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Abstract
In settings where high-level inferences are made based on registered image data, the registration
uncertainty can contain important information. In this article, we propose a Bayesian non-rigid
registration framework where conventional dissimilarity and regularization energies can be
included in the likelihood and the prior distribution on deformations respectively through the use
of Boltzmann’s distribution. The posterior distribution is characterized using Markov Chain
Monte Carlo (MCMC) methods with the effect of the Boltzmann temperature hyper-parameters
marginalized under broad uninformative hyper-prior distributions. The MCMC chain permits
estimation of the most likely deformation as well as the associated uncertainty. On synthetic
examples, we demonstrate the ability of the method to identify the maximum a posteriori estimate
and the associated posterior uncertainty, and demonstrate that the posterior distribution can be
non-Gaussian. Additionally, results from registering clinical data acquired during neurosurgery for
resection of brain tumor are provided; we compare the method to single transformation results
from a deterministic optimizer and introduce methods that summarize the high-dimensional
uncertainty. At the site of resection, the registration uncertainty increases and the marginal
distribution on deformations is shown to be multi-modal.
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1. Introduction
The vast majority of non-rigid registration methods only report a single transformation (i.e. a
point-estimate) result without any estimate of the registration uncertainty, which could
provide valuable information whenever important clinical decisions, or high-level analysis,
are based on registered data. Various factors such as the ill-posed nature of non-rigid
registration, the stochastic nature of the images, the large variability of anatomy, the
presence of homogeneous intensity regions, and imaging artifacts like distortion and bias-
field, may negatively affect the registration uncertainty. Despite this, state-of-the-art

© 2013 Elsevier B.V. All rights reserved.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Med Image Anal. Author manuscript; available in PMC 2014 July 01.

Published in final edited form as:
Med Image Anal. 2013 July ; 17(5): 538–555. doi:10.1016/j.media.2013.03.002.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



registration methods are typically evaluated on a limited set of representative images
through estimation of the alignment error of sparse homologous landmarks, or regions,
based a single registration result. Suppose a new dataset, with new pathology or image
artifacts that are not represented in the evaluation dataset, was to be registered – then it
cannot be assumed that the resulting deformation point-estimate will carry the same
accuracy as the previous evaluation results would indicate. If the registration result was
associated with some uncertainty measure, or confidence limits, it could be possible to
detect that the method had difficulty in finding a proper alignment of the images in certain
locations, and the surgical risk involved with making decisions based on the registered data
could be evaluated. It should be noted that a highly uncertain (low precision) registration
result does not necessarily mean that the result is also inaccurate and vice versa, so
systematic errors (bias) of the registration model should be evaluated before placing trust in
precise registration results.

In image-guided neurosurgery, where surgeons assess the operative risk based on registered
image data, misplaced confidence in registration results may have severe consequences.
Important functional areas of the brain are commonly defined from pre-operative studies. If
these eloquent areas are located adjacent to a tumor, it is critical that their locations are
mapped as precisely as possible to the intra-operative scans. Factors such as resection of
tissue, degraded intra-operative image quality, or blood and edema around a tumor, may all
contribute to an increase in registration uncertainty and/or decrease of registration accuracy,
especially in the vicinity of the surgical field, precisely where accuracy is most essential. For
a neurosurgeon, whose goal is to maximize the resection of tumor tissue while preserving
eloquent areas, information of the uncertainty in the location of the functional areas in
relation to the tumor is just as important as the optimal estimate.

Current image guided navigation systems use rigid registration to map between the pre- and
intra-operative space (Shamir et al., 2009; Gumprecht et al., 1999), and researchers have
focused on estimating the distribution of errors in rigid registration, especially in fiducial-
based registration where a set of homologous points are used to drive the rigid transform that
aligns the two spaces (Maurer et al., 1997). It is generally known that the Fiducial
Registration Error (FRE) is a poor predictor of real registration error (Danilchenko and
Fitzpatrick, 2011). Hence, recent works have focused on characterizing the distribution of
the Target Registration Error (TRE), i.e. the distance between homologous points other than
the fiducials used in the FRE, after registration (Danilchenko and Fitzpatrick, 2011; Seginer,
2011). An extension to the standard rigid fiducial registration algorithm was presented by
Pennec and Thirion (1997) where, given a set of matched geometric features in the form of
points or frames, they estimate a rigid motion as well as the covariance matrix which is
compatible with the matched points. Another well known method, the Iterative Closest Point
(ICP) algorithm, which does not assume point homology, has been extended to include point
uncertainties (Maier-Hein et al., 2012; Fieten et al., 2010).

In rigid intensity-based registration, Kybic (2008) assumed normally distributed registration
(translation) parameters and used the Hessian of the similarity criterion to compute
confidence intervals of the registration parameters. Robinson and Milanfar (2004) used the
Cramèr-Rao bounds to find a lower bound on the covariance of the parameters in a 2D-
translational registration. Bansal et al. (2009) introduced a framework for quantifying errors
in registration by computing the confidence intervals of the estimated parameters
(translation, rotation and scale) for the similarity transform. They show that the parameters
are multi-variate normally distributed and use the covariance matrix to compute the
confidence interval of the transformation parameters.
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Rigid registration cannot account for the general motion of brain tissue that occurs during
neurosurgery which has spurred interest in non-rigid registration methods. However, few
authors have attempted to quantify the full uncertainty of the estimates produced by non-
rigid registration methods. Hub et al. (2009) developed a heuristic method for quantifying
uncertainty in B-spline image registration by perturbing the B-spline control points and
analyzing the effect on the similarity criterion. A statistical approach was presented by
Kybic (2010) who considered images to be random processes and proposed a bootstrapping
method to compute statistics on registration parameters. However, their method was only
demonstrated on 2D datasets with low-dimensional transformation models. Gee et al. (1994,
1995a) described a Bayesian approach using a prior based on linear elasticity to regularize
the problem. By using local quadratic approximations of the likelihood term, they
constructed a Gibbs sampler to estimate the posterior mean (Gee et al., 1995a), while a
deterministic method was used to estimate the posterior mode (Gee et al., 1994). They
reported results of estimating transformation parameter variance for the case of 2D
registrations. Another fast Bayesian approach for approximating the posterior uncertainty on
registration parameters using variational Bayes was introduced by Simpson et al. (2012)
where an approximate posterior distribution on the registration and hyper-parameters is
estimated based on a set of simple parametric distributions and has shown to be useful in
classification (Simpson et al., 2011a) and segmentation propagation tasks (Simpson et al.,
2011b).

In Bayesian inference, typical approaches to finding the maximum a posteriori (MAP)
estimate of non-parametric distributions involve some form of local gradient based
maximization of the log posterior. Unfortunately, there are usually no guarantees that the
optimization method finds the global maximum, nor are “error-bars” or credible intervals of
the MAP results usually provided. Because the posterior distribution is non-parametric, and
assumed to have heavy tails and possibly be multi-modal, Markov Chain Monte Carlo
(MCMC) is the most principled approach to infer posterior estimates, including the
uncertainty (Gelman et al., 2003). MCMC numerically approximates the posterior
distribution by a set of posterior samples. While it asymptotically characterizes the entire
posterior distribution, a large number of samples may be needed to characterize the posterior
to the needed accuracy, and MCMC methods are consequently compromised by a high
computational burden. As a result, few applications of MCMC have been reported in
medical image analysis. Recently, Smal et al. (2012) applied MCMC for motion analysis of
tagged magnetic resonance images. For segmentation purposes, Fan et al. (2007) used an
MCMC method for sampling curves from the exponentiated negative segmentation energy
and showed how to summarize posterior marginal distributions in terms of marginal
probability maps. An extension of that work was presented in Chang and Fisher (2011)
where they sample level sets instead of curves, which facilitates topology changes. MCMC
has been widely used in functional Magnetic Resonance Imaging (fMRI) analysis (Woolrich
et al., 2006; de Pasquale et al., 2008) and Diffusion Tensor Imaging (DTI) (Behrens et al.,
2003; McNab et al., 2009).

The posterior distribution over deformations is a highly informative high-dimensional
spatially varying object with local correlations. In this article, we introduce a Bayesian non-
rigid registration framework where the posterior distribution on deformation parameters is
characterized by MCMC. Although posterior approximations through, for instance,
variational Bayes may provide fast estimates of the posterior, it is not known how well they
approximate the unknown shape of the posterior distribution. Even though MCMC comes at
a hefty computational price, and consequently may not be directly applicable in many
clinical applications today, the insights gained into the complexities of the posterior
distribution can be used to guide construction of new and fast posterior approximations and
help point the way for designing future clinical systems that puts clinically relevant error-
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bars on registration results to reduce surgical risk. The framework allows for any traditional
dissimilarity and regularization energy to be included in the likelihood and prior distribution
respectively using Boltzmann’s distribution. We note that other authors have derived prior
probability distributions on deformations from regularization energies using Gibbs
distribution (e.g. Gee and Bajcsy (1999) and Papademetris et al. (2001)) which is closely
related to Boltzmann’s distribution.

We demonstrate the method with a Sum of Squared Differences (SSD) based likelihood,
where the Boltzmann temperature models the image noise variance. The prior model over
deformations is based on a linear elastic bio-mechanical model which, together with
Boltzmann’s distribution, implements a phenomenological approach to regularization where
the Boltzmann temperature modulates the inverse stiffness of the tissue material. Higher
temperatures (lower stiffness) facilitate more radical changes to the tissue configuration,
while lower temperatures (higher stiffness) prevent large non-smooth deformations.
Consequently, one major concern is the effect of model hyper-parameters, in our case the
mechanical properties of the tissue and the variance of the image noise, on the registration
results. The hyper-parameters are typically specified manually on an ad-hoc basis because it
is difficult to find appropriate point-estimates for them. In the context of prostate registration
(Risholm et al., 2012), we have shown that the posterior distribution is highly sensitive to
the particular value of these hyper-parameters. If training data is available, e.g. in the form
of homologous structures or landmarks, the hyper-parameters can be estimated. Examples of
this in registration are e.g. in a classic machine learning framework for model selection
through optimization of the cross-validation error (Yeo et al., 2010), or by maximum-
likelihood estimation (Risholm et al., 2012). However, if no such data is available, the
standard way of treating the uncertainty in hyper-parameter values in a Bayesian framework
is by equipping them with uninformative hyper-prior distributions and marginalizing them
out from the final registration estimates. Another advantage of marginalization of broad
hyper-parameters is that the likelihood and prior can, when appropriate, become heavy
tailed. Assuming they were modeled with Gaussian distributions, then the marginalized
distribution can be viewed as a mixture of Gaussian distributions with varying variance, and
such distributions are well equipped for handling outliers. Working with the posterior
distribution under marginalized hyper-parameters is complex and computationally expensive
and may necessitate fast approximations such as variational Bayes (Simpson et al., 2012).
By using a system of sequential local Laplace approximations, we show how to marginalize
model hyper-parameters representing image noise and tissue stiffness over broad
uninformative log-normal hyper-priors (Janoos et al., 2012).

While a lot of research has gone into finding ways of reducing high-dimensional uncertainty
information into simple local low-dimensional objects that can be easily visualized
(Spiegelhalter et al., 2011), limited work has been reported on posterior uncertainty
visualization in medical applications; including visualization of uncertainty in image guided
needle insertions (Simpson et al., 2006), uncertainty in radiation dose control in radiation
oncology (McCormick et al., 2004), determining uncertainty in white matter fiber
orientation of diffusion tensors (Jones, 2003) and visualization of the local registration
variance characterized by variational Bayes (Simpson et al., 2011a) or Gibbs sampling (Gee
et al., 1995a). Gee and Bajcsy (1999) also showed how to derive Bayesian credible intervals
about deformed point estimates from the posterior variance. While the main focus of this
paper is non-parametric estimation of the posterior distribution over deformations, we also
show techniques to extract simple and robust low-dimensional posterior summaries, such as
the joint mode and the registration uncertainty, and show the importance of such summaries
in the realm of neurosurgery.
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2. Methods
Consider two images m : Ωm → ℝ and f : Ωf → ℝ, where we want to align the moving
image m(x), x ∈ Ωm, with a fixed image f (x), x ∈ Ωf, where Ωf, Ωm ⊂ ℝd are the domains of
the d-dimensional fixed and moving images respectively. The usual aim of non-rigid
registration (Crum et al., 2004) is to find a high-dimensional displacement field u(x) : x ∈ Ωf
↦ u(x) + x ∈ Ωm that minimizes an energy function composed of an image dissimilarity
measure Es(u; f, m) and a regularization term Er(u) on the displacements. Although this
framework does not depend on the specific form of the dissimilarity energy, regularization
energy or transformation model, for clarity and computational tractability, we restrict
discussion in this paper to the Sum of Squared Differences (SSD) dissimilarity measure, a
linear elastic regularization model and a Finite Element (FE) based transformation model.

FE-modeling (Zienkiewicz and Taylor, 2000; Bro-nielsen, 1998) is a popular method for
solving bio-mechanical problems and has shown great potential in modeling tissue
deformations (Miller et al., 2010). Here, the non-rigid transformation is effected through
deformations of the FE mesh, which implements the bio-mechanical model based on tissue
stiffness. Furthermore, it provides machinery to rapidly compute the energy functionals Es
and Er as well as interpolating the displacement u(x) at inter-vertex positions. The FE
method is described further in Appendix A.

We start by describing the Bayesian formulation of the registration problem in Section 2.1.
This is followed by a description of the estimation of the posterior distribution by way of
MCMC in Section 2.2, and the hyper-parameter marginalization using local Laplace
approximations is described in Section 2.2.3. Finally, in Section 2.3, an algorithm for
efficiently finding the mode of the posterior deformation samples is presented.

2.1. Bayesian Non-Rigid Registration Framework
In our Bayesian setting, depicted by the hierarchical graphical model in Fig. 1, the fixed and
moving images, f and m respectively, are treated as random variables and are assumed to be
generated by a model m = f ∘ u + ε that introduces both noise ε and displacement u in the
image generation process, where displacement is also treated as a random variable with an
associated probability measure. The likelihood, p(m | u, τs, f), expresses the probability of
observing the moving image, given a deformation u, under the noise model parameterized
by τs. The prior p(u | τr) contributes additional information to regularize the ill-posed
maximum likelihood problem where τr controls the spatial regularization. With accurate
point-estimates for the hyper-parameters  ≜ {τr, τs}, they can be modeled with delta
distributions, or alternatively with maximum entropy distributions. In this paper we model
them with log-normal distributions p(τr | λr, μr) and p(τs | λs, μs), where Γ ≜ {μr, λr, μs,
λs} are the log-normal hyper-prior parameters.

As can be seen from the graphical illustration of the model in Fig. 1, the joint distribution
can be factorized as follows (omitting the hyper-prior parameters Γ):

(1)

By Bayes’ theorem, the posterior distribution on deformation and hyperparameters  ≜ {τr,
τs} can be written as:

(2)
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Assuming the dissimilarity and regularization energies (Es and Er respectively) as the
sufficient statistics of the posterior p(u | , m, f), then the Boltzmann’s distribution obtained
from these energies has maximum entropy that satisfies this sufficiency property. Modeled
with Boltzmann’s distribution, the likelihood with a SSD energy functional is now
equivalent to a voxel-based i.i.d. Gaussian noise model with zero mean and variance τs. As a
precursor to registration, images are often smoothed, which introduces local correlation in
the noise and the i.i.d. assumption is theoretically violated. One approach to model such
noise correlation is to decimate the data, or through the inclusion of a virtual decimation
factor in the likelihood as proposed by Groves et al. (2011). This approach is especially
important if the main goal is to infer correct values for hyper-parameters, e.g. noise and
regularization/stiffness parameters (Simpson et al., 2012). However, as we will discuss in
Section 4, the (in)validity of the i.i.d. assumption is not a problem in practice.

The linear elastic energy discretized by the FE-method in Appendix A takes the form of
Eqn. (A.3) which is quadratic in the displacement, and the prior distribution takes a form
similar to a multi-variate normal with the stiffness matrix serving the role of a sparsely
banded (and singular) precision matrix. It should be noted that regularizers typically used in
non-rigid registration are designed so as to not penalize rigid transformations such as
rotations and/or translations. This implies invariance of the regularization energy under all
deformations equivalent up to a rigid transform. Therefore, as the regularization term has a
non-negligible kernel, the prior obtained in this manner is improper, i.e. does not have finite
measure on the domain ℝD, where D is the dimensionality of u. In the elastic energy model
of the FE-method used here, which is only translation, and not rotation invariant, the
stiffness matrix K (see Eqn. (A.3)) is positive semi-definite and yields an improper prior on
ℝD. However, in this case, when combined with the likelihood term and considering
boundary constraints on the feasible values of the deformation (yielding a compact domain),
this technicality does not pose any problems.

With fixed values of the temperature hyper-parameters (HPs) , the posterior distribution on
the displacement field takes the following form:

(3)

and Dom(u) denotes the domain of the transformation u. The computation of the posterior
for a given pair of images is complicated not only by the need to estimate the partition
function Z( ), but also by the sensitivity of the shape of the posterior distribution on the
specific value of the temperatures, viz. τs which controls the image noise model and τr
which determines the tissue stiffness. While the ratio of these HPs affects the location of the
mode, which is important in optimization-based (i.e. maximum a posteriori (MAP))
registration, the absolute value of each HP affects the spread and skew of the posterior
distribution and also, in case of multiple modes, the relative weighting of the modes. The
Bayesian approach encourages marginalizing out these HPs as nuisance variables under an
appropriate hyper-prior. Assuming a finite range in the orders of magnitude for τr and τs, i.e.

 and , the temperatures are equipped with maximum entropy

prior distributions:  and . Then the complete probability
model is:

(4)
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The posterior distribution with hyper-parameters marginalized out is:

(5)

The marginalization in combination with the likelihood defined as a function of arbitrary
and possibly non-smooth images, obviates any meaningful parametric approximation of this
distribution and necessitates non-parametric analysis or approximations.

2.2. Posterior Estimation through MCMC Simulation
2.2.1. Metropolis-Hastings—One method to characterize the posterior distribution p(u |
m, f, Γ) with HPs marginalized (see Eqn. (5)) is to perform Metropolis Hastings (MH)
sampling (Gelman et al., 2003) from the joint distribution on displacement and temperatures
p(u,  | m, f, Γ) (see Eqn. (4)) and discard the temperature values, effectively marginalizing
them out. With ω ≜ {u, }, the MH algorithm starts from an initial sample ω0 and generates
a proposal sample, ω′ at iteration n + 1 from a simple proposal distribution which only
depends on the previous sample ω′ ~ π(ω | ωn). The proposal sample ω′ is accepted (i.e.
ωn+1 = ω′) or rejected (i.e. ωn+1 = ωn) with acceptance probability:

(6)

Because MH-MCMC has no parametric assumptions about the posterior distribution, and
does not require the computation of gradients, it is general in terms of the types of likelihood
functions and prior distributions that can be used. If the posterior distribution includes non-
linear constraints, e.g. prevention of folding of the FE-mesh or movement of the mesh into
image regions such as the skull, the proposal sample should be checked before computing
the MH-criterion. If the constraints are violated, a new sample should be drawn.

With constant values of the temperature HPs, the partition function cancels in the MH
criterion in Eqn. (6). However, when also sampling over temperatures , it becomes
necessary to estimate the partition function ratio Z( )/Z( ) in the MH criterion. Partition
ratios are often estimated with an importance sampler (Bishop, 2006), and in our case that
would entail generating representative importance samples of u that cover the parameter
space by running the MH sampler at high temperature values. The drawback of this method
is that it requires a very long MCMC chain to generate importance samples to ensure low
bias and variance in the estimates of the partition function. In Section 2.2.3, we describe an
alternative approach where deformations are sampled directly from the posterior distribution
with hyper-parameters marginalized out using Laplace approximations.

2.2.2. Proposal Distribution—The acceptance and convergence rate of the MH sampler
is dependent on the size and shape of the proposal distribution (Gelman et al., 2003). It is
clear that the most effective proposal distribution would be the posterior distribution itself.
However, with limited information available regarding the posterior, the typical choice of
proposal distribution is a normal distribution because it can be efficiently sampled from, and
because of its symmetry, the proposal distributions cancel out in the MH-criterion in Eqn.
(6).

Displacement proposals u′ are sampled from a multi-variate normal centered on the
previous displacement un:
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(7)

If little was known about the posterior, a diagonal proposal covariance would be most
suitable, but convergence would be slow. However, since the transformation of neighboring
FE-vertices is correlated, enforcing a neighborhood structure on the correlation matrix Σ of
the proposal distribution improves performance. The proposal correlation is set to Σij =
exp(− (vi, vj)/ρ), where  is the distance between FE-vertices i and j and ρ is a constant. If
a proposal sample causes folding of the deformation field, the sample is discarded and a new
sample is drawn. Performance of MH sampling is characterized by the proportion of jumps

that are accepted. Suppose that the proposal kernel  has the same shape as the posterior
distribution, then it is known that the optimal jumping rule has acceptance rate around 23%
in high dimensions (Gelman et al., 2003). In our simulations, the acceptance rate is tuned

automatically to be approximately 23% by adjusting the proposal variance .

2.2.3. Hyper-Parameter Marginalization—Although the hyper-prior is log-normal, the
shape of the posterior distribution on temperatures is unknown. Consequently, if we were to
sample temperatures, a standard choice for proposal distribution would be a univariate
normal, or possibly a log-normal, centered on the previously accepted temperature.
However, instead of sampling from the joint posterior on displacement and temperatures,

which requires complicated tuning of three proposal scale parameters (  and two variances
for the temperature proposal distributions) as well as partition ratio estimates via MCMC
integration, we use the approach presented in Janoos et al. (2012) where hyper-parameters
(HP) are marginalized using local Laplace approximations of the hyper-parameter
posteriors. The problem of sampling from the posterior distribution of the registration
parameters with HPs marginalized out is formulated in the variational free-energy
framework, where the variational density turns out to be equivalent to the Laplace
approximation of the HP posterior. Estimating the mode of the HP posterior requires
derivatives of the partition function of the deformation parameter posterior, which are in
turn quickly estimated using a local Laplace approximation. By applying Laplace’s
approximation locally during the intermediate steps of marginalizing out the HPs, the effect
of this inaccuracy on the posterior density of the deformation parameter is restricted (Friston
et al., 2007). A detailed description of the marginalization procedure is included in
Appendix B. The MCMC scheme for sampling deformation parameters u from the posterior
distribution in Eqn. (4) with Laplace marginalization of hyper-parameters is summarized in
Algorithm 1.

2.3. Posterior Estimates
With a collection of samples {us}s=1,…,S characterizing the posterior distribution in Eqn. (5),
statistics such as the MAP estimate of the deformation, its uncertainty and the uncertainty in
the deformations at individual FE-vertices can be extracted, as explained next.

2.3.1. Posterior Modes—If the deformations are sampled from a distribution with fixed
hyper-parameters, the joint mode on deformations can easily be found by selecting the
sample with the highest un-normalized log posterior probability according to Eqn. (3).
However, when marginalizing hyper-parameters the value of the partition function is
required to calculate individual posterior log probabilities. A more tractable approach in this
case is to use the density defined by the samples along with a non-parametric mode finding
method such as mean-shift (Cheng, 1995).
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Because the high-dimensional probability space is only sparsely sampled, the kernel density
estimation for mean-shift, when directly applied on the joint distribution of deformations, is
poorly conditioned. However, the Markov structure of the FE-mesh allows a factorization of
the joint distribution on deformations into a product of low-dimensional conditional
distributions on which the mean-shift procedure is well posed. Consider the 2-D example in
Fig. 2 for illustrative purposes. Furthermore, assume a set of samples {us}s=1,…,S are given,

where  are the deformations of a triangular FE-mesh with four 2-D
vertices and two triangular elements  = {a, b, c} and  = {b, d, c}. The joint posterior
distribution on deformations can then be factorized as:

(8)

For high-dimensional joint distributions, the dimensionality of the factorized distributions is
dependent on the mesh topology and in the worst case equals the number of vertices in the
Markov blanket of the vertex with the highest valency. In general, the vertices are ordered
according to valency and the vertex with the lowest valency is factorized first. Defining the
vector ubc ≜ [0, ub, uc, 0] and similarly for uabc and ubcd, then the mean-shift procedure on
the joint log-posterior in Eqn. (8) factorizes according to δ(u) = δ(uabc)+ δ(ubcd) − δ(ubc)

where  is the mean-shift operator and K is a radial basis function (typically a
Gaussian kernel). The mean-shift estimation sets u ← δ(u) and continues until convergence.

2.3.2. Marginal Posterior Distributions—The marginal posterior distribution of a
deformation component ui is defined by (where Dom(u/i) denotes the domain of all
components except the i-th):

(9)

i.e. the probability distribution of the movement of one FE vertex along one axis in the
deformation field. In a sampling framework, the posterior samples of this particular
deformation component characterizes the marginal distribution. Posterior marginal modes
can easily be found with the mean shift method on the samples from the specific
deformation component. The deformation estimates should fall within a certain confidence
interval which can be robustly conveyed by e.g. the Inter-Quartile Range (IQR). As the IQR
and displacements are only defined at FE vertices, we use linear FE-based interpolation to
determine them at inter-vertex locations.

3. Results
The proposed method for characterizing the posterior distribution over deformations was
evaluated on both synthetic and clinical image data. In Section 3.1 the method is evaluated
on a synthetic dataset with a non-convex likelihood and known ground-truth deformation,
while Section 3.2 demonstrates the feasibility of registering clinical Magnetic Resonance
(MR) images acquired during neurosurgery for tumor resection. All clinical data was used
with informed consent under an institutional review board approved protocol.

To evaluate the MAP mode estimated with the mean-shift method described in Section
2.3.1, the posterior mode of Eqn. (2) was also estimated with a global non-linear
optimization procedure implemented in C++ and NLopt (Johnson, 2012). The global
stochastic optimizer, a Multi-Level Single-Linkage (MLSL) algorithm (Rinnooy Kan and
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Timmer, 1987), was coupled with a local gradient-based Method of Moving Asymptotes
(MMA) (Svanberg, 2002), and non-linear constraints to prevent flipping of tetrahedra
(positive deformation Jacobian over the element) were included through an augmented
Lagrangian method which adds a penalty to the objective function for any violated
constraints. After characterizing the posterior distribution with Algorithm 1 on a given
dataset, the deterministic optimizer was run with the temperatures fixed to the mean of the
temperatures marginalized through Laplace approximations.

All algorithms were implemented in C++ with extensive use of OpenMP® for parallelization
whenever feasible, and the experiments were run on Linux machines with 2 × 6-core Intel
Xeon™ 2.67GHz CPUs, 12GB DDR-3 RAM.

For all experiments, the material parameters of the linear elastic regularizer were initialized
with a Young’s modulus of E = 1.0 and Poisson’s ratio of ν = 0.49. Because the elastic
model is used as a regularizer, as opposed to a pure mechanical description of the
deformation determined from boundary conditions and external forces, the Young’s
modulus is unitless and only relative stiffness can be prescribed. Every drawn proposal
sample that caused folding of the FE-mesh was rejected.

3.1. Synthetic Experiment
This section evaluates and provides insights into the complex posterior distribution using the
synthetic dataset of Fig. 3 which simulates a typical deformation seen during neurosurgical
procedures. A synthetic deformation field was created with a thin-plate spline deformation
model (Bookstein, 1989) simulating brain shift with an approximately 12mm collapse of the
brain surface towards the mid-brain. To make the problem even more challenging, a
sinusoidal component was added to the deformation in the x- and y- directions with
magnitude 6mm and 4mm and wavelength w/2 and w/4 respectively, where w is the image
width. A clinical T1 MR-image of size 256×256×88 and 1.0×1.0×2.0mm3 voxel size
acquired prior to neurosurgery was deformed by the simulated deformation field to obtain a
synthetic proxy for an intra-operative image. Image intensities were normalized to the range
[0, 1] and Gaussian noise with mean μ = 0 and variance σ2 = 0.06 was added to the intra-
operative image.

The reference image was skull stripped using Brain Extraction Tool (BET) (Smith, 2002) to
create an approximate label-map of the brain tissue, which was then used to build the FE-
mesh with V = 317 vertices and E = 1177 tetrahedra using the Computational Geometry
Algorithms Library (CGAL) (CGAL, 2008). The minimum and maximum element volumes
were 340mm3 and 2430mm3 respectively, while the total mesh volume was 1530cm3. From
the simulated deformation field, the ground truth deformation of the vertices was available,
with maximum absolute deformation of [11.5, 10.9, 3.4]mm and mean absolute deformation
of [4.0, 2.6, 2.0]mm.

Broad log-normal hyper-priors model the temperature parameters (λr = 1/100, μr = ln(100),
λs = 1/200, μs = ln(0.01)), and the proposal covariance matrix was constructed with ρ = 100.

The scale of the proposal distribution  was tuned to achieve an acceptance rate of
approximately 23% as described in Section 2.2.2.

3.1.1. Convergence—The MCMC sampler was evaluated with the Geweke time-series
criterion (Geweke, 1991) to test the intra-chain convergence using long MCMC chains from
instances of the sampler initialized at dispersed starting points. Inter-chain convergence was
also evaluated with the potential scale reduction criterion (Gelman et al., 2003). The
Geweke time-series approach (Geweke, 1991) applies a two-sided z test for convergence by
comparing the mean of the first half of the chain with the mean of a certain number of sub-
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chains from the second half of the chain. The scale reduction criterion uses a one-sided
variance ratio test to check whether a set of parallel chains have converged to the same
target distribution, where a large potential scale reduction indicates a lack of convergence.

We used three parallel samplers initialized within approximately 4mm in all dimensions
around the ground truth and 5·106 samples were generated in each chain. After discarding
the initial 20% of the samples for chain burn-in followed by thinning with a factor of 20, 2 ·
105 samples were retained. At a sampling rate of approximately 30 samples per second, the
total running time for a single chain was approximately 46 hours. Figure 4 shows intra-chain
convergence evaluated with the Geweke criterion for each chain. The chains are seen to
have converged with the majority of the z-scores within two standard errors of the mean.
However, with low Markov chain mixing time (Gelman et al., 2003), the chains may be
stuck in different regions of the probability space. The inter-chain convergence through the
potential scale reduction measures the amount to which different instances of the sampler
have converged to the same equilibrium distribution, which is confirmed by the results in
Fig. 5. Following convergence evaluation, the samples were then pooled together for a total
of 6 · 105 samples, which were used in the next set of results.

3.1.2. Posterior Estimates—Figures 6(a)-6(b) plots the distribution of the marginalized
temperatures under the log-normal hyper-priors.

The mode of the joint distribution was estimated with the mean-shift method described in
Section 2.3.1, and the results compared with the ground truth and the results from the MAP
estimate of the deterministic optimizer (with temperatures fixed to the mean of the
marginalized temperatures, i.e. τr = 1174 and τs = 0.19). From Fig. 7, it can be seen that the
estimated posterior mode is highly concordant with that found by the optimizer, and has a
maximum and mean absolute error in each of the three dimensions with respect to the
ground truth deformation of [2.4, 1.9, 1.6]mm and [0.3, 0.2, 0.3]mm respectively. Table 1
summarizes the registration results. The marginal distribution of the component with the
maximal error (2.4mm) is shown in Fig. 8(a) with the joint mode and true displacement
overlaid. The reason for the misalignment may be due to the regularizer, which introduces a
bias in the registration changing the location of the MAP estimate away from the ground
truth. We also found that at the mode, 80 out of 951 deformation components fell outside the
± IQR/2 range of the ground truth values as shown in Fig. 7(c), while 2/951 fell outside the
95% interval. Hence, in this case the ground truth deformation falls inside the distribution
prescribed by the IQR with (951 - 80)/951 ≈ 92% certainty. The marginal distribution for
the component with the highest IQR (5.0mm) is shown in Fig. 8(b) while the distribution of
IQRs is shown in Fig. 8(c).

3.1.3. Hyper-parameter Sensitivity—To explore the sensitivity of the posterior
distribution to the hyper-parameters, we ran the MCMC sampler with a set of fixed HPs and
compared the resulting posterior modes with the ground truth and the posterior summaries
from the posterior with marginalized HPs. We selected four sets of fixed HPs based on over-
dispersed values from the distribution of marginalized temperatures shown in Fig. 6. The
specific temperature values and the resulting deviation from the ground truth is summarized
in Table 2. It is clear that modeling HPs with point-estimates when having little information
regarding the correct value of these HPs can negatively affect the posterior distribution. In
our case, the posterior mode has a maximum error of 8.56mm when using dispersed point-
estimate HPs compared to 2.41mm when marginalizing HPs (see Table 1).

3.1.4. Normality of Posterior Distribution over Deformations—To investigate the
deviation from normality of the marginal distributions, Fig. 9 plots the marginal distribution
of the components with the highest/lowest kurtosis and skewness estimates. A sufficient
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condition to show non-normality of the posterior distribution is to show that one of the
posterior marginal distributions deviates from normality. The plots indicate that the marginal
distributions have a bias for leptokurtic distributions, i.e. a distribution with a heavy tail.
Mardia’s test (Mardia, 1970), which uses skewness and kurtosis statistics to test for multi-
normality, further confirms that the posterior distribution does not pass the test for
multivariate skewness nor kurtosis under a 5% significance level.

3.2. Clinical Experiments
The clinical experiments were carried out on a neurosurgical MR-dataset acquired on a
Siemens Magnetom Verio 3T MR machine in the Advanced Multi-modal Imaging and
Guidance Operating (AMIGO) suite at Brigham and Women’s hospital. A pre-operative T2
Fast Spin Echo MR image of size 512×512×100 and resolution 0.5×0.5×1.5mm3 was
acquired prior to surgery. After resection, an intra-operative T2 BLADE MR image of size
320×320×33 with resolution 0.6×0.6×5.0mm3 was acquired. Because of brain-shift and the
missing tissue due to the resection, large tissue movements are observed around the
resection site. Corresponding slices of the dataset can be seen in Fig. 10.

BET was used to skull-strip the pre-operative image, and the corresponding label-map
defining the brain-tissue was used to construct a FE-mesh (V = 858 vertices and E = 3791
tetrahedra) which discretizes the image domain covering the brain. The minimum and
maximum element volumes were 140mm3 and 660mm3 respectively while the total element
volume was 1554cm3.

Both the pre-and intra-operative images went through a number of preprocessing stages: 1)
the image intensities were normalized through histogram matching, 2) normalization of the
intensities to the interval [0, 1], 3) subsampling the pre-operative image by a factor of 2 in
all dimensions to reduce the data size, and 4) Gaussian smoothing with variance 2mm2.

To assess MCMC chain convergence, three MCMC parallel chains were generated from
dispersed starting points (±4mm in each dimension) around u = 0. Each chain used identical
parameters with the log-normal hyper-prior parameters set to λr = 1/20, μr = ln(100), λs =
1/200, μs = ln(0.01). This represents nearly identical hyper-prior parameters as used in the
synthetic experiments, with the exception of an increased precision (λr) of the regularization
hyper-prior to incorporate the a-priori knowledge that deformations observed in the clinical
case require more regularization due to missing correspondences due to resection and
manipulation of tissue during the procedure. The proposal covariance was constructed with

ρ = 100, and the proposal scale was tuned to  to ensure an acceptance rate of
approximately 23%. A total number of 5 · 106 samples were generated for each chain, the
first 1 · 106 samples were thrown away as burn-in samples and the rest of the samples were
thinned out with a factor of 20. With a sampling rate of 27 samples per second, the total
simulation time was approximately 50 hours. The chains were found to have converged
because 99.5% of the Geweke z-scores were within 2σ and the maximum scale reduction
was 1.1. The remaining samples from the three MCMC chains were pooled together for a
total of 6 · 105 samples that were used in the following set of results.

Figure 6(c)–6(d) shows histogram plots of the marginalized temperatures under the log-
normal hyper-priors using the method in Section 2.2.3. The MCMC posterior mode was
compared to the MAP estimate computed with the deterministic optimizer (with
temperatures fixed to the mean of the marginalized temperatures, i.e. τs = 1.59 and τr =
7528).

3.2.1. Posterior Summaries—Figure 9(f) shows a scatter plot of skewness vs. kurtosis
for the marginal distributions which are biased toward leptokurtic distributions. The
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minimum and maximum skewness was found to be −0.75 and 1.95, while the kurtosis was
in the range [−0.50, 6.64] with a median of 0.11. It is evident that the posterior distribution
is not normally distributed which is confirmed by Mardia’s test for multivariate normality
(Mardia, 1970) which rejects the null-hypothesis that the posterior distribution is multi-
variate normal under a 5% significance level, both with regards to kurtosis as well as
skewness. The non-normality of the posterior distribution is further emphasized by Fig. 11
where we show marginal distributions with multiple modes.

Table 3 summarizes the results in terms of the distance between the MAP estimate of the
deterministic optimizer, the joint mode of posterior deformation samples found with mean
shift, as well as the marginal posterior deformation modes found with mean shift. The
results indicate that the marginal modes have a maximum error of 1.85mm from the joint
mode, while the joint and optimizer modes match well with a maximum absolute distance of
0.45mm. The discrepancy between the marginal and joint mode is natural for high-
dimensional non-Gaussian distributions.

3.2.2. Clinically Relevant Posterior Summaries—In Risholm et al. (2010) we
introduced posterior predictive summaries for portraying the location of deformed DTI and
fMRI activated areas. Given S posterior deformation samples, a marginal posterior
distribution on whether a voxel in the intra-operative domain is inside or outside a functional
activated area is constructed by deforming the fMRI activated area with each of the S
deformation samples and counting how many times a voxel fell inside the deformed area.
Similarly, fiber tracts extracted from DTI are deformed with each of the S deformation
samples and a voxel visitation count volume is created by incrementing each voxel a
deformed fiber crosses. To highlight the clinical importance of characterizing deformation
uncertainty in neurosurgery, we compare a posterior predictive distribution of a motion
activated center as found by fMRI with residual tumor as delineated by a neurosurgeon in
Fig. 13. Notice that the posterior predictive distribution may provide important information
which can make it easier for the surgeon to minimize the surgical risk involved with
resecting more of the tumor.

In Fig. 11(a) we visualize the expected deformed pre-operative image with regards to the
posterior distribution. With a Gaussian posterior distribution, this posterior expected
deformed image could be constructed by first deforming the pre-operative image with the
MAP estimate followed by Gaussian smoothing with spatial variance according to the
registration uncertainty. However, since the posterior distribution is clearly not Gaussian, a
more accurate posterior expected image can be estimated according to

 which takes into account the skewness and leptokurticity of
the posterior distribution. In such a posterior expected image, areas of high uncertainty will
be relatively blurry compared to areas of high certainty. The posterior expected image shows
the resection area as more blurry compared to areas away from the resection. In the same
figure (Fig. 11) we show the corresponding spatial uncertainty in terms of the IQR, and it
can be seen that the uncertainty around the resection is considerably higher than in other
areas. To investigate this further we plot the marginal distributions for the x-, y- and z-
components of the FE vertex that is closest to the resection cavity and find that the marginal
distributions have a high spread (IQR) and are multi-modal.

In Fig. 12 we visualize the directional uncertainty in terms of the IQRs along the x-, y- and
z-directions. The IQRs indicate that the uncertainty is highest at the resection site, but also
high along the boundary of the mesh/brain which is caused by the reduced valence of the
boundary vertices. One approach to reduce the registration uncertainty along the boundary
of the mesh is to include suitable boundary conditions in the registration, e.g. to add an
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additional prior distribution which prevents boundary vertices from moving into the skull
extracted from the intra-operative image. In our framework, this can be implemented by
discarding proposal samples which move a boundary vertex into the skull.

4. Discussion
It has been our goal in this investigation to characterize the posterior distribution in some
intra-subject non-rigid registration problems. Our longer range goal is to provide uncertainty
information to clinical end-users, because we feel that it should be factored into decision
making or treatment optimization. For example, communicating the distributional
information in Fig. 13(c) gives the hypothetical end-user the option to discount the utility of
the registration information if the uncertainty in the result is too large; this opportunity is not
available if the MAP result, i.e. Fig. 13(b), is the only information about the registration
result that is provided.

A Bayesian non-rigid registration framework, that characterizes the posterior distribution on
deformations by MCMC, was presented. The likelihood and prior distribution on
deformations is constructed by converting dissimilarity and regularization energies into
probability density functions by way of Boltzmann’s distribution. Proper treatment of hyper-
parameters in registration, e.g. noise precision and the tissue parameters/regularization
weight, is an important but often neglected problem. Non-rigid registration is a highly
under-determined problem and therefore generally needs a prior (regularizer) to reduce the
solution space. The prior introduces a bias, but with a large reduction in uncertainty.
Decreasing the importance of the prior, e.g. by setting the prior temperature to a large value,
effectively makes the regularization negligible which increases the posterior uncertainty.
Even though registration results are sensitive to these parameters, they are in current practice
often set on an ad-hoc basis. One approach to determine hyper-parameters that are highly
informative for a specific clinical application is to learn them from a collection of
representative clinical datasets where homologous landmarks or structures are identified
(Risholm et al., 2012). However, in cases where such data is not available, and little
information is available regarding the optimal value of these parameters, the recommended
Bayesian approach to handle them is to equip them with uninformative hyper-priors and
marginalize them out. We formulated the posterior distribution over deformations, with the
log-normal hyper-parameters marginalized over, in a variational free-energy framework
where the variational density is the Laplace approximation of the hyper-parameter posterior.
A log-normal hyper-distribution was chosen because it provides very broad hyper-priors
(with variation over orders of magnitude), reflecting the uncertainty in the exact values of
the hyper-parameters. The hyper-prior ensures that while tissue- stiffness and image-noise
variance parameters are allowed to vary over a very wide range of values, they are kept
physically sensible by disallowing fantastically huge or small values. However, ideally, they
should be centered around some sensible values derived for instance through hyper-
parameter optimization using homologous landmarks/structures. The posterior estimation of
the prior temperature can be seen as an estimate of the homogeneous inverse stiffness of the
underlying tissue. In the future we plan to extend the current methodology to marginalize/
estimate compartment- or element-wise tissue stiffness.

Our experiments have shown that marginal posterior distributions on deformations may be
multi-modal – which does not imply that the complete posterior distribution is necessarily
multimodal. However, because we have shown that the marginal distributions are non-
Gaussian, and possibly multi-modal, we can claim that the posterior distribution is non-
Gaussian. While it may be surprising to some that the marginal distributions can have
multiple modes, our experience in image registration has been that registration systems can
become trapped in local extrema in the face of truncation or resection. Likelihood functions
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are complicated and highly non-convex functions of the transformation parameters; when
there is structural disagreement among images, the likelihood functions frequently exhibit
multiple modes that reflect spurious matches of image structures. Because of this, multiple
modes in posterior marginals, or even the complete posterior distribution, are a possibility.
Furthermore, increasing the degrees of freedom of the warp, which is similar to reducing the
smoothing in the objective function, seems unlikely to reduce the occurrence of multiple
modes in the posterior marginal; frequently it happens that increasing the degrees of
freedom leads to more extrema in optimization problems.

While the proposed MCMC method is a principled approach to Bayesian inference, and
provides a numerical approximation to the exact posterior distribution, it does come with
high computational cost which is not unreasonable in an exploratory investigation. Although
the computational cost may currently be too high for use in neurosurgery, it is
straightforward to apply the method to new applications; e.g. to monitor delivered dose in
adaptive radiotherapy where each fraction is delivered with approximately 24 hour intervals.
For other applications, the proposed methodology can provide valuable insights into
complex posterior distributions to help guide the design of faster methods that find simple
robust and accurate approximations to the complex posterior distribution. One example is
the variational Bayes approach taken by Simpson et al. (2012) which provides a fast exact
analytical solution to a parametric approximation to the posterior distribution that facilitates
high-dimensional registration. However, the effect of the approximation on the estimated
posterior statistics is unknown and may be significant because of the possibly multi-modal
and non-Gaussian posterior distribution. Parametric approximations of the posterior should
therefore be compared against the asymptotically correct posterior distribution that can be
generated by MCMC.

Another MCMC approach to registration, the Gibbs sampler proposed by (Gee et al.,
1995b,a), requires approximations of the likelihood function. By using MH, such likelihood
approximations are not required and the proposed method is consequently more general in
terms of the dissimilarity energies that can readily be used. On the other hand, Gibbs
sampling should in theory converge quicker on the posterior distribution because every
sample is accepted. The proposed marginalization over hyper-parameters using local
Laplace approximations can readily be incorporated with the Gibbs sampler proposed by
Gee et al. (1995b,a).

The sampling approach we have used here is computationally intensive. Consequently, for
the experiments in this article, we have used meshes with approximately 1000–2500 degrees
of freedom, which corresponds to a vertex spacing of approximately 15mm in the clinical
case; this is comparable to control point spacing typically used in intra-subject registration
(Rueckert et al., 1999). Our vertex spacing is larger than the 5mm B-spline spacing that is
commonly used in inter-subject registration (Klein et al., 2009), and it is possible that with
higher resolution meshes and data, the estimated posterior uncertainty would decrease. With
higher degrees of freedom comes not only higher computational cost, but also higher storage
requirements because of the need to store enough samples to characterize the posterior. It is
common practice to thin the MH sequence by a factor of at least ten to reduce intra-chain
correlation and to discard the first half of the sample chain to remove burn-in effects.
Consequently, if 107 samples are required to characterize a posterior distribution with 100k
degrees of freedom, the storage requirements will be approximately 200Gb after thinning
and burn-in. This does not pose a significant problem in practice, especially if advanced
storage formats such as HDF5 (The HDF Group, 2000–2010), which can sequentially
compress large files, are used.
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Because of the high computational complexity of MCMC, some simplifying model
assumptions were made to achieve tolerable running times. First, the likelihood assumes that
the intensity difference between registered voxels differ by i.i.d. Gaussian noise.
Theoretically, this is not a valid assumption, especially when Gaussian blurring is applied,
but has been shown to work well in practice. In our work, where light blurring was used, we
have expanded on the Gaussian noise model by marginalizing over the noise precision under
a log-normal hyper-prior, which effectively can convert the Gaussian noise distribution into
a distribution with heavy tails which is better suited for handling outliers, e.g. areas of
resection. A well founded approach for handling the noise correlation caused by smoothing
of the images is to include a constant Virtual Decimation (VD) factor in the likelihood term
(Simpson et al., 2012; Groves et al., 2011), which is similar to decimating the data. This is
especially important if the main goal is to infer correct noise and regularization (stiffness)
parameters. However, in our case, where the main goal is to characterize the posterior
distribution on deformations, the constant VD factor will be absorbed into the marginalized
noise temperature and will not have an affect in practice, aside from changing the scale of
the temperature parameter. Although the SSD-based likelihood does not currently
accommodate for functional or statistical intensity differences, such complex relationships
can easily be included in the model, though likely with some computational cost.

Secondly, the FE-based transformation model was a natural choice given the use of the
phenomenologically inspired linear elastic prior, but other popular transformation models
such as B-splines (Rueckert et al., 1999) can also be incorporated.

Thirdly, linear elasticity has been widely used as a prior in non-rigid registration, but more
complex prior models such as visco- and poro-elasticity (Kyriacou et al., 2002) may be more
appropriate. Choosing a suitable prior that is a good model for the underlying tissue under
deformation may improve the registration results and reduce registration uncertainty. If a
segmentation of the underlying tissue is available, and relative stiffness between tissue types
is known, a mechanical model that reflects this can easily be constructed and spatially
varying (pseudo-)stiffness parameters can easily be encoded in the model without any
modifications to the proposed posterior sampling scheme. It is also possible to use a random
variable for each tissue type, and equip it with a hyper-prior and marginalize over it, but this
requires changing the Laplace approximation accordingly, or using MH of the per tissue
type hyper-parameters.

We have used common modeling assumptions, and some approximations, and our goal is to
understand the implications of those assumptions on the uncertainty in the posterior
distribution (or in deterministic terms, the landscape of the objective function). In the future,
it is likely that developments in likelihood modeling, prior modeling, FEM technology,
inference algorithms, and application specific development and engineering will lead to
faster methods that could have tighter posterior distributions and associated marginals than
those that are illustrated in Fig. 13(c). Our experiments indicate that, depending on the
application, it may be appropriate to consider the implications of non-Gaussian, and
potentially multi-modal, posterior distributions in the design of the system. Approaches that
should be investigated to speed up chain convergence, reduce inter-sample correlations and
the random walk behavior of MH include Hybrid Monte Carlo (Duane et al., 1987), which
uses gradients of the log posterior distribution to take larger proposal steps while keeping
the rejection rate low, and adaptive MCMC where the proposal distribution is dynamically
fitted to match the posterior based on the accepted samples (Andrieu and Thoms, 2008). One
approach for learning the best compromise between likelihood model, prior model, mesh
size, accuracy and uncertainty is through model selection using e.g. the Deviance
Information Criterion (DIC) which is a suitable model selection criterion when the posterior
is obtained by MCMC (Spiegelhalter et al., 2002).
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In future work we will adapt the framework to registration of MRI and ultrasound where we
suspect the posterior distribution will be multi-modal because of the high noise level and
lack of contrast in ultrasound images. We also suspect that exploiting the high-dimensional
information available in the posterior distribution on deformations when doing high-level
inferences based on the registered data will open up new and exciting research opportunities.
Simpson et al. (2011a) showed that utilizing the registration uncertainty in classification of
Alzheimer patients improved their classification results. In adaptive radiotherapy,
monitoring the radiation dose delivered to critical tissue is important due to changes in
anatomy over the treatment period. In Risholm et al. (2011) we showed that the uncertainty
in registration can induce significant uncertainty in the estimated cumulative dose delivered
to critical tissue during head and neck radiotherapy. The estimated delivered dose and the
associated uncertainty was visualized in terms of dose volume histograms. Finding low-
dimensional representations of the posterior distribution that are suitable for visualization is
a difficult task and an active research topic (Spiegelhalter et al., 2011). In this paper we used
simple posterior summaries to convey uncertainty. However, one can envision that more
complex approaches to interacting and extracting clinical relevant summaries from the
posterior distribution can be designed in the future – for instance by exploiting the local
correlations in the posterior.

5. Conclusion
We presented a Bayesian non-rigid registration framework where the posterior distribution
is characterized through MCMC sampling. In contrast to conventional registration
approaches that only report posterior modes, the posterior distribution, represented by a set
of MCMC samples, contains other valuable information such as the registration uncertainty;
this is important information when higher level inferences are drawn based on the data being
registered.
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Appendix A. Linear Finite Elements
In the Finite Element (FE) setting (Zienkiewicz and Taylor, 2000; Bronielsen, 1998) with
tetrahedral FEs, Ωf is discretized into disjoint tetrahedral elements connected at the set of
mesh vertices  = {v1, …, vV } where vi has coordinates (xi, yi, zi)⊤ in the fixed image.
Associated with each vertex vi is a displacement vector ui = (δxi, δyi, δzi)⊤. The
displacement vector at any voxel x ∈ Ωf can be determined using linear interpolation of the
displacements at the vertices of its enclosing tetrahedral element  = {ve1 … ve4}:

, ∀x ∈ ConvexHull { }, where bx(vij) is the barycentric weight of
vertex vij at voxel x. In matrix notation, this is represented by u(x) = Bxu, where Bx is the 3
× V interpolation coefficient matrix for voxel x (with 4 non-zero 3 × 3 diagonal blocks) and

 is the 3V ×1 vector of displacements. Therefore, for each x ∈ Ωf under a
given deformation of the FE mesh u, the corresponding voxel in the moving image has
location x + u(x) = x + Bxu.

Although any alternative measure can be used in this framework, for ease of presentation the
sum-of-square differences (SSD) is used in the following:

(A.1)

(A.2)

By pre-computing x ∈ Ωe, this similarity measure is highly parallelizable.

We assume that the underlying tissue which is discretized by FEs can be represented by an
isotropic elastic material parameterized by stiffness (Young’s modulus) and compressibility
(Poisson’s ratio). The elastic energy stored in a deformed object is equal to the sum of the
stress times strain over the FEs. By assuming a linearized strain tensor, the linear elastic
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energy of a deformation, which we use as a regularizing term to penalize physically
implausible solutions, takes the form Eel(u) = ∫x∈Ωf u(x)⊤Kxu(x)dx, where Kx is the
stiffness matrix that is directly proportional to the Young’s modulus. Under the linear
element model, this is equivalent to

(A.3)

where Ki,j is non-zero only if vertices vi and vj share a tetrahedral element.

Consequently, both the SSD and elastic energy contributions of one vertex vi under
displacement ui depends only on the displacements of vertices vj that share tetrahedral
elements with vi. Therefore, the energy term exhibits Markov structure and the Markov
blanket for vertex vi is  = ∪e  \vi such that vi ∈ .

Even though linear elasticity puts a penalty on non-smooth deformations, it does not prevent
unwanted folding of tissue/elements. Folding of elements can be prevented by restricting the
determinant of the Jacobian over the deformed element to be positive |J(ue(Ωe)| > 0.

Appendix B. Marginalization through Laplace Approximations
To simplify the following derivations, we define θr ≜ ln τr and θs ≜ ln τs, so that the log-
normal priors over  imply normal priors over Θ ≜ {θr, θs}. Introducing a variational
density q(Θ) over the HPs Θ, the marginal distribution of the deformations u in Eqn. (4) can
be decomposed into a free-energy and KL-divergence term as:

(B.1)

where

(B.2)

As the KL divergence term is positive, F acts as a lower bound on the estimate of ln p(u | m,
f) and is exact for q = p(Θ | u, m, f).

Restricting the variational density q(Θ) to the family of normal distributions, the minimizer
of  (q||p(Θ | u, m, f)) is  ( [p(Θ | u, m, f)], ar[p(Θ | u, m, f)]). However, as the mean
and variance of the posterior do not have closed-form solutions, and to avoid expensive
Monte Carlo integration, we use a Laplace approximation of p(Θ| u, m, f) by replacing the
mean with the mode and the variance with the local curvature of the mode. Consequently,
q(Θ) ~  (Θ*, Λ*−1), where Θ* = argmaxΘ ln p(Θ | u, m, f) is the conditional mode and Λ*

= −2∇∇⊤ ln p(Θ| u, m, f) is the negative Hessian of ln p(Θ| u, m, f) respectively, which are
equivalent to the mode and negative Hessian of ln p(u, Θ| m, f). The maximum of ln p(u = u
′, Θ| m, f) with respect to Θ (see Eqn. (4)) can be computed with a Newton-like method
using its analytical gradient:

(B.3)

and Hessian:
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(B.4)

This maximization requires evaluating the log-partition function ln Z(Θ) and its derivatives,
which is described further in Appendix C.

Therefore, under the Laplace approximation q ≈  (Θ*, Λ*) the two components of the free
energy in Eqn. (B.2) take the form

and

(B.5)

where  and 

Appendix C. Estimating the Partition Function
Evaluating the partition function

(C.1)

requires integration of the moving image as a function of the displacement vector over the
space of all possible displacements and therefore does not have a closed form solution.
Moreover, as it needs to be computed at every step during the optimization of argmaxΘ ln
p(Θ|u, m, f), numerical or Monte Carlo integration is not computationally feasible.

In order to make the estimation of Z(Θ) tractable, Laplace’s method is again applied to
replace E(u) = e−θrEel(u) + e−θsEssd(u) with a quadratic expansion around the minimum u*

= argminuE(u). Specifically, the Taylor series expansion is

.
Substituting in Eqn. (C.1) gives:
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(C.2)

where  and . Here, the notation D ≜
∇∇⊤Essd(u*) and  is being used for conciseness1.

Therefore,

.

Typically in the applications of this method the value of eθs−θr ≪ 1, therefore using the fact
that for small Θ it is the case that |I + ΘA| = 1 + τr(A)Θ + (Θ2), the approximation:

(C.3)

is highly accurate.

Introducing the term ξ ≜ τr(D−1K)eθs−θr/(1+eθs−θrτr(D−1K)), the gradient of the
approximate log-partition function becomes:

(C.4)

and its Hessian becomes:

(C.5)

From eqns. (B.4) and (C.5), it can be seen that ln p(Θ|u, m, f) is concave in Θ, implying the
existence of a global and unique maximum.

To avoid the expensive inversion of the 3N × 3N matrix D at each new value of deformation
u*, as required in the evaluation of ξ, the term τr(D−1K) is directly estimated from K−D
using Gauss quadrature and the modified Chebyshev algorithm along with stochastic
estimates of the modified moments (Meurant, 2009). In this calculation, pseudo-inverse K−

(which can be pre-computed) is used since the translation invariance property of K renders
det K = 0. The expected value of ln Z(Θ) under the variational distribution q(Θ) = (Θ*,

Λ*−1) is , where [ln |
1+eθs−θrτr(D−1K)|] is evaluated numerically using Gauss-Hermite quadrature (Davis and
Rabinowitz, 2007).

1The gradient and Hessian of the similarity energy  with respect to u can be expressed as
transformations of the moving image gradient and Hessian as follows:
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Highlights

• Characterize non-parametric posterior distribution on deformations with
MCMC.

• Marginalize over hyper-parameters.

• The registration uncertainty is estimated.

• The posterior distribution on deformations can be non-Gaussian and
multimodal.
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Figure 1.
Graphical model of the Bayesian image registration framework. Using a generative form, m
= f ∘ u + ε, for the registration problem where the moving image m is a realization of a
deformed fixed image f plus some noise ε. The hyper-parameter τr controls the spatial
precision of the deformation field u under a log-normal hyper-prior parametrized by the
mean μr and precision λr, and is inversely proportional to tissue stiffness in the elastic
regularization model used in this article. A log-normal hyper-prior, with mean μs and
precision λs, models the uncertainty in the parameter τs which is proportional to the
variance of noise introduced during formation of image m.
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Figure 2.
A simple FE-mesh which consists of vertices a, b, c and d and two triangular elements  =
{a, b, c} and  = {b, d, c}. Assume ua, ub, uc and ud are displacements associated with the
FE-vertices, then, due to the Markov structure of the FE-mesh, the high-dimensional joint
distribution on deformations can be factorized into lower-dimensional marginal distributions
p(ua, ub, uc, ud) = p(ua, ub, uc) p(ub, uc, ud)/p(ub, uc) according to Eqn. (8).
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Figure 3.
Corresponding axial slices of the synthetic data used for the simulations. (a) A T1 MR-
image (256×256×88) with 1.0×1.0×2.0mm3 spacing acquired prior to neuro-surgery with
intensities in the range [0, 1]. (b) Using a B-spline deformation model, a brain-shift of about
12mm was simulated together with global sinusoidal components with magnitude of 6mm
and 4mm in the x- and y-components as explained in the text. The resulting ground-truth
deformation field was applied to (a) to create the synthetic “intra-operative” image in (b). (c)
A 4×4 checkerboard pattern of the images in (a) and (b). (d) A 3D view of the
corresponding FE-mesh consisting of V = 317 vertices and E = 1177 tetrahedra. The blue
color indicates that the element surface is on the boundary of the mesh, while red indicates
that the surface is shared between two elements.
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Figure 4.
Geweke time-series results for the 3 MCMC chains for the synthetic data in Fig. 3. The
latter half of each chain after thinning (1 · 105samples) was divided into 20 subchains, and z-
scores comparing the first half of a chain with each of the 20 subintervals were computed for
each of the 951 deformation components. Each figure shows box-plots of the 951 z-scores
for the 20 sub-intervals, and we can conclude that the chains have converged because the
majority of the z-scores are within two standard errors of the mean.
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Figure 5.
Scale reduction results from the experiment on the synthetic MRI data in Fig. 3. (a)
Histogram of the potential scale reduction for the deformation components. The general
guideline is that the scale reduction should be below ≈ 1.1 for each component before
terminating the chains. In this case, four components exceed a scale reduction of 1.1, with
the max scale reduction at 1.23. (b) Marginal distribution of the component with the largest
scale reduction after pooling together the samples from the three individual MCMC chains.
Even though the scale reduction criterion is violated, the marginal distribution is relatively
well-characterized. Notice that the red line denotes the joint mode, which for high-
dimensional non-Gaussian distributions do not necessarily align with the marginal mode. In
this case it is highly concordant with the ground truth, but not with the marginal mode.

Risholm et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Histogram plots of the marginalized temperatures using Laplace approximations under the
hyper-prior distributions with the method described in Section 2.2.3. (a,b) The distribution
of marginalized temperatures from registering the synthetic dataset in Fig. 3. The mean and

variances were τ̂r = 1174, τ̂s = 0.19 and . (c,d) The distribution of
marginalized temperatures from registering the clinical dataset in Fig. 10. The mean and

variances were τ̂r = 7528, τ̂s = 1.59 and .
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Figure 7.
Registration error plots from the experiment on the synthetic MRI data in Fig. 3. (a) Error
between the joint mode, estimated non-parametrically from the MCMC samples, and the
ground-truth plotted against the ground-truth deformation value. A maximum absolute error
of 2.4mm was found in the x-direction, while the mean error over all dimensions was
0.27mm. Notice that the highest errors are found for components with small deformations
which may be explained by the regularizer which puts more restrictions on large
deformations. (b) Histogram of the absolute distances between ground truth and the mode.
(c) The distance between ground truth and the mode in relation to the spread of the 50%
middle samples (IQR) and the spread of the 95% middle samples of the corresponding
deformation component. The components are sorted in ascending order of IQR. (d) The
marginal and joint error in the MCMC non-parametric mode (as compared to ground truth)
plotted against corresponding error in optimizer estimates. It can be observed that there is a
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high correlation between the non-parametric joint error and optimizer error, while the errors
of the marginal estimates are less correlated with regards to the optimizer and joint
estimates. In Section 3.1.4, the posterior is shown to not be normally distributed which
explains the fact that the marginal modes do not correspond well with the joint mode.

Risholm et al. Page 32

Med Image Anal. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Histogram plots of the deformation components with (a) the highest error and (b) highest
IQR from registering the synthetic MRI data in Fig. 3. The component in (a) has an absolute
error of 2.4mm while the component in (b) has an IQR of 5.0mm. (c) The distribution of the
951 IQRs (one for each deformation component). The smallest and largest IQR were
0.52mm and 5.00mm respectively.
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Figure 9.
Marginal distributions of the components with min/max skewness and kurtosis from the
posterior distribution characterizing the displacement field which aligns the synthetic MRI
dataset in Fig. 3. A normal distribution is assumed to have zero skewness and kurtosis. (a) A
plot of the marginal distribution with the highest kurtosis (2.9). (b) The marginal distribution
with the lowest kurtosis (−0.5). (c) Marginal distribution with the highest skewness (0.67).
(d) Marginal distribution with the lowest skewness (−0.56). (e) A scatter plot of kurtosis vs
skewness for the marginal distributions on displacements for the synthetic data in Fig. 3. (f)
A scatter plot of the kurtosis vs skewness for the marginal distributions on displacements for
the clinical data in Fig. 10. The marginal distributions have a bias towards being leptokurtic
(positive kurtosis) which is shown in the distributions by an acute peak and heavier tails than
a normal distribution.
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Figure 10.
Corresponding axial slices of the clinical MRI data used for the simulations. (a) A skull
stripped pre-operative T2 FSE MR-image acquired prior to neurosurgery. The FE-mesh
discretizes the image domain represented by the remaining brain tissue after the skull is
stripped. (b) Deformed pre-operative image to match the intra-operative image. (c) An intra-
operative T2 BLADE MR image acquired after resection. Note that skull stripping the intra-
operative image can be challenging due to the resection and is not required in the proposed
registration procedure.
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Figure 11.
Qualitative registration results for the clinical dataset in Fig. 10. All images show
corresponding axial slices. (a) Mean marginal deformed pre-operative image. Given the
posterior deformation samples {us}s=1…S, we sum over all deformed pre-operative images

and normalize with the number of samples . This is equivalent to the
expected deformed pre-operative image with respect to the posterior distribution over
deformations (u|f,m)(f ∘ u). Areas of high uncertainty are relatively blurred compared to
areas of high certainty. Notice that the resection area is relatively blurry compared to other
areas. (b) The axial slice of the intra-operative image corresponding to the slice shown in
(a). (c) The uncertainty of the estimated deformation in terms of the IQRs (summed over the
IQR for the x-, y- and z- components of the deformation field) for the same slice as
visualized in (a) and (b). The units of the colorbar is in millimeters. Notice the high
uncertainty around the resection where the (summed) IQR is 19.6mm. (d–f) The marginal
distributions (x-, y- and z-components) for the FE-vertex closest to the resection cavity. We
notice that the distributions are multi-modal, skewed and consequently non-Gaussian.
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Figure 12.
This figure visualizes the directional uncertainty for the estimated deformation that aligns
the clinical dataset in Fig. 10 for an axial (row 1), sagittal (row 2) and coronal (row 3) slice.
(a) Deformed (with MAP estimate) pre-operative image. (b) The IQR along the x-direction
(left-right according to patient). (c) The IQR along the y-direction (anterior-posterior). (d)
The IQR along the z-direction (superior-inferior). Uncertainty is clearly increased around
the resection. It is worth noting that the uncertainty is in general also somewhat higher along
the cortical surface, i.e. the outer boundary of the FE-mesh because there are fewer
constraints in the FE-mesh due to the reduction in connected elements/vertices. However, it
is straightforward in our Bayesian registration framework to reduce the boundary
uncertainty by including prior information, e.g. that boundary vertices should not deform
into the skull defined in the intra-operative domain.
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Figure 13.
Predictive posterior distribution of fMRI activated area from hand tapping in relation to
intra-operative residual tumor. (a) fMRI is acquired pre-operatively and associated with a
pre-operative anatomical image. Here we show the pre-operative image with the tumor, as
delineated by a neurosurgeon, overlaid in green and the outline of the fMRI activated area
overlaid in purple. Notice that the fMRI activated area is dangerously close to the tumor. (b)
Because fMRI cannot be acquired intra-operatively, it needs to be registered to an intra-
operative image to locate it in relation to the tumor during surgery. Here we show the intra-
operative image overlaid with the residual tumor in green, and the fMRI activated area,
deformed by the most probable deformation estimate, in purple. (c) Close-up of the location
in (b), but with the predictive posterior distribution on the location of the deformed motion
activated area overlaid. The most probable deformation of the fMRI activated area is shown
with a black outline. In this surgical case, where the posterior predictive distribution was
computed retrospectively, it was deemed too risky to resect the tumor close to the fMRI
activated area because the true intra-operative location of the fMRI area could not be
assessed properly. However, if the full posterior predictive distribution on the location of the
functional area in the intra-operative space was available, e.g. as in Fig. (c), the surgeon may
have been able to better assess the surgical risk and continued the resection.

Risholm et al. Page 38

Med Image Anal. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Risholm et al. Page 39

Table 1

Summary of the results from registration of the synthetic dataset. The ground truth deformation ug was
compared with the result from the deterministic optimizer uo, the posterior joint mode uj and the posterior
marginal mode um. The deformation vectors are of length 3V where V = 317 is the number of vertices in the
FE-mesh. All values are in millimeters. Note that the optimizer and the non-parametric mode using mean-shift
locate the same MAP estimate (with a maximum error of 0.25mm), while the marginal estimates disagree by a
maximum of 2.80mm.

Distance Type Maximum 95 percentile Median

|ug − uj| 2.41 0.79 0.19

|ug − um| 2.80 0.78 0.18

|ug − uo| 2.39 0.78 0.20

|uo − uj | 0.25 0.12 0.03

|uj − um| 0.90 0.21 0.03
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Table 2

The sensitivity of the posterior distribution to the HPs was explored by estimating the posterior mode for four
separate sets of dispersed HPs selected from the tails of the marginalized HPs shown in Fig. 6. This table
summarizes the specific values of the HPs in the first column, and the maximum error, 95th percentile error
and median error, all reported in millimeters, are summarized in the following columns. The posterior mode
was found to be sensitive to using point-estimates of the HPs, with a maximum error compared to the ground
truth in the range of 6.43mm-8.56mm compared to a maximum error of 2.41mm when marginalizing HPs
under uninformative hyper-priors.

(τr, τs) Maximum 95th percentile Median

(1050, 0.16) 6.43 1.71 0.34

(1350, 0.22) 8.56 2.07 0.35

(1050, 0.22) 6.72 1.98 0.32

(1350, 0.16) 8.29 2.12 0.32

Marginalized 2.41 0.79 0.19
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Table 3

Summary of the results (in millimeters) from the registration with the neurosurgical dataset in Fig. 10. The
MAP estimate uo from the deterministic optimizer described in Section 3.1.2 is compared with the posterior
joint mode uj and the posterior marginal modes um. The deformation vectors are of length 3V where V = 858
is the number of vertices in the FE-mesh. Notice that the optimizer and mean shift on the posterior samples are
finding the approximately same MAP estimate (with a maximum error of 0.46mm), while the marginal
estimates are off by a maximum of 1.85mm.

Distance Type Maximum 95th percentile Median

|uo − uj| 0.46 0.19 0.05

|um − uo| 1.82 0.77 0.17

|um − uj | 1.85 0.76 0.16
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Algorithm 1

Outline of Monte Carlo sampling algorithm with marginalization of hyper-parameters through Laplace
approximations. The initial transformation u0 can either be set to a zero deformation, or alternatively to the
result of a fast deterministic registration method. The log temperatures  are typically set to the mean of the
log normal prior. Note that in Appendix B, where the marginalization through Laplace approximations is
derived, θr ≜ ln τr and θs ≜ ln τs and Θ = {θr, θs} to simplify the mathematical derivation.
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