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Abstract
The interpretation of medical images benefits from anatomical and physiological priors to
optimize computer-aided diagnosis applications. Diagnosis also relies on the comprehensive
analysis of multiple organs and quantitative measures of soft tissue. An automated method
optimized for medical image data is presented for the simultaneous segmentation of four
abdominal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans were obtained
at two phases: non-contrast and portal venous. Intra-patient data were spatially normalized by non-
linear registration. Then 4D convolution using population training information of contrast-
enhanced liver, spleen and kidneys was applied to multiphase data to initialize the 4D graph and
adapt to patient-specific data. CT enhancement information and constraints on shape, from Parzen
windows, and location, from a probabilistic atlas, were input into a new formulation of a 4D
graph. Comparative results demonstrate the effects of appearance, enhancement, shape and
location on organ segmentation. All four abdominal organs were segmented robustly and
accurately with volume overlaps over 93.6% and average surface distances below 1.1 mm.
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1. Introduction
In CT-based clinical abdominal diagnosis, radiologists rely on analyzing multiphase
computed tomography (CT) data, as soft tissue enhancement can be an indicator of
abnormality. Contrast-enhanced CT has proven exceptionally useful to improving diagnosis
due to the ability to differentiate tumors from healthy tissue. For instance, the level of
enhancement in the tumor is an important indication of malignancy and can be used to better
classify abdominal abnormalities (Fritz et al, 2006; Voci et al., 2000). This routine clinical
acquisition protocol makes multiphase data (with/without contrast) readily available.

Diagnosis also relies on the comprehensive analysis of groups of organs and quantitative
measures of soft tissue, as the volumes and shapes of organs can be indicators of disorders.
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When presented three-dimensional (3D) patient data, such as CT, radiologists typically
analyze them organ-by-organ and slice-by-slice until the entire image data are covered. This
allows detecting multi-diseases from multi-organs.

Computer-aided diagnosis (CAD) and medical image analysis traditionally focus on organ
or disease-based applications. However there is a strong incentive to migrate toward the
automated simultaneous segmentation and analysis of multiple organs for comprehensive
diagnosis or pre-operative planning and guidance. Additionally, the interpretation of medical
images should benefit from anatomical and physiological priors, such as shape and
appearance; synergistic combinations of priors were seldom incorporated in the optimization
of CAD.

1.1 CT-based Abdominal Organ Segmentation
A variety of methods have been proposed for the segmentation of individual abdominal
organs from CT images, in particular CT after contrast enhancement. The liver enjoyed
special attention in recent literature (Delingette and Ayache, 2005; Heimann et al., 2009;
Linguraru et al., 2010; Okada et al., 2008a; Soler et al. 2001; Song et al., 2009; Wimmer et
al., 2009), kidneys were analyzed sporadically (Ali et al., 2007; Shim et al., 2009; So and
Chung, 2009), while the spleen (Danelon and Stitzel, 2008; Linguraru et al., 2010) and
pancreas (Shimizu et al, 2010a) were segmented less frequently. Model driven approaches
have been both popular and successful (Soler et al. 2001; Song et al., 2009), including active
and statistical shape models (Okada et al., 2008a; So and Chung, 2009; Wimmer et al.,
2009) and atlas-based segmentation (Linguraru et al., 2010; Okada et al., 2008a; Shimizu et
al, 2010a). Level sets and geodesic active contours were frequently involved in these
techniques (Heimann et al., 2009; Linguraru et al., 2010; Wimmer et al., 2009).
Occasionally, graph cuts were employed (Ali et al., 2007; Shim et al., 2009).

Recently, the simultaneous segmentation of multiple abdominal organs has been addressed
in publications (Linguraru and Summers, 2008; Okada et al., 2008b; Park et al., 2003;
Seifert et al., 2009; Shimizu et al, 2007; Shimizu et al, 2010a). Most of these methods rely
on some form of prior knowledge of the organs, for example probabilistic atlases (Park et
al., 2003; Reyes et al., 2009; Shimizu et al, 2007) and statistical models (Okada et al.,
2008b), which are sensitive to initialization/registration. An initial segmentation is typically
achieved and subsequently refined. The relation between organs and manual landmarks was
used in (Park et al., 2003). An efficient optimization of level sets techniques for general
multi-class segmentation was proposed in (Bae and Tai, 2009), paving the way for the
discrete optimization of graph cuts with nonsubmodular functions in (El-Zehiry and Grady,
2011).

Notably, a hierarchical multi-organ statistical atlas was developed by Okada et al. (2008b).
The analysis was restricted to the liver area due to the large variations to be statistically
modeled for inter-organ relationships. Also recently, Seifert et al. (2009) proposed a
semantic navigation for fast multi-organ segmentation from CT data. The method estimated
the organ location, orientation and size using automatically detected anatomical landmarks
and machine learning techniques. Decision forests were additionally proposed in (Montillo
et al., 2011) to classify multiple organs from CT volumes. The method achieved high
prediction accuracy and was fast, but its segmentation overlap was low. Another interesting
concept was presented in (Zhan et al., 2008) for the scheduling problem of multi-organ
segmentation to maximize the performance of CAD systems designed to analyze the whole
human body.

In addition, multiphase contrast-enhanced CT data were employed in abdominal multi-organ
analysis (Xu et al., 2004; Linguraru and Summers, 2008; Sadananthan et al., 2010). In (Xu
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et al., 2004), the segmentation was based on independent component analysis in a
variational Bayesian mixture, while in (Sakashita et al., 2007), expectation-maximization
and principal component analysis were combined. A 4D convolution was proposed in
(Linguraru and Summers, 2008) constrained by a training model of abdominal soft tissue
enhancement. These intensity-based methods are hampered by the high variability of
abdominal intensity and texture.

