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Abstract

Retinal image alignment is fundamental to many applications in diagnosis of eye diseases. In this

paper, we address the problem of landmark matching based retinal image alignment. We propose a

novel landmark matching formulation by enforcing sparsity in the correspondence matrix and

offer its solutions based on linear programming. The proposed formulation not only enables a joint

estimation of the landmark correspondences and a predefined transformation model but also

combines the benefits of the soft assign strategy (Chui and Rangarajan, 2003) and the

combinatorial optimization of linear programming. We also introduced a set of reinforced self-

similarities descriptors which can better characterize local photometric and geometric properties of

the retinal image. Theoretical analysis and experimental results with both fundus color images and

angiogram images show the superior performances of our algorithms to several state-of-the-art

techniques.
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1. Introduction

Retinal images are widely used in diagnosing and monitoring the progress of a variety of eye

diseases, such as diabetic retinopathy (Winder et al., 2009), age-related macular

degeneration (Wood et al., 2000) and glaucoma (Quigley et al., 1982). As a process of

establishing spatial correspondences between two retinal images, retinal image alignment

(Kolar et al., 2008a; Treigys et al., 2008; Dhillonb et al., 2006) is fundamental to

applications as diverse as detecting locations of scars and burns, tracking the progress of

diseases (Narasimha-Iyer et al., 2006), mosaicing or constructing montage to provide a

wider view of the retina, fusing images from different modalities (Cao, 2008) and creating

tools to assist ophthalmologists during laser surgery or other procedures (Can et al., 2002;

Tobin et al., 2007).

However, automatic retinal image alignment has remained a difficult problem due to several

challenges. First, transformation for modelling the spatial correspondences between two

retinal images can be very complicated. Two contributing factors here are that the retina is a

curved surface and that the retinal images can be projections of this surface from a wide

range of view points with an un-calibrated camera. Second, there exist large homogeneous

areas in retinal images. Nonvascular surface occupies much of the retina and can be

textureless for healthy retina but exhibit a variety of pathologies for unhealthy retinas. Third,

large appearance variations may be observed between the images to be registered. It is

because the pathologies can appear and disappear over time, the effects of disease and poor

image quality can obscure the vasculature (Stewart et al., 2003) and images may be captured

under vastly different illumination conditions or acquired using different modalities. To

handle these challenges, there are two keys to a successful retinal image alignment

algorithm: selection of optimization strategy to more efficiently estimate a predefined

transformation model and extraction of reliable features robust to image variations.

Landmark matching (Can et al., 2002; Zana and Klein, 1999; Chanwimaluang et al., 2006;

Stewart et al., 2003; Lee et al., 2007) is more attractive in retinal image alignment compared

with pixel-wise based image registration (a brief review to the existing image registration

techniques is provided in Sec. 2). It can deal with the large homogenous areas and

appearance variations in retinal images as mentioned above. Moreover, landmarks are also

used in practice by ophthalmologist (Can et al., 2002). Disregarding certain encouraging

results produced by some previous methods (Can et al., 2002; Stewart et al., 2003;

Chanwimaluang et al., 2006), at least two weaknesses were recognized in our research.

First, features describing landmarks are not always distinguishable. Most previous features

(Chanwimaluang et al., 2006) are extracted from the binary vascular image in which a lot of

information of the local image pattern is lost. Moreover, landmarks are not uniquely

identified by the widely used features characterized with vessel orientations (Can et al.,

2002; Zana and Klein, 1999; Stewart et al., 2003) because branching angles at bifurcations

can be similar across the retina. Second, optimization strategies for estimating the predefined

transformation model are less efficient. Most previous methods perform an iterative

optimization process by repeating the estimations of correspondences and transformation

model, which requires a good initialization and might lead to an inferior local estimation. As

discovered by us and also mentioned in (Can et al., 2002), joint estimation of the
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correspondences and an appropriately predefined transformation model can result in a

superior estimation. Unfortunately, no effective optimization approach has been described

yet to accomplish this joint estimation for effectively aligning retinal images.

This paper addresses the problem of landmark matching based automatic retinal image

alignment. We propose a novel landmark matching formulation by enforcing sparsity in the

correspondence matrix and offer its solutions which are obtained using linear programming

(LP) (Zheng et al., 2011). The proposed formulation not only enables a joint estimation (as

shown in Fig. 1) of the landmark correspondences and the predefined transformation model

but also combines the benefits of the soft assign strategy (Chui and Rangarajan, 2003) and

the combinatorial optimization of LP. We also introduce a set of reinforced self-similarities

descriptors (Shechtman and Irani, 2007) to better characterize the photometric and

geometric properties of the retinal image. Our theoretical analysis and experimental results

using both fundus color images and angiogram images show the superior performances of

our methods to sate-of-the-art techniques in sense of not only the optimization ability but

also the distinguishing capacity of landmark descriptors.

Our sparsity constraint enforced to the correspondence matrix is inspired by the sparsity

prior (Donoho, 2006; Candes and Romberg, 2007) which has been widely used in the

communities of signal processing, computer vision, multimedia and medical imaging. This

matrix sparsity is accomplished by minimizing a proposed measurement called “to-centroid

deviation”. Minimizing this measurement can encourage the matched reference points (to

each floating point) to be as spatially concentrated as possible. Obviously, this strategy is

very different from the L1 norm minimization (Donoho, 2006; Candes and Romberg, 2007;

Huang et al., 2009; Zhang et al., 2012; Waters et al., 2011; Candes and Tao, 2005) which is

able to enforce sparsity but incapable of obliging the spatial concentration.

2. Previous Work

Image registration has been extensively involved in a wide variety of practical tasks,

including retinal image analysis, medical image analysis in a more general sense, various

tasks in computer vision, etc. There exist a huge number of related publications (Gholipour

et al., 2007; Modersitzki, 2004). These previous methods can basically be categorized as

pixel/voxel-wise based, landmark/feature based or their combinations. Detailed review to all

of them is beyond the scope of this paper. In this paper, we only provide a brief review to

methods of retinal image registration and to the optimization techniques of landmark

matching based image registration.

For retinal image registration, both landmark matching based methods (Can et al., 2002;

Zana and Klein, 1999; Chanwimaluang et al., 2006; Stewart et al., 2003) and pixel-wise

strategies (Kolar et al., 2008b; Matsopoulos et al., 1999) were explored. However, landmark

matching has attracted more interests due to several reasons as explained in Sec. 1. In these

works, landmarks are mostly placed at cross points or bifurcations of vessel, and

characterized by for example coordinates, orientations or widths of the surrounding vessels.

However, it is well known that these features are not robust and not always well

distinguishable in practice, which may introduce severe matching ambiguities. For the inter-
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image transformation, parametric models used in previous work include weak affine (Zana

and Klein, 1999), affine (Can et al., 2002; Kolar et al., 2008b; Matsopoulos et al., 1999),

bilinear/projective (Matsopoulos et al., 1999) and the 12-parameter quadratic model (Can et

al., 2002). To estimate these transformation models, optimization techniques include

iterative closest point (ICP) algorithm (Chanwimaluang et al., 2006), dualbootstrap ICP

(Stewart et al., 2003), Hough Transform (Zana and Klein, 1999), and traditional global

optimization techniques such as simulated annealing and genetic algorithm (Matsopoulos et

al., 1999).

In those more general fields of medical image analysis and computer vision, landmark

matching based image registration has been treated as a fundamental task (Gholipour et al.,

2007; Berg et al., 2005; Zhan et al., 2006). To obtain a high matching accuracy, optimization

also plays a vital role. There are basically three classes of optimization techniques in

previous work. The first class assumes the correspondences to be pre-known and only

resolves the transformation model (Shen and Davatzikos, 2002; Brown and Lowe, 2007;

Rohr et al., 2001). The second class does not explicitly assume any specific transformation

model but solely solves the correspondences with various optimization techniques such as

the Hungarian method (Belongie et al., 2001) and the quadratic programming (Berg et al.,

2005). The third class handles the joint estimation of the correspondences and

transformation model. However, for simplicity, an iterative process by repeating the

estimations of each of them was more widely used, e.g. the EM like technique in (Chui and

Rangarajan, 2003) and the iteratively updating process in (Zheng and Doermann, 2006).

With this iterative strategy, only a local optimization can be attained and the accuracy is

conditioned on the initialization. In contrast, recently explored joint estimation with

combinatorial optimization techniques (Jiang and Yu, 2009; Li et al., 2013, 2011) is free

from the iterative process and can simultaneously solve the correspondences and the

transformation model. These methods are free from initialization and able to produce a

global optimization. Unfortunately, only some simple spatial transformations have been

investigated (Jiang and Yu, 2009; Li et al., 2013, 2011).

At the same time, the sparsity prior (Donoho, 2006; Candes and Romberg, 2007) on a signal,

image or volumetric data has inspired many research methods (Huang et al., 2009; Zhang et

al., 2012; Waters et al., 2011) in various fields (e.g. computer vision, multimedia processing

and medical imaging). Numerous greedy algorithms have been developed to address the

sparsity optimization problem, including greedy techniques for solving an L0 norm problem

such as the orthogonal matching pursuit (Chen et al., 1989) and stagewise OMP (Donoho,

2006) and methods for dealing with a relaxed L1 norm problem such as LARS-Lasso

(Tibshirani, 1996) and interior point (Koh et al., 2007). Recovering a sparse matrix with the

LP optimization technique (Candes and Tao, 2005) has also attracted a lot of research

interests.

3. Landmark Matching by Enforcing Sparsity in Correspondence Matrix

We provide a new formulation for the landmark matching problem, which is obtained by

both using the softassign strategy (Chui and Rangarajan, 2003) and enforcing sparsity

property in the correspondence matrix. We also present solutions of the formulation by
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integrating the LP optimization technique. Compared with previous work, the proposed

algorithms can simultaneously solve the landmark correspondences and the predefined

transformation model. This joint estimation (as shown in Fig. 1) is able to result in superior

accuracy and robustness due to the fact that mutual aids of the correspondences and

transformation model can be maximized in the joint optimization process compared with

estimating them independently. Moreover, the proposed formulation combines the benefits

of the soft assign strategy and the combinatorial optimization of LP, which helps to generate

better optimized estimations.

3.1. Problem Formulation

Suppose we have one reference-landmark set  and one floating-

landmark set  where Nr and Nm represent the number of

reference-landmarks and floating-landmarks, respectively. Taking the reference-landmark i

as an example,  is expressed by the features (denoted by vertical vector ) extracted to

describe the visual appearance of this point and its coordinates, i.e.  where T

means transpose of the vector. For brevity, we represent , then .

For later usages, we provide vector  to denote the corresponding homogeneous

coordinates, vector

to be used later for representing the 12-parameter transformation model in (Can et al., 2002),

matrix , matrix , and matrix

. We omit the similar symbols for the floating-landmarks for

brevity.

Point matching is defined as estimating a mapping γ which indicates that a floating-

landmark im corresponds to a reference-landmark ir, i.e. ir = γ(im). Mapping γ can be

represented by a correspondence/assignment matrix (denoted by E) (Jiang and Yu, 2009) or

a pre-defined transformation model (denoted by ).  is usually represented by a

parametric model in order for robustness to noise/outliers and for reducing the involved

computational burden.

Our point matching scheme is formulated as jointly estimating the correspondences and

transformation model by maximizing the feature matching quality and the transformation

model compliance quality. Feature matching quality represents how similar the features vm

of each floating-landmark are to vr of its corresponding reference-landmark. Transformation

model compliance quality evaluates how well the coordinates xm of each floating point and

xr of its corresponding reference-landmark comply with the estimated transformation model.

3.1.1. Correspondence Matrix—We first define the correspondence matrix E as a

binary matrix and then relax it later. E is of size Nm × Nr, for which each row contains

exactly one 1. If a floating-landmark im is matched to the reference-landmark ir, then Eim,ir =
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1 and other elements of the im th row all equal to 0. These can be stated alternatively as the

following two constraints:

(1)

(2)

where 1 is a vertical vector of ones. Obviously, E is a huge but sparse matrix.

Discreteness of the values taken by the elements of E in Eq. (1) introduces hardships into

designing an efficient optimization algorithm for landmark matching. Many papers (Chui

and Rangarajan, 2003; Jiang and Yu, 2009) tried to relax it to a continuous value within [0,

1]. This softassign strategy (Chui and Rangarajan, 2003) can make the resulting energy

function better behaved. This relaxation can be guaranteed by Eq. (2) together with the

below constraint

(3)

Unfortunately, this softassign strategy can result in a non-sparse correspondence matrix in

practice, which may cause ambiguities in the matching process. Imagine that one floating-

landmark is matched to five reference-landmarks and the matching likelihood value equals

to 0.2 for each of them. We then have no idea to decide the assignment. To deal with this

dilemma and inspired by the sparsity prior (Donoho, 2006; Candes and Romberg, 2007), we

propose to to get a sparse correspondence matrix in which the number of nonzero elements

in each row of E is as small as possible. Instead of minimizing the L1 norm as in existing

papers using sparsity (Donoho, 2006; Candes and Romberg, 2007; Huang et al., 2009;

Zhang et al., 2012; Waters et al., 2011; Candes and Tao, 2005), we propose to penalize the

to-centroid spatial deviations of the matched reference-landmarks. As shown in Fig. 2, the

proposed penalization strategy can not only generate a sparse matrix but also enforce a

spatial concentration on the matched landmarks. In contrast, to minimize the L1 norm can

only guarantee sparsity on E.

To define the to-centroid spatial deviations, we first locate the centroid of the matched

reference-landmarks by computing its coordinates with

(4)

We then use  and  to denote the vertical vectors concatenated by the x-axis and y-axis

coordinates of all centroids, respectively, and denote . Then, the to-centroid

deviation matrix is written as

(5)

where length of 1 is set to guarantee matrix Dr is of size Nm × Nr.
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Penalizing the to-centroid deviations amounts to minimizing the function

(6)

where tr() denotes the trace of matrix. Minimization of the objective function in Eq. (6) with

the constraints in Eq. (2) and Eq. (3) and other criteria explained below will result in a

correspondence matrix E taking a continuous values in [0, 1] but with a significant bias

towards 0 or 1.

3.1.2. Feature Matching Quality—Feature matching quality measures how similar the

visual appearance of each floating-landmark is to the matched reference-landmark(s). We

use the reinforced self-similarities (to be proposed in Sec. 4) to describe the landmarks,

which is invariant to local affine deformation, radially increasing non-rigid deformation, and

rotation. We use the negative of the correlation between two series of features as the

matching cost. Similar to (Jiang and Yu, 2009), for each landmark, we compute the features

with different angles. The similarity between any possible pair of floating-landmark and

reference-landmark is measured by the minimal cost value of features across all angles. We

then obtain a feature matching cost matrix C in size Nm × Nr, for which the element Ci,j

means the cost matching the ith floating-landmark to the jth reference-landmark. Note that C

can be computed beforehand.

Maximization of feature matching quality is then expressed as the minimization of the below

objective function:

(7)

3.1.3. Transformation—We propose to apply the constraints of the predefined

transformation model on the position’s relations of each floating-landmark and the

corresponding centroid of its matched reference-landmarks. As an example, the 12-

parameter transformation model in (Can et al., 2002) can be enforced with equation

(8)

where χ̄r and χ″m are defined previously and Θ is a 2 × 6 matrix. In Eq. (8), only the

elements of Θ are unknowns. This transformation model is obtained in (Can et al., 2002) for

retinal imaging by assuming a quadratic surface for the retinal, a rigid transformation

between two viewpoints, and a weak-perspective camera projection model. All involved

parameters are combined in Θ.

When the transformation between the two landmark sets is deformable, the TPS model

(Chui and Rangarajan, 2003) can be employed, as expressed by

(9)

where A is a 2 × 3 matrix containing the parameters of an affine transformation, Φ is a Nm ×

Nm symmetric matrix containing the information about the floating-landmark set’s internal
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structural relationships and its elements can be pre-computed as

, and Δm is an Nm × 2 matrix for which each row denotes

the non-affine deformation of the corresponding floating-landmark. In Eq. (9), A and Δm are

unknowns and need to be estimated.

Eq. (8) and Eq. (9) are all linear to the unknowns and this linearity leads to an LP based

solution as detailed in next section. All transformation models with this linearity property

can be incorporated in our matching scheme, which can cover the widely used general

models as diverse as affine, elastic, quadratic, and deformable represented by Thin-plate

Spline (TPS) or the FFD-BSpline (Rueckert et al., 1999), and some specific models

designed for retinal imaging, e.g. the 12-parameter model in (Can et al., 2002). In the

followings, we provide a discussion on the model in (Can et al., 2002) and the TPS based

deformable model as examples.

3.2. Optimization

The optimization scheme for our point matching task can be formulated as a constrained

minimization problem of an integrated objective function:

(10)

where f and c are defined by Eq. (7) and Eq. (6), respectively, and λ is an adjusting

parameter to control the “softness” of the estimated correspondence matrix E. For this

optimization scheme, constraints are expressed in Eq. (2), Eq. (3), Eq. (8) or Eq. (9), and

unknowns are the correspondence matrix E and the transformation parameters: Θ in Eq. (8),

A and Δm in Eq. (9).

One benefit of our optimization scheme is that it can be accomplished with linear

programming (LP). It is obvious because the objective function and the constraints involved

in the optimization scheme are all linear to the unknowns if removing c from Eq. (10) (i.e.

setting λ = 0). With c, the objective function is not linear any more due to the nonlinearity

of c to E in Eq. (6). Fortunately, c can be linearized by computing D with Eq. (5) while

fixing E in Eq. (4). Hence, our optimization scheme is an iterative process. At each iteration,

the estimation of E in previous iteration is used to compute D. For the first iteration, E can

be estimated by removing c from Eq. (10). This means that our landmark matching

technique does not require any manual initialization.

3.2.1. Formulation as Linear Programming—We provide expressions in a canonical

form for our LP based optimization scheme by taking the transformation in Eq. (8) as an

example. Other models can be handled with a similar way.

We first define some symbols. We treat all elements in the correspondence matrix E, matrix

Θ in Eq. (8), matching cost matrix C, and the to-centroid deviation matrix D as a single

column and denote them with vertical vectors e, θ, c, and d, respectively.

We then create a binary permutation matrix Pe in size Nm × (Nm · Nr), such that Pee = E1.

We then have the reformulation of Eq. (2):
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(11)

We further divide Eq. (8) into two parts: x-mapping and y-mapping, and represent each of

them as a linear function of Θ. The x-mapping is written as

(12)

where  is the first column corresponding to the x-coordinates of χ̄r,  is the first column

of χm, and Θx is the first row of Θ and in charge of x-mapping. It is easy to further create a

permutation matrix  in size of 6 × 12, such that . Therefore, Eq. (12) can be

rewritten as

(13)

With  and , Eq. (13) can be rewritten concisely as

(14)

Similarly y-mapping is expressed as

(15)

We are now ready to provide the linear program:

(16)

subject to

(17)

and

(18)

In this linear program formulation, e and θ are unknowns.

There are different ways to solve a LP problem and various solvers are available online. We

chose the interior point solver of GLPK1 for its efficiency.

3.2.2. Algorithm Overview—Optimization of our landmark matching approach is briefed

as the following five steps:

1http://gnuwin32.sourceforge.net/packages/glpk.htm
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1. Solving the LP problem specified by Eq. (16), Eq. (17), and Eq. (18) without

considering the to-centroid deviations (i.e. set λ = 0 in Eq. (16)).

2. Updating the to-centroid deviation matrix using Eq. (5) with current estimation of

the correspondence matrix.

3. Increasing λ by δλ (e.g. 0.2).

4. Solving the LP problem specified by Eq. (16), Eq. (17), and Eq. (18) with

considering the to-centroid deviation matrix.

5. Go to step 2 until the stopping criterion is satisfied.

Our algorithm can produce high accuracies due to at least four unique characteristics. First,

step 1 can offer a very nice initialization without any manual initialization. Second, step 1

and step 4 can both result in an optimal solution with the LP techniques. Third, the

correspondences and transformation model are estimated simultaneously in step 4. Fourth,

gradually increasing λ in step 4 approaches a binary correspondence matrix with less

ambiguity in the assignment. Finally, the transformation model can help to guide the

estimation of correspondences and resist noise/outliers better.

We set the stopping criterion as repeating steps 2–5 for 3 times and from our experiments

we found that an accurate estimation can be generated in most cases. The computational

complexity of our algorithm in solving the linear program in Eq. (16) is O(n3L) (Wright,

2005) where n is the number of unknowns in Eq. (16) and L is the number of encoded input

bits when solving the LP. The optimization process can be finished within 1.5 seconds to

match about 180 landmarks using a Dell PC with 2.39 GHz Intel Core 2 CPU. As a

postprocessing, each floating-landmark is finally assigned to the reference-landmark with

the largest correspondence likelihood value.

4. Landmark Detection and Feature Extraction

Landmark detection and feature extraction are also two important procedures of our retinal

image registration approach. For landmark detection, the vascular-landmark detection

technique in (Can et al., 2002) is employed. Several steps are involved in the detection

process: specification of seed points of vessel using 1D edge detection along a series of

evenly spaced rows and columns, tracing out vascular structures with an exploratory

procedure, detection of landmarks by locating intersections of traces where three or more

traces meet.

To characterize the local photometric and geometric appearance of each landmark, we

introduce a reinforced self-similarities (SS) descriptor. The SS descriptor was recently

proposed in (Shechtman and Irani, 2007) to measure similarity between two visual entities

of images or videos. SS has been shown to bear high differentiating ability. Compared with

SS, most other widely known descriptors (e.g. SIFT (Brown and Lowe, 2007)) assume the

existence of a common underlying visual property, e.g. intensities or filter responses

between images to be matched. SS relaxes this assumption and tries to capture the geometric

layouts of local intensity-pattern’s repetitions in nearby image locations. In other words, SS

describes the local internal layouts of the self-similarities instead of the intensity pattern
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itself. This is very important for a robust descriptor. For example, landmarks of retinal

images from different modalities can have very different local intensity patterns but the

geometric layout of pattern’s repetitions in the vicinity of the landmark are very similar. As

a result, SS can be used in both intra-modality and inter-modality retial image registrations.

Specifically, an SS descriptor for an arbitrary pixel q is obtained by normalizing the values

of a correlation surface Sq(x, y) (obtained in an Euclidean space with its origin at q) in the

corresponding log-polar coordinate space followed by stretching the resulting values into [0

1]. The correlation surface is computed with the following equation

(19)

where (q) and  (x, y) denote a small image patch (5 × 5) surrounding q and (x, y),

respectively. The operator ‖ · ‖2 represents the sum of square differences of the two patches

in their CIE L∗a∗b∗ color space.  means image noise variance (determined automatically

with the technique in (Liu et al., 2006)) and  implies the maximal variance of the

difference of all small patches within a neighborhood (of radius 1) relative to the small patch

centered at q. In Eq. (19), (x, y) takes values in an image region surrounding q with a radius

40.

The proposed reinforced SS descriptor is based on the original SS descriptor but tailored to

be invariant to large image rotations. Although the original SS features are robust to local

affine deformation and radially increasing non-rigid deformation (Shechtman and Irani,

2007), they become fragile when a large rotation happens between the matching images. It is

because both the order of the entries in the SS descriptor vector and the partitioned bins

(Shechtman and Irani, 2007) can change with rotation. The demand to make SS invariant to

large rotations is particularly necessary for retinal images considering the large range of

view points involved in the retinal imaging process (Chanwimaluang et al., 2006). This large

rotation invariance can be simply accomplished by computing the Hu’s seven moment

invariants (Hu, 1962) of the outputs of the original SS descriptors. Therefore, the reinforced

SS results in a feature vector with seven entries.

5. Results and Discussions

We evaluated our retinal image alignment algorithms quantitatively with both synthetic

image transformations artificially produced with certain models and real transformations

generated during the imaging process. We also show results for a set of retinal image

analysis tasks performed with the image alignment solutions of our algorithms.

We ran our LP based method with the features in (Can et al., 2002) (denoted by “LP-Can”),

our LP based method with the reinforced SS features introduced in this paper (denoted by

“LP-SS”) and our LP based method with the SIFT features (Brown and Lowe, 2007)

(denoted by “LP-SIFT”).We compared our algorithms with the hierarchical method (Can et

al., 2002) (denoted by “Hierarchical”), the hybrid method (Chanwimaluang et al., 2006)

(denoted by “Hybrid”), and the EM like technique (Chui and Rangarajan, 2003) using

Zheng et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



features in (Can et al., 2002) (denoted by “EM-Can”), our reinforced SS features (denoted

by “EM-SS”) and the SIFT features (Brown and Lowe, 2007) (denoted by “EM-SIFT”). Our

LP based algorithms can work on all the affine transformation, 12-parameter transformation

model (Can et al., 2002) and the TPS based nonlinear transformation. In contrast,

“Hierarchical” can work on the affine transformation and the 12-parameter transformation

model. “Hybrid” can work only on the affine transformation model. The EM based

techniques are able to handle the TPS based nonlinear transformation.

Our testing images were chosen from the CATT study (Martin et al., 2012) and CAPT study

(CAPT Study Group et al., 2004). They include stereoscopic color fundus photographs and

angiogram grayscale images of the macula (DRS Field 2) of oculus dexter (OD) and oculus

sinister (OS) at the initial visit of 1030 participants age 50 years and older, enrolled may 1,

1999 through March 31, 2001. All patients signed a patient consent form approved by the

CAPT Coordinating Center and local Institutional Review Board. Each patient bears at least

10 large (125µm in diameter) drusen in each eye. High quality color fundus photographs

were acquired by establishing and maintaining high photographic standards. Zeiss 30o or

Topcon 35o fundus photograph cameras with a 2.5× to 3× magnification and either

Kodachrome or Ektachrome color slide films were used. Study photographs were digitized

using a Nikon Coolscan slide scanner (Nikon LS 4000ED; Nikon, Melville, NY) at a

resolution of 7.5 MB.

5.1. Evaluation

5.1.1. Registration of Image Pairs with Synthetic Transformations—In order to

empirically specify δλ, which is the only parameter of our main algorithm (as described in

Sec. 3.2.2), and quantitatively compare our method with state-of-the-art, we chose a

digitized fundus retinal image (as shown in Fig. 3), warped it with 50 synthetic affine

transformations. These synthetic affine warps were created by randomly choosing a rotation

angle in [0 2π], translation in [−8 8] pixels for both directions, scale in [0.3 3.5], and shear in

[−1.8 1.8] for both directions. Note that for each pair of images, the ground-truth position in

the warped image of each pixel in the original image is known. We employed the mean

square error (MSE) between the ground-truth position and the estimation over all pixels in

the original image to measure the registration accuracy.

To empirically determine an optimal value for δλ (a learning based method can also be

used), we ran our “LP-SS” algorithm with different δλ values and compared the

corresponding errors. As shown in Fig. 4, the algorithm works best when δλ = 0.2, and with

this value, we executed our LP based algorithms in other experiments.

From the error bars in Fig. 4, we can see that our LP based algorithms (with affine model)

produced higher accuracies than “Hierarchical” (with affine model) and “Hybrid” (with

affine model). We can also find that the reinforced SS features outperformed both the

features in (Can et al., 2002) and the SIFT features (Brown and Lowe, 2007). Therefore, our

optimization technique is more effective and the proposed SS features have better

differentiating abilities. Between the features in (Can et al., 2002) and the SIFT features

(Brown and Lowe, 2007), the latter performed better.
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From the up-left graph of Fig. 4, we can also find that the sparsity constraint (e.g. the second

part of Eq. (10)) can help to improve matching accuracy when the parameter δλ is set

properly. The sparsity constraint is actually neglected when δλ = 0 because our algorithm is

always initialized with λ = 0. Matching errors generated when δλ = 0 are relatively larger

than most of other testing δλ values as shown in Fig. 4.

We also tested our algorithms on 50 nonlinear deformation fields simulated with the TPS

model. We first manually specified 15 bifurcation/crossover points in the image and treated

them as the control points of the TPS model. We then synthesized these fields by randomly

setting the affine transformation with the same way as above and randomly displacing

control points in a range [−4 4] pixel for both directions. The registration errors of “LP-

Can”, “LP-SS”, “LP-SIFT”, “EM-Can”, “EM-SS”, “EM-SIFT” are shown in Fig. 4 (all

algorithms were carried out with the TPS model). We can see that our LP based algorithms

performed better than the EM based techniques no matter what features were used.

Moreover, our reinforced SS features performed best and the SIFT features (Brown and

Lowe, 2007) produced higher accuracies than the features in (Can et al., 2002).

5.1.2. Registration of Image Pairs with Real Transformations—We randomly

chose 40 pairs of retinal images from the CATT study (Martin et al., 2012) and CAPT study

(CAPT Study Group et al., 2004) to evaluate “LP-Can” (with the 12-parameter model), “LP-

SS” (with the 12-parameter model), “LP-SIFT” (with the 12-parameter model),

“Hierarchical” (with the 12-parameter model) and “Hybrid” (with affine because only affine

can be accomplished by this algorithm). The centerline error described in (Can et al., 2002)

was used as the error measure for validation. From the error values in Fig. 4, we found that

our LP based algorithms performed better than “Hierarchical” and “Hybrid”. Moreover, the

reinforced SS features outperformed other features.

5.2. Application

We ran our “LP-SS” algorithm with the 12-parameter model to carry on tasks of pairwise

image mosaic (Cattin et al., 2006), retinal image fusion (Cao, 2008) and retinal montage

(Becker et al., 1998) using a set of angiogram images and color fundus images from the

CATT study (Martin et al., 2012) and CAPT study (CAPT Study Group et al., 2004).

Through visual inspections, we found that our algorithm performed well regardless of the

modality difference, image bias artifact and image changes caused by retinal diseases. We

show some example results in Fig. 5, Fig. 6 and Fig. 7.

Our algorithm performs well on retinal images with different properties mainly due to three

reasons. First, it enables a joint estimation of the landmark correspondences and the

predefined transformation model. Second, it combines the benefits of the softassign strategy

and the combinatorial optimization of linear programming. Finally, the reinforced SS

descriptor is pretty robust.

6. Conclusion and Future Work

We proposed a novel landmark matching based retinal image alignment formulation by

using the softassign strategy (Chui and Rangarajan, 2003) and enforcing the sparsity prior to
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the correspondence matrix. Our formulation bear several advantages. First, a joint estimation

of the landmark correspondences and the predefined transformation model can be achieved.

Joint estimation is important in obtaining more accurate and robust alignment solutions. It is

because of the fact that the mutual benefits between searching landmark matches and

confining the transformation field with a prior-known model can be maximized in a joint

estimation. Second, our formulation enables linear programming (LP) (a combinatorial

optimization technique) to be used to generate a better optimization. Third, our formulation

employs the softassign strategy (Chui and Rangarajan, 2003) to eliminate the hardships in

estimating a binary correspondence matrix and at the same time is capable of handling the

potential matching ambiguities. Fourth, the proposed reinforced self-similarities (SS)

descriptors are novel and were validated to outperform state-of-the-art features used in

retinal image alignment. These descriptors capture the geometric layouts of local intensity-

pattern’s repetitions in nearby image locations. At the same time, they are invariant to global

rotation and local affine deformations. Experimental results of this paper generated with

both synthetic and real image transformations show that the LP based joint estimation and

the proposed reinforced self-similarities (SS) descriptors help our algorithms outperform

state-of-the-art techniques of retinal image alignment.

The proposed sparsity prior enforced to the correspondence matrix is inspired by recent

works on the sparsity prior (Donoho, 2006; Candes and Romberg, 2007; Huang et al., 2009;

Zhang et al., 2012; Waters et al., 2011; Candes and Tao, 2005). To carry it out, we penalize

a to-centroid deviation measurement which is defined on the correspondence matrix in order

not only to guarantee the correspondence matrix to be sparse but also to make the matched

reference points to be as spatially concentrated as possible.

Our LP based algorithms can not only work on retinal images but also be extended to other

landmark based 2D/3D image alignment/registration tasks. Its simultaneous estimation of

the predefined transformation model and the correspondence matrix can help to search

correspondences whin a more reasonable space which is much smaller than the space

without constraint of the transformation model. At the same time, the softassign strategy and

the sparsity constraint provides robustness to noise and outliers. We found that our

algorithms can deteriorate especially when the predefined transformation model is not well

chosen.

Our future work would include extension of our formulation to 3D image registration and its

application to other images and other modalities (e.g. brain MR images and CT lung

images). This extension can be simply achieved by extending the reinforced SS descriptor to

3D and including a 3D transformation model. Moreover, we are interested in research on

automatic selection of an appropriate transformation model from a set of candidates.
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Figure 1.
Estimation of the correspondences (up) between the floating and reference landmark points

and estimation of the transformation model (down) between the floating and reference

images are both important in obtaining an accurate alignment of retinal images with a

landmark matching algorithm. Most existing methods refine these two estimations

independently and in an iterative fashion while the proposed approach offers a joint

estimation.
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Figure 2.
Our landmark matching formulation relies on two strategies: softassignment and

penalization on the to-centroid deviation. The former allows each floating point to match all

reference points while the latter discourages the matched reference points to be scattered. In

the above two examples, the lower is favorable because the reference points with higher

matching score values (a higher gray scale of the reference points in the picture means a

better matching case) are more concentrated.
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Figure 3.
Up-left: a digitized fundus retinal image. Up-right: the bifurcation/crossover landmark

points (red) and vessel’s centerline pixels (green) detected by the technique in (Can et al.,

2002). Down: an enlarged view of the lower retina portion in up-right image.
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Figure 4.
Up-left: registration errors of our LP-SS algorithm with different δλ values. Up-right:

registration error bars over 50 synthetic affine transformations. Down-left: registration error

bars over 50 synthetic nonlinear deformations. Down-right: registration error bars over 40

real transformations.
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Figure 5.
Pairwise image mosaics accomplished by our approach on two exampling pairs of

angiogram images.
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Figure 6.
Retinal image fusion accomplished by our algorithm with one angiogram grayscale image

and one fundus color image. We show the fusion results obtained by linearly combing the

angiogram and fundus images with a set of weight values (as shown by the numbers under

picture).
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Figure 7.
Retinal montage accomplished by our algorithm with four fundus color images (above)

captured from one retina and at different angles.
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