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aDepartment of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue
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Abstract
Even though 1 in 6 men in the US, in their lifetime are expected to be diagnosed with prostate
cancer (CaP), only 1 in 37 is expected to die on account of it. Consequently, among many men
diagnosed with CaP, there has been a recent trend to resort to active surveillance (wait and watch)
if diagnosed with a lower Gleason score on biopsy, as opposed to seeking immediate treatment.
Some researchers have recently identified imaging markers for low and high grade CaP on multi-
parametric (MP) magnetic resonance (MR) imaging (such as T2 weighted MR imaging (T2w
MRI) and MR spectroscopy (MRS)). In this paper, we present a novel computerized decision
support system (DSS), called Semi Supervised Multi Kernel Graph Embedding (SeSMiK-GE),
that quantitatively combines structural, and metabolic imaging data for distinguishing (a) benign
versus cancerous, and (b) high- versus low-Gleason grade CaP regions from in vivo MP-MRI. A
total of 29 1.5 Tesla endorectal pre-operative in vivo MP MRI (T2w MRI, MRS) studies from
patients undergoing radical prostatectomy were considered in this study. Ground truth for
evaluation of the SeSMiK-GE classifier was obtained via annotation of disease extent on the
preoperative imaging by visually correlating the MRI to the ex vivo whole mount histologic
specimens. The SeSMiK-GE framework comprises of three main modules: (1) multi-kernel
learning, (2) semi-supervised learning, and (3) dimensionality reduction, which are leveraged for
the construction of an integrated low dimensional representation of the different imaging and non-
imaging MRI protocols. Hierarchical classifiers for diagnosis and Gleason grading of CaP are then
constructed within this unified low dimensional representation. Step 1 of the hierarchical classifier
employs a random forest classifier in conjunction with the SeSMiK-GE based data representation
and a probabilistic pairwise Markov Random Field algorithm (which allows for imposition of
local spatial constraints) to yield a voxel based classification of CaP presence. The CaP region of
interest identified in Step 1 is then subsequently classified as either high or low Gleason grade
CaP in Step 2. Comparing SeSMiK-GE with unimodal T2w MRI, MRS classifiers and a
commonly used feature concatenation (COD) strategy, yielded areas (AUC) under the receiver
operative curve (ROC) of (a) 0.89 ± 0.09 (SeSMiK), 0.54 ± 0.18 (T2w MRI), 0.61 ± 0.20 (MRS),
and 0.64 ± 0.23 (COD) for distinguishing benign from CaP regions, and (b) 0.84 ± 0.07
(SeSMiK),0.54 ± 0.13 (MRI), 0.59 ± 0.19 (MRS), and 0.62 ± 0.18 (COD) for distinguishing high
and low grade CaP using a leave one out cross-validation strategy, all evaluations being performed
on a per voxel basis. Our results suggest that following further rigorous validation, SeSMiK-GE
could be developed into a powerful diagnostic and prognostic tool for detection and grading of
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CaP in vivo and in helping to determine the appropriate treatment option. Identifying low grade
disease in vivo might allow CaP patients to opt for active surveillance rather than immediately opt
for aggressive therapy such as radical prostatectomy.

Keywords
Prostate cancer; Grading; Data integration; Graph embedding; Semi-supervised

1. Introduction
Gleason grading is the most widely used grading scheme for prostate cancer (CaP) (Gleason,
1966), with low Gleason scores being associated with better patient outcome and high
Gleason scores tending to be correlated with more biologically aggressive disease and worse
prognoses for long-term, metastasis-free survival (Epstein, 2006; Bostwick, 1994).
Currently, over one million prostate biopsies are performed annually in the US, of which
approximately 60–70% are negative for CaP presence (Welch et al., 2007). The
overdiagnosis and associated overtreatment due to these false positives causes severe health
implications such as risk of bleeding and infection of the prostate gland or urinary tract
(Potosky et al., 2004). Most of the otherwise correctly diagnosed CaP cases are identified as
low grade disease, and are not destined to metastasize (Klein, 2004). Such patients are now
opting for a “wait and watch policy” involving active surveillance, as opposed to opting for
immediate aggressive therapy (Klotz, 2005).

Multi-parametric (MP) Magnetic Resonance (MR) Imaging (MRI) has begun to be routinely
used in several centers for staging of disease in patients previously identified with CaP. Over
the last decade several researchers have been investigating MRI and MR Spectroscopy
(MRS) for staging and possible screening of CaP (Carroll et al., 2006; Kurhanewicz et al.,
2002; Kurhanewicz et al., 1996) with a view to reduce unnecessary biopsies in men, with
elevated PSA but without CaP, who might otherwise have a significant risk of sexual,
urinary, and bowel related symptoms caused due to biopsy (Potosky et al., 2004). MRS, a
non-imaging MRI protocol used in conjunction with T2-weighted (T2w) MRI to improve
specificity of CaP detection, quantifies the metabolic concentrations of specific molecular
markers such as choline (Ach), creatine (Acr), and citrate (Acit) in the prostate (Heerschap et
al., 1997). The relative concentrations of these metabolites are recorded by calculating area
under the metabolic peak and relative changes in metabolite concentrations (Ach+cr/Acit > 1)
and are used to assess presence of CaP at different spatial locations in the image (Heerschap
et al., 1997; Zakian et al., 2003). However, the utility of MRS metabolic features for
detecting, localizing, and characterizing disease is highly dependent on the quality of MR
spectral examinations obtained, automated spectral peak detection algorithms are challenged
in their ability to resolve overlapping peaks (for instance the choline peak overlaps with the
creatine peak in case of CaP spectra) (Wetter et al., 2006).

Recently, some investigators have begun to explore the correlation between MP MRS and
T2w MRI features and corresponding low and high Gleason grades of CaP (Langer et al.,
2010; Shukla-Dave et al., 2007, 2009). It has been qualitatively demonstrated in clinical
studies that high Gleason grade is associated with elevated ratios of Ach+cr/Acit (Zakian et
al., 2005). Hypo-intense signal intensities on T2w MRI are also found to be significantly
correlated with CaP aggressiveness (Wang et al., 2008). In Shukla-Dave et al. (2007),
qualitatively combining T2w MRI and MRS allowed for accurately predicting the presence
of low grade CaP. In a similar related MP study, Shukla-Dave et al. (2009) studied the
correlation of T2w MRI and MRS along with expression levels of three molecular markers:
Ki-67, phospho-Akt, and androgen receptor obtained via immunohistochemical analysis, to
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successfully differentiate clinically insignificant and significant CaP. Biologically
significant disease was defined based on pathologic examination of surgical specimens.
Correlation of the three molecular markers with respect to combined MRI-MRS signatures
was observed. Additionally, a high area under the receiver operating characteristic curve
(ROC) of 0.91 was obtained for identifying significant high grade CaP using combined
MRI, MRS parameters.

The relatively recent efforts at attempting to combine multiple MRI markers (qualitatively)
to identify high grade CaP in vivo are limited in that (a) the different MRI protocols are not
quantitatively combined, and (b) qualitative evaluation is often subjective and prone to inter-
observer variability (May et al., 2001; McLean et al., 1997). It is hence desirable to build a
decision support system (DSS) that can (a) quantitatively integrate relevant MP MRI data to
create meta-classifiers that can identify disease presence in vivo (Chan et al., 2003; Vos et
al., 2010; Liu et al., 2009; Langer et al., 2009; Ozer et al., 2010) and, (b) can subsequently
characterize the Gleason grade of areas ascertained by the meta-classifier, most likely to be
CaP. Such a DSS could then be used in a clinical setting to assist a radiologist in making a
more informed diagnosis of the presence, extent and aggressiveness of the disease.
However, one of the major challenges in constructing a meta-classifier that can
quantitatively combine heterogeneous imaging and non-imaging modalities such as T2w
MRI and MRS, is to overcome the differences in dimensionality and resolution associated
with each of the heterogeneous imaging protocols (for instance, a MR spectral signature at a
single voxel may be comprised of concentrations from few hundred metabolites, while
simultaneously characterized by a scalar T2w MR image intensity).

In this paper we present a novel computerized DSS called Semi-Supervised Multi-Kernel
Graph Embedding (SeSMiK-GE), that quantitatively combines structural, and metabolic
information from MP MRI for distinguishing (a) benign versus CaP, and (b) high versus
low-grade CaP regions. To the best of our knowledge, this work represents the first
quantitative DSS system to characterize the extent of high grade CaP using MP MRI data.
Additionally, the data fusion and meta-classifier framework presented in this paper is
extensible and applicable to other modalities and disease systems.

The rest of the paper is organized as follows. In Section 2, we provide a detailed description
of previous related work. Section 3 provides a brief overview of SeSMiK-GE and the novel
contributions of this work. A detailed mathematical formulation of SeSMiK-GE framework
is provided in Section 4. In Section 5, we leverage SeSMiK-GE for integration of T2w MRI-
MRS for distinguishing (a) CaP and benign, and (b) high grade versus low grade voxels.
Results of CaP detection and grading are presented and discussed in Section 6, followed by
concluding remarks in Section 7.