1.2 Graph Cuts
Graph cuts (Boykov and Jolly, 2001) have become popular for image segmentation due to
their ability to handle highly textured data via a numerically robust global optimization. The
segmentation uses hard constraints from user defined areas of “object” and “background”
and additional soft constraints from boundaries and region information. The value of the
method was immediate for medical data (the segmentation of bone from CT and kidney
from magnetic resonance imaging - MRI) and video sequences (2D+time; Boykov and Jolly,
2001). Graph cuts were also used to track objects from occluding scenes in (Khan and Shah,
2009).

To reduce the sensitivity to initialization, global geodesics were computed via graph cuts
(Boykov and Kolmogorov, 2003) and used to segment the liver, lung and heart. This method
imposed length/area constraints for object boundaries and relied on consistent edge weights
to obtain geometric properties. While introducing the theoretical advantages of graph cuts,
there was no validation of medical data segmentation provided in (Boykov and Jolly, 2001;
Boykov and Kolmogorov, 2003).

Combining the length/area concept with the computation of flux, the geometric
interpretation can be seen as a shape prior in the construction of the graph (Kolmogorov and
Boykov, 2005; Vu and Manjunath, 2008). Multiple objects can be consecutively segmented
(Vu and Manjunath, 2008). The shape model was implemented as a density estimation for
shape priors initially proposed for level sets in (Cremers et al., 2006), but a symmetric shape
distance can be biased if the initialization is poor. A multi-region segmentation via graph-
cuts was recently proposed by (Delong and Boykov, 2009) with separate appearance models
for each region. Their approach uses distance priors between regions, but no explicit shape
priors, and was not quantitatively validated.

The introduction of shape into graph cuts has been an area of active research. Compact
shape priors were used in (Das et al., 2008), but medical data often involve complex shapes.
A star shape descriptor was introduced in (Veksler, 2008), but only shapes complying with a
generic star shape were extracted. Shape priors were embedded into the weights on the
edges in the graph by using a level-set formulation in (Freedman and Zhang, 2005), but this
interactive method was robust only to small shape variations. Finally, a kernel principle
component analysis was used to learn a statistical model of relevant shapes in (Malcolm et
al., 2007) in a Bayesian formulation to perform segmentation via graph cuts in four natural
images.

All the above graph cut techniques suffer from the manual initialization of the segmentation.

1.3 Graph Cuts for Biomedical Data
Following the theoretical advances of graph cuts techniques, several medical image analysis
applications have been proposed. The validation of these applications is generally more
thorough.

An automated graph cut technique was used in (García-Lorenzo et al., 2009) to segment
multiple sclerosis lesions from MRI of the brain using an expectation maximization
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initialization. Statistical models of intensity and spatial distribution from MRI data were
registered and used to construct a graph for the segmentation of the hippocampus in (van der
Lijn et al., 2008; Lötjönen et al. 2010). An interesting example of using graph-cuts to solve
non-rigid registration for brain MRI was presented in (So and Chung, 2009). In general,
registration methods are more robust on brain MRI data than the abdomen, which has higher
shape and appearance variability.

Brain tumors were automatically segmented from MRI using integrated probabilistic
boosting trees into graph cuts to handle intra-patient intensity heterogeneity (Wels et al.,
2008). Graph cuts were also used to refine the manual segmentation of breast tumors from
MRI data (Zheng et al., 2007). The skull was accurately removed from MRI images in
(Sadananthan et al., 2010) using intensity thresholding for initialization. Then foot bones
were segmented interactively from CT in (Liu et al., 2008). Using an acquisition protocol for
plaque reconstruction, carotid plaques were segmented semi-automatically from ultrasound
images in (Seabra et al., 2009).

In (Ali et al., 2007; Ben Ayed et al., 2009; Chen and Shapiro, 2008; Lin et al., 2005) model-
based information was included for the segmentation of heart, spleen and kidneys. The
models were aligned using markers in (Ali et al., 2007; Lin et al., 2005), manual placements
in axial slices in (Chen and Shapiro, 2008) and intra-model constraints given in the first
frame of the cardiac cycle in (Ben Ayed et al., 2009). Shape priors were employed in (Bauer
et al., 2010; Esneault et al., 2010) to reconstruct the liver vasculature and lung airways; the
cuts in the graph were constrained by a tubular filter. Probabilistic shape-based energies for
graph-cuts were combined with image intensity in a non-parametric iterative model in
(Freiman et al., 2010) for the segmentation of the kidneys. Also, in (Shimizu et al., 2010b),
shape priors and neighboring constraints were incorporated using signed distances from
boundaries to segment the liver.

In other types of biomedical applications, a multi-level automated graph-cut algorithm was
used in (Al-Kofahi et al., 2009) to segment cell nuclei; the seed points were detected by a
Laplacian-of-Gaussian filter in a method designed for histopathology data. A graph cuts
optimization was presented in (Deleus and van Hulle, 2009) for the parcellation of the brain
from functional MRI. In (Gramfort et al., 2010), a data-driven graph approach was
implemented to estimate the variability of neural responses on magnetoencephalography or
electroencephalography data. Finally, a study of the effect of weights and topology on the
construction of graphs can be found in (Grady and Jolly, 2008).

1.4 Motivation and Approach
Abdominal multi-organ segmentation remains a challenging task because the sizes, shapes
and locations of the organs vary significantly in different subjects. Moreover, these organs
have similar appearance in CT images, even in contrast-enhanced data, and are in close
proximity to each other.

An advantage when handling medical data is the available prior information regarding organ
location, shape and appearance. Although highly variable between patients and in the
presence of disease, abdominal organs satisfy basic rules of anatomy and physiology. Hence,
the incorporation of statistical models into algorithms for medical data analysis greatly
benefits the segmentation of abdominal images. For example, the enhancement of soft tissue
in CT images is not only a marker of disease, but also an indicator of tissue or organ type, as
contrast agent intake is tissue specific. As presented in the previous sections, certain levels
of model-based information have been included in abdominal segmentation and to a reduced
extent into graph cuts. They generally suffer from manual initialization and do not address
multi-organ segmentation.
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An integrated statistical model for medical data is introduced in this paper and incorporated
into a graph-based approach. We propose a new formulation of a 4D directional graph to
automatically segment abdominal organs, at this stage the liver, spleen and left and right
kidneys using graph cuts. The statistical priors comprise location probabilities that are
intrinsic to medical data, an enhancement constraint characteristic to the clinical protocols
using abdominal CT and an unbiased asymmetric shape measure. The method is optimized
globally and starts with training (entire patient population) 4D intensity data to
automatically initialize the graph, then migrating to patient specific information for better
specificity. Comparative results at different stages of the algorithm show the effects of
appearance, shape and location on the accuracy of organ segmentation.

2. Methods and Materials
2.1 Data

A schematic of the segmentation algorithm is illustrated in Figure 1. Data in this study were
declared exempt for IRB review by the National Institutes of Health’s Office of Human
Subjects Research. Images were collected with LightSpeed Ultra and QX/I [GE Healthcare],
Brilliance64 and Mx8000 IDT 16 [Philips Healthcare] and Definition [Siemens Healthcare]
scanners.

Twenty-eight random abdominal CT studies with or without contrast enhancement from
healthy subjects were used to create statistical models. Data were collected at high
resolution (1mm slice thickness) with in-slice resolution from 0.54 mm to 0.91 mm. The
liver, spleen and left and right kidneys were manually segmented by two research fellows
supervised by a board-certified radiologist (one segmentation for each organ). The tip of the
xiphoid process (an ossified cartilaginous extension below the sternal notch) was marked
manually in these data and used in the location, appearance and shape models.

For testing the algorithm, 20 random abdominal CT studies (normal and abnormal) were
obtained with two temporal acquisitions (40 CT scans). The first image was obtained at non-
contrast phase (NCP) and a second at portal venous phase (PVP) using fixed delays. Image
resolution ranged from 0.62 to 0.82 mm in the axial view. Ten images were of low
resolution (5 mm slice thickness) and were used for training and testing the algorithm using
a leave-one-out strategy. Ten images were of high resolutions (1 mm slice thickness) and
used only for testing. The liver, spleen and left and right kidneys were manually segmented
(by two research fellows supervised by a board-certified radiologist) in the 20 CT cases
using the PVP CT volumes to provide a reference standard for testing the method.

2.2 Model Initialization
The statistical models of location and appearance were built from the 28 CT cases described
in the previous section (10 NCP and 18 PVP cases). The 28 CT data were further used to
build shape constraints via a Parzen window distribution, as explained in the construction of
the 4D graph.

A probabilistic atlas (PA) was constructed for each organ: liver, spleen, left kidney and right
kidney (Reyes et al., 2009). Organ locations were normalized to an anatomical landmark
(xiphoid process) to preserve spatial relationships and model organs in the anatomical space.
A random image set was used as reference and the remaining images registered to it. The
registration was performed for each organ separately. Structural variability, including the
size of organs, was conserved by a size-preserving affine registration adapted from
(Studholme et al., 1999). The location bias was minimized by the normalization by the tip of
the xiphoid process. The PA was constructed independently from the segmentation
algorithm.
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Appearance statistics were computed from the training data (the 28 cases used in the model).
Histograms of the segmented organs (objects) and background at NCP and PVP were
computed and modeled as sums of Gaussians, as in Figure 2.

2.3 Preprocessing
Although training and testing images were acquired during the same session and
intrapatient, there was small, but noticeable abdominal interphase motion, especially
associated with breathing. The preprocessing follows our work in (Linguraru and Summers,
2008).

Data were smoothed using anisotropic diffusion (Perona and Malik, 1999). NCP data were
registered to the PVP images. The demons non-linear registration algorithm was employed
(Thirion, 1998), as the limited range of motion ensures partial overlaps between organs over
multiple phases. The deformation field F of image I to match image J was governed by the
optical flow equation

(1)

2.4 4D Convolution
From smoothed training data of multiphase CT, the min and max intensities of organs were
estimated: mini,t = μi,t - 3σi,t and maxi.t = μi,t + 3σi,t, where i=1..3 for liver, spleen and
kidneys, μp,t and σp,t represent the mean and standard deviation, and t=1,2 for NCP and
PVP. As in (Linguraru and Summers, 2008), a 4D array K(x,y,z,t)=It(x,y,z) was created from
multiphase data. A convolution with a 4D filter f labeled only regions for which all voxels in
the convolution kernel satisfied the intensity constraints

(2)

L represents the labeled image and lj the labels (j=1..4 for liver, spleen, left kidney and right
kidney). The labeled organs in L appear eroded as a result of the 4D convolution. In our
method, L provided seeds for objects (Io) in the 4D graph and was used to estimate the
patient-specific histograms. The eroded inverted L provided the background (Ib) seeds and
the related histograms. To report the segmentation results by 4D convolution (see Results), L
was dilated to compensate for the undersegmentation of organs.

2.5 4D Graph
Graph cuts (GC) were chosen for the inherent capability to provide a globally optimal
solution for segmentation (Boykov and Jolly, 2001). Let A = (A1, A2, …, Ap, …) be a vector
that defines the segmentation. The component Ap associated with the voxel p in an image
can be assigned a label of either object of interest/organ Oi (with i=1..4, for liver, spleen, left
kidney and right kidney) or background B, where B∩O= Ø and Oi∩Oj= Ø for i≠j. In the
classical graph cut algorithm, Ap takes binary values for O and B. In our application, Ap can
have a value from 0 to 4, where 0 denotes the background, 1 the liver, 2 the spleen, 3 the
right kidney and 4 the left kidney.

The inputs to our problem are two sets of registered abdominal CT scans per patient: the
NCP and PVP sequences. Hence every voxel p in the graph has two intensity values: 
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and . A simplified schematic representation of the 4D graph is shown in Figure 3. Every
voxel is connected to both Oi (sources) and B (sink) via t-links and to its neighbors via n-
links (which can be directional). Source and sink are terminologies used in (Boykov and
Jolly, 2001). The costs of the connections determine the segmentation and weak links are
good candidates for the cut. Typical graph cuts perform data labeling (t-links) via log-
likelihoods based solely on 2D or 3D interactive histogram fitting. They penalize
neighborhood discontinuities (n-links) through likelihoods from the image contrast/gradients
(Boykov and Jolly, 2001).

We first extend the formulation to analyze 4D data and then incorporate penalties from the
contrast enhancement of CT soft tissue, Parzen shape windows and location from a priori
probabilities. While location knowledge is incorporated in the labeling of objects, shape
information penalizes boundaries not resembling the references. The energy E to minimize
can be written generically as

(3)

with i=1..4 for liver, spleen, left kidney and right kidney. The subparts of this costs function
are described below.

2.5.1 T-links—In this application, Edata is a regional term that computes penalties based on
4D histograms of O and B. The probabilities P of a voxel to belong to O or B are computed
from patient specific histograms of NCP and PVP data, as described in the previous section.

(4)

(5)

(6)

Eenhance penalizes regions that do not enhance rapidly during the acquisition of NCP-PVP
CT data (i.e. muscles, ligaments and marrow). Liver, spleen and kidneys are expected to
enhance faster. Eenhance can be seen as a gradient in the 4th dimension of the multiphase
data. σncp and σpvp are the standard deviations of noise associated with NCP and PVP.

(7)

Due to the different enhancement patterns of abdominal organs, the peaks in the organs’
histograms in Figure 2 are distinguishable between liver/spleen (high peaks in Figure 2.a
and Figure 2.b) and kidneys (low peaks in Figure 2.a and Figure 2.b). However, the image
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intensity used in Edata is insufficient to separate the liver from the spleen, and the left and
right kidneys. Therefore, we fitted the same intensity and enhancement models to the liver
and spleen and similarly, we analyzed the intensities of the kidneys together. However, the
probabilistic atlas used in Elocation allows separating the liver and spleen and the two
kidneys. Location constraints from the normalized probabilistic atlas (PA) can be seen as

(8)

PAp represents the probability of p to belong to O. PAp was obtained by registering PA to
the test images by a sequence of coarse-to-fine affine registrations. In the current version of
the algorithm, the xiphoid process is not detected in the test cases and the registration of the
atlas to a test case is based on image intensity.

The individual energies or costs of the t-links of p to the graph terminals can be written as
below, where the enhancement is used as a penalty term.

(9)

(10)

2.5.2 N-links—Eboundary assigns penalties for 4D heterogeneity between two voxels p and
q with q∈Np a small neighborhood of p and dist(p, q) the Euclidean distance between p and
q.

(11)

The directional penalties in Eboundary are initialized symmetrically as

(12)

Then the condition in (13) penalizes transitions from dark (less enhanced) to bright (more
enhanced) regions to correct the edges of O, considering image noise. This is an intrinsic
attribute of medical data (e.g. the visceral fluids and fat are darker than O).

(13)

Shape constraints were introduced using Parzen shape (PS) windows (Parzen, 1962)
estimated from the reference organ shapes from the 28 CT data used for modeling. First, the
result of the 4D convolution (L) was used to align the shape references using scaling,
rotation and the location of the centroids. An asymmetric normalized dissimilarity measure
D (equation (16)) between two shapes (si and sj) was used to avoid the bias introduced by L,
which is an approximation of the shape of the object/organ s. H is the Heaviside step
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function, s refers to the binary segmentation of an organ and x to the integration over the
image domain.

(14)

(15)

(16)

The penalties used in Eshape are initialized symmetrically from PS.

(17)

and

(18)

The directionality of the n-link in (18) penalizes transitions from lower to higher shape
probabilities to encourage cuts where there is a strong prior shape resemblance. The shape
energy becomes

(19)

Parameters λ, μ and δ are constants and weigh the contribution from object/background, and
the directionality of the graph at boundaries/shape, respectively (all set to value 0.5 for equal
contributions).

To address the NP-hard problem for the segmentation of more than two labels via graph
cuts, we adopted the α-expansion move proposed in (Boykov et al., 2001). The algorithm
breaks the multi-label cut into a sequence of binary source-sink cuts. With each expansion, a
given label takes space from the other labels. Moves are allowed only if there is a decrease
in energy. The segmentation is thus reduced to a binary optimization problem. For additional
details, please consult http://www.csd.uoc.gr/~komod/ICCV07_tutorial/.

2.6 Analysis
We compared results obtained after the 4D convolution to those achieved using intensity-
based 4D GC (without shape and location constraints) and after including shape and location
correction. We computed the Dice coefficient (symmetric volume overlap), volume error
(volume difference over the volume of the reference), root mean square error and average
surface distance from comparison with the manual segmentations. Non-parametric statistical
tests (Mann-Whitney U test) were performed to assess the significance of segmentation
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improvement at different steps of the algorithm using the overlap measure at 95%
confidence interval.

The influence of patient specific (from the patient CT) versus population (training data)
statistics on the accuracy of organ segmentation was analyzed. We also investigated the role
of image resolution in the quality of results.

2.7 General Parzen Model
To generate shape models via Parzen windows, as described above, requires repeating a
spatial normalization (by location, orientation and scale) up to the number of reference
shapes (in our application equal to 28). For computational reasons, we created a general
Parzen model (GPM), which can be adapted to the analyzed data though a single spatial
normalization. The creation of GPM follows the method described in equation (12), but
instead of requiring L as normalizing reference, it uses a random reference shape from the
set of 28. For consistency, we employed the same case used in the creation of PA. The GPM
is created off-line and aligned to L by a single space normalization, as in Figure 4. Results
with and without GPM were compared.

For additional computational optimization, a multiscale multithreading approach was
implemented.

3. Results
Quantitative results from applying our method to the segmentation of liver, spleen and
kidneys are shown in Table I at different stages of the algorithm. The use of 4D intensity-
based graph-cuts improved the results significantly over those of the 4D convolution for all
organs (p<0.05 for all). Employing shape and location information brought a further
significant improvement for the segmentation of the spleen and liver (p<0.05 for both).
Significantly better segmentations by using patient specific data over training data were
noted for both kidneys (p<0.03 for both).

Comparative results in Table II illustrate the effects of image resolution, use of multiphase
data and GPM on the accuracy of segmentations. At low spatial resolution (5 mm slice
thickness) overlaps were superior to 91.8% and ASD less than 1.1 mm for all organs. A
significant improvement was obtained for the segmentation of left and right kidneys and
spleen (p<0.05 for all) when data of high resolution were involved (1 mm slice thickness),
leading to overlaps over 93.6% and ASD under 1.1 mm for the four abdominal organs. Only
the segmentation of the liver benefitted significantly from the use of multiphase data
(p<0.04) when compared to using only singlephase images at PVP enhancement. There was
no significant difference between the segmentations obtained employing a patient specific
shape model and results using GPM.

Figure 5 presents a typical example of liver, spleen and kidneys segmentation from axial
projections of the 3D CT. A 3D rendering is shown in Figure 6 along with the errors
between manual and automated segmentations. Finally, Figure 7 illustrates comparative
results at different stages of the algorithm.

1. Discussion
Livers, spleens and kidneys were segmented from multiphase clinical data following the
typical acquisition protocol of abdominal CT images. Training data from a patient
population were used to automatically initialize the graph by an adaptive 4D convolution.
Then patient specific image characteristics were estimated for improved specificity and
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input into the 4D directional graph. This was particularly helpful for the segmentation of
kidneys. While there were partial overlaps between the object and background distributions
(especially at NCP), the combination of multiphase data ensured a better separation.

The cuts in the 4D graph were based on globally minimizing an energy that included
enhancement, location and shape constraints. The enhancement information allowed
improving regional bias within tissues, thereby better modeling its physiological properties.
The location probabilistic priors, intrinsic to medical data, and shape information from the
asymmetric computation of Parzen shape windows (to avoid shape bias) supplied additional
constraints for the global optimization of the graph. A Parzen distribution was preferred as a
non-parametric probability model that converges to the true density with increasing number
of samples.

Using graph cuts based only on intensity information significantly improved the
segmentation of all four abdominal organs over the 4D convolution. This was likely caused
by the addition of the 4D boundary information in graphs. Nevertheless, the 4D convolution
was a surprisingly robust initializer for the graph construction due to its use of multiphase
information.

Moving from training to patient-specific statistics only improved the segmentation of
kidneys, probably due to the prevalence of liver and spleen statistics in the object histogram.
Optimizing the graph with shape and location constraints brought a significant improvement
in the segmentation of spleen and liver, as kidneys, already well segmented at the previous
step of the algorithm due to strong image contrast at edges from fast enhancement, vary less
in shape. Results further suggested that the segmentation of the spleen and kidneys is
influenced by the image resolution, unlike in the case of the liver, the largest abdominal
organ in our application. The segmentation of spleen and kidneys was not sensitive to
multiphase versus singlephase data, unlike the liver, probably due to the good quality of
enhancement at PVP in the dataset.

The method avoided the inclusion of heart segments in the segmentation of liver, but had the
tendency to underestimate organ volumes, in particular that of the spleen. Parts of the
inferior vena cava may be erroneously segmented in the mid-cephalocaudal liver region,
especially when contrast enhancement is low, and represented one of the sources of error in
the liver segmentation (Figure 6). Partial volume effects, small interphase registration errors
and the estimation of object and background distributions may have also contributed to the
undersegmentation.

On a typical dataset and without multiscale optimization, the processing time was on
average 9h 25min. To reduce the computational costs of the segmentation method, a general
Parzen model (GPM) was tested and results from GPM did not vary significantly from those
obtained otherwise. However, employing GPM the computation was reduced to an average
of 3h; the registration of the multiphase CT scans accounted for 2h 12min of this time. After
multiscale optimization the total computation time became 15min on a quad core 2.67 GHz
processor with 8 GB RAM.

A main advantage in using the shape energy in (19) is that most of the processing of the
energy can be performed off-line prior to the segmentation, especially when GPM is used.
The shape model is non-parametric and does not require the computation of signed distance
functions, as in (Shimizu et al., 2010b), or overlaps, as in (Freiman et al., 2010). However,
by using the directional capabilities of the graph in the weights of the n-links, the shape
model includes simpler and intuitive information similar to the vector of the gradient used in
(Shimizu et al., 2010b) without the need to explicitly compute it. Finally, the multi-label
segmentation was computed using a sequence of binary graph cuts (Boykov et al., 2001). A
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different solution to segment multi-labels via a single graph cut was proposed in (Delong
and Boykov, 2009).

In the future, we will include more organs in the 4D graph for a holistic segmentation of
abdominal data. Additionally, we will test the method on data with a variety of abdominal
pathologies towards developing a segmentation technique robust to physiological and
clinical variability.

2. Conclusion
A new formulation for a 4D graph-based method to segment abdominal organs from
multiphase CT data was proposed. The method extends basic graph cuts by using: 1)
temporal acquisitions at two phases and enhancement modeling; 2) shape priors from Parzen
windows; and 3) location constraints from a probabilistic atlas. The automated technique
was optimized to employ constraints typical to medical images and adapted to patient data.
Livers, spleens and kidneys were robustly and accurately segmented from data of low and
high resolution. This approach promises to support the processing of large medical data in a
clinically-oriented integrated analysis of the abdomen.

Acknowledgments
This work was supported in part by the Intramural Research Program of the National Institutes of Health, Clinical
Center. The authors would like to thank Ananda S. Chowdhury, PhD, Jesse K. Sandberg, Visal Desai and Javed
Aman for helping with the data analysis.

References
Al-Kofahi Y, Lassoued W, Lee W, Roysam B. Improved automatic detection and segmentation of cell

nuclei in histopathology images. IEEE Trans Biomed Eng. 2009; 57(4):841–852.
Ali, AM.; Farag, AA.; El-Baz, AS. Graph cuts for kidney segmentation with prior shape constraints;

Proceedings of MICCAI 2007; Part I, LNCS. 2007; p. 384-392.
Bae, E.; Tai, XC. Energy Minimization Methods in Computer Vision and Pattern Recognition. Lecture

Notes in Computer Science. Vol. 5681. 2009. Efficient Global Minimization for the Multiphase
Chan-Vese Model of Image Segmentation; p. 28-41.

Bauer C, Pock T, Sorantin E, Bischof H, Beichel R. Segmentation of interwoven 3D tubular tree
structures utilizing shape priors and graph cuts. Med Image Anal. 2010; 14(2):172–84.

Ben Ayed, I.; Punithakumar, K.; Li, S.; Islam, A.; Chong, J. Med Image Comput Comput Assist
Interv. Vol. 12. 2009. Left ventricle segmentation via graph cut distribution matching; p. 901-9.

Boykov, Y.; Jolly, MP. Int Conf Comp Vis. Vol. I. 2001. Interactive graph cuts for optimal boundary
and region segmentation of objects in N-D images; p. 105-112.

Boykov Y, Veksler O, Zabih R. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans
Pattern Anal Mach Intell. 2001; 23(11):1222–39.

Boykov, Y.; Kolmogorov, V. Int Conf Comp Vis. 2003. Computing geodesics and minimal surfaces
via graph cuts.

Chen, JH.; Shapiro, LG. Int Conf Pattern Recog. 2008. Medical image segmentation via min s-t cuts
with sides constraints.

Cremers D, Osher SJ, Soatto S. Kernel density estimation and intrinsic alignment for shape priors in
level set segmentation. Int J Comp Vis. 2006; 69(3):335–351.

Danelson KA, Stitzel JD. Volumetric splenic injury measurement in ct scans for comparison with
injury score. Biomed Sci Instrum. 2008; 44:159–64.

Das P, Veksler O, Zavadsky V, Boykov Y. Semiautomatic segmentation with compact shape priors.
Image and Vision Computing. 2008; 27(1-2):206–219.

Deleus F, Van Hulle MM. A connectivity-based method for defining regions-of-interest in fMRI data.
IEEE Trans Image Process. 2009; 18(8):1760–71.

Linguraru et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Delingette H, Ayache N. Hepatic Surgery Simulation. Communications of the ACM. 2005; 48(2):31–
36.

Delong, A.; Boyvov, Y. Globally Optimal Segmentation of Multi-Region Objects; International
Conference on Computer Vision; 2009; p. 285-292.

El-Zehiry, N.; Grady, L. Energy Minimization Methods in Computer Vision and Pattern Recognition.
Lecture Notes in Computer Science. Vol. 6819. 2011. Discrete Optimization of the Multiphase
Piecewise Constant Mumford-Shah Functional; p. 233-246.

Esneault S, Lafon C, Dillenseger JL. Liver vessels segmentation using a hybrid geometrical moments/
graph cuts method. IEEE Trans Biomed Eng. 2010; 57(2):276–83.

Freedman, D.; Zhang, T. Computer Vision Pattern Recognition. 2005. Interactive graph cut based
segmentation with shape priors.

Freiman, M.; Kronman, A.; Esses, SJ.; Joskowicz, L.; Sosna, J. MICCAI. LNCS 6363. 2010. Non-
parametric Iterative Model Constraint Graph min-cut for Automatic Kidney Segmentation; p.
73-80.

Fritz GA, Schoellnast H, Deutschmann HA, Quehenberger F, Tillich M. Multiphasic multidetector-
row CT (MDCT) in detection and staging of transitional cell carcinomas of the upper urinary tract.
European Radiology. 2006; 16(6):1244–52.

Gramfort A, Keriven R, Clerc M. Graph-based variability estimation in single-trial event-related
neural responses. IEEE Trans Biomed Eng. 2010; 57(5):1051–1061.

García-Lorenzo, D.; Lecoeur, J.; Arnold, DL.; Collins, DL.; Barillot, C. Med Image Comput Comput
Assist Interv. Vol. 12. 2009. Multiple sclerosis lesion segmentation using an automatic multimodal
graph cuts; p. 584-91.

Grady, L.; Jolly, MP. MICCAI 2008, Part I, LNCS 5241. 2008. Weights and topology: a study of the
effects of graph construction on 3D image segmentation; p. 153-161.

Heimann T, et al. Comparison and evaluation of methods for liver segmentation from CT datasets.
IEEE Trans Med Imaging. 2009; 28(8):1251–65.

Hu, X.; Shimizu, A.; Kobatake, H.; Nawano, S. Independent analysis of four-phase abdominal CT
images; Proceedings of MICCAI 2004, LNCS 3217; 2004; p. 916-924.

Khan SM, Shah M. Tracking multiple occluding people by localizing on multiple scene planes. IEEE
Trans Pattern Anal Mach Intell. 2009; 31(3):505–19.

Kolmogorov, V.; Boykov, Y. Int Conf Comp Vis. 2005. What metrics can be approximated by geo-
cuts or global optimization of length/area and flux.

van der Lijn F, den Heijer T, Breteler MM, Niessen WJ. Hippocampus segmentation in MR images
using atlas registration, voxel classification, and graph cuts. Neuroimage. 2008; 43(4):708–20.

Lin, X.; Cowan, B.; Young, A. Proc IEEE Eng Med Biol Soc. Vol. 3. 2005. Model-based graph cut
method for segmentation of the left ventricle; p. 3059-62.

Linguraru, MG.; Summers, RM. Multi-organ segmentation in 4D contrast-enhanced abdominal CT;
IEEE Symposium on Biomedical Imaging; 2008; p. 45-48.

Linguraru MG, Sandberg JA, Li Z, Shah F, Summers RM. Atlas-based automated segmentation of
spleen and liver using adaptive enhancement estimation. Med. Phys. 2010; 37(2):771–783.

Liu, L.; Raber, D., et al. Interactive separation of segmented bones in CT volumes using graph cut;
Proceedings of MICCAI 2008, Part I, LNCS 5241; 2008; p. 296-304.

Lötjönen JM, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, Rueckert D. Fast and
robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage. 2010; 49(3):
2352–65.

Malcolm, J.; Rathi, Y.; Tannenbaum, A. Int Conf Im Proc. 2007. Graph cut segmentation with
nonlinear shape priors.

Montillo A, Shotton J, Winn J, Iglesias JE, Metaxas D, Criminisi A. Entangled Decision Forests and
their Application for Semantic Segmentation of CT Images. Information Processing in Medical
Imaging. Lecture Notes in Computer Science. 2011; 6801:184–196.

Okada T, Shimada R, Hori M, Nakamoto M, Chen Y,W, Nakamura H, Sato Y. Automatic
segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical
shape model. Academic Radiology. 2008a; 15:1390–1403.

Linguraru et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Okada T, Yokota K, Hori M, Nakamoto M, Nakamura H, Sato Y. Construction of hierarchical multi-
organ statistical atlases and their application to multi-organ segmentation from CT images.
MICCAI 2008. 2008b:502–9.

Park H, Bland PH, Meyer CR. Construction of an abdominal probabilistic atlas and its application in
segmentation. IEEE Trans. Med. Imaging. 2003; 22(4):483–492.

Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962; 33:1065–
1076.

Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern
Analysis and Machine Intelligence. 1990; 12:629–639.

Reyes, M.; Gonzalez Ballester, MA.; Li, Z.; Kozic, N.; Chin, S.; Summers, RM.; Linguraru, MG.
Anatomical variability of organs via principal factor analysis from the construction of an
abdominal probabilistic atlas; IEEE International Symposium on Biomedical Imaging (ISBI);
2009; p. 682-685.

Sadananthan SA, Zheng W, Chee MW, Zagorodnov V. Skull stripping using graph cuts. Neuroimage.
2010; 49(1):225–39.

Sakashita M, Kitasaka T, Mori K, Suenaga Y, Nawano S. A method for extracting multi-organ from
four-phase contrasted CT images based on CT value distribution estimation using EM-algorithm.
SPIE. 2007; 6509:1C1–12.

Seabra JC, Pedro LM, Fernandes JF, Sanches JM. A 3-D ultrasound-based framework to characterize
the echo morphology of carotid plaques. IEEE Trans Biomed Eng. 2009; 56(5):1442–53.

Seifert S, Barbu A, Zhou K, Liu D, Feulner J, Huber M, Suehling M, Cavallaro A, Comaniciu D.
Hierarchical parsing and semantic navigation of full body CT data. Proc. SPIE. 2009;
7259:725902–8.

Shim H, Chang S, Tao C, Wang JH, Kaya D, Bae KT. Semiautomated segmentation of kidney from
high-resolution multidetector computed tomography images using a graph-cuts technique. J
Comput Assist Tomogr. 2009; 33(6):893–901.

Shimizu A, Ohno R, Ikegami T, Kobatake H, Nawano S, Smutek D. Segmentation of multiple organs
in non-contrast 3D abdominal CT images. Int. J. Comp. Assist. Radiol. Surg. 2007; 2:135–142.

Shimizu A, Kimoto T, Kobatake H, Nawano S, Shinozaki K. Automated pancreas segmentation from
three-dimensional contrast-enhanced computed tomography. Int. J. Comp. Assist. Radiol. Surg.
2010a; 5:85–98.

Shimizu A, Nakagomi K, Narihira T, Kobatake H, Nawano S, Shinozaki K, Ishizu K, Togashi K.
Automated Segmentation of 3D CT Images based on Statistical Atlas and Graph Cuts. MICCAI-
MCV. 2010b:129–138.

Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B,
Smith M, Mutter D, Marescaux J. Fully automatic anatomical, pathological, and functional
segmentation from CT scans for hepatic surgery. Comput Aided Surg. 2001; 6(3):131–42.

Song Y, Bulpitt A, Brodlie K. Liver segmentation using automatically defined patient specific B-spline
surface models. 2009:43–50. MICCAI 2009 Part II, LNCS 5762.

So, RWK.; Chung, AC. Multi-level non-rigid image registration using graph-cuts; IEEE Int Conf
Acoustics, Speech and Signal Processing; p. 397-400.

Spiegel M, Hahn DA, Daum V, Wasza J, Hornegger J. Segmentation of kidneys using a new active
shape model generation technique based on non-rigid image registration. Comput Med Imaging
Graph. 2009; 33(1):29–39.

Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy measure of 3D medical image
alignment. Pattern Recognition. 1999; 32(1):71–86.

Thirion JP. Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical
Image Analysis. 1998; 2(3):243–260.

Veksler O. Star shape prior for graph-cut image segmentation. Euro Conf Comp Vis. 2008
Voci SL, Gottlieb RH, Fultz PJ, Mehta A, Parthasarathy R, Rubens DJ, Strang JG. Delayed computed

tomographic characterization of renal masses: preliminary experience. Abdominal Imaging. 2000;
25(3):317–21.

Vu N, Manjunath BS. Shape prior segmentation of multiple objects with graph cuts. Computer Vision
Pattern Recognition. 2008

Linguraru et al. Page 14

Med Image Anal. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Wels M, Carneiro G, Aplas A, Huber M, Hornegger J, Comaniciu D. A discriminative model-
constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D
MRI. Med Image Comput Comput Assist Interv. 2008; 11(Pt 1):67–75.

Wimmer A, Soza G, Hornegger J. A generic probabilistic active shape model for organ segmentation.
Med Image Comput Comput Assist Interv. 2009; 12(Pt 2):26–33.

Zhan Y, Zhou XS, Peng Z, Krishnan A. Active scheduling of organ detection and segmentation in
whole-body medical images. Med Image Comput Comput Assist Interv. 2008; 11(Pt 1):313–21.

Zheng Y, Baloch S, Englande S, Schnall MD, Shen S. Segmentation and classification of breast tumor
using dynamic contrast-enhanced MR images. 2007:393–401. MICCAI 2007, Part II, LNCS 4792.

Linguraru et al. Page 15

Med Image Anal. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

Anatomical and physiological models were incorporated in statistical graph cuts.

Multiple abdominal organs were automatically segmented and analyzed.

Appearance, shape and location priors improved the accuracy of organ segmentation.

Livers, spleens and kidneys were segmented with volume overlaps over 93.6%.
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Figure 1.
A schematic of the graph-based segmentation algorithm. NCP – non-contrast phase; PVP –
portal venous phase.
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Figure 2.
Fitted sums of Gaussians to training data of organs/objects (a and b) and background (c and
d). NCP intensity models are shown in (a and c) and PVP data in (b and d). Here, training
data refers to the training cases in the leave-one-out strategy. The histogram peaks related to
the liver/spleen and kidneys are marked.
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Figure 3.
A simplified schematic of the multi-object multi-phase graph. 4D information is input from
the NCP and PVP data. T-links are connected to the objects (O1 to On) and background (B)
terminals. Directional n-links connect neighboring nodes (the image shows only two
neighbors for each voxel). The width of a line in the graph reflects the strength of the
connection.
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Figure 4.
The construction of the general Parzen model (right) requires one on-line registration, while
a typical Parzen model (left) performs N on-line registrations with N the number of training
shapes.
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Figure 5.
A typical example of liver (blue), spleen (green), right kidney (yellow) and left kidney (red)
automated segmentation on 2D axial views of the CT data. Images are shown in cranial to
caudal order from top left to bottom right.
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Figure 6.
3D images of the automatically segmented abdominal organs; (a) is a posterior view and (b)
an anterior view. The liver ground truth is blue, spleen is green, right kidney is yellow, left
kidney is red. Segmentation errors are overlaid in white on each organ.
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Figure 7.
Comparative examples of liver (blue), spleen (green), right kidney (yellow) and left kidney
(red) at different stages of the segmentation algorithm. Left and right columns present two
axial slices of the same patient; (a) and (b) are results of the 4D convolution; (c) and (d) are
results of the intensity-based 4D GC (4D GCI); (e) and (f) were obtained using the full
method (4D GSL) with training data; (g) and (h) are results from 4D GSL using patient
specific information. Rectangles emphasize areas of differences around the organs. See
Table I for quantitative results.
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