± 5.22

Nonrigid Registration 19.21 ± 3.41 21.78 ± 4.03

Proposed Method 9.36 ± 1.32 11.63 ± 1.80
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