2. Previous related work
Broadly speaking, MP data fusion strategies, may be categorized as combination of data
(COD) (where the information from each channel is combined prior to classification), or
combination of interpretations (COI) (where independent classifications based on the
individual channels are combined) (Rohlfing et al., 2005). COD involves combining the data
prior to classification, while COI involves training individual data classifiers (uni-modal
classification) and combining the outputs from each classifier. It has been suggested that
COI approaches are less than optimal since binary classifier outputs from individual
classifiers are combined without accounting for inter-channel dependencies (Lee et al.,
2009). Consequently, several COD strategies with the express purpose of building integrated
quantitative meta-classifiers have been proposed (Lee et al., 2009; Tiwari et al., 2012; Liu et
al., 2009; Ozer et al., 2010).
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Below we discuss previous related work in developing individual unimodal classifiers for
T2w MRI and MRS, and multi-modal COD meta-classifiers for CaP detection using MP
MRI. To the best of our knowledge, no work in combining MP data for identifying high
versus low grade CaP with regards to a DSS scheme exists.

2.1. DSS strategies for CaP detection via T2w MRI
Madabhushi et al. (2005) presented a supervised DSS system for detection of CaP from 4
Tesla (T) ex vivo prostate T2w MRI where 33 3D texture features (statistical, gradient, and
Gabor) were quantitatively extracted at each voxel (T2w MRI spatial resolution) These
extracted features were then used to train a number of supervised classifiers (Adaboost,
Bayes, and Decision Trees) which were employed to assign a probability of CaP presence at
each image voxel. Viswanath et al. (2012) developed a classifier strategy to obtain distinct
quantitative imaging signatures for central and peripheral CaP on 25 patients who underwent
T2w endorectal in vivo MRI.

2.2. DSS strategies for CaP detection via MRS
Kelm et al. (2007) presented a comparative study of classification techniques for prostate
MRS data based on pattern recognition methods such as Principal Component Analysis
(PCA) and Independent Component Analysis against quantification based feature extraction
methods using Support Vector Machines, Random Forests, and Gaussian process classifiers.
Tiwari et al. (2009) presented a DSS for CaP detection using 1.5 Tesla in vivo prostate MRS
where each prostate spectrum was classified, on a per voxel basis, as either belonging to
cancerous or non-cancerous classes using a hierarchical, clustering scheme in conjunction
with non-linear dimensionality reduction (NLDR) methods. NLDR schemes were employed
to obtain a low dimensional representation of high dimensional MR spectra, followed by
hierarchical k-means clustering to identify CaP locations in the prostate.

2.3. DSS strategies for CaP detection via MP-MRI channels
In (Chan et al., 2003), a statistical classifier which integrated texture features from 1.5 T in
vivo MP MRI was presented to generate a statistical probability map representing
likelihoods of cancer for different regions within the prostate. Liu et al. (2009) examined in
vivo MP MRI maps (T2w, DCE, DWI) within a fuzzy Markov Random Field (MRF)
framework. The maps were generated via curve fitting of data from each of the protocols
with the region of interest (ROI) limited to the peripheral zone of the prostate, while the
evaluation of the results was done against manually delineated CaP regions on MRI (with
corresponding whole-mount histology and ex vivo MRI data used for reference). Ampeliotis
et al. (2008) reported a statistically significant improvement in detection accuracy in the
combined use of image intensity features from both DCE and T2w MRI data for the
classification of CaP, compared to the use of individual modalities. A comparison of
different supervised and unsupervised methods for CaP segmentation using MP MRI was
presented in (Ozer et al., 2010). However, most of these methods involve integrating
imaging-imaging protocols, and it is not apparent that these schemes can be extended to
accommodate imaging and non-imaging parameters (e.g. MRS), especially when the
different channels to be combined reside in different dimensional spaces.

Recently, Tiwari et al. (2012) presented a DSS method combining information from the T2w
MRI and MRS channels for CaP diagnosis via a combination of wavelets and PCA.
However, PCA which is a linear DR scheme is typically unable to handle situations where
the overlapping classes are embedded on non-linear manifolds – a situation that is more
amenable to multi-kernel learning (MKL) (Lanckriet et al., 2004) and graph embedding
(GE) (Shi and Malik, 2000) schemes. Kernels (Scholkopf and Smola, 2001) are positive
definite functions which transform the input data to a dot product similarity space such that
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K(F(ci), F(cj)) = 〈Φ ((F(ci)),Φ(F(cj)))〉, where Φ is the implicit pairwise embedding between
input feature vectors F(ci) and F(cj) associated with points ci, cj, and 〈.〉 denotes the dot
product operation. MKL (Lanckriet et al., 2004) involves computing similarity matrices for
kernels derived from the individual modalities being combined, so that fused classifiers
(within the fused kernel space) can be built. Lanckriet et al. (2004) transformed data from
amino acid sequences, protein complex data, gene expression data, and protein interactions
into a common kernel space. The kernels were linearly combined and used to train a SVM
classifier for classifying functions of yeast proteins. However, when a large amount of
information is present in each input source, most COD methods, including MKL, suffer
from the curse of dimensionality (Duda et al., 2000).

To avoid the curse of dimensionality, several DR schemes have been proposed (Roweis and
Saul, 2000, Tenenbaum et al., 2000, Shi and Malik, 2000). One such DR strategy is GE (Shi
and Malik, 2000), which accounts for the non-linearities in the data by constructing a
similarity graph G = (V, W), where V corresponds to the set of vertices that connect
pairwise points and W is a n × n weight matrix, reflecting the feature similarity between the
n data points. The similarity graph is then reduced to lower dimensions by solving a simple
Eigenvalue decomposition problem. However GE, like most other DR schemes, is
unsupervised and often leads to overlapping clusters resulting in poor class discriminability.
Recently several semi-supervised DR (SSDR) schemes have been proposed where some
class label information is employed in the construction of a pairwise similarity matrix.
Sugiyama et al. (2008) applied semi supervised-learning (SSL) to Fisher’s discriminant
analysis in order to find projections that maximize class separation. Sun and Zhang (2009)
implemented a semi-supervised version of PCA by exploiting between-class and within-
class scatter matrices. Semi-supervised GE (Zhao, 2006) involves constructing a weight
matrix (W) by leveraging the known class labels such that higher weights are given to
within-class points and lower weights to points from different classes. The proximity of
labeled and unlabeled data is then used to construct the low dimensional manifold.

3. Brief overview of SeSMiK-GE and novel contributions
Our SeSMiK-GE strategy employs MKL to represent each data channel in a common kernel
framework, followed by a linear weighted combination of individual data kernels. To avoid
the curse of dimensionality, the combined kernel is then reduced to a lower dimensional
space using GE (Shi and Malik, 2000), which employs partial label information to maximize
class separation using SSL thereby allowing for construction of a more accurate low
dimensional representation of the different data sources. While MKL has previously been
employed for a variety of multimodal data integration strategies for biomedical applications
(Lanckriet et al., 2004; Damoulas and Girolami, 2008; Shi et al., 2010), none of these
methods have been employed in conjunction with DR. It is worth noting that although other
NLDR schemes such as LLE (Roweis and Saul, 2000) and Isomaps (Tenenbaum et al.,
2000) are also popular for DR purposes, GE was our method of choice for SeSMiK
framework since unlike LLE (Roweis and Saul, 2000) and Isomaps (Tenenbaum et al.,
2000), GE is not dependent on kappa (the parameter determining the size of the local
neighborhood within which linearity of the manifold is assumed) which is known to
significantly affect the quality of the low dimensional manifold (Lin and Zha, 2008; Zhang
et al., 2011).

Fig. 1 shows a schematic flowchart of the proposed data integration strategy, SeSMiK-GE.
Below we briefly describe each of the modules comprising SeSMiK-GE.

1. Module 1: Multi kernel learning: Due to the dimensionality and resolution
differences between different data channels, each source needs to first be
represented in a common framework prior to data integration. MKL is employed to
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transform each of m individual data channel to a kernel similarity matrix (Km), in
order to then derive a weighted combination of individual kernels as

, where Km,m ∈ {1,2,…,M}, is the kernel obtained from each data
channel, and βm is the weight assigned to each kernel.

2. Module 2: Semi-supervised learning: Employing SSDR in a DSS scheme has
benefits in that, (a) SSDR is computationally inexpensive, and (b) yields a low
dimensional representation with better discriminability between object classes with
fewer training samples. SeSMiK-GE employs a semi-supervised variant of graph
embedding (Zhao, 2006), a well known SSDR scheme, which modifies the
similarity weight matrix (W̃m) for each data channel, by incorporating partial label
information. A modified weight matrix (W̃m) is obtained from each of the M data

channels, which are then averaged to obtain, .

3. Module 3: Dimensionality reduction: K ̂ and Ŵ are employed in a generalized
kernel graph embedding (KGE) framework to obtain the integrated low
dimensional data representation.

The preliminary results on application of SeSMiK-GE to distinguishing CaP versus benign
and high versus low Gleason grade CaP regions by integrating T2w MRI and MRS were
previously presented in (Tiwari et al., 2010). The new work builds on and extends the
previously presented framework (Tiwari et al., 2010) by (a) incorporating a hierarchical
framework for selectively identifying high grade CaP regions, only within the regions first
identified as CaP, (b) employing a MRF classifier to employ spatial constraints to the CaP
classifier output, and (c) extensive evaluation of our hierarchical classification scheme over
29 patient studies using both leave-one-out (LOO), and threefold cross-validation (CV)
strategies. Fig. 2 provides an overview of the hierarchical scheme that leverages SeSMiK-
GE for CaP detection and grading. In Step 1, a random forest (RF) classifier is trained on the
low dimensional representation obtained via SeSMiK-GE to obtain a probability of each
spatial location on T2w MRI/MRS scene as being either cancer or benign. A probabilistic
pairwise Markov model (PPMM) algorithm (Monaco et al., 2010) is then leveraged to
impose spatial constraints to the RF classifier result, yielding a lesion segmentation. CaP
lesions identified in Step 1, are then further distinguished in Step 2 as high or low grade CaP
via the RF classifier trained on the SeSMiK-GE derived low dimensional representation of
the data. Our assumption is that by first localizing the ROI, we can achieve better
discriminability between high and low grade CaP regions, as opposed to a non-hierarchical
three-class classifier (i.e. attempting to directly distinguish between normal, high, and low
grade CaP).

4. Theory of Semi-Supervised Multi Kernel Graph Embedding (SeSMiK-GE)
In the following subsections, we describe the detailed mathematical formulation of our
SeSMiK-GE strategy. We first provide a brief overview of (1) kernel graph embedding, (2)
semi-supervised, and (3) multi-kernel learning strategies. We subsequently describe how
these different strategies are combined within the SeSMiK-GE framework for data
integration and constructing meta-classifiers.

4.1. Notation
Let ℱ = [F(c1), F(c2),…,F(cn)] ∈ ℝD be a data matrix of n objects, ci, i ∈ {1,…, n}, with
dimensionality D. The corresponding class labels for these objects are given as ωi ∈ [0,1].
Let G = {ℱ, W} be an undirected weighted graph with vertex set ℱ and similarity matrix W
∈ ℝn×n. W = [wij] assigns edge weight similarities in a pairwise fashion between objects ci
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and cj, i,j ∈ {1,…, n}. The diagonal matrix and Laplacian matrix L of a graph G is defined
as: ii = Σjwij, where L = – W. A kernel gram matrix defining similarities between n
points is given as Km for protocol m, m ∈ {1,…,M}, where M is the total number of
protocols (or data channels).

4.2. Graph embedding framework
The aim of GE (Shi and Malik, 2000) is to reduce the data matrix ℱ ∈ ℝD into a low-
dimensional space y ∈ ℝd (D ≫ d), such that object adjacencies are preserved from ℝD to
ℝd. GE attempts to find the optimal low dimensional vector representations among the
vertices of G that best characterize the similarity relationship between the vertex pairs in G.
The low dimensional representation y = [y1, y2,…,yn] can be obtained by solving an
Eigenvalue decomposition problem as,

(1)

with the constraint yT y = 1. W = [wij] is a similarity matrix which assigns edge weights to
characterize pairwise similarities between points ci and cj, i,j ∈ {1,…,n} such that

, where σ is a scaling parameter.

4.3. Kernel Graph Embedding (KGE) framework
KGE is a technique to extend linear projections of data to a nonlinear dot product space
using the kernel trick (Muller et al., 2001), which maps data from the original input space to
an alternative higher dimensional space as K(F(ci),F(cj)) = 〈(Φ(F(ci)), Φ(F(cj)))〉, where Φ
is the implicit pairwise embedding between F(ci) and F(cj). A kernel gram matrix Km for
each protocol m may be obtained as Km = [K(F(ci),F(cj))], ∀i,j ∈ {1,…, n}, where Km may
be expressed as

(2)

According to the Representer Theorem (Schlkopf et al., 2001), to calculate the kernel
representation K(F(ci), F(cj)) of input data, it is assumed that the optimal embedding y lies
in the input space such that,

(3)

where, α = [α1, α2,…, αn]T is the low dimensional matrix representation for KGE and
K(ℱ) = [K(ℱ(.), F(c1)), K(ℱ(.),F(c2)),…, K(ℱ(.), F(cn))]m, which simplifies to,

(4)

where Km is the kernel matrix Kij = K(F(ci), F(cj)). Using Eq. (4), the objective function for
KGE can be reduced to,

(5)
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where K is a valid positive semi-definite kernel and α is the d dimensional Eigenvector of
the objective kernel function in Eq. (5). As shown in (Schlkopf et al., 2001), optimization
function of KGE can again be solved by an Eigenvalue decomposition problem as,

(6)

with the constraint αTK Kα = 1.

4.4. Semi-Supervised Multi-Kernel Graph Embedding (SeSMiK-GE)
4.4.1. Module 1. Multi-kernel learning—A linear combination of different kernels has
the advantage of also yielding a kernel which is at once a symmetric, positive definite
matrix. Assuming we have M base kernel functions for M channels, Km,m ∈ {1,…, M},
with corresponding individual kernel weights βm, the combined kernel function may be
expressed as,

(7)

K̂ is the combined multi-channel kernel obtained by combining M protocols in a multi-
kernel framework.

4.4.2. Module 2. Semi-Supervised Graph Embedding (SSGE)—Assuming the first
l of n samples are labeled ωl ∈ [0,1], we can incorporate the partial known labels into the
similarity matrix W = [wij]. A nearest neighbor graph, > 0, is created to obtain W such
that pairwise points in a neighborhood with same labels are given high weights and points
with different class labels are given low weights (Zhao, 2006). If the points are not in  the
corresponding edges are not connected. Thus the weight matrix may be expressed as,

(8)

where  The Gaussian weight matrix W̃m = [W̃ij], is normalized by σ
such that σ = max(║F(ci) − F(cj)║2) ∀i,j for each individual data channel m, m ∈ {1,…,
M}. Hence, the range of normalized weight matrix, W̃m, is between e−1 = 0.333 and e0 = 1,
which is subsequently scaled linearly between 0 and 1. Weight matrices across individual
data channels, W̃m, m ∈ {1,…, M} can then be averaged to obtain,

(9)

where W̃m is the modified weight matrix obtained using Eq. (8) for protocol m, and Ŵ is the
combined weight matrix obtained by averaging the modified weight matrices from each of
the M data channels.

4.4.3. Module 3. Dimensionality reduction—The combined kernel K̂ obtained from
MKL, and the associated weight matrix Ŵ obtained from SSL can be used in a KGE
framework to obtain the low dimensional fused representation of the multi-channel data. By
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substituting K̂ from Eq. (7) and Ŵ from Eq. (9), Eq. (6) is reduced to a multi-kernel
Eigenvalue decomposition problem as,

(10)

where , and ᾱ is the combined low dimensional fused data representation obtained
by combining M different channels.

4.5. SeSMiK-GE optimization
In Eq. (10), two variables, ᾱ and βm (within K̂) need to be optimized simultaneously. The
low dimensional representation ᾱ is optimized using a kernel ridge regression function,
while the weights βm are optimized using a hierarchical brute force algorithm. Each
individual optimization step is explained below.

4.5.1. Optimizing the low dimensional representation (ᾱ)—The optimal d
dimensional Eigenvectors ᾱ = {ᾱ1, …, ᾱd}, d ≪ D are obtained from Eq. (10) using
standard kernel ridge regression optimization as described in (Cai et al., 2007). Kernel ridge
regression is a regularized least square linear regression in kernel space, and is used when
the matrix K̂ is invertible (ill-conditioned), or noisy to obtain the target output accurately.
Hence, to solve ᾱ, we make use of the regularized solution of Eq. (4). The optimization of
Eq. (10) can then be solved via a two step process:

(1.1) Solve the Eigenvalue decomposition problem as given in Eq. (1) for the
combined data matrix Ŵy = λ𝒟 ̂y.

(1.2) If K̂ is non-singular for any given y, unique Eigenvalues can be obtained as ᾱ =
K̂−1y (Eq. (4)). However, when K ̂ is singular, the equation may have no or
infinite solutions. The solution is then obtained using regularized kernel ridge
regression as: ᾱ = (K̂ + δI)−1y, where I is the identity matrix and δ is the
regularization parameter. In this work we used the regularization parameter, δ =
0.1, as suggested in (Cai et al., 2007).

4.5.2. Optimizing weights (β) for MKL—To obtain ᾱ, optimal set of weights β̂ = [β̂1,
…, β̂M], β̂m ∈ [0,1], have to be obtained for each modality m, m ∈ {1,…M} such that

. A hierarchical brute force optimization strategy is employed to optimize
weights, β = [β1,…, βM], which iteratively optimizes β based on the classification accuracy
of training data. Once initial values for β̂ ∀m, m ∈ {1,…, M}, are estimated at a certain
interval resolution that optimizes accuracy, the algorithm searches for a more accurate value
only within the vicinity of β̂ estimated at the previous level of the hierarchy. At each level of
the optimization strategy, the value of β̂ is estimated based on the ability of weights to create
a low dimensional representation that maximizes classifier accuracy. The process is repeated
until either a pre-defined interval resolution is reached or classification accuracy does not
change significantly by reducing the step size.

4.6. SeSMiK-GE algorithm
Algorithm. SeSMiK-GE

Input: ℱm, M,  d, β̂ = [β̂1, β̂2,…, β̂M], ωl ∈ [0,1]
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Output: ᾱ

begin

0. for m = 1 : M

1. Obtain Km for each data channel ℱm

2. Use ωl to obtain W̃m using from Eq. (8)

3. endfor

4.
Obtain Ŵ as Ŵ =

1
M

∑m=1
M W̃ m using each of the W̃m obtained in Step 2

5.
Obtain K̂ = ∑m=1

M β̂mKm using each of the Km obtained in Step 1

6. Substitute K̂ and Ŵ in Eq. (6)

7. Obtain d-dimensional ᾱ by solving Eq. (10)

end

Km and W̃m (via ωl, where ωl are the exposed labels while computing W̃m) are obtained for
each of the data channels ℱm, m ∈ {1,…,M} in Steps 1 and 2, respectively. Combined
weight matrix Ŵ is obtained by averaging the modified weight matrices (obtained in Step 2)
across the M data channels (Step 4). Similarly, in Step 5, the contributions of each Km are
individually weighted using the optimal weights β̂m across the M data channels. Ŵ and K̂
are then substituted in the generalized KGE framework in Step 6 which is solved in Step 7 to
obtain the d-dimensional fused representation of the multi-modal data. A supervised
classifier can then be trained on the fused low dimensional representation ᾱ for subsequent
object classification. Note that when v new samples are introduced in the original data
matrix ℱ of size n, the kernel matrix Km, and the weight matrix W̃m (with original ωl
exposed) are recomputed to obtain matrices of size n + v × n + v, and the classifiers are
retrained using the recomputed low dimensional representation ᾱ for samples n + v.

5. Experimental design
5.1. Data description and preliminaries

A total of 29 1.5 Tesla (T) endorectal T2w MRI, MRS studies were obtained prior to radical
prostatectomy. The 29 1.5 T studies comprised a total of 960 CaP and 1365 benign
metavoxels. Of the 29 studies, 12 studies were found to have high grade CaP with 188 low
and 310 high grade CaP metavoxels. All of these studies were biopsy proven prostate cancer
patient studies that were clinically referred for a CaP MR staging exam for improved
therapeutic selection. MRI was performed by using a 1.5-T whole-body MRI unit (Signa;
GE Medical Systems, Milwaukee, Wisconsin). The patients were imaged while in the supine
position by using a body coil for signal excitation and a pelvic phased-array coil (GE
Medical Systems) combined with a balloon-covered expandable endorectal coil (Medrad,
Pittsburgh, PA) for signal reception. Data sets were acquired as 16 × 8 × 8 phase-encoded
spectral arrays (1024 voxels) by using a nominal spectral resolution of 0.24−0.34 cm3,
1000/130, and a 17-min acquisition time. Three-dimensional, MR spectroscopic imaging
data were processed and aligned with the corresponding T2w imaging data using a
combination of in-house software and Interactive Display Language (Research Systems,
Boulder, Colorado) software tools (Tran et al., 2000). The raw spectral data were apodized
with a 1-Hz Gaussian function and Fourier transformed in the time domain and in three
spatial domains. Choline, creatine, and citrate peak parameters (i.e., peak area, peak height,
peak location, and line width) were estimated by using an iterative procedure that was used
to first identify statistically significant peaks (those with a signal-to-noise ratio higher than
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5) in the magnitude spectrum. The frequency shift that best aligns the spectral peaks with the
expected locations of choline, creatine, citrate, and residual water is then estimated.
Subsequently, the spectra are phased by using the phase of the residual water and the
metabolite resonances. Baseline values were corrected by using a local non-linear fit to the
non-peak regions of the spectra. Subsequent feature extraction and classification steps were
performed using algorithms developed within the MATLAB (The MathWorks, Inc.)
programming environment.

The 3D prostate T2w MRI scene is represented by 𝒞 ̂ = (Ĉ,f̂), where Ĉ is a 3D grid of voxels
ĉ ∈ Ĉ and f̂(ĉ) is a function that assigns an intensity value to every ĉ ∈ Ĉ. We also define a
MR spectral scene = (C, F) where C is a 3D grid of MRS metavoxels, c ∈ C, and F is a
spectral vector associated with each c ∈ C. Note that on account of differences in resolution
of MRI/MRS, a single spectral metavoxel is several times larger compared to the size of a
corresponding T2w MRI voxel. We define a CaP classifier output as h(c). The
corresponding PPMM classifier is defined as h̃(c), and a high grade CaP classifier output is
defined as ĥ(c). Similarly, notation for a classifier trained in conjunction with different
feature vectors is identical to the corresponding notation for the feature vectors and involves
replacing the F with h (e.g. a CaP classifier that leverages T2w MRI features in FT2 (c) is
denoted as hT2(c), corresponding MRF CaP classifier as h̃T2(c) and the corresponding high
grade CaP classifier as ĥT2(c)). The common notations used in this paper are listed in Table
1, and the major acronyms are listed in Table 2.

5.2. Manual ground truth annotation of voxels
For all the studies considered in this work, ex vivo whole mount histological sections
obtained from radical prostatectomy specimens were available (Fig. 3). An expert
pathologist manually delineated CaP and grade extent on whole mount histological sections.
The CaP and grade extent on the MRI were further delineated and graded by an expert
prostate imaging expert (JK) (more than 25 year experience in the field of MP MRI for CaP
detection and grading) by visually registering corresponding histological (Fig. 3a) and
radiological sections (Fig. 3b); correspondence between sections having been determined
manually by visually determining anatomical fiducials (urethra, verumontanum, large
benign prostatic hyperplasia (BPH) nodules) on the histology and the imaging. Based on the
CaP extent on visually registered histology, hypo intense appearance on T2w MRI, and
reduced choline concentrations on MRS, MR spectral voxels were annotated as CaP, benign,
or excluded (as described in Section 5.2.1). Similarly, correspondences across pathological
scores from visually registered histology, hypo intense appearance on T2w MRI, and
reduced choline concentrations on MRS, were used to further label the CaP MR spectral
voxels as low- or high-grade (as described in Section 5.2.2). The class labels thus obtained
for each of the individual MR spectral voxels were used as the surrogate ground truth for
CaP detection and grading on the MRI/MRS, and were employed for subsequent training
and evaluation of the SeSMiK-GE classifier.

5.2.1. Annotations for CaP vs. Benign—Since digitized images of the radical
prostatectomy histologic sections were not available for this study (Fig. 3a only represents
one single illustrative example), deformable image registration methods for spatially
aligning ex vivo histology and pre-operative MRI (Chappelow et al., 2011; Xiao et al.,
2011) could not be employed to more precisely map the extent of CaP onto MRI.

The MRS voxels were annotated on a 5-point scale (Fig. 4) adapted by the standardized 5-
point scale developed by Jung et al. (2004), where each spectrum is defined as being either
(a) definitely benign (scale 1), (b) probably benign (scale 2), (c) equivocal (scale 3), (d)
probably malignant (scale 4), and (e) definitely malignant (scale 5). While the scale
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described by Jung et al. (2004) was based on metabolic ratio of MR spectra alone, the
spectral annotations in this work were performed by incorporating following information:
(1) expert pathologists delineated CaP annotations on step-section histology, (2) presence
and strength of hypointensities on T2w MRI within the corresponding CaP region after
visual alignment with histology, (3) changes in metabolic concentrations on MR spectrum
that were identified within the tumor boundary on visually registered histology, and (4)
visual similarity of each MR spectrum to representative scale as described in Jung et al.
(2004). MRS voxels annotated as ‘likely benign’ or ‘probably benign’ were labeled as
‘benign’, while the voxels annotated as ‘probably malignant’ or ‘likely malignant’ were
labeled as CaP. MRS voxels annotated as ‘equivocal’ or seen to be atrophic on histology
were excluded from further analysis.

5.2.2. Annotations for high vs. low Gleason score—Prostate lesions were further
assigned a pathologic score based on the step section histopathology findings. Based on the
correspondence of tumor annotations on step section histopathology with T2w MRI and
MRS, the prostate-imaging expert binned the pathologic scores into 5 groups and annotated
each spectrum as belonging to one of these classes: (a) Gleason score 6 (≤3 + 3) (scale 1),
(b) Gleason score 7 (3 + 4) (scale 2), (c) Gleason score 7 (4 + 3) (scale 3), (d) Gleason score
8 (4 + 4) (scale 4), and (e) Gleason score 9 (>4 + 4) (scale 5). The voxels labeled (1, 2) were
expert-annotated as low grade and voxels labeled (3, 4, 5) were expert-annotated as high
grade, and were subsequently used for training and evaluation of machine learning
classifiers.

5.3. Feature extraction from MRI and MRS
5.3.1. Feature extraction from MRS—For each c ∈ C, F(c) = [fa(c)|a ∈ {1,… U}]
represents the MR spectral vector, reflecting the frequency component of each of U
metabolites. The corresponding spectral data matrix is given as ℱ = [F1(c); F2(c),…; Fn(c)]
∈ ℝn×U where n = |C|, |C| is the cardinality of C.

5.3.2. Feature extraction from T2w MRI—T2w MR images were first corrected for
bias field (due to the inhomogeneous endorectal coil reception) using a post-processing
correction strategy as given in (Noworolski et al., 2010). 34 texture features were then
extracted for each metavoxel c ∈ C based on responses to various gradient filters and gray
level co-occurrence operators. These features were chosen based on their previous
demonstrated discriminability between CaP and benign regions on T2w MRI (Madabhushi
et al., 2005). Fig. 5 shows an example of a texture feature (Fig. 5b) extracted from the
original T2w MR image (Fig. 5a) that captures some of the subtle differences between low
and high Gleason grade CaP regions, both of which appear as hypointense on the original
T2w MR image. A brief summary of T2w MRI features extracted in this work is provided in
Table 3.

Feature extraction for T2w MRI was performed in two steps. In Step 1, we calculated the
feature scenes 𝒢 ̂u = (Ĉ,f̂u) for each 𝒞 ̂ by applying the feature operators Φu, u ∈ {1,…,34}
within a local neighborhood associated with every ĉ ∈ Ĉ. 13 gradient (Kirsch, Sobel,
directional filters), 8 first order statistical (gray level features with window sizes, 3 × 3, and
5 × 5) and 13 Haralick features were extracted at each ĉ ∈ Ĉ. In Step 2, pixel level features
(obtained in Step 1) are re-sampled to a lower MRS voxel level resolution. For each MRS
voxel c ∈ C, a T2w MRI texture feature vector is obtained by taking the average of the

feature values within the corresponding metavoxel as . The
corresponding T2w MRI feature vector is then expressed as G(c) = [gu(c)|u ∈ {1,…,34}],
∀c ∈ C, and the MRI data matrix is given as = [G1;G2;…;Gn] ∈ ℝn×34. Note that T2w
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MRI and MRS are in implicit spatial alignment with each other but re-sampling of the T2w
MRI features is necessitated by the resolution differences across the imaging and non-
imaging MRI protocols.

5.4. Hierarchical classification of high grade CaP via MP SeSMiK-GE signature
5.4.1. Random Forest (RF) classifier—The RF classifier uses a majority voting rule
for class assignment by combining decisions from an ensemble of bagged (bootstrapped
aggregated) (Breiman, 2001) decision trees. The C4.5 decision tree (Quinlan, 1993) is a
multi-stage classifier which creates a tree like structure by breaking down a complex
decision process into a collection of simpler decisions for predicting the best possible
outcome solution (Breiman, 2001). RF further combines the weak decisions obtained from
multiple decision trees trained on bootstrapped training subsets to provide a more optimal
and stable solution. Advantages of RF over other classifier schemes (such as the Support
Vector machine (SVM) classifier) include, (1) ability to seamlessly integrate a large number
of input variables, (2) robustness to noise in the data, and (3) relatively few tuning-
parameters. For a given training set, N bootstrapped subsets are created with replacement of
the training data. Based on each training subset, a C4.5 decision tree (Quinlan, 1993)
classifier hj, j ∈ {1,…, N} is constructed. The class label hj(c) for each meta-voxel c ∈ C,
based on the feature vector ᾱ, is then obtained using the decision trees hj, j ∈ {1,2,…,N};
hj(c) = 1 if c is classified as CaP and hj(c) = 0 otherwise. The final class likelihood that c
belongs to CaP, via the RF classifier, is obtained by aggregating the decisions of individual

weak learners as .

5.4.2. Imposition of spatial constraints via probabilistic pairwise Markov
random field (PPMM)—In a Bayesian framework, the restriction of contextual
information to local neighborhoods is called the Markov property, and a system of sites that
obeys this property is termed MRF (Liu et al., 2009). Our group has previously presented a
novel extension of MRF, called probabilistic pairwise Markov random model (PPMM) that
formulates Markov priors in terms of probability densities, instead of the typical potential
functions, facilitating the creation of more sophisticated priors (Monaco et al., 2010). We
modeled the local neighborhood constraints of a CaP voxel existing close to another CaP
voxel, using PPMMs based on the assumption that a CaP voxel would have a higher
probability of co-existing with another CaP voxel compared to a benign voxel. PPMMs are
applied to the output of the RF classifier (h(c)) to obtain a spatially constrained classifier
output, (h̃(c)), which accurately delineates CaP presence using fused MP low dimensional
representation ᾱ.

5.4.3. Algorithm for hierarchical classifier using SeSMiK-GE—Algorithm
SeSMiK-GE is first called to obtain the fused MP T2-MRI/MRS representation FT2MRS = ᾱ
for each c ∈ C. The algorithm for hierarchical classification of high grade CaP
HierarchHighGrade-CaP is presented below.

Algorithm. HierarchHighGradeCaP

Input: ℱ,  d,β̂ = [β̂1,β̂2],ωl

Output: h̃(c), ĥ(c)

begin
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0. Obtain FT2MRS = SeSMiK-GE([ℱ,  d,β̂,ωl])

Training phase

1
Obtain classifier training data :ℱtr

T 2MRS

2
Identify subset of voxels with no labels exposed, U = (B − l), where B = | ℱtr

T 2MRS |
3 ρ = 0

4 while ρ ≤ 1

5 Compute h(c) for each c ∈U using RF

6 Apply PPMM to obtain h̃(c) for each c ∈U

7
obtain γ(ρ)

tr = S N(ρ)
tr + S P(ρ)

tr

8 ρ = ρ + 0.1

9 endwhile

10
Obtain ν = arg maxρ γ(ρ)

tr

Test phase

1
Obtain classifier test data ℱtest

T 2MRS

2
Compute h(c) for each c ∈ ℱtest

T 2MRS
 using RF

3
Apply PPMM to obtain h̃(c) for each c ∈ ℱtest

T 2MRS

4
A = {c|h̃(c) ≥ ν}, A ⊂ ℱtest

T 2MRS
, ν ∈ [0, 1]

5 ∀c ∈ A, compute ĥ(c) using RF

6 return h̃(c), ĥ(c)

end

In Step 0, fused MP T2w MRI/MRS signature FT2MRS for every c ∈ C is obtained by
calling the SeSMiK-GE algorithm. A total of l samples that are exposed for obtaining the
low dimensional semi-supervised representation FT2MRS, are also used to obtain the optimal
threshold ν that maximizes sensitivity and specificity of classifying high versus low grade
CaP. In Step 1 of the training phase, training samples

 are identified of which l randomly
selected samples have their labels exposed. The l samples are used for training the classifier
and the remaining U, U = (B − l) samples are used to obtain the optimal threshold parameter
for separating high versus low grade CaP on training data. In Steps 4–7, classifier detection

sensitivity  specificity , and the sum  are calculated at every
threshold ρ, ρ ∈ [0,1] for the training data. The thresholds are increase in intervals of 0.1 to

obtain 11  and γ values. In Step 10, ν is obtained as the threshold that
maximizes γ and is subsequently used in the test phase.

In Step 1 of the test phase, the set of voxels corresponding to 3D volumetric images,

 from a study (kept independent from
the set of training voxels) are used to obtain the probability of high versus low grade CaP
using the classifier model trained in the training phase. h(c) is obtained for every
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 using a RF classifier in Step 2, followed by applying PPMM on h(c) to obtain h̃
(c). In Step 4, the threshold ν obtained in Step 10 of the training phase is used to identify a

subset of voxels, , that have a CaP probability greater than ν. All the voxels in
A are then further distinguished, in Step 5, as belonging to either high or low grade CaP
using a RF classifier.

5.5. Implementation details and classifier training
5.5.1. Parameter selection for SeSMiK-GE—For the SSL module, 40% of the total
training samples were randomly selected to obtain W̃MRS and W̃MRI, and train the classifier
to obtain ν. For the MKL module, a Gaussian kernel was used to obtain KMRI and KMRS,
and the corresponding weights β̂1 and β̂2 = (1 − β̂1), β1,β2 ∈ [0, 1] that optimized CaP
accuracy on 40% of the same training set (used for Ŵ). The set of Ŵ were learned using a
hierarchical brute force strategy (see Section 4.5), and subsequently used to obtain FT2MRS.
The interval resolution for termination of β was set to 0.001.

5.5.2. Classifier training—Two independent CV strategies, leave-one-out (LOO) and
threefold CV, were used for evaluation of CaP classifiers. LOO is known to be an unbiased
predictor and is capable of creating sufficient training data for studies with a small sample
size. Given the relatively small sample size for datasets available for high versus low-grade
classification, LOO was our first method of choice for CV (Efron, 1983). In LOO, each
classifier was trained on 28 CaP studies, while one study was used for testing (Kelm et al.,
2007). This process was repeated until all 29 studies were classified once within a single run
of LOO CV on a per voxel basis. LOO however is known to have a high variance (Efron,
1983). A threefold CV strategy was hence additionally employed for an unbiased evaluation
of the efficacy of SeSMiK-GE across the two CV strategies. For three-fold-CV, 29 patient
studies were divided into three sets such that two of the three sets (corresponding to 20
studies) were chosen for training the classifier, while the remaining set of 9 studies was used
for independent testing. Note that the RF classifier is reconstructed with different training
and test sets at every CV run (training and test sets are maintained independent of each
other) for both LOO and threefold CV.

This process was repeated until all 29 studies were classified once within a single run of CV.
The threefold randomized CV process was then repeated 25 times for different training and
test sets.

A total of 12 out of the 29 CaP patient studies were found to have high grade CaP. Both
LOO, and threefold CV strategies were similarly independently used for evaluation of high
Gleason grade CaP classifiers over 12 patient studies. For LOO, 11 studies were used to
training and 1 study was used for testing at a time, until all 12 patient studies were classified.
For threefold-CV, 8 studies were used for training and 4 for testing, until all 12 patient
studies are classified within a single CV run. Threefold-CV was similarly repeated 25 times
over different training and test sets for classifying patients with high Gleason grade CaP on a
per-voxel basis.

5.5.3. Performance evaluation—ROC curves representing the trade-off between CaP
detection sensitivity and specificity were independently generated for each of the classifiers
considered in this work for both LOO and threefold CV strategies. Each point on the curve
corresponds to the CaP detection sensitivity (SN(ρ)) and specificity (SP(ρ)) of the classifier
(hρ(c)) for some ρ ∈ [0,1]. The operating point Θ on the ROC curve is defined as value of ρ
which yields detection sensitivity and specificity that is closest to 100%. To generate a ROC
curve across multiple CV runs, we first interpolate the values of SN and SP for individual
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ROC curves (per CV run) at equal intervals between 0 and 1 using a cubic-spline
polynomial, to obtain an average ROC curve.

5.6. Comparative data integration strategies
In the following sub-sections, we evaluate and compare SeSMiK with other feature
extraction schemes used in the context of automated CaP detection for (i) individual MRS
(Tiwari et al., 2009), T2w MRI (Madabhushi et al., 2005) modalities, (ii) a data integration
(COD) scheme for combining MRS with T2w MRI features, and (iii) a decision integration
strategy where the individual uni-modal classifier outputs are fused to obtain a combined
classification output (Rohlfing et al., 2005). A summary of all the comparative strategies
used for CaP detection and grading in this work is given in Table 4.

5.6.1. Uni-modal T2w MRI, MRS classifiers—The high dimensional MRS and T2w
MRI feature vectors, F and G respectively, are reduced to corresponding low dimensional
representations, FMRS, and FT2 using GE (Tiwari et al., 2009) for each c ∈ C. FMRS and FT2

were used to train uni-modal T2w MRI, MRS classifiers, hT2 and hMRS respectively.
Similarly, h ̃MRS and h̃T2 were obtained using a PPMM classifier on hT2 and hMRS.
Corresponding uni-modal grading classifiers for T2w MRI and MRS were obtained as ĥT2

and ĥMRS.

5.6.2. Classifier combination (COI)—The independence assumption can be invoked to
fuse hMRS and hT2 at each c ∈ C as hIntD (c) = hT2 (c) × hMRS(c). PPMM classifier was
employed on the decision classifier output hIntD(c) to obtain h̃IntD(c), and similarly, ĥIntD(c)
was obtained for high grade CaP classification via COI for each c ∈ C.

5.6.3. Data combination (COD)—A combined feature vector FInt(c) = [FMRS(c), FT2(c)]
is obtained by concatenating MRS and T2w MRI reduced Eigenfeatures for each metavoxel
c ∈ C. A RF classifier is then trained using FInt(c) to obtain the CaP meta-classifier hInt(c),
followed by the corresponding MRF classifier output as h̃Int(c). The corresponding high
grade COD classifier is obtained as ĥInt(c) for each c ∈ C.

5.7. Experimental evaluation
5.7.1. Experiment 1. CaP detection via SeSMiK-GE—We compared the performance
of PPMM based SeSMiK-GE classifier (h̃T2MRS(c)) against each of the individual PPMM
spatially constrained classifier outputs for T2w MRI (h̃T2(c)), MRS (h̃MRS(c)) as well as
COD (h̃Int(c)), and COI (h̃IntD(c)) classifiers in identifying CaP regions defined via the
“surrogate ground truth” determination of which was described in Section 5.2.1. This was
done via (a) area (AUC) under the ROC (Zweig and Campbell, 1993) curve (φAUC), and (b)
classification accuracy (φAcc) at the operating point on the ROC curve.

5.7.2. Experiment 2. High grade CaP detection via SeSMiK-GE—ROC analysis
across both LOO and threefold CV was independently performed across a total of 12 high
grade CaP studies to compare the performance of SeSMiK-GE in accurately identifying high
grade CaP (ĥT2MRS(c)) against other classifier strategies (ĥT2(c), ĥMRS(c), ĥInt(c), ĥIntD(c))
via φAUC and φAcc. Since the remaining 17 studies (out of the total of 29 CaP studies) were
determined to only have low grade CaP, quantitative evaluation (in terms of true positives,
false positives) was not feasible, and hence was not reported.
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6. Results and discussion
6.1. Experiment 1: CaP detection via SeSMiK-GE

ROC curves were generated by thresholding CaP probabilities at different thresholds for
every cross-validation run (29 CV runs for LOO and 25 runs accumulated over threefold CV
runs). AUC and accuracy values were reported at the operating point of each ROC curve for
both LOO and threefold CV. Fig. 6a and c show AUC results (φAUC), while Fig. 6b and d
show accuracy results (φAcc) obtained across 29 iterations of LOO CV, and 25 iterations of
threefold CV respectively for various feature extraction and classifier strategies
(h̃T2,h̃MRS,h̃Int,h̃IntD,h̃T2MRS) at the operating point using box-and-whiskers plots. The

mean  and standard deviation (ζAUC) of AUC values, and classifier accuracy 
across 29 iterations for LOO, and 25 iterations of threefold CV were also recorded and are
shown in Table 5.

The results across the two CV strategies reflect that although the LOO CV strategy yielded
higher φAUC and φAcc values, variance across φAUC and φAcc was significantly reduced with
a threefold CV strategy. It is worth noting however that φAUC and φAcc across both CV
strategies were found to be very similar, and superior to using individual modalities and
other comparative strategies (h̃T2,h̃MRS,h̃Int, and h̃IntD).

Both Table 5 and Fig. 6 suggest that MP COD based data integration strategies (h̃Int, and
h̃T2MRS) yield higher CaP detection φAUC and φAcc as compared to uni-modal h̃T2 and h̃MRS

classifiers (Chan et al., 2003, Vos et al., 2010, Liu et al., 2009) and a COI based data
integration classifier.

As suggested in (Demsar, 2006), to overcome the issue of multiple comparisons and biases
with CV and parametric paired t-test, we incorporated a non-parametric Wilcoxon signed
ranked test while comparing different classifier strategies across the two CV schemes. To
further make the statistical significance test more stringent, the p-value was appropriately
adjusted at p = 0.00125 via a Bonferroni test to account for Type 1 errors due to multiple
testing. Table 6 shows the p values of statistical significance obtained using a non-

parametric Wilcoxon signed test (Demsar, 2006) for comparing  and  for h̃T2MRS

against h̃T2, h̃MRS, h̃Int, and h̃IntD across LOO and threefold-CV strategies at d = 15. It is
worth noting that the results across different d ∈ {10,15,20} were found to be consistent,
where h ̃T2MRS consistently significantly outperformed (p < 0.001) the other classifiers
across all reduced dimensions (results not shown). We believe that the high sensitivity and
specificity of SeSMiK-GE compared to the other data integration strategies (COI and COD)
is due to (a) combining and weighting individual kernel contributions within the MKL
formation, and (b) employing partial label information for SSL which improves class
differentiability.

Finally, it should be noted that employing PPMM classifier h̃T2MRS 
significantly improved CaP detection accuracy (~20% improvement for d = 15) over not

imposing any spatial constraints hT2MRS . The improvement was
consistent across h̃Int, h̃IntD, h̃MRS, and h̃T2 over both LOO and threefold-CV (Table 5), and
resonates with similar findings in (Liu et al., 2009).

6.2. Experiment 2: CaP grading via SeSMiK-GE
Fig. 7 shows qualitative results for the hierarchical classification strategy for identifying
high grade CaP. Fig. 7a, d and g show CaP and high grade CaP ground truth as annotated by
an expert. Yellow outline in Fig. 7a, d and g defines the CaP extent while the black outline
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denotes the high grade CaP extent for three different T2w MRI sections from three different
patients. The corresponding probability heat maps for CaP classification are shown in Fig.
7b, e and h, where the spatial locations shown in red were identified by the respective
classifiers as having a higher probability of CaP presence. Locations shown in blue were
those identified as having a higher probability of being benign by the SeSMiK-GE classifier.
Within the high probability CaP regions (red) in Fig. 7b, e and h, a probability of high grade
CaP is further assigned, the corresponding probability heat maps for which are shown in Fig.
7c, f and i. Here, the spatial locations shown in red (Fig. 7c, f and i) were identified as
having a higher probability of high grade CaP, while locations shown in blue were identified
as having a higher probability of being low grade using ĥT2MRS. Note the high detection
accuracy in accurately identifying CaP and high grade CaP using our hierarchical
classification strategy across all three T2w MRI sections.

Fig. 8a shows φAUC while Fig. 8b shows φAcc values across various feature extraction and
classifier strategies (ĥT2, ĥMRS, ĥInt, ĥIntD, ĥT2MRS) for high grade CaP using box-and-
whiskers plots obtained via a LOO-CV strategy. Corresponding results for φAUC and φAcc

obtained via a threefold CV strategy are shown in Fig. 8c and d respectively. The mean

 and standard deviation (ζAUC) of AUC values at the operating point of the ROC
curve for LOO and threefold CV are shown in Table 7. Table 8 shows the p-values obtained
by performing a paired non-parametric Wilcoxon test for comparing φAUC obtained from
ĥT2MRS with other classifier strategies (ĥT2, ĥMRS, ĥInt, ĥIntD) using LOO and threefold-
cross-validation strategies at d = 15.

Fig. 9 shows the average ROC curves obtained using hT2, hMRS, hInt, hT2MRS and h̃T2MRS

for CaP versus benign classification (Fig. 9a) and using ĥT2, ĥMRS, ĥInt, and ĥT2MRS for
low versus high grade classification (Fig. 9b) for d = 15. Again note the improvement in
AUC using the MRF based SeSMiK-GE CaP classifier (h̃T2MRS) compared to SeSMiK-GE
CaP classifier with no spatial constraints (hT2MRS) (Fig. 9a).

We attribute the high φAUC and φAcc obtained via ĥT2MRS to the hierarchical classification
of high grade CaP which systematically hones-in on the CaP region of interest by
eliminating other confounders that might otherwise affect classification (Tiwari et al., 2009).
The hierarchical scheme is especially relevant in cases where the morphologic differences
between the two classes are subtle. These differences may not be appreciable in the presence
of other object classes which first need to be eliminated (benign confounders) thereby
allowing for the subtle differences to be accentuated. Our results are also consistent with
studies that have demonstrated a higher accuracy of high grade CaP detection using MP
MRI/MRS compared to individual protocols (Langer et al., 2010; Shukla-Dave et al., 2007;
Shukla-Dave et al., 2009).

Fig. 10b shows the classification result obtained for a single 2D section from a 3D volume
for a T2w MRI/MRS sections (Fig. 10a), the classifier results having been plotted back onto
the corresponding MRS grid Fig. 10b. Fig. 10b shows the corresponding classification result
obtained via SeSMiK-GE on a MRS grid, which demonstrates the high sensitivity and
specificity obtained via SeSMiK-GE for detection of high grade CaP. Note that the spectra
identified as low and high grade CaP (in red) by the classifier appear to be qualitatively
different in terms of the relative concentrations of choline, creatine, and citrate.

7. Concluding remarks
In this work we presented a novel semi-supervised multi-kernel Graph Embedding
(SeSMiK-GE) scheme, a generalized data fusion framework that could potentially be used
for integrating any combination of imaging and non-imaging data channels, independent of
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the dimensionality of the individual channels. Specifically, we applied SeSMiK-GE for
integrating structural and metabolic information from MP MRI/MRS for (a) identifying high
probability CaP regions, and (b) further classifying the detected CaP regions as high or low
grade. To the best of our knowledge, this is the first application of a computerized decision
support classifier for identifying high grade CaP using MP MRI. SeSMiK-GE uniquely
combines 3 very new, exciting machine learning methodologies – (1) multi-kernel learning,
(2) semi-supervised learning, and (3) dimensionality reduction within a single unified
framework. Quantitative evaluation of the SeSMiK-GE classifier revealed a significantly
higher detection accuracy in identifying both CaP and high-grade CaP regions as compared
to (a) individual uni-modal T2w MRI, MRS modalities, (b) decision combination obtained
by combining individual classifier decisions from both modalities, and (c) a classifier
combining MRS features and T2w MR texture features. Most previous DSS approaches for
CaP detection on MRI (Chan et al., 2003; Vos et al., 2010; Liu et al., 2009; Langer et al.,
2009; Ozer et al., 2010) have only reported results for identifying CaP versus benign using
MP MRI. Our classifier results for high grade CaP (AUC = 84%) via SeSMiK-GE were
found to be superior in most cases to results reported in clinical studies (Kobus et al., 2011;
Zakian et al., 2005; Shukla-Dave et al., 2007).

Although the results obtained via SeSMiK-GE significantly outperformed other classifier
strategies for both CaP diagnosis, as well as grading, we also acknowledge a few limitations
of our study: (1) the spectra belonging to scale 3 (identified by the expert as being
indeterminate) and voxels identified as atrophic (A) were not considered for classification.
These intermediate grade spectra might provide some clinical insights about the biology of
prostate cancer, an area we intend to explore in future work. (2) Obtaining annotations is
known to be expensive, time consuming, and requiring highly specialized training; the
prostate-imaging expert hence only annotated studies that were known to have high grade
CaP, and the false positive rate for low grade CaP on the remaining studies could not be
evaluated. (3) Ground truth labels for grade and extent of disease on MRI were determined
manually by visually correlating the corresponding ex vivo histologic and pre-operative in
vivo MRI sections and served as a “surrogate ground truth” in the absence of digitized
histological samples. However, several high impact technical and clinical papers in the
literature have previously employed a similar surrogate of ground truth for CaP extent (Chan
et al., 2003; Vos et al., 2010; Liu et al., 2009; Langer et al., 2009; Ozer et al., 2010;
Madabhushi et al., 2005; Tiwari et al., 2012; Westphalen et al., 2008; Costouros et al.,
2008). (4) While only 29 studies were considered in this study, the total number of datasets
is still more than similar classifier strategies for prostate cancer diagnosis from MRI (Chan
et al., 2003; Liu et al., 2009; Langer et al., 2009; Ozer et al., 2010) (where the dataset size
ranged from N = 10–25). (5) Due to the relatively small sample size available in this work,
the training set does not change much while training the classifier during each run of CV
and hence the independence assumption when computing AUC and accuracy values may not
be valid. However, the training and test sets are kept completely independent of each other
during each CV run to preserve as much degree of independence as possible during
classification. (6) While protocols other than T2w MRI and MRS (for e.g. DWI, DCE), and
vendor platforms other than GE were not considered in this study, SeSMiK GE was
developed as a general purpose platform for enabling fusion of different kinds of data both
imaging and non-imaging and across scanners, protocols. While an exhaustive validation of
this platform across vendor platforms and protocols has not yet been performed, it is our
intent to apply SeSMiK-GE in the context of different problems and for fusing different
types of imaging parameters.

The methodology described in this work could have far reaching implications for CaP
patients trying to decide on the appropriate treatment option. The ability to identify low
grade disease in vivo might allow CaP patients to opt for active surveillance rather than
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immediately opting for aggressive therapy. With the recent US Preventive Task Force
recommendation against PSA based screening for CaP,2 a tool like SeSMiK-GE becomes
even more critical for affording patients with low grade, indolent disease to opt for watchful
waiting. With further larger scale clinical validation, we hope to be able to employ SeSMiK-
GE in the context of a clinical trial to assist in identifying patients with high grade CaP
against patients with no or low grade CaP.
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Fig. 1.
Flowchart showing various components of SeSMiK-GE. MKL and SSDR are performed
simultaneously on the M individual data channels followed by DR on the combined kernel
and weight matrix. A supervised classifier is subsequently trained in the integrated low
dimensional space to discriminate the object classes (shown via different colors in the right
most panel). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2.
Flowchart showing the hierarchical classification strategy employed in this work for CaP
detection and grading. In Step 1, CaP ROI is identified using RF and PPMM classifier
trained on the SeSMiK-GE derived low dimensional data representation. In Step 2, CaP
regions identified in Step 1, are further discriminated as high and low grade CaP.
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Fig. 3.
(a) Ground truth for CaP extent as defined through the histopathological analysis of
hemotoxylin and eosin stained tissue section. The histological CaP extent in (a) is then
visually registered onto the corresponding T2w MRI (b) and MRS sections (c) by an expert
using histology as a visual reference.
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Fig. 4.
Illustration of the standardized five point scale spectra classified as (a) likely benign (scale
1), (b) probably benign (scale 2), (c) equivocal (scale 3), (d) probably malignant (scale 4)
and (e) likely malignant (scale 5) (Fig. 3 reproduced from Jung et al. (2004) with permission
of the author).
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Fig. 5.
(a) Ground truth for high (red arrows) and low grade (blue arrows) CaP extent on a single
T2w MRI section. (b) A grey-level texture feature for the corresponding section used to
illustrate subtle, yet existing texture differences for low and high grade CaP regions on the
same section. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 6.
Box-and-whisker plot results of AUC (a) and accuracy (b) obtained over 29 studies via a
LOO CV strategy for h̃T2, h̃MRS, h̃Int, h̃IntD, and h̃T2MRS. (c and d) The box-whisker-plots
for threefold CV strategy over 25 CV runs for AUC and accuracy respectively. Note that the
red line in the middle of each box reflects the median value while the box is bounded by 25
and 75 percentile of AUC (a and c) and accuracy (b and d) values. The whisker plot extends
to the minimum and maximum values outside the box and the outliers are denoted as the red
plus symbol for different feature extraction strategies. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7.
(a), (d) and (g) show three different T2w MRI sections with CaP ground truth (as annotated
by an expert) outlined in yellow, while the high grade CaP ground truth outlined in red. (b),
(e), and (h) show the probability heat map results corresponding to CaP classification on
T2w MRI sections (by interpolating the CaP probabilities at MRS resolution to a pixel level
T2w MRI resolution using Gaussian smoothing) in (a), (d), and (g) respectively for three
different T2w MRI studies. (c), (f), and (i) show the probability heat maps corresponding to
high grade CaP classification performed within the spatial locations identified as high
probabilistic CaP regions (shown in red, obtained by interpolating the high grade CaP
probabilities at MRS resolution to a pixel level T2w MRI resolution using Gaussian
smoothing) in (b), (e) and (h) respectively. Note that locations shown in red in (b), (e), and
(h) correspond to those identified by hT2MRS as CaP while in (c), (f), and (i) as those
identified as high grade CaP by ĥT2MRS. Similarly the spatial locations shown in blue in (b),
(e), and (h) correspond to spatial locations classified as benign and as low grade CaP in (c),
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(f), and (i). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 8.
Box-and-whisker plot results of AUC (a) and accuracy (b) obtained over 12 studies via a
LOO CV strategy for ĥT2, ĥMRS, ĥInt, ĥIntD, and ĥT2MRS. Corresponding results obtained
via a threefold-CV are shown in (c and d). Note that the red line in the middle of each box
reflects the median value while the box is bounded by 25 and 75 percentile of AUC (a and c)
and accuracy (b and d) values. The whisker plot extends to the minimum and maximum
values outside the box and the outliers are denoted as the red plus symbol for different
feature extraction strategies. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 9.
Average ROC curves for (a) CaP versus benign classification using hT2, hMRS, hInt,
hT2MRS, h ̃T2MRS and (b) high vs. low grade CaP using ĥT2, ĥMRS, ĥInt, and ĥT2MRS for d =
15.
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Fig. 10.
(a) High grade CaP ground truth (outlined in red) as annotated by an expert, where label 2 =
Gleason score 7 (3 + 4), and label 5 = Gleason score 9 (>4 + 4) spectra on a single T2w MRI
section. (b) The corresponding classification result obtained by thresholding the probability
values at the operating point v on MRS grid, where red corresponds to high probability of
high grade CaP and blue corresponds to high probability of low grade CaP. Note the high
detection sensitivity and specificity obtained via SeSMiK-GE in accurately localizing high
grade CaP region. Also note the elevated choline peak in all the metavoxels identified as
high grade (in red). Elevation in choline has clinically been shown to be correlated with high
grade CaP. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Table 1

List of commonly used notation and symbols in this paper.

Symbol Description Symbol Description

𝒞 ̂ 3D MRI scene 3D MR spectral scene

Ĉ 3D grid of MRI voxels C 3D grid of metavoxels

ĉ Voxel location in Ĉ, ĉ ∈ Ĉ c A metavoxel in C, c ∈ C

f a(c) MRS signal intensity at c a Frequency index

𝒢 ̂ T2w MRI feature scene Φu Feature operator, u ∈ {1,…, 34}

gu(c) Mean feature value at metavoxel c G Undirected weighted graph

K Kernel matrix ϕ Pairwise kernel mapping

ℱm Original data matrix for protocol m F(c) Feature vector at every c

D High dimensional feature space d Low dimensional feature space

Diagonal weight matrix L Laplacian matrix, L = − W

n Number of data points y Output embedding in original space

W Similarity weight matrix α Output embedding in kernel space

λ Eigenvalues ωl Class label for point l,ω ∈ [0,1]

Neighborhood parameter W̃m Modified weight matrix for every m

M Number of modalities/kernels βm Weight for kernel m, β ∈ [0,1]

Ach Area under choline peak Acr Area under creatine peak

Acit Area under citrate peak 𝒟 ̂ Combined diagonal matrix

K̂ Combined kernel matrix Ŵ Combined weight matrix

KMRI MRI kernel matrix KMRS MRS kernel matrix

δ Optimization parameter σ Scaling parameter

β̂ Subset of optimal weights [β̂m] ᾱ Integrated representation

FMRS MRS feature vector for each c∈ C FT2MRS Reduced SeSMiK-GE feature vector

G Average T2w feature vector GT2 Reduced T2w MRI feature vector

hρ(c) Binary CaP classifier output at ρ h̃ρ(c) Binary MRF classifier output at ρ

ĥρ(c) High grade CaP classifier output at ρ v Threshold for hierarchical classifier

Set of 3D volumetric training images Set of 3D volumetric test images

B Number of training samples P Number of test samples
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Table 2

List of major acronyms used in the manuscript.

Acronym Definition Acronym Definition

SeSMiK Semi-supervised multi-kernel GE Graph Embedding

CaP Prostate cancer MP Multi-parametric

MRI Magnetic Resonance Imaging MRS Magnetic Resonance Spectroscopy

ROC Receiver Operating Characteristic curve DSS Decision support system

COD Combination of Data COI Combination of Interpretation

DR Dimensionality Reduction PCA Principal Component Analysis

NLDR Non-linear DR MKL Multi-kernel learning

SSL Semi-supervised learning KGE Kernel Graph Embedding

SVM Support vector machine RF Random Forest

MRF Markov Random Field PPMM Probabilistic pairwise MRF

LOO Leave-one-out CV Cross-validation
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Table 3

Summary of T2w MRI features considered in this work with associated parameter values.

Texture feature class Individual attributes Parameters

Kirsch filters (4) X-direction –

Y-direction

XY-diagonal

YX-diagonal

Sobel filters (4) X-direction –

Y-direction

XY-diagonal

YX-diagonal

Directional filters (5) x-Gradient –

y-Gradient

Magnitude of gradient

Diagonal gradient (2)

First order statistical gray level (8) Mean Window size = 3 × 3, 5 × 5

Median

Standard deviation

Range

Haralick features (13) Contrast energy Window size = 3 × 3 distance between ci, cj = 1

Contrast inverse moment

Contrast average

Contrast variance

Contrast entropy

Intensity average

Intensity variance

Intensity entropy

Entropy

Energy

Correlation

Info. measure of correlation 1

Info. measure of correlation 2
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Table 4

Summary of different feature extraction and classifier techniques compared in this work against the SeSMiK-
GE classifier.

Index Feature extraction strategy CaP classifier PPMM High-grade CaP classifier

1. MRS classifier hMRS h̃MRS ĥMRS

2. T2w MRI classifier hT2 h̃T2 ĥT2

3. Classifier combination (COI) hIntD = hMRS × h T2 h̃IntD ĥIntD

4. Data combination (COD) classifier hInt = [hMRS, hT2] h̃Int ĥInt

5. SeSMiK-GE classifier hT2MRS h̃T2MRS ĥT2MRS

Med Image Anal. Author manuscript; available in PMC 2014 February 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tiwari et al. Page 39

Ta
bl

e 
5

T
ab

le
 s

ho
w

in
g 

th
e 

m
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
n 

of
 (

a)
 A

U
C

 
, a

nd
 (

b)
 a

cc
ur

ac
y 

 f
or

 C
aP

 d
et

ec
tio

n 
ac

ro
ss

 2
9 

st
ud

ie
s 

vi
a 

L
O

O
 a

nd
 3

-f
ol

d 
C

V

st
ra

te
gi

es
 f

or
 h

T
2 ,

 h
M

R
S ,

 h
In

t , 
hIn

tD
, h

T
2M

R
S ,

 a
nd

 h
̃T2

M
R

S .

C
V

 s
tr

at
eg

y

(a
)

L
O

O
0.

54
 ±

 0
.1

8
0.

61
 ±

 0
.2

0
0.

64
 ±

 0
.2

2
0.

62
 ±

 0
.0

7
0.

86
 ±

 0
.0

8
0.

89
 ±

 0
.0

7

3-
Fo

ld
0.

57
 ±

 0
.0

2
0.

76
 ±

 0
.0

1
0.

77
 ±

 0
.0

1
0.

64
 ±

 0
.0

1
0.

84
 ±

 0
.0

2
0.

85
 ±

 0
.0

4

(b
)

L
O

O
0.

58
 ±

 0
.2

0
0.

54
 ±

 0
.2

0
0.

61
 ±

 0
.1

8
0.

45
 ±

 0
.0

7
0.

70
 ±

 0
.1

6
0.

86
 ±

 0
.1

4

3-
Fo

ld
0.

58
 ±

 0
.0

1
0.

67
 ±

 0
.0

1
0.

66
 ±

 0
.0

2
0.

51
 ±

 0
.0

2
0.

72
 ±

 0
.0

6
0.

85
 ±

 0
.0

5

T
he

 b
ol

d 
va

lu
es

 c
or

re
sp

on
d 

to
 s

ig
ni

fi
ca

nt
ly

 h
ig

he
r 

A
U

C
 a

nd
 a

cc
ur

ac
y 

va
lu

es
 o

f 
Se

SM
iK

-G
E

 c
om

pa
re

d 
to

 th
e 

ot
he

r 
m

et
ho

ds
.

Med Image Anal. Author manuscript; available in PMC 2014 February 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tiwari et al. Page 40

Table 6

Table showing the p-values of statistical significance obtained using a pairwise Wilcoxon signed ranked test

across the two CV strategies (LOO and 3-fold) while comparing h̃T2, h̃MRS, h̃Int, h̃IntD, with h̃T2MRS for (a)
φAUC and (b) φAcc at d = 15.

CV strategy

(a)

LOO 1.87 × 10−5 0.001 0.005 2.8 × 10−6

3-Fold 1.4 × 10−7 1.4 × 10−7 1.4 × 10−7 1.4 × 10−7

(b)

LOO 1.87 × 10−4 6.09 × 10−4 8.8 × 10−4 4.17 × 10−5

3-Fold 2.02 × 10−7 2.09 × 10−4 2.09 × 10−4 1.47 × 10−7
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Table 8

Table showing the p-values of statistical significance using a pairwise Wilcoxon signed test across the two CV
strategies (LOO and 3-fold) while comparing ĥT2, ĥMRS, ĥInt, ĥIntD, with ĥT2MRS for φAUC for d = 15.

CV
Strategy

LOO 2.3 × 104 0.001 0.002 3.8 × 104

3-Fold 1 × 104 0.001 0.001 2.1 × 104
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