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Abstract

This paper presents a numerical method for interactive (real-time) simulations, which considerably 

improves the accuracy of the response of heterogeneous soft-tissue models undergoing contact, 

cutting and other topological changes. We provide an integrated methodology able to deal both 

with the ill-conditioning issues associated with material heterogeneities, contact boundary 

conditions which are one of the main sources of inaccuracies, and cutting which is one of the most 

challenging issues in interactive simulations. Our approach is based on an implicit time integration 

of a non-linear finite element model. To enable real-time computations, we propose a new 

preconditioning technique, based on an asynchronous update at low frequency. The preconditioner 

is not only used to improve the computation of the deformation of the tissues, but also to simulate 

the contact response of homogeneous and heterogeneous bodies with the same accuracy. We also 

address the problem of cutting the heterogeneous structures and propose a method to update the 

preconditioner according to the topological modifications. Finally, we apply our approach to three 

challenging demonstrators: (i) a simulation of cataract surgery (ii) a simulation of laparoscopic 

hepatectomy (iii) a brain tumor surgery.
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1 Introduction

Interactive simulation of surgical procedures could open avenues leading to improved patient 

care and reduced risks.1 The main requirement to construct useful surgical simulators is to 

be able to reproduce the mechanical response of organs. To do so, surgical simulators 

involves at least four major challenges:

*Corresponding author at: ICube / AVR, Université de Strasbourg, France. hcourtecuisse@unistra.fr (H. Courtecuisse). 
1Surgical simulators are meant here as computer-based tools used to simulate a surgeon’s intervention in a virtual environment.
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1. The material properties of living tissues need to be characterized. Such properties 

are patient-specific and it is difficult predict the mechanical behavior of in vivo 

tissues.

2. The geometry of the organ models must be acquired from medical images, and 

this process is still not automatic, requiring difficult segmentation and mesh 

generation.

3. Significant numerical issues must be overcome, as most organs have an 

heterogeneous stiffness (which leads to ill-conditioned problems), are composed 

of multiple tissue types (which may lead to difficulties in defining boundary 

conditions) and are mostly incompressible (which leads to locking for most 

widely used finite elements).

4. The response must be computed in real-time to allow user interactions with the 

virtual body: pushing, prodding, palpation, needle insertion and cutting. In this 

sense, a simulation which would be mechanically realistic, but not interactive 

would not fit for our purpose.

Most of the previous works have focused on producing accurate models for the deformations 

of soft tissues, but real-time simulations are still usually composed of a single homogeneous 

organ with simple boundary conditions. Yet, we believe that it is also fundamental to take 

into account the deformable environment of the tissues to obtain a realistic global behavior. 

For instance, even if during a hepatectomy the view of the camera is focused on a small part 

of the liver tissues (see Fig. 1) the human body is composed of multiple organs playing an 

important role in the resulting deformation and motion of the liver (breathing, contact with 

neighboring organs, etc.). Indeed, if we look closely at the boundary conditions of the liver: 

the upper part is compressed by the diaphragm on which it is attached through several 

ligaments including the falciform ligament. Moreover, the liver is in contact with the vena 

cava and the stomach and linked to it by the hepatogastric ligament. Therefore, when 

studying the motion and deformation, the liver cannot be considered as an isolated organ.

Beyond the importance of boundary conditions, our additional working hypothesis is that 

realistic surgical simulation also requires to interactively compute significant topological 

modifications of the organs, e.g. cutting. In this case, boundary conditions are also 

fundamental because stiff interactions with the tool (controlled by the user) as well as 

complex deformable–deformable interactions between the lips of the cut must be solved 

simultaneously. Performing this at interactive rate is difficult, in particular for heterogeneous 

structures.

The contribution of this paper is to propose a consistent framework to address the 

aforementioned requirements of surgical simulations. This framework relies on an implicit 

time integration of the non-linear set of equations coming from the finite element model of 

the deformation. The core of the method rely on a preconditioning technique which is 

updated asynchronously at low frequency. This preconditioner reduces the convergence 

issues appearing when computing the deformation of non-linear heterogeneous structures. In 

addition, it provides a very good estimate of the compliance2 operator associated with the 

coupling between the solids in contact. We also extend the method to cut these 
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heterogeneous organs at an interactive rate whilst resolving existing or new contact surfaces 

emanating from these topological modifications. Our solution is based on the Sherman 

Morison Formula to update the asynchronous preconditioner in case of topological 

modifications. Finally the generic nature of the method is demonstrated by three different 

types of applications: a simulation of cataract surgery, a simulation of a hepatectomy using 

laparoscopy procedure, and a simulation of cerebral tumor removal.

The paper is organized as follows: In Section 2, we briefly review the real-time simulation of 

deforming bodies. In Section 3 we define the problem at hand and provide notations and key 

concepts necessary to build our method. Section 4 is dedicated to the description of the 

asynchronous preconditioner. In Section 5 we propose to use the asynchronous 

preconditioner to solve the constraints associated with the multi-deformable-body contact 

problem under consideration. This section also provides details on the GPU implementation 

to achieve real-time results. In Section 6, we extend the method to handle topological 

modifications. In Section 7, we evaluate our method in terms of accuracy and computation 

time. Finally, in Section 8 we exercise the methodology in three practical problems 

involving complex heterogeneous structures in interaction.

2 Literature review

Biomechanical simulation with user interactions involves many challenges such as real-time 

computation of the deformation of soft tissues, collision detection, contact modeling, 

topological modification, and haptic feedback (see Nealen et al. (2006) and Payan (2012) for 

a broad survey).

2.1 Simulation of deformable bodies

The first methods proposed to simulate the deformation of soft tissues in real-time relied on 

mass-spring systems, e.g. Kühnapfel et al. (2000). Although such discrete methods are 

simple to implement and very fast, they are difficult to parameterize with material properties 

such as the Young’s modulus. Moreover, they introduce anisotropy through the choice of the 

mesh giving rise to stability and accuracy issues (node flipping, difficulty to preserve the 

volume).

Finite element methods (FEM) provide high bio-mechanical realism (Zienkiewicz and 

Taylor, 1991), mainly because the complex non-linear behavior of soft-tissue is directly 

accounted for through constitutive relations. Real-time computations were first achieved for 

linear elastic material models (see Bro-Nielsen and Cotin (1996), Cotin et al. (1999) or 

James and Pai (1999)). In linear elasticity, precomputations (offline) can be used to 

accelerate the online simulations. However, the small strain assumption is incorrect in 

practice, and produces erroneous results when the solids undergo large deformations. The 

use of precomputed solutions for highly non-linear problems is intensively pursued, e.g. in 

Niroomandi et al. (2008) for hyper elasticity, and Kerfriden et al. (2011, 2012) for damage 

problems.

2Inverse of the stiffness.
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The co-rotational method is an old method, which originated in continuum mechanics 

(Freund, 1970) and was introduced by Felippa (2000) within the field of numerical methods. 

In this formulation, the stiffness of each element is assumed linear within the local frame 

described by its rotated state, which enables to simulate geometric non-linearities (i.e. large 

displacements, large rotations but small strains). This enables to produce realistic 

simulations, while maintaining the algorithmic complexity at a minimum (Felippa and 

Haugen, 2005; Müller and Gross, 2004).

Later, other methods were proposed to simulate both geometric and material non-linearities. 

Material non-linearities are expressed through the non-linearity of the constitutive law 

relating the strain tensor to the stress tensor, characteristic of soft tissues. Real time models 

were recently proposed (Comas et al., 2008; Joldes et al., 2009; Marchesseau et al., 2010), 

but these models remain in general complex and expensive, and the simulation of realistic 

boundary conditions such as interactions between deformable organs and surgical 

instruments is still an issue.

2.2 Time discretization

Explicit integration schemes are widely adopted (Miller et al., 2007; Taylor et al., 2008) in 

surgical simulation. The main advantage is that the solution process only involves the mass 

matrix, which can be lumped (diagonalised). The equations of motion are thus decoupled 

and each degree of freedom can be solved independently, making the solution process very 

fast, and inherently well-suited to parallelization (Comas et al., 2008). The major drawback 

of explicit dynamics is the need to satisfy the Courant–Friedrichs–Lewy stability condition, 

which forces a strict upper bound on the time step used for integration. Explicit methods are 

consequently particularly well-suited to very soft tissues such as the brain (Joldes et al., 

2009), but very small time steps (which prevent real-time computations) must be chosen for 

stiffer structures. Moreover, explicit simulations do not guarantee that, at each time step, the 

residual vector is minimized, and hence, that the external and internal forces balance.

These are the major reasons for developing implicit time integration techniques for real time 

simulations. Providing flexibility in the choice of the time step, even for very stiff objects 

(Baraff and Witkin, 1998), is required to achieve our aim: simulate user-controlled 

interactions between arbitrarily stiff anatomical structures or tools. Of course, the advantages 

of such methods come at the cost of having to solve a set of linear equations at each time 

step. Yet, this paper aims to show that implicit integration schemes can offer a reasonable 

tradeoff between robustness, stability, convergence and computation time, in particular when 

combined with a GPU implementation.

2.3 Solving the set of non-linear equations

Using implicit integration, a non-linear set of equations must be solved at each load step. 

This set of equations is usually solved using an iterative method based on the Newton–

Raphson method which solves the set of non-linear equations through a sequence of 

solutions of linear equations.

The set of linear equations can either be solved by direct solvers or iterative solvers. Direct 

solvers provide the solution by computing the actual inverse of the system matrix (Bro-
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Nielsen and Cotin, 1996), or by creating a factorization that can then be used to compute the 

solution (Barbič and James, 2005).

These methods are often too costly to be applied at each iteration, and are often used in 

combination with an approach to reduce the number of degrees of freedom of the model, 

either using condensation on surface nodes (Bro-Nielsen and Cotin, 1996), or reduced-

coordinate models (Barbič and James, 2005). Recently, Hecht et al. (2012) proposed a 

method to incrementally update a sparse Cholesky factorization. They obtain fast 

performance by making only partial changes to the simulation’s linearized system matrices, 

but the method is closely related to the co-rotational formulation and cannot take into 

account topological modifications.

The second class of methods are iterative (Saad, 1996), and start from an initial estimate and 

iteratively refine it to approach the exact solution. One of the most popular methods is the 

Conjugate Gradient (CG) algorithm. Although in theory up to n iterations are necessary to 

achieve convergence for n equations in the system, in practice it is possible to stop the 

algorithm much earlier depending on the required accuracy. Parallel implementations on 

CPU are now well-mastered and optimized: see for example Parker and O’Brien (2009) and 

Hermann et al. (2009) and start to appear on GPU (Bolz et al., 2003; Buatois et al., 2009; 

Allard et al., 2011). Iterative solvers are usually faster than direct methods, and require less 

memory storage, but they converge slowly for ill-conditioned problems, i.e. when the ratio 

of the largest and smallest eigenvalues is large. This is the case when solving linear systems 

of equations associated with the discretization of heterogeneous structures, as is the case in 

this paper.

Another intense area of research aims to improve the performance of the CG algorithm with 

the use of preconditioners to speed-up its convergence. In the context of interactive 

simulation, Baraff and Witkin (1998) proposed to use a diagonal inverse, often called a 

Jacobi preconditioner. More advanced preconditioners such as Cholesky factorizations have 

also been studied (Hauth et al., 2003). However, the performance improvement remains 

limited since the preconditioner itself is expensive to compute. Domain decomposition 

preconditioners are popular, for example in multi-scale parallel simulations (Dryja and 

Widlund, 1989) and for extended (enriched) finite element methods (Menk and Bordas, 

2011). Multi-grid pre conditioners, e.g. Braess (1986) were developed for real-time 

simulations for example in Dick et al. (2011) and to simulate cuts in deformable objects in 

Dick et al. (2011) and for fracture problems in Hiriyur et al. (2012), Berger-Vergiat et al. 

(2012), and Gerstenberger and Tuminaro (2013).

2.4 Simulation of the interactions

A key requirement for realistic surgical simulators is to treat contact between “soft”–“soft”, 

“soft”–“stiff” and “stiff”–“stiff” objects. A common solution to deal with contact consists of 

using a penalty method, which modifies the variational principle and solves the contact 

condition approximately. A didactic review of constraint enforcement in a variational 

context is provided in Hughes (2000) and a review of error estimates associated with this 

enforcement of variational inequalities in finite element methods can be found in the seminal 

paper Brezzi et al. (1977). In penalty methods, a contact force f = αδn is added at each 
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contact point, where δ is a measure of the interpenetration, n is the contact normal and α is a 

stiffness factor known as penalty coefficient. The higher α the better the constraint is 

satisfied. However, the higher the value of α, the worse the condition number of the system 

is, the higher the spurious oscillations in contact forces, and the smaller the time step. The 

selection of α is also problem-dependent, and depends particularly strongly on the stiffness 

ratio between the contacting objects. Consequently, the penalty method is limited for the 

applications that we have in mind, i.e. contacting heterogenous objects.

Lagrange multipliers or augmented Lagrangian techniques (Hughes, 2000; Renard, 2013; 

Jean, 1999; Jourdan et al., 1998; Wriggers and Panatiotopoulos, 1999) are usually preferred 

to penalty methods to treat contact constraints accurately and robustly. Methods used to 

solve contact equations with Lagrange multipliers can be classified into two categories 

which are numerically equivalent: Quadratic Programming (QP) methods and 

Complementary Problem methods that could be linear (LCP) or non-linear (NLCP).

QP methods define the constraints directly into the mechanical system. They can be used to 

treat the inequality of the contact (Redon et al., 2002; Pauly et al., 2004), and also to 

simulate friction using a discretized pyramidal cone (Kaufman et al., 2008). However, these 

publications address the case of rigid bodies in contact, where the number of degree of 

freedom (DOF) is smaller than the number of contact constraint freedoms. Indeed, the 

resulting number of equations with QP methods is of the same order of magnitude as the 

number of DOFs of the interacting objects. Therefore, these methods are difficult to adapt to 

the simulation of the interaction between finely meshed deformable bodies in real-time.

An important advantage of (N)LCP methods is that the number of constraint equations is 

proportional to the number of contacts, which is often much smaller than the number of 

DOF in the context of deformable models. LCP can be used to simulate frictionless contact 

between deformable models (Duriez et al., 2003) in real-time whereas NLCP methods can 

be used to simulate friction contacts with the exact friction cone (Duriez et al., 2006). The 

main limitation of these methods is that the solution process involves the compliance matrix, 

which is the inverse of a large system composed of the mass, the damping and the stiffness 

of the deformable objects. Although the evaluation of this inverse in real-time is crucial to 

define the boundary conditions of the deformable structures, very few methods addressed 

this issue. Duriez et al. (2004) proposed to precompute the compliance matrix, but the 

solution is limited to linear elastic deformation. Otaduy et al. (2009), proposed to compute 

the compliance matrix using additional Gauss–Seidel iterations on the deformable models, 

but the method was not presented in a real-time context. Saupin et al. (2008) proposed a 

method, named compliance warping, which is dedicated to co-rotational models. It consists 

of pre-computing the compliance matrix from the rest position, and updating it using a local 

estimation of the nodal rotations. However, this approximation can become inaccurate for 

large deformations, and the method is limited to relatively coarse meshes. A prediction–

correction scheme is introduced in Peterlik et al. (2011) to mitigate the inaccuracies and the 

method extends the formulation to haptic feedback with generic constraints between the 

deformable models.
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To our knowledge, it was never demonstrated that any of the above methods are adequate to 

enforce contact constraints between geometrically complex deformable objects represented 

by moderately fine meshes (thousands of DOFs), both accurately and at interactive rates 

(30–50 frames per second). This problem is particularly relevant for medical applications, 

since all the organs in a human body are subjected to interactions from other tissues. 

Resolving accurately these interactions between organs can be construed as more critical 

than the accuracy of the deformation of each individual organ itself. An important 

contribution of this article is to propose a generic solution to address this problem.

2.5 Simulation of topological modifications

When cutting through a finite element mesh, discontinuities in the displacement field must 

be introduced. This can be done through local re-meshing. Several approaches were 

proposed to maintain a relatively good mesh quality (Ganovelli and O’Sullivan, 2001; 

Bielser et al., 2003; Molino et al., 2007; Sifakis et al., 2007). One important difficulty is to 

preserve the quality and the density of the mesh during the subdivision process, in order to 

avoid distorted elements, which lead to convergence difficulties during the simulation. In 

addition, few methods were proposed to handle collision detection with the modified 

topology (where the quality and the density of the triangulation of the surface around the cut 

is difficult to control).

For the mechanical aspect, topological changes require updating of the stiffness matrix. As 

most recent real-time deformation methods are based on non-linear models (geometrical 

and/or material), topological changes add little overhead to the process. The treatment of the 

interactions during the cut is also problematic. Courtecuisse et al. (2010b) proposed to 

extend the compliance warping technique using the Sherman Morrison formula to update the 

precomputed inverse in case of topological modifications. However, numerical errors 

accumulate over time and the method suffers from instabilities after a large number of 

modifications. In this paper, we propose a solution that enables to significantly decrease the 

numerical issues caused by the cuts, and to preserve the accuracy of the contact response 

during the cut.

Alternatives to generating finite element meshes, in particular to handle topological changes 

are extended finite element methods (Nicolas et al., 1999). These methods allow cuts, 

material interfaces, and domain boundaries to be described independently of a background 

mesh, which may also be progressively adapted using a posteriori error estimators (Bordas 

and Duflot, 2007; Duflot and Bordas, 2008; Bordas et al., 2008; Ródenas et al., 2008) or 

local heuristics (Menk and Bordas, 2011). However, such methods are not yet developed in 

the real-time context, and the simulation of collisions and interactions remains unsolved, in 

particular because the geometry of the discontinuities is known implicitly.

3 Background

In this section we introduce some of the necessary background on which we build our 

method.
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3.1 Deformable model and time-stepping implicit integration

Let us consider a generic dynamic deformable model. Equations used to model the dynamic 

behavior of bodies can be written within a synthetic formulation, given by Newton’s second 

law:

𝕄(q)q̈ = ℙ(t) − 𝔽(q, q̇) + ℍ(q)T λ (1)

where q ∈ ℝn is the vector of generalized degrees of freedom (here, the mesh node 

positions), (q) : ℝn ↦ ℳn×n is the inertia matrix.  represents internal forces applied to 

the simulated object depending on the current state and ℙ gathers external forces. ℍ(q)T is a 

function that gives the constraint directions depending on the position of the objects, and λ 
is the associated the vector of Lagrange multipliers containing the constraint force intensities 

(see details below).

(q) and  (q, q̇) are derived from the physics-based deformable model. In this paper, we 

use the co-rotational formulation as a tradeoff between accuracy and computation time. In 

this formulation, the stiffness of the material depends on the current rotation (and thus on the 

current positions), which results in a geometrically non-linear elastic formulation (Felippa, 

2000). After discretization, the mass matrix noted M in the following, is considered as 

constant and lumped (we obtain a diagonal matrix).

Collision response on mechanical objects leads to discontinuities in the velocities of the 

colliding points. For such discontinuous events, the acceleration is not defined: the problem 

belongs to the field of non-smooth mechanics. To integrate the mechanics and the non-

smooth events due to contact over time, we use a time-stepping method based on an implicit 

scheme: The time step is fixed and there is no limitation on the number of discontinuities 

that could take place during a time step (Anitescu et al., 1999), but low-order integration 

schemes should be used. This could lead to excessive dissipation if the time step is too large 

but it provides stable simulations. This is particularly relevant for interactive simulations 

involving contact with virtual devices controlled by an operator. With or without haptic 

feedback, the motion of the user will not be completely constrained and could lead to 

excessive energy input in the simulation. This is why the stability and the robustness of these 

types of simulations are crucial.

Let us consider the time interval [ti, tf] which length is h = tf − ti. We have:

M(q̇ f − q̇i) = ∫
ti

t f
ℙ t − 𝔽 q, q̇ dt + h ℍ q

T

λ

q f =qi + ∫
ti

t f
q̇ dt

(2)
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To evaluate integrals ∫
ti

t f
ℙ t − 𝔽 q, q̇, t dt and ∫

ti

t f
q̇ dt we chose the following implicit 

Euler integration scheme:

M q̇ f − q̇i = h ℙ t f − 𝔽 q f , q̇ f + h ℍ q T λ f

q f = qi + hq̇ f
(3)

 is a non-linear function, we apply a Taylor series expansion to  and make a first order 

approximation:

𝔽 qi + dq, q̇i + dq̇ = f i + δ𝔽
δq dq + δ𝔽

δq̇dq̇ (4)

This linearization is actually the first iteration of the Newton– Raphson algorithm. This 

single iteration is done under the assumption of a temporal coherency of the mechanical 

behavior; it may lead to small numerical errors in the dynamic behavior, but these errors 

tend to decrease at equilibrium or with null velocity. After discretization B = δ 𝔽
δ q̇ and K = δ 𝔽

δq
are known respectively as the damping and stiffness matrices. Replacing (4) in (3) and using 

dq = qf – qi = hq̇f and dq̇ = q̇f – q̇i, we obtain:

(M + hB + h2K)
A

dq̇
x

= −h2Kq̇i − h( f i + p f )
b

+ hℍ(q)T λ f (5)

where pf is the value of function ℙ at time tf. Note that using elastic or hyperelastic FEM of 

deformations, matrix A is symmetric definite positive. The only remaining unknown values 

are the Lagrange multipliers λ but their computation is now detailed.

3.2 Contact and friction models

Before enforcing the contact between soft tissues or with surgical instruments (rigid or 

deformable), one needs to detect them. In our work, we use two types of algorithms: the first 

is based on proximity queries,3 and provides the minimal distances between mesh (even 

concave meshes); the second is based on detection of volume of interpenetration (details in 

Allard et al. (2010)). The first algorithm have the advantage to “anticipate” the contacts 

before they actually appears, the second algorithm needs unnatural interpenetration between 

models but provide much faster results on complex meshes thanks to GPU optimizations. In 

the following, we consider that we use the algorithm based on proximities detection to 

enforce contact between point pairs at the surface of the colliding models. The formulation 

used for enforcing volume constraints is similar and detailed in Allard et al. (2010).

3The implementation is available on SOFA using the component LocalMinDistance.
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Whatever method is used for detection, the collision response is based on the same model: 

Signorini’s law. This model is defined for each potential contact provided by the contact 

detection algorithm. It expresses that there is a complementarity relation along the direction 

n of contact4 between the contact force λn and the distance δn between the contacting object 

at the point of contact, that is:

0 ⩽ δn ⊥ λn ⩾ 0 (6)

This model has several physical justifications including non interpenetration and no sticking 

force. Moreover the contact force vanishes if the points are not strictly in contact. Using 

Signorini’s law, the contact space is along the normal and creates a frictionless response.

Coulomb’s friction law describes the macroscopic behavior in the tangent contact space. In 

this law, the reaction force is included in a cone whose height and direction is given by the 

normal force. If the reaction force is strictly included inside the cone, objects stick together, 

otherwise, the reaction force is on the cone’s border and objects are slipping along the 

tangential direction. In this last case, the friction force must be directed along the direction 

of motion.

δ̇T = 0 ∥ λT ∥ < μ ∥ f n ∥ (stick)

δ̇T ≠ 0 λT = − μ ∥ λn ∥
δ̇T

∥ δ̇T ∥
= − μ ∥ λn ∥ T(slip)

(7)

where μ is the friction parameter, and T is the direction of motion in the tangential plane to 

the contact normal n.

During 3D slipping motion (also called dynamic friction), the tangential direction is 

unknown. We only know that the tangential force and the tangential velocity are opposite 

along a direction that is to be found. It creates a non-linearity in addition to the 

complementarity state stick/slip. Signorini’s law and Coulomb’s law are also valid in a 

multi-contact case. However, to solve these laws at every contact point, we have to consider 

the coupling that exists between these contact points. This coupling comes from the intrinsic 

mechanical behavior of deformable objects.

3.3 Contact mapping

From collision or proximity detection, we have a set of potential contact spots α = 1, … nc, 

which are defined on the surface of the deformable bodies (triangles, lines, or points). In 

order to transfer the contact informations to the Degrees of Freedom of the objects, we can 

build a mapping function  that links the positions in the contact space to the motion space 

(see Saupin et al. (2008) for details). For each contact point between two objects:

4Complementarity is noted ⊥. It states that one of the two values δn or λn must be null.
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δα = 𝔸α(q1, t) − 𝔸α(q2, t) (8)

with α(q, t) the mapping function which depends on contact α and the positions q1 and q2 

of the two colliding objects. To obtain a kinematic relation between the two spaces (contact, 

motion), we use a linearization of Eq. (8). If ℍα(q) =
∂𝔸α
∂q , we obtain, at time t for each 

contact:

δ̇α (t) = ℍα(q1)q̇1(t) − ℍα(q2)q̇2(t) (9)

where ℍ is a non-linear function of the position q. The dimensions of this jacobian matrix is 

the number of constraints for the rows and the size of q for the columns. To simplify the 

solution process, we suppose that this matrix does not change during the contact response 

HT λf = ℍ(q)T λf. In the following, this matrix is noted H to emphasize that it is constant 

during the time step.

3.4 Constraint-based solution

In the following, we present how the contact laws (6) and friction laws (7) are enforced 

while taking into account the dynamic Eq. (5) between 2 contacting objects. To resolve these 

laws, we use a Lagrange Multiplier approach and a single linearization by time step. For 

both interacting objects we applied Eq. (5):

A1x1 = b1 + hH1
Tλ

A2x2 = b2 + hH2
T λ

(10)

In order to solve λ we follow the following steps.

Step 1: interacting objects are solved independently while setting λ = 0. A set of 

independent linear systems of equations Ax = b must then be solved for each object. For our 

purposes, this must be done in real-time and we use a GPU-based Conjugate Gradient 

algorithm (CG) as described in Allard et al. (2011). This method enables using meshes 

comprised of thousands of elements in real-time on standard architectures, but tends to 

converge very slowly for ill-conditioned matrices. This is particularly an issue for the 

simulation of heterogeneous materials with large phase contrast or for problems obtained 

from finite element meshes of non optimal quality (large local difference in element size). 

We propose in Section 4 a novel method to simulate the heterogeneities in real-time. Finally, 

we obtain what we call the free motion x1
free and x2

free for each object which corresponds to 

dq̇1
free and dq̇2

free . After integration, we obtain q1
free and q2

free .
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Step 2: the constraint laws are linearized during the time-step. We process a proximity 

collision detection between the position of the objects at the previous time step, and using 

the linearization we obtain the free interpenetration δfree and the associated H, assumed 

constant during the time step:

δ = 𝔸α q1
free − 𝔸α q2

free

δfree

+ hH1dq̇1
cor + hH2dq̇2

cor (11)

with dq̇1
corand dq̇2

cor being the unknown corrective motions when solving Eq. (10) with b1 = 

b2 = 0. When gathering Eqs. (10) and (11), we have:

δ = δfree + h2 H1A1
−1H1

T + H2A2
−1H2

T

w
λ (12)

With respect of the Signorini’s law (Eq. (6)), this equation describes a LCP (Linear 

Complementarity Problem). If it is combined with Coulomb’s law (Eq. (7)), we obtain a 

NLCP (Non-linear complementarity problem). This equation implies to evaluate the inverse 

of large matrices A1 and A2 (same dimension as the number of DOFs). We propose in 

Section 5 a novel method to obtain an approximation in real-time.

Step 3: We obtain the value of λ using a Gauss–Seidel algorithm dedicated to the NLCP 

created by contact and friction equations. Considering a contact α, among m instantaneous 

contacts, one can write the behavior of the model in contact space:

δα − Wαα λα
unknown

= ∑β = 1
α − 1 Wαβ λβ + ∑β = α + 1

m Wαβ λβ

frozen

+ δα
free (13)

where Wα,β is a compliance matrix that models the coupling between contact points α and 

β. For each contact α, this method solves the contact equations by considering the others 

contact points (α ≠ β) as “frozen”. The new value of λα is given by solving Signorini’s law 

and the Coulomb’s law on this contact (see Duriez et al. (2006) for details of 

implementation and performance).

Step 4: When the value of λ is available, the corrective motion is computed:

q1, t + h = q1
free + h Δ q̇1

cor with Δ q̇1
cor = A1

−1H1
T λ

q2, t + h = q2
free + h Δ q̇2

cor with Δ q̇2
cor = A2

−1H2
T λ

(14)

We finally obtain q1,t+h and q2,t+h, the positions of object 1 and 2 that fullfils the contact and 

friction laws.
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In this section, we identified two important difficulties to achieve real-time computations. (i) 

To compute the solution of the linear system defined in Eq. (5), in particular for 

heterogeneous objects. (ii) To compute the compliance matrix W in Eq. (12).

These two problems are addressed in the two following sections.

4 Asynchronous preconditioner

The condition number k of the matrix A, measures how much the output value of the 

function can change for a small change in the input argument. For heterogeneous objects or 

ill-structured meshes, the condition number k is often high which raises convergence issues 

for the conjugate gradient algorithm used to solve Eq. (5). A common technique is to use a 

preconditioner to reduce the condition number, ensuring a faster convergence of the 

algorithm. By definition, a preconditioner is an approximation of the system matrix A, 

which is less costly to invert. Solving Eq. (5) with a preconditioner P can be written:

P−1Ax = P−1b, such that k(P−1A) < k(A) (15)

In the real-time context, one strong limitation of this technique is the computational 

overhead added to the simulation: first, during the computation of the preconditioner itself, 

and second, during its use at each iteration of the CG (see Saad (2003) for details). Thus, the 

practical usefulness of preconditioners depends on the ability to strike a balance between the 

computational overheads and the time saved by decreasing the number of CG iterations. 

Several preconditioners can be used, from simple diagonal matrices (Baraff and Witkin, 

1998) to precise but costly Cholesky factorizations.

We recently proposed a different approach (Courtecuisse et al., 2010a) that relies on the 

assumption that A undergoes small perturbations between two consecutive time steps. 

Indeed, if Pt = At
−1 is available at a specific time t, it may remain a “good enough” 

approximation for the following time steps. The preconditioner can then be updated at low 

frequency on a dedicated CPU thread, and the last preconditioner available can be used to 

advance the simulation (see Fig. 2). Therefore, the overhead in computing the preconditioner 

is removed from the simulation loop, which allows using more advanced and 

computationally costly preconditioners such as a factorization of the system5:

P = A = LDLT (16)

where D is a diagonal matrix and L is a sparse lower-triangular matrix. In our application, 

we rely on LDLT factorization since it produce more stable results than a Cholesky 

factorization. The factorization is performed by the cs_sparse library (Davis, 2006), using a 

single core on the CPU. Other libraries Toledo et al. (2003) and Schenk et al. (2008) propose 

5Note that even if we compute an exact factorization of At–h, the preconditioner remains an approximation since its computation is 
based on a previous configuration of the objects, and we use it with delay in the simulation.
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parallel factorizations, but we found that cs_sparse provides sufficiently fast updates, and a 

sequential factorization enables to save CPU cores to compute the preconditioners of other 

objects in parallel.

An important advantage of this factorization is that the resulting L matrix remains sparse, 

which makes the application of the preconditioner faster within the CG. This operation 

consists in solving two Sparse Triangular Systems (STS):

y = LT −1b
x = L−1 D−1y

(17)

where L is stored in Compressed Row Storage (CRS) (see Barrett et al. (1994) for details on 

the structure). Solving the STS is equivalent to performing a Gauß elimination, which is 

difficult to parallelize as it involves many dependencies. Therefore, the STS are solved on 

CPU6 that can take advantage of caches and of the sparsity of the matrix, to efficiently solve 

the system.

For large systems (see Section 7.2.2), the computation cost of the LDLT factorization can 

become prohibitive, and the resulting preconditioner can diverge from the actual system. 

However, we note that an important part of the error is associated with the rotations (Saupin 

et al., 2008) which can vary quickly between time steps. In order to limit the divergence of 

the preconditioner, we estimate the nodal7 rotations Rt–h→t that were introduced since the 

last update of the preconditioner (i.e. between time t – h) t. The most recent preconditioner 

Pt−h is then rotated with the current rotation matrix Rt−h→t as follows:

Pr = Rt − h t
T Lt − hDt − hLt − h

T Rt − h t (18)

where the “rotated preconditioner” Pr is less sensible to geometrical non-linearities. Finally, 

the method enables to simulate the deformation of homogeneous as well as heterogeneous 

tissues in real-time.

5 GPU-Based preconditioner for contact problems

Eq. (12) requires the computation of A−1, which is a large matrix (same dimension as the 

number of DOF) and changes at each time step. Although computing this inverse in real-

time is only possible for coarse models, the resulting operator W plays an important role to 

enforce the constraints.

6Using a GPU-based CG with a CPU-based preconditioner, implies to transfer the solution vector b between the CPU and the GPU at 
each iteration of the CG. But, since the preconditioner is usually a good approximation of the actual system, only a few iterations are 
necessary and the cost of such transfers remains limited.
7Note that nodal rotations give an approximation of the co-rotational formulation where rotations are computed per elements and sum 
in the global stiffness matrix. Rt–h→t is a block diagonal matrix, easy to compute and easy to invert.
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5.1 Compliance and mechanical coupling

In the following, the term “mechanical coupling” describes the coupling between contact 

constraints applied on two subsets of the boundary of a deformable body. This coupling 

occurs through the deformation of the body itself. Indeed, even if the contact points are only 

defined on the boundary of the deformable bodies, they are all influenced by each other 

through the stiffness of the material. Consider for example Fig. 3 where, even if the 

deformed shapes do not show any interpenetration, the behavior computed in Fig. 3(b) is not 

acceptable, since stiff and soft parts deform in the same way. It shows that the contact force 

distribution is closely related to the underlying heterogeneity of the material, which is 

represented by W.

In the context of explicit schemes matrix W would only be built from a diagonal mass 

matrix. If penalty methods are used, the force distribution would mainly depend on the 

geometrical interpenetration, not on the inhomogeneities. In both cases, it would lead to 

unrealistic configurations such as in Fig. 3(b), at least during transient states. Pre-computing 

the inverse A0 at the initial step, and using it all along the simulation provides better results, 

but is limited to linear, small displacements models. Another approach adapted to the real-

time context, is to use an approximation of W. For instance, Saupin et al. (2008) proposed 

the compliance warping technique, that consists in updating the precomputed A0
−1 with the 

nodal rotations, but this solution remains inaccurate for large deformations, and requires 

storing a large dense matrix which makes the method unsuitable for fine meshes.

In this paper, we propose to reuse the asynchronous preconditioner of the previous section as 

an approximation of the compliance operator W, and we detail our GPU-Based algorithm 

that allows for real time computations.

5.2 Optimized preconditioner for contacts

We propose to use the asynchronous preconditioner computed in Section 4 as an 

approximation of A−1:

HA−1HT ≈ HP−1HT (19)

Indeed, since P represents a close approximation of the factorization of A, we propose to use 

it to compute W in Eq. (12). For each interacting object, substituting Eq. (18) in (19) gives:

HA−1HT ≈ H(R LDLTRT)−1HT (20)

The above equation requires computing the product of the inverse of the preconditioner with 

the Jacobian of contacts H, which can be achieved by computing columns independently of 

H:
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LDLT Xi = Hi Xi = (LDLT)−1Hi (21)

where X gives the result of the inverse of the preconditioner times the Jacobian of the 

contact. Therefore, we obtain W within 4 steps as detail in Algorithm 1. Steps 1 and 3 are 

inexpensive because H and J are sparse matrices, D is a diagonal matrix, and R is a block-

diagonal matrix. Step 4 involves the product of two dense matrices, which can be 

parallelized efficiently on GPU using the NVIDIA Corporation (2007) library. Step 2 

requires the solution of a STS for each column of J, composed of the lower triangular matrix 

L. This operation remains the most expensive task and would quickly become too 

prohibitive if it was processed sequentially on a traditional CPU. Therefore, we propose to 

parallelize the computation of S on GPU.

5.3 Solution of multiple STS on GPU

Implementation-wise, the simplest solution to solve the multiple STS on GPU is to use 

NVIDIA Corporation (2007) library. Nevertheless, this library is optimized for solving large 

and very sparse systems of equations (see Naumov (2011)), but the range of size of the 

matrices compatible with the real-time constraint is still much smaller. Therefore, to 

decrease the computational time of this critical step, we propose a solution to parallelize the 

computation of S on GPU. Our solution is based on a two level parallelization strategy 

which is inspired from the method introduced in Courtecuisse and Allard (2009). The main 

difference is that the underlying L matrix is stored in a sparse format, which makes it 

difficult to load efficiently on the GPU processors.

5.3.1 GPU-based parallelization—The multiple right-hand side vectors stored in J 
can be computed independently from each other. Therefore, we assign the computation of 

each column of S to an independent multiprocessor on the GPU. Each group is therefore 

fully processed by a single processor (see Fig. 4) which enables to use fast local 

synchronizations directly on the GPU. Then we use a second level of parallelism where each 

STS is solved with several threads. Indeed, a lot of data can potentially be treated in parallel 

during the solving process of each STS. This two level strategy fits the GPU architectures 

where local synchronizations within a group of threads are fast, whereas global 

synchronizations over multiple groups are much more costly.

Nevertheless, as mentioned above, solving a STS involves a number of dependencies. For 

instance, for the lower triangular system, the computation of the solution sj of a given row j, 
requires the result of all previous solutions si such as i < j:

s j = b j − ∑
i = 0

i < j
(siL j, i) (22)

where b is the solution vector and s is the unknown. Therefore, each row must be processed 

sequentially (i.e. a synchronization of each row is necessary). However, the partial 

Courtecuisse et al. Page 16

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



contributions ∑i = 0
i < j (siLk, i) could be processed simultaneously for any row k such as k > j. 

We propose a block-row8 parallelization strategy, that is inspired from the block-column 

scheme introduced in Courtecuisse and Allard (2009): First we accumulate the contributions 

of the block off-diagonal in parallel; Then we solve the block diagonal sequentially (see Fig. 

5).

We use a group of t × t threads to process t rows simultaneously (each row is therefore 

treated by t threads in parallel). Since L is sparse, it is difficult to predict if a data is located 

on the bloc diagonal before actually reading it in global memory. To avoid reading twice the 

CRS matrix, we propose to use two buffers acc and diag stored in shared memory: acc is 

used to accumulate the contributions off-diagonal whereas diag is used to copy in dense 

format the data located on the block-diagonal (see Fig. 5). A first local synchronization is 

then used to ensure that the t rows are fully processed by all the threads. Then, a parallel 

reduction (see Martin et al. (2012)) is processed to sum per row the contributions stored in 

acc (row 4 in Algorithm 2), then a second local synchronization is necessary (row 5). 

Finally, the block-diagonal is solved as a dense problem9 using diag in shared memory (row 

5).

In our experiments we use t = 16 and only 3 local synchronizations are necessary to solve 16 

rows with 256 GPU threads. Although this implementation may be slower than a CPU-based 

solver for a single STS, our GPU-based strategy enables to solve the multiple right-hand 

side vectors simultaneously (i.e. with the same cost as a single STS).

6 Simulation of cutting

Simulation of cutting involves two main issues: First to re-mesh the FE structure while 

keeping the consistency of the mesh i.e. split correctly the domain in order to be able to 

separate the cut parts in the simulation, and avoid degenerated elements such as sharp or thin 

elements. The second issue is to update adequately the mechanical properties and the 

equation systems of the deformable model when the mesh is cut. In this paper, we only 

address this second aspect and we show how to update the asynchronous preconditioner 

according to the topological changes.

6.1 Topological modifications, cutting

The method presented in this paper could be used with any re-meshing algorithm, as far as 

the modifications remain local and only affect few elements per time step. In our 

simulations, we use a re-meshing algorithm similar to Mor and Kanade (2000), where, rather 

than reconstructing the overall mesh, we incrementally update it within 3 steps: First we 

remove the intersected elements from the current mesh; Second we subdivide the removed 

elements; Third, we add back the subdivided elements.

8Block-row strategy instead of a block-column as in Courtecuisse and Allard (2009), because with a block-column solution, writing 
conflict in memory cannot be predicted due to the CRS format of L.
9The block-diagonal is solved using a column-based strategy to avoid the need of parallel reductions. This is possible since diag is 
stored in dense format.
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The subdivision process affects the stiffness, mass and damping matrices (see Fig. 6), and 

the final linear system A (i.e. Eqs. (5), (16) and (20)). Nevertheless, the conjugate gradient 

(CG) used to solve Eq. (5) only requires performing matrix vector products. Thus, A can be 

directly evaluated from the finite element (FE) mesh to instantly take into account the 

modifications in the solution. However, the preconditioner used in Eqs. (16) and (20) is 

updated with delay, and the modifications significantly affect its efficiency. Moreover, 

contrary to Eq. (16) where the preconditioned CG ensures the convergence of the system, the 

preconditioner is directly used to build an approximation of the contact problem in Eq. (20). 

Therefore, the delay of the updates can lead to instabilities and inaccuracies, in particular 

when treating contact with the instruments and self-collisions between different parts of the 

cut.

6.2 Low rank update of the asynchronous preconditioner

We propose to use the Sherman Morrison Formula (SMF) to compute the correction of the 

preconditioner due to the topological changes:

P−1 = (P + GNGT)−1 = P−1

Last factorization
−GP−1 N−1 + GP−1GT −1P−1GT

Correction due to the cut

(23)

where P is the modified preconditioner, G is a globalization matrix which maps the rows/

columns to the global system and N is the perturbation of the preconditioner obtained as a 

difference between the modified system, and the last preconditioner:

N = GTPG − GT P 0
0 I G (24)

In order to keep a consistent formulation, P is padded with the identity for all the added 

nodes during the subdivision process. This approach assumes that the added degrees of 

freedom were present before the cut with a unitary mass but not attached to the mechanical 

system, and N corresponds to the correction of the padded system. N is fast to compute since 

it only involves subtractions of small matrices associated with the nodes affected by the cut.

An important advantage of updating the preconditioner is that it helps to maintain the 

number of affected nodes by the perturbations at minimum. Indeed, each new factorization 

implicitly contains all anterior modifications to the last update of the preconditioner. The 

SMF correction is therefore necessary only for the perturbation that appeared since the last 

update, which only involves few affected nodes (see Fig. 7).

Contrary to Courtecuisse et al. (2010b), we do not store the dense inverse of W. Instead we 

use the sparse LDLT factorization of A. The SMF cannot be directly applied with such a 

factorization because it explicitly requires the inverse of W. Thus, we proceed in two steps: 

First we compute the correction for the preconditioner, which is only necessary when a new 

topological modification is performed; Then we apply the correction until the next update of 

the preconditioner.
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6.3 Computation of the correction

For each new topological modification, the correction is obtained by computing the two 

following matrices:

U = LDLT −1GT (25)

Q = N−1 + GU −1
(26)

The computation of U involves the product of the inverse of the preconditioner with the 

globalization matrix G. This implies to solve equations composed of the lower and upper 

triangular systems (see Algorithm 3). Since, the CRS format used to store L prevents access 

to matrix LT by columns, and in order to use the same parallelization scheme as described in 

Section 5.2, the transpose matrix LT is explicitly computed by the asynchronous thread after 

the factorization of the preconditioner.

Eq. (26) requires to compute the inverse of two small matrices (N and N−1 + GU) which are 

performed on CPU. As a difference between two mechanical matrices, N is ill-conditioned. 

Its inverse is therefore ill-defined, but contrary to Courtecuisse et al. (2010b), our method 

does not lead to the accumulation of subsequent round-off errors. Indeed, as soon as a new 

factorization is released the perturbation is include in the new preconditioner, and N is 

erased so that these numerical errors do not accumulate over time.

6.4 Application of the correction

Once U and Q are computed for a given modification, we use them to correct the 

preconditioner until the next update. However, the local rotations used in Eqs. (18) and (20) 

vary at each time step, which prevents including them in the formulation of the correction. In 

order to use the rotations to improve the efficacy of the preconditioner, we apply them 

around the corrected formulation. Substituting (23), (25), (26) in (16) gives:

P−1 ≈ R P−1 − UTQU RT (27)

The rotations are therefore applied around the final corrected solution. To simplify notations 

we do not carry those rotations in the upcoming equations. For each iteration of the 

preconditioned CG, the application of the preconditioner is corrected:

Px = b x = P−1 − UTQ U b
x = P−1b

xa
− UTQ U b

xc

(28)
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where xc is the correction of the solution, which involves 3 dense matrix–vector products, 

and are performed on GPU using the CUBLAS library. xa is equivalent to applying the 

preconditioner without correction as in Eq. (16), except that if nodes are added during the 

subdivision process, P is padded with the identity:

xm
a

xa
a = P−1 0

0 I
bm

ba
(29)

where subscripts m and a correspond to the modified and added nodes, respectively.

For the contact response, the corrected Delasus operator W is obtained with:

HPHT = H P−1 − UTQ U HTHP−1HT

Wa
− H UTQ U HT

Wc
(30)

where Wa is the asynchronous Delasus operator, and Wc its correction. As in Eq. (29), H 
may involve constraints on the newly created degrees of freedom, so that we pad P with the 

identity matrix, and Wa is computed by:

Wa =
HmP−1Hm

T 0

0 HaHa
T (31)

HmP−1Hm
T  is solved using the GPU-based algorithm introduced (Section 5.2), whereas HaHa

T

involves a sparse matrix product which is parallelized using the CUSPARSE library. Finally, