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Abstract
Object morphology, defined as shape and size characteristics, observed on medical imagery is
often an important marker for disease presence and/or aggressiveness. In the context of prostate
cancer histopathology, gland morphology is an integral component of the Gleason grading system
which enables discrimination between low and high grade disease. However, clinicians are often
unable to distinguish between subtle differences in object morphology, as evidenced by high inter-
observer variability in Gleason grading. Boundary-based morphologic descriptors, such as the
variance in the distance from points on the boundary of an object to its center, may not have the
requisite discriminability to separate objects with subtle shape differences. In this paper, we
present a set of novel explicit shape descriptors (ESDs) which are capable of distinguishing subtle
shape differences between prostate glands of intermediate Gleason grades (grades 3 and 4) on
prostate cancer histopathology. Calculation of ESDs involves: (1) representing object morphology
using an explicit shape model (e.g. medial axis); (2) aligning the shape models via a non-rigid
registration scheme with a diffeomorphic constraint and quantifying shape model dissimilarity;
and (3) applying a non-linear dimensionality reduction scheme (e.g. Graph Embedding) to learn a
low dimensional projection encoding the shape differences between objects. ESDs are hence the
principal eigenvectors in the reduced embedding space. In this work we demonstrate that ESDs in
conjunction with a Support Vector Machine classifier are able to correctly distinguish between
888 prostate glands corresponding to different Gleason grades (benign, grade 3, or grade 4) of
prostate cancer from 58 needle biopsy specimens with a maximum accuracy of 0.89 and
corresponding area under the receiver operating characteristic curve of 0.78.
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1. Introduction
The morphology of anatomical objects, defined as shape and size characteristics, on medical
imagery is often an important cue to determine disease presence and/or disease
aggressiveness (Jobst et al., 1994; Epstein et al., 2005; Rangayyan and Nguyen, 2007;
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Tabesh et al., 2007; Gerardin et al., 2009; Gorczowski et al., 2010; Doyle et al., 2012a; Looi
et al., 2011; Pachauri et al., 2011). One application where object morphology is important is
in the Gleason grading of prostate cancer (CaP) which utilizes the appearance of nuclei and
glands on histopathology (Epstein et al., 2005; Tabesh et al., 2007; Monaco et al., 2010;
Doyle et al., 2012a).

CaP appearance, as seen on needle core biopsies, is classified according to Gleason grade
(from grade 1 to grade 5). Gleason grade (Gleason, 1966) has been suggested as one of the
most important predictors of disease aggressiveness with higher Gleason grade patterns
being typically associated with more aggressive disease (Epstein et al., 2005). Correctly
identifying Gleason grade patterns is critical for determining the appropriate treatment
strategy for a patient with CaP (Madabhushi et al., 2011). Pathologists typically analyze
architectural features, the arrangement and morphology of glands and nuclei within the
tissue, in order to predict the corresponding Gleason grade (Epstein et al., 2005). In low
grade cancers, prostate tissue has a coherent spatial architecture with distinct gland lumen
surrounded by cell nuclei. For higher Gleason grade patterns, gland structure begins to
breakdown with gland lumen becoming indistinct and crowded with a large density and
concentration of cell nuclei. Fig. 1 displays examples of prostate glands identified as (a)
benign, (b) Gleason grade 3, and (c) grade 4 with lumen (red) and nuclear (blue) boundaries
of the glands segmented. Distinguishing intermediate Gleason grade patterns is a difficult
task, previous studies having reported an inter-observer agreement between pathologists as
low as 0.47–0.64 (reflecting low to moderate agreement) (Allsbrook et al., 2001). Low inter-
observer agreement reflects the difficulty in distinguishing between objects with very subtle
shape differences (e.g. gland appearance between Gleason grade 3 and grade 4 patterns).
The low inter-observer agreement for identifying intermediate Gleason grades (Allsbrook et
al., 2001) on prostate histopathology reflects the need for developing quantitative,
reproducible computer-extracted morphologic descriptors to complement human observers
in distinguishing subtle differences in object morphology.

The rest of this paper is organized as follows. In Section 2 we discuss previous work in the
context of quantitative attributes for describing object morphology. In Section 3 we present
our methodology for capturing object morphology via a shape model and Section 4
describes our methodology to quantify differences between shape models and derive our
novel explicit shape descriptors (ESDs). Section 5 describes the experimental design and the
results of experimental evaluations. Finally, in Section 6 we present concluding remarks.

2. Previous work quantifying object morphology and novel contributions
Computer-aided image analysis systems that quantify differences in object morphology may
reduce inter-observer variability in applications where object morphology is of diagnostic
and/or prognostic significance (Rangayyan and Nguyen, 2007; Tabesh et al., 2007; Doyle et
al., 2012a; Yang et al., 2009; Georgiou et al., 2007).

Several boundary-based shape descriptors have been previously presented (Rangayyan and
Nguyen, 2007; Tabesh et al., 2007; Yang et al., 2009; Georgiou et al., 2007) to extract
specific characteristics from an object margin, determined to be important for a specific task.
However, these descriptors typically quantify a single, specific shape characteristic.
Boundary-based shape descriptors include fractal dimension (Rangayyan and Nguyen,
2007), a measure of the self similarity between the object and its parts; measures of contour
variation including symmetry (Yang et al., 2009); and wavelet parameters of the object
boundary (Georgiou et al., 2007). Additionally, other measures have included how close to
circular an object is (Street et al., 1993) or how quickly the contour varies (Liney et al.,
2006). Such descriptors provide a single global measure of object morphology, and hence
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may be unable to distinguish between objects with subtle, local shape differences. Fig. 2
illustrates this problem with boundary-based descriptors, where prostate glands with distinct
morphology yield similar values in terms of contour smoothness and compactness (Agner et
al., 2011). Note that for the glands shown in Fig. 2, there may exist other boundary-based
shape descriptors that can accurately distinguish between the glands. However, determining
the boundary-based shape descriptors that can best distinguish between the prostate glands
shown in Fig. 2 requires a priori information about the domain and classification task.

Alternatively, descriptors that explicitly model object shape, and are hence able to
recapitulate the original shape of an object, provide an alternative approach to assessing
differences in object shape (Bailey and Srinath, 1996; Belongie et al., 2002; Blum, 1967;
Brechböhler et al., 1995; Cootes et al., 1994; Kauppinen et al., 1995; Mokhtarian and
Abbasi, 2002; Persoon and Fu, 1977; Reuter et al., 2006; Rueda et al., 2010; Shinagawa et
al., 1991; Sun et al., 2009; Zhang, 1994). These descriptors may be used in conjunction with
an appropriate similarity metric to quantify differences between shape model
representations. Such descriptors typically do not require a priori information about the
domain and classification task to accurately determine subtle morphologic differences
between objects.

Development of model-based descriptors is an active area of research and many approaches
to modeling the shape of an object have been presented (Bailey and Srinath, 1996; Belongie
et al., 2002; Blum, 1967; Brechböhler et al., 1995; Cootes et al., 1994; Kauppinen et al.,
1995; Mokhtarian and Abbasi, 2002; Persoon and Fu, 1977; Reuter et al., 2006; Rueda et al.,
2010; Shinagawa et al., 1991; Sun et al., 2009; Zhang, 1994). Point Distribution Models
(PDM) describe shape as a collection of points on the surface of an object such as in Active
Shape Models (ASMs) (Cootes et al., 1994) or Shape Context (Belongie et al., 2002).
Moment descriptors such as geometric moments (Bailey and Srinath, 1996) or Zernike
Moments (Zhang, 1994) describe the distribution of pixels contained within the object and
hence provide a global measure of object morphology that is robust to subtle, local changes
in the contour of an object. Fourier Descriptors (FDs) (Persoon and Fu, 1977; Kauppinen et
al., 1995) or Curvature Scale Space (Mokhtarian and Abbasi, 2002; Rueda et al., 2010)
describe the shape of the object according to the frequency components contained in the
contour and are hence sensitive to subtle changes in the contour of an object; Spherical
Harmonics (SPHARM) (Brechböhler et al., 1995) describe the spherical basis functions
contained in the surface of an object. The Laplace–Beltrami shape descriptors (Reuter et al.,
2006) and variants, such as Heat Kernels (Sun et al., 2009), describe the components of
some generalized function contained within the object, for instance the Laplace–Beltrami
descriptor is defined as the eigenvalues of the Laplacian operator for an object. Additionally,
shape models may extract a graph representation of the object, such as the medial axis shape
model (MASM) (Blum, 1967) or Reeb graphs (Shinagawa et al., 1991), these methods
represent the shape of an object using local symmetry to determine a skeletal representation
of the object. The MASM describes object morphology as a medial axis, points within an
object that are equidistant from two or more locations on the surface of an object, and hence
capture the local symmetry of an object (Blum, 1967).

Despite the wide variety of shape modeling approaches available, relatively few methods
have been applied to medical imaging applications. PDMs have been proposed in the
context of segmentation for cardiac, prostate, and other organs on medical imagery (Cootes
et al., 1994). PDMs have been applied to anatomical structures such as brain hippocampii in
conjunction with dimensionality reduction (DR) methods to identify meaningful, local
changes to the shape (Sjöstrand et al., 2007; Alcantara et al., 2009). However, obtaining
point correspondence is a difficult task for glands on prostate histopathology, as meaningful
substructures are difficult to identify. Heat Kernels have been utilized in conjunction with
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hippocampal morphology to accurately distinguish between normal patients and those with
Alzheimer’s disease utilizing (Pachauri et al., 2011). SPHARMs have been also employed to
identify Alzheimer’s disease utilizing hippocampal morphology (Gerardin et al., 2009).
Similar methods have utilized SPHARMs to analyze the atrophy of other brain structures
such as the putamen in patients diagnosed with Parkinson’s disease (Looi et al., 2011).
However no method to directly apply either SPHARMs or Heat Kernels to 2D shapes as
been presented, although a method has been presented to map a 2D object into a 3D space
and then compute SPHARMs (Sajjanhar et al., 2009). FDs have been applied to the analysis
of breast lesions on mammography (Georgiou et al., 2007). Additionally, recent work has
shown applications of FDs to distinguishing between normal and abnormal rotator cuffs on
MRI (van Kaick et al., 2010).

The MASM, also referred to as m-rep, has been applied to medical imaging tasks including
segmentation (Pizer et al., 1999; Yushkevich et al., 2006), registration (Pizer et al., 1999),
and calculation of shape statistics over a population of objects (Fletcher et al., 2004).
Recently, the m-rep framework has been used to guide disease classification by exploiting
morphologic differences between brain substructures in order to distinguish autistic from
normal patients (Gorczowski et al., 2010). MASMs have also been applied to the detection
of aneurysms (Lauric et al., 2010) as well as the detection of coronary artery stenosis (Xu et
al., 2012). The MASM is able to represent a wide range of object morphologies over
multiple dimensions and is able to detect and represent subtle differences between objects.
The MASM is the shape descriptor we chose to utilize in this work.

Due to the wide application of the MASM to many object recognition and classification
tasks, several approaches to efficiently calculate the MASM have been developed (Siddiqi et
al., 1999; Hassouna and Farag, 2009; Arcelli et al., 2011; Bai et al., 2007; Macrini et al.,
2011; Ward and Hamarneh, 2010). Blum presented the idea of a “grassfire” approach to
calculating the MASM, the idea being if a fire was set to the boundary of the object the
medial axis would be where the propagating flames meet. Hassouna and Farag (2009)
applied a similar technique to extract the MASM for 3D objects. Similarly, Siddiqi et al.
(1999) presented the idea of shock graphs, calculated by considering the gradient of the level
set function for an object. Alternative approaches to calculate the MASM involve iteratively
thinning the surface of the object (Arcelli et al., 2011). Some approaches have incorporated
pruning, removal of extraneous regions of the axis from the MASM. For instance Dynamic
Contour Evolution (DCE), involves first calculating the MASM and then pruning regions on
the MASM that lead to small partitions of the contour (Bai et al., 2007). Pruning of the
MASM can be performed by removing branches which have similar locations and directions
as nearby branches (Macrini et al., 2011). A groupwise medial axis transform was presented
in (Ward and Hamarneh, 2010) to retain those branches that are consistent across a set of
objects while removing those branches that are not preserved across the group.

Calculating similarity between MASMs can be difficult as there is not always a clear
correspondence between regions on medial axes. Several approaches have been presented to
overcome this problem (Siddiqi et al., 1999; Macrini et al., 2011; Ward and Hamarneh,
2010; Chang and Kimia, 2011; Sebastian et al., 2004; Bai and Latecki, 2008; Goh, 2008;
Ruberto, 2004). For instance comparing MASMs may be formalized as a graph matching
problem, where the MASM is broken into a set of medial axis branches; shape similarity is
calculated as the summation of similarity between matched branches (Siddiqi et al., 1999).
This method can be extended to utilize additional attributes about each branch, such as
branch curvature, when calculating MASM similarity (Ruberto, 2004; Macrini et al., 2011).
The graph matching problem between MASMs has also been previously formulated for 3D
structures, where the matching is between hypergraphs which may include 2D medial
surfaces (Chang and Kimia, 2011). Approaches have also been presented to hierarchically
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match and merge regions to quantify MASM similarity (Goh, 2008). Sebastian et al. (2004)
introduced the concept of edit-distance, where MASM similarity is calculated as a
combination of three possible edits: branch matching, branch removal, and branch addition;
where each edit is assigned a similarity value.Bai and Latecki (2008) considered the
similarity of paths between end nodes (locations on the MASM that represent where a
branch end) to determine similarity. Alternatively, a method to fit a MASM to an object
using only likely, predetermined MASM templates have been presented (Yushkevich et al.,
2006); MASM similarity is calculated as a difference of distance transforms (Ward and
Hamarneh, 2010).

Researchers have recently begun using non-linear DR (NLDR) schemes in conjunction with
shape descriptors (Bai et al., 2010; Egozi et al., 2010; Qian et al., 2010). Such methods
extract a small set of features which describe the variation in morphology between different
objects. For instance, Bai et al. (2010) presented a semi-supervised framework, Graph
Transduction, to learn a set of discriminating shape descriptors for content-based image
retrieval (CBIR) applications. However, the set of shape descriptors learned is dependent on
the query object, suggesting that it may not be naturally extensible to classification
problems. A k-nearest neighbor approach to finding object similarity in the high dimensional
shape space was presented in Egozi et al. (2010). Qian et al. (2010) presented a NLDR
scheme to determine relevant morphologic differences between vertebrae, exploiting the
definition of the Procrustes shape space. However, their methodology is only applicable to
objects represented by PDMs. Nasreddine et al. (2010) utilized a geodesic distance function
to distinguish between contours for pairs of objects. The use of NLDR schemes typically
improves the ability to measure similarity in object morphology compared to the Euclidean
distance in CBIR applications (Bai et al., 2010; Egozi et al., 2010; Qian et al., 2010).

In this paper, we present a method to quantify differences in object morphology. We extract
a set of explicit shape descriptors (ESDs) to quantitatively represent object morphology.
ESDs calculation involves: (a) utilizing the MASM to quantify object morphology (Blum,
1967), and (b) obtaining a small set of ESDs via the unsupervised NLDR scheme Graph
Embedding (GE) (Shi and Malik, 2000). Although each of the steps involved in ESD
calculation has been previously reported in the computer vision literature (Blum, 1967; Shi
and Malik, 2000), the combination of a shape model (MASM) with a NLDR scheme (GE)
represents a novel combination of two well documented methods which allows for
extraction of a concise set of shape descriptors that enable discrimination between objects
with subtle shape differences.

Fig. 3 presents an overview of our framework and the constituent modules. The novelty of
our methodology is twofold. (1) In order to overcome the correspondence issues between
MASMs, a diffeomorphic based similarity (DBS) measure (Sparks and Madabhushi, 2010)
is used to register MASMs and determine point correspondence between the registered
MASMs. A non-rigid registration scheme is used to ensure that MASMs with large
topological differences can be registered into a common coordinate frame, while preserving
the relationships between regions on the MASM. (2) GE is utilized to obtain a low
dimensional representation of morphologic features which can then be employed in
conjunction with a classifier (e.g. Support Vector machines (SVMs)) for shape
classification. GE allows for ESDs to be defined for a set of unlabeled objects utilizing only
a shape dissimilarity matrix. GE utilizes an eigenvalue decomposition of the shape
dissimilarity matrix to find a small set of shape descriptors which optimally preserve
pairwise relationships between objects. ESDs are defined as the eigenvectors of the shape
space obtained from GE.
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3. Shape representation model
3.1. Notation

An image scene  is defined by the d-dimensional grid of voxel locations C and an
object contour ξ.  represents a voxel defined by a d-dimensional vector that describes
its location in C. ξ partitions C into a foreground region Ωf, belonging to an object of
interest, and a background region Ωk such that Ωk ⋃ Ωf = C. Table 1 describes the notation
and symbols that appear frequently in this paper.

3.2. Medial axis shape model construction
The MASM was employed to concisely and explicitly describe the local morphology of an
object described by the contour ξ (Blum, 1967). We define the MASM as 
where  is a set of voxels on the medial axis and v1(m), v2(m): m ∈ M are two
functions defining vectors to the first and second closest points on ξ. To find M, we
calculate the gradient magnitude squared of the signed distance function defined as,

(1)

where f(c) is the signed distance function evaluated over c ∈ C and  is the partial
gradient along Xi corresponding to the ith direction. For a d-dimensional image Xi is found

for all i ∈ {1, …, d}. We use  to define the medial atoms as

. Empirically, we determined that 
yields a well defined medial axis. Section 5.3 describes the approach we employed to assess
whether a MASM was able to accurately and quantitatively describe the morphology of a
given object. The use of τ helps avoid spurious branches on the MASM.

The surface vector functions v1(m) and v2(m): m ∈ M, are calculated as
 and , where  and  represent the two

closest points on ξ to m. For m with more than two closest points on the ξ, we chose  and
 that maximize the angle between v1(m) and v2(m).

4. Framework for quantifying shape differences

Dissimilarity between a set of N MASMs  is quantified by comparing
differences in corresponding medial atoms for each pair of MASMs. The parameters of a
MASM, , include Ma, v1,a, and v2,a (defined in Section 3.2). We
determine correspondence between all ma ∈ Ma and all mb - ∈ Mb: b ≠ a, b ∈ {1, …, N}. By
this procedure we attempted to implicitly determine correspondence between the surface
vector functions v1(ma) and v1(mb) as well as v2(ma) and v2(mb). To determine
correspondence a two step registration was performed by: (1) affine registration of Ma onto
Mb, followed by (2) a diffeomorphic registration of Ma onto Mb. These steps are described
in more detail in Sections 4.1 and 4.2, respectively. The affine registration provides a rough
alignment of corresponding regions on the MASMs and is necessary for the initialization of
the diffeomorphic registration process. Once Ma and Mb have been accurately registered,
medial atom correspondence between Ma and Mb is determined and used to calculate the
dissimilarity between  and . Section 4.3 describes the calculation of MASM
dissimilarity.
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4.1. Medial atom affine registration
Affine registration between Ma and Mb is determined by applying the Iterative Closest Point
(ICP) algorithm (Zhang, 1994). Point correspondence between Ma and Mb is determined by,

(2)

where  and  are the set of corresponding points on Ma and Mb. An affine
transformation Tab is found by minimizing the following function,

(3)

Estimation of point correspondences (Eq. (2)) and the affine transformation (Eq. (3)) are
iteratively applied to Ma until point correspondences, , remain unchanged between

iterations. The resulting medial axis  is affinely registered to Mb.

4.2. Medial atom-based non-rigid registration

For two sets of medial atoms  and Mb, which are registered as described in Section 4.1, a

diffeomorphic registration is then applied to further align  and Mb. We utilized a
variation of the diffeomorphic registration method proposed by Guo et al. (2006). A brief

overview of our non-rigid registration is as follows: (1) corresponding locations between 
and Mb are estimated using a deterministic annealing K-means clustering algorithm (Rose et
al., 1990) (described in greater detail in Section 4.2.1); (2) A diffeomorphic transformation
over the image space C is calculated to minimize the distance between the estimated

corresponding locations on  and Mb. A diffeomorphic transformation was used to ensure
a continuous and differentiable transformation field so that the underlying relationship

between all  and all mb ∈ Mb are preserved. In Section 4.2.2 we discuss the
calculation of the diffeomorphic transformation in greater detail.

4.2.1. Correspondence estimation

Individual medial atom correspondence between  and Mb may be difficult to determine

accurately. We therefore determine corresponding locations on  and Mb via a
deterministic annealing K-means clustering algorithm (Rose et al., 1990). We define a set of

K cluster centroids at the jth iteration of our registration method as  for

all . Similarly, for Mb we define a set of cluster centroids . The

cluster centroids are initialized such that  and  represent corresponding points on Ma
and Mb. As the clusters are used to determine correspondence between MASMs, K is

constrained to be the same for both  and Mb.

We estimate the probability  of a medial atom  belonging to the

 cluster as:
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(4)

Similarly, the probability of mb ∈ Mb belonging to the cluster  is given as

. The term  assigns higher values to medial atoms near the

centroid  and lower values to medial atoms farther away; σj determines which medial
atoms are considered near and far from the centroid. Convergence of the membership
function is enforced by setting σj = (ζ)jσ0 where ζ > 1, hence at each iteration the clustering
algorithm considers a smaller region to be near the cluster centroid. Therefore at each step in
the algorithm fewer medial atoms have a non-zero probability of belonging to the cluster

defined by the centroid . Ultimately when j is very large, each medial atom is assigned
membership (a non-zero probability) to one cluster centroid. The initial weighting term is set

as .

Cluster centroids are updated according to the probability of all  belonging to the

cluster . The cluster  is updated by the equation,

(5)

The term  defines a centroid on Mb that corresponds to the centroid . By taking the

average of the two locations  and  in Eq. (5), we ensure that the  remains in a

location on Ma which is proximal to  located on Mb. The centroid  is determined
by a similar equation.

4.2.2. Correspondence registration
The goal of correspondence registration is to find a diffeomorphic transformation Q which

best maps the cluster centroids  onto  for k ∈ {1, …, K}. Q is defined as {Q(t): t ∈

{0, …, tmax}} where  and . Hence Q will enable alignment of

 to . Similar to Twining et al. (2002), we use a linear piecewise approximation to
solve the energy minimization function,

(6)

where the kernel function G is defined as Green’s function: G(α, β) = −(α − β)2log (α − β)2

(Bookstein, 1989). Green’s function ensures that Q will be smoothly varying over C.

To solve Eq. (6), an optimization of Q and the variables ω(t) and ωη(t) can be found in an
iterative fashion (Twining et al., 2002). This optimization is performed by first holding ω(t)
and ωη(t) constant and using gradient descent to find the optimal Q and then repeating the
procedure with Q held constant.
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Both the correspondence estimation (Eqs. (4) and (5)) and correspondence registration (Eq.
(6)) are iterated until a user defined threshold, Υ, is reached by the annealing parameter σj.
The overall algorithm is as follows:

Algorithm 1

DiffReg

Input: M̂ a, Mb

Output: M
~

a

begin

 1. Initialize σj, ga
k , j, gb

k, j

 2. while σj < Υ

 3. Update P(ma ∣ ga
k , j) , P(mb ∣ gb

k, j)  by Eq. (4).

 4. Update ga
k , j, gb

k, j
 by Eq. (5).

 5. Update Q by Eq. (6).

 6. M
~

a = Q(M̂ a)
 7. end

end

The two sets of cluster centroids are initialized to be equal  and located at

, where ∊ is a random variable with a very small value (∊ ≈ 10−1). The term

∊ is added to ensure that each pair of corresponding cluster centroid  has a unique
starting location, and hence will diverge from the other cluster pairs as σj increases.

4.3. Medial atom correspondence and shape dissimilarity

Given two medial axes  and Mb registered into a common coordinate frame, we

determine point correspondence between  and Mb as,

(7)

The set of corresponding medial atoms,  determined via Eq. (7) are then used to

calculate dissimilarity between  and Mb as,

(8)

For all , a dissimilarity matrix  is constructed such that it represents a N-
dimensional space corresponding to morphologic dissimilarity between all .

4.4. Feature extraction via non-linear dimensionality reduction
GE (Shi and Malik, 2000) is applied to the dissimilarity matrix A, which measures the
dissimilarity between all all , to yield a set of ESD features in a low dimensional
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space. Specifically, a n-dimensional embedding is learned from the N-dimensional matrix A,
where n ⪡ N. The ESD features for all  are defined as y’ = [y1, …, yN] where y
represents the top n eigenvectors for the shape space defined by A. y can be found by
minimizing the pairwise reconstruction error measured as,

(9)

where Wab = e−Aab/c. The term γ is used to normalize A and is dataset specific. The value of
γ was determined empirically as described in Section 5.6. Eq. (9) can be rewritten as,

(10)

Assuming Wab = Wba, which will be true since Aab = Aba, then Eq. (10) reduces to,

(11)

The minimization problem can be further simplified by introducing a diagonal matrix
defined as Daa = ∑bWab, making the minimization problem,

(12)

Eq. (12) is equivalent to the minimum eigenvalue decomposition equation,

(13)

where the top n eigenvalues in λ correspond to the n eigenvectors y and the top n ESD
features. The top n eigenvalues correspond to the projection of the matrix A into the space

 such that the pairwise distances between the elements in A, and hence the pairwise
distances between objects, are preserved. Furthermore as the eigenvectors y are orthonormal
to each other, each additional feature provides independent information on the shape space
represented by A.

4.5. Support vector machine classification
A SVM classifier (Cortes and Vapnik, 1995) can be trained using y’, to learn the optimal
hyperplane which separates M into the classes referenced by the label set L(M) ∈ {−1, 1}.

The SVM classifier utilizes y’a to determine the distance to the hyperplane . SVM
classifiers are typically used to generate a hard class decision where  corresponds
to assigning class label of −1 to . However, a pseudo-threshold can be generated by
varying the decision boundary.

Given a specific decision boundary, ϱ, if  and  then  is identified
as a true negative (TN); if  and  then  is identified as a false
negative (FN); if  and  then  is identified as false positive (FP); and
if  and  then  identified as a true positive (TP). The number TN
(NTN,ϱ), FN (NFP,ϱ), FP (NFP,ϱ),and TP (NTP,ϱ) are calculated over a range of ϱ.
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For each ϱ, sensitivity (SNϱ), specificity (SPϱ), and classifier accuracy (CAϱ) can be
calculated as,

where N is the total number of objects in the database. By plotting SNϱ versus 1 – SPϱ over
a range of ϱ a Receiver Operating Characteristic (ROC) curve representing the trade-off
between SN and SP for a give feature set is obtained. Area under the ROC curve (AUC) is
calculated for each ROC curve.

For our experiments, the SVM classifier was employed with a radial basis function. For the
dataset evaluated for our experiments there were three prostate histopathology classes. To
evaluate the prostate histopathology dataset using a SVM the classification task was divided
into 4 pairwise classification tasks. The training and evaluation involved a randomized 3-
fold cross-validation scheme where at each iteration, 2/3 of the dataset was used for training
of the classifier, while always maintaining class balance. The remaining 1/3 of the dataset
was used for independent testing of the SVM classifier. Training and testing sets were
selected such that the training and testing sets never concurrently contained images from the
same patient. The cross-validation procedure was repeated 5 times where, at each iteration,
the training and testing sets were selected randomly always ensuring that there was no
overlap between the training and testing sets in terms of patients.

5. Experimental design and results
5.1. Dataset description

5.1.1. Synthetic super quadratic ellipsoids—Super quadratic ellipsoids represent a
class of 3D objects with a closed topology such that the shape of a super quadratic ellipsoid
is fully determined by the 5 parameters: α1, α2, α3, ∊1, and ∊2 (Franklin and Barr, 1981).
Super quadratic ellipsoids with similar shapes were generated by carefully modulating the
model parameters so that the discriminability of the ESD features in a synthetic setting could
be evaluated. The boundary of a super quadratic ellipsoid is defined as,

(14)

where θ ∈ {−π, …, π} and ψ ∈ {−π/2, …, π/2} (Franklin and Barr, 1981). For the purpose
of this study the following parameters were combined: ∊1, ∊2 ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}
and α1, α2, α3 ∈ {0.7, 0.8, 0.9, 1} resulting in 4096 possible shape combinations. Note
however, that several shapes will be scaled versions of each other (e.g. ∊1 = ∊2 = 0.5, α1 =
α2 = α3 = 0.7 and ∊1 = ∊2 = 0.5, α1 = α2 = α3 = 0.8 will be the same shape with only a scale
difference). Two parameters, ∊1 and ∊2, are referred to as shape parameters and were used to
control the concavity/convexity of the super quadratic ellipsoids. The other three parameters,
α1, α2, and α3, are scaling parameters and determine the length, width, and depth of the
object respectively. By selecting parameters that are close together, we obtain a set of
objects with subtle shape differences.

5.1.2. Prostate histopathology—Prostate tissue biopsy cores obtained from 58 patient
studies were stained with Hemotoxylin and Eosin (H & E) and digitized using a ScanScope
CS™ whole-slide scanning system at 40× optical magnification. An expert pathologist
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selected regions of interests on the digitized biopsy image, to obtain a total of 102 regions.
The expert pathologist then classified each region as benign (24 regions), Gleason grade 3
(67 regions), or Gleason grade 4 (11 regions). Every gland contained within each region was
segmented by a human expert to obtain lumen and nuclear boundaries (Fig. 1). Glands
which did not contain either a nuclear or lumen boundary, or where the contour was not
fully contained within the region were removed from the study, resulting in a total of 888
glands containing both lumen and nuclear boundary segmentations. These glands were
distributed across the three classes: benign (N = 93), Gleason grade 3 (N = 748), and
Gleason grade 4 (N = 47).

5.2. Features for comparison against ESDs
Our novel ESD features are compared against three morphologic feature sets: Boundary-
based features (referred to as Boundary) (Agner et al., 2011), FDs (Persoon and Fu, 1977),
and a MASM path similarity measure (referred to as Path) (Bai and Latecki, 2008). Below,
we briefly describe the calculation of each of these feature sets.

5.2.1. Boundary-based features
The Boundary feature set consists of 6 morphologic features that have been previously used
with computer-aided diagnostic (CAD) systems for determining Gleason grade using
prostate gland morphology (Tabesh et al., 2007). The formulation for each of the shape
features is presented in Table 2 and reflects the (a) circularity of an object (area overlap
ratio, compactness), (b) how much does object contour vary with respect to the shape of a
circle (normalized average radial distance ratio, standard deviation of distance ratio,
variance of distance ratio), and (c) how quickly does the object contour change
(smoothness).

5.2.2. Fourier descriptors
The FD feature set comprised the first 50 frequency components calculated from the contour
of an object ξ (Persoon and Fu, 1977). The frequency of the contour was calculated as
follows: a set of ordered points around the contour p(j) ∈ ξ: j ∈ {1, …, J} were found. The

magnitude of the points was calculated as  where . The Fourier
transform of ρ is calculated and is used to derive the first 50 frequency components of each
contour.

5.2.3. Path features
We calculated an alternative shape dissimilarity matrix, Z, using a path-based measure of
MASM dissimilarity previously presented by Bai and Latecki (2008). This MASM
similarity measure has been demonstrated to perform similarly or better than edit-distances
on shock graphs (Sebastian et al., 2004). Given two MASMs  and , a set of medial
atoms m’a ∈ Ma and m’b ∈ Mb comprising the end nodes of the medial axes are identified.
End nodes are defined as those medial atoms with only one neighbor on the medial axis. A

path between pairs of end nodes  and  is defined as .

Similarity,  is defined for end node pairs in Mb. The dissimilarity between Ma
and Mb is then found by,

(15)
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The function Δ gives a measure of path similarity which is defined as the summation over
the radius and path length (Bai and Latecki, 2008). The dissimilarity matrix Z is a high
dimensional representation of the shape space, and as with our dissimilarity matrix A, GE
was employed to return the top n eigenvectors.

5.3. Experiment 1: ability of MASM to capture object morphology
We tested the hypothesis that the MASM can accurately represent the morphology of a wide
variety of shapes. We assumed that MASM reconstruction accuracy reflects the accuracy of
the MASM to describe object shape. To evaluate this quantitatively, we reconstructed all of
the objects in each dataset. For each dataset we varied the number of medial atoms
contained in the MASM and for each set of medial atoms we reconstructed the object and
denoted it as Ωr. Ωr is determined as a set of pixels belonging to an object given  such
that,

(16)

where the function r(m) is defined by the equation,

(17)

For each Ωr, we measured how close it is to Ωf using the edge based measures-(a) mean
absolute distance (MAD) and (b) Hausdorff distance (Huttenlocher et al., 1993); and the
area based measures-(a) Dice’s coefficient (DICE) (Dice, 1945) and (b) Positive Predictive
Value (PPV). MAD describes on average the extent of variation between the ground truth
shape contour and the reconstructed shape and is formally defined as,

(18)

Hausdorff distance (Huttenlocher et al., 1993) measures the performance of the worst case
disparities between two shapes and is defined as,

(19)

DICE (Dice, 1945) is a measure of overlap between two shapes, in this case it reflects the
extent of overlap between the reconstructed shape and the ground truth shape and is defined
as,

(20)

PPV in this case is used to evaluate the proportion of pixels in the reconstructed shape
accurately identified as belonging to the foreground of the object and is defined as,

(21)

For each dataset the fewest number of medial atoms that achieved high DICE and PPV were
selected to represent all objects in the database for calculation of ESDs. Fig. 4 illustrates an
example of the medial atom evaluation performed for the prostate histopathology dataset,
with a red cross-displayed at the optimal number of medial atoms for representing prostate
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morphology. The object reconstruction accuracy for the optimal number of medial atoms is
reported in Table 3. As seen in Table 3 the synthetic dataset which contains 3D objects
needs more medial atoms to more accurately represent the morphology compared to the
prostate histopathology dataset which contains 2D objects. This is to be expected since 3D
objects can have more complex shapes compared to their 2D counterparts.

5.4. Experiment 2: registration evaluation
In this experiment the diffeomorphic registration algorithm presented in Section 4.2 was
evaluated in terms of its ability to (a) recover a large range of non-linear deformations
applied to MASMs and (b) determine accurate correspondences between medial atoms on
Ma and Mb. We conducted a total of 200 experiments in which 20 randomly chosen MASMs
and 10 deformation fields were considered. A deformation field denoted as T’ was generated
by varying the type and magnitude of the deformation applied. We applied T’ to the image
space C containing  and then used our diffeomorphic registration algorithm to
approximate the inverse transformation T−1. We then computed the mean residual error as

, where |Ma| is the number of medial atoms contained
in .

Mean residual error was on average 1.09 ± 0.24 pixels, where accurate cluster centroid
correspondence between MASMs allowed for close alignment between MASMs. The worst
case registration for a given MASM was 4.94 ± 2.22 pixels. For this specific case the
MASM had several branches so that the cluster centroids on the original MASM and the
deformed MASM failed to correspond to the equivalent locations on the original MASM.
Incorrect correspondence determination between the cluster centroids may cause the
diffeomorphic registration to be unable to approximate T−1. In these 10 cases, on average
2.8 ± 0.3 cluster centroids did not have correct correspondence. This effect was only seen in
10 of 200 MASMs and only during the application of large deformations; deformations that
had a magnitude greater than 10% of the area of Ωf, the foreground region of the object of
interest.

5.5. Experiment 3: distinguishing between super quadratic ellipsoids with differing shape
parameters

We constructed a set of 4096 super quadratic ellipsoids, denoted by S, to evaluate the ability
of our ESD features to represent subtle shape variations between objects (see Section 5.1.1).
Dissimilarity between the pair Sa and Sb for known sets of shape parameters was measured
as Π(Sa, Sb) = ∑ϖ‖ϖa − ϖb‖ : ϖ ∈ {α1, α2, α3, ∊1, ∊2}, a, b ∈ {1, …, N}. Π(Sa, Sb)
represents the total shape dissimilarity.

The correlation between a set of ESD features y’ = [y1, …, yN] for a set of N objects and a
set of known shape differences Π was calculated as follows. We first define the distance
between two objects in the ESD feature space as, Ξ(Sa, Sb) = ‖ya − yb‖. We then calculate
Pearson’s correlation coefficient between Π and Ξ (Rodgers and Nicewander, 1988). This
allows us to quantitatively evaluate the ability for the ESD feature space, represented by
Ξ(Sa, Sb), to reflect known shape differences (Π).

Pearson’s correlation coefficient was determined to be R = 0.82, demonstrating a strong
correlation between the know shape parameters and the underlying ESD feature space. Fig.
5 displays all objects in the first 2 dimensions of the ESD feature space with representative S
displayed in Fig. 5b–i. Note that a curvilinear manifold that contains the subspace of these
shapes is clearly visible. The first dimension of the ESD feature space correlates to changes
in ∊1, corresponding to the red line. The second dimension of the ESD feature space
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correlates to ∊2, corresponding to the blue line. Note that similar super quadratic ellipsoids
are embedded adjacent to each other in the feature space while dissimilar super quadratic
ellipsoids are embedded far apart. These results on synthetic data suggest that ESDs are able
to differentiate between subtle changes in shape.

5.6. Experiment 4: Gleason grading of prostate histopathology
We evaluated the ability of four feature sets (Boundary, FD, Path, ESD) to accurately
distinguish between Gleason grade 3 (G3), grade 4 (G4), and benign (BE) prostate glands as
seen on histopathology using a SVM classifier. As this is a multiclass problem we evaluated
SVM classifiers for the following 4 pairwise classification tasks: BE versus other (G3 and
G4), G3 versus other (BE and G4), G4 versus other (BE and G3), and G3 versus G4. SVM
training and evaluation was performed as described in Section 4.5.

The ESD and Path feature sets were evaluated over 1 ≤ n ≤ 30 and 1 ≤ γ ≤ 2000 for each
classification problem (results not shown). SVM CAs and corresponding n and γ for each
features set is shown in Table 4a. For all classification problems, n = 4 was empirically
determined to yield the consistently best results in the ESD feature space. A narrow range of
1 ≤ γ ≤ 2 was identified as yielding the best performance in the ESD feature space, however
γ can be adjusted to obtain better performance for a specific classification task. In contrast,
Path had a wide range of n and γ which yielded high CA and AUC values. For all
classification problems considered, the ESD features outperformed the Boundary, FD, and
Path feature sets. ROC curves for each classification task are displayed in Fig. 6 and
corresponding AUC values are reported in Table 4b.

Fig. 7 displays the first 2 ESD features of the 888 glands; representative glands from three
different classes are shown along with their corresponding locations in the ESD feature
space. Misclassified glands, shown in the far right row often display characteristics very
similar to glands of other Gleason patterns. Consequently, some misclassifications may be
attributed to glands displaying atypical attributes.

6. Concluding remarks
In this paper, we presented Explicit Shape Descriptors (ESDs) for use in quantifying
morphologic differences between prostate glands on histopathology. ESDs are calculated by
(a) fitting a medial axis shape model (MASM), (b) calculating diffeomorphic based
similarity (DBS), and (c) applying Graph Embedding (GE) to the shape dissimilarity matrix
to find a set of ESDs. The individual modules contained in our ESD calculations (e.g.
MASM (Blum, 1967), GE (Shi and Malik, 2000)) have been previously described, however,
our methodology represents a novel integration of each of these methods in order to describe
object morphology with a concise set of features. ESDs were able to distinguish between
subtle differences in super quadratic ellipsoids and were also able to distinguish between
prostate glands on histopathology with subtle morphologic differences with a maximum
accuracy of 89% for 888 prostate glands acquired from 58 patient needle core biopsies.

Our framework offers distinct advantages compared to previously reported methods which
combine shape models with NLDR. Our approach, unlike that of previously presented work
(Bai et al., 2010; Egozi et al., 2010), is unique in that it can be applied to data where class
information is not known. ESDs are derived from the eigenvector decomposition of the high
dimensional shape dissimilarity matrix and hence are guaranteed to be of low dimensionality
while simultaneously preserving pairwise class relationships between objects. For the
datasets considered in this work, ESDs were better able to accurately capture morphologic
differences between objects compared to other classes of feature descriptors including
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boundary-based features (Tabesh et al., 2007), Fourier Descriptors (FDs) (Persoon and Fu,
1977), and MASM path similarity (Bai and Latecki, 2008).

One limitation of our current framework is that GE and the subsequent SVM classifier
training must be recalculated when new, never before seen objects are introduced into the
dataset. Hence, GE learns the low dimensional embeddings from all samples, training and
testing, included in the dataset. However, GE is an unsupervised NLDR approach and
therefore no label information is incorporated into learning the low dimensional space.
Recalculating the low dimensional embeddings when new samples are introduced into the
dataset, commonly referred to as the out-of-sample problem, is a well known limitation of
NLDR schemes such as GE (Bengio et al., 2003). However, methods to overcome this
problem have been previously presented (Bengio et al., 2003; Fowlkes et al., 2004). Future
work will involve incorporating and evaluating these methods in the context of ESD feature
extraction.

GE, in addition to other NLDR schemes, is known to be sensitive to noise and outliers in the
original high dimensional space (Belkin et al., 2006; Chang and Yeung, 2006). Hence the
accuracy of the preceding modules of our ESD framework, (a) fitting a MASM to an object
and (b) calculating DBS between MASMs, are important to ensure that the low dimensional
space found by GE preserves shape differences between objects. We evaluated the
performance of each of these modules independently to assess their contribution to the
overall performance of ESDs.

The results from Experiment 1 (Section 5.3) show that the MASM is able to accurately
model the shapes of glands as seen on prostate histopathology. However, a relatively minor
portion of glands (approximately 20% of misclassified glands) may be misclassified due to
an inability of the MASM to capture subtle differences in shape (results not shown). Hence,
future work may involve calculating the MASM using more advance methods, for example
employing methods that preserve branches that best describe object morphology (Bai et al.,
2007).

The results from Experiment 2 (Section 5.4) demonstrate that DBS is able to accurately
determine correspondence between a wide variety of MASMs over a range of deformations.
However, determining MASM correspondence is a difficult task. Furthermore, evaluation of
the registration step demonstrated that in approximately 40% of misclassified glands the
inability to correctly determine medial atom correspondence, and hence accurately
determine shape dissimilarity, may be responsible for misclassification (results not shown).
Future work in improving the registration and shape dissimilarity calculation may result in a
more accurate algorithm to detect subtle shape differences between objects. For instance, a
variety of learning algorithms could be employed to learn a weight for each term in the
dissimilarity measure (Eq. (8)) (Chen et al., 2009). By weighting each term according to its
importance in detecting subtle shape differences we would expect better separability
between objects of different classes.

Finally, gland misclassification may be caused by GE being unable to accurately preserve
the relationships between samples when projecting the high dimensional space into a lower
dimensional space. We found roughly 25% of misclassified glands may be on account of
classes relationships not being preserved during this step (results not shown). Future work
will evaluate other NLDR algorithms (e.g. Locally Linear Embedding (LLE) (Roweis and
Saul, 2000), Isomaps (Tenenbaum et al., 2000)) within our framework. Additionally, the use
of class information when learning the low dimensional ESD features may further improve
classification accuracy. Another direction of future work will be to consider integrating
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semi-supervised NLDR approaches (Zhao, 2006) for learning the low dimensional ESD
features.

For approximately 15% of glands that were misclassified we were unable to determine
which step in our algorithm may be responsible for the misclassification. Visual inspection
of a subset of these glands showed that some misclassifications may be attributed to glands
displaying atypical shape attributes. In future work we will integrate the ESD features with
other types of histologic image attributes, such as the shape and arrangement of nuclei
(Doyle et al., 2012a) or texture (Doyle et al., 2011; Doyle et al., 2012b), to build CAD
systems for Gleason grading of prostate histopathology that may be better able to classify
glands with atypical shape attributes.

We have obtained preliminary results that show that ESDs are able to distinguish subtle
differences of object morphology in a wide variety of applications, for instance
distinguishing benign and malignant lesions on breast MRI (Sparks and Madabhushi, 2010).
However, future work is necessary to validate these results in a more comprehensive
manner.
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Fig. 1.
Three representative prostate glands on digitized needle biopsy histology specimens with
lumen boundary (red) and nuclear boundary (blue) segmentations displayed. (a) A gland
from benign prostate tissue, the gland has a regular oval structure. (b) A gland from a CaP
region identified as Gleason grade 3, the gland is smaller with greater margin irregularity
compared to the benign gland. (c) A gland from a CaP region identified as Gleason grade 4,
the gland is highly irregular in shape with a shrunken lumen. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 2.
Example of two prostate glands with similar boundary-based descriptors despite obvious
qualitative visual differences in morphology. (a) A benign prostate gland with a smoothness
of 0.3 and a compactness of 0.57. (b) A Gleason grade 4 prostate gland with a smoothness of
0.3 and a compactness of 0.57. Our novel ESD methodology calculated values of 0.66 and
0.87 respectively for the glands, and hence is better able to quantify the differences between
these two glands. All measures have a range of 0–1.
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Fig. 3.
An illustration of the main modules for extracting explicit shape descriptors (ESDs). (a) A
medial axis shape model (MASM) (blue, green) is fit to each object contour (black, gray).
(b) Pairwise registration between MASMs is performed to align medial axes which then aids
in (c) determining parameter correspondence between registered MASMs. Subsequently,
pairwise differences between object shapes are computed which yields a N × N affinity
matrix. (d) A NLDR scheme, GE, is then applied yielding a set of ESDs which quantify
shape differences. Finally, (e) a Support Vector Machine (SVM) is trained to learn the
optimal hyperplane which separates the ESD feature space into different object classes. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 4.
Prostate gland reconstruction accuracy as measured by DICE over number of medial atoms
(blue). The number of medial atoms determined to give the highest reconstruction accuracy
for the least computational cost is displayed (red cross). At first there is a large increase in
DICE as more medial atoms are added to the MASM. After a certain point, adding more
medial atoms does not significantly increase DICE. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5.
(a) The first and second ESDs are plotted on the X and Y axes respectively. Note that the
manifold is curvilinear with the two axes corresponding roughly to the variation in ∊1 (red)
and ∊2 (blue) respectively. (b)–(e) Ellipsoids with all parameters held equal except ∊2,
resulting in subtle differences between object morphology. (f)–(i) Ellipsoids with all
parameters held equal except ∊1, resulting in subtle differences between object shape.
Finally note that the two ellipsoids farthest on the manifold, (e) and (i), are the most
dissimilar. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 6.
ROC curves for a SVM classifier trained using 3-fold cross-validation on 888 prostate
glands for Gleason grade classification of prostate glands as seen on histopathology in four
tasks: (a) BE versus Other (G3 and G4), (b) G3 versus other (BE and G4), (c) G4 versus
other (BE and G3), and (d) G3 versus G4. Four feature sets were evaluated, Boundary
(blue), FD (green), Path (red), and ESD (black). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7.
(e) ESD feature space for prostate digital histopathology with BE (blue), G3 (green), and G4
(red) glands. The first and second ESDs are plotted on the X and Y axes respectively.
Lumen (red) and nuclear (blue) layers are shown, for glands labeled (f)–(h) G4, (i)–(k) G3,
and (l)–(n) BE. Ground truth for mislabeled glands, displayed in the far right row, are (h)
G3, (k) BE, (n) G3. Glands with similar shapes are embedded adjacent to each other on the
manifold while glands with dissimilar shapes are embedded far apart. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Table 1

Description of commonly employed notation and symbols in this paper

Symbol Description Symbol Description

C d-dimensional image scene. T Affine transformation function.

C d-dimensional grid of voxels. gkj kth cluster centroid at iteration j.

ξ Contour for an object of interest. P(m∣gkj) Probability of m ∈ M belonging to gkj.

M Medial axis shape model (MASM). Q Diffeomorphic transformation function.

M Set of voxels on a medial axis. G Green’s function.

v1(m),v2(m) Surface vectors for m ∈ M. (û, v̂) Correspondence between two medial axes.

f(c) Signed distance function for c ∈ C. A N × N dissimilarity matrix.

Xi ith direction. y’ Set of n Explicit Shape Descriptors (ESDs).

N Number of objects. S Super quadratic ellipsoid.
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Table 2

A listing of the 6 boundary-based features utilized to evaluate object morphology and compared against our
ESD feature set. Note that ∣ξ∣ represents the cardinality of set ξ

Boundary feature Description

Normalized average radial distance
 ratio

1
∣ ξ ∣

∑ p∈ξ p − p
‒

max p∈ξ p − p
‒

 where p
‒

=
1
∣ ξ
∣ ∑ p∈ξ p

Area overlap ratio ∣ ξ ∣

πr 2
 where r = max p∈ξ p − p

‒

Standard deviation of distance ratio
σΓ = Γ(p) − μΓ

2

where Γ(p) =
p − p
‒

max p∈ξ p − p
‒

 and

μΓ =
1
ξ

∑ p∈ξ Γ(p)
Variance of distance ratio σΓ

2

Compactness F (ξ)2

∣ ξ ∣
 where

F (ξ) = ∑ p∈ξ, j∈{1,…,J } p j+1 − p j

Smoothness ∑ p∈ξ, j∈{1,…,J } B(p ( j))
where

B(p ( j)) = p ( j) − p
‒

−
p

( j−1)
− p
‒

+ p
( j+1)

− p
‒

2
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Table 3

Object reconstruction accuracy for 2 datasets using the previously determined optimal number of medial
atoms for each dataset. MAD and Hausdorff distances are shown in units of pixels. DICE and PPV are unitless
ratios. Note that 3D objects require more medial atoms to accurately represent object morphology

Performance measure Dataset (Dimensionality)

Ellipsoid (3D) Prostate gland (2D)

Medial atoms 1000 55

MAD 3.40 ± 3.54 0.01 ± 0.01

Hausdorff 24.46 ±12.95 1.51 ±1.16

DICE 0.87 ±0.12 0.95 ± 0.03

PPV 0.94 ± 0.06 0.98 ± 0.02
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Table 4

(a) CA and (b) AUC for a SVM classifier trained using 3-fold cross-validation on 888 prostate glands for
distinguishing between Gleason grades on prostate histopathology. SVM classifiers were trained with 4
feature sets (Boundary, FD, Path, ESD). In total 16 classification studies (4 feature sets, 4 pairwise
classification tasks) were performed. p-values comparing ESD to the comparison feature sets are reported,
statistically significant p-values (p < 0.01) are bolded. The best CA and AUC across the feature sets is bolded

Classification task Feature

Boundary FD Path ESD

BE vs. other CA 0.80 ± 0.05 0.70 ± 0.06 0.60 ± 0.05
γ = 100, n = 9

0.83 ± 0.04
γ = 1.2, n = 4

p-value 0.005 0.001 0.005 -

G3 vs. other CA 0.70 ± 0.08 0.65 ± 0.04 0.61 ± 0.08
γ = 1025, n = 14

0.87 ± 0.07
γ = 2.1, n = 4

p-value 0.013 0.006 0.003 -

G4 vs. other CA 0.75 ± 0.06 0.58 ± 0.14 0.65 ± 0.10
γ = 1, n = 4

0.85 ± 0.03
γ = 1.5, n = 4

p-value 0.005 0.024 0.016 -

G3 vs. G4 CA 0.68 ± 0.08 0.60 ±0.10 0.64 ± 0.06
γ = 151, n = 5

0.89 ± 0.06
γ = 1.2, n = 4

p-value 0.004 0.001 0.002 -

NMBS

BE vs. other AUC 0.71 ± 0.07 0.67 ± 0.08 0.61 ± 0.09
γ = 100, n = 9

0.77 ± 0.05
γ = 1.2, n = 4

p-value 0.15 0.059 0.007 -

G3 vs. other AUC 0.60 ± 0.09 0.64 ± 0.06 0.56 ± 0.08
γ = 1025, n = 14

0.81 ± 0.05
γ = 2.1, n = 4

p-value 0.002 0.001 0.0004 -

G4 vs. other AUC 0.71 ± 0.08 0.57 ± 0.06 0.56 ± 0.20
γ = 1, n = 4

0.82 ± 0.07
γ = 1.5, n = 4

p-value 0.042 0.0003 0.023 -

G3 vs. G4 AUC 0.72 ± 0.04 0.58 ±0.17 0.64 ±0.17
γ = 151, n = 5

0.78 ± 0.11
γ = 1.2, n = 4

p-value 0.25 0.065 0.162 -

Med Image Anal. Author manuscript; available in PMC 2014 December 01.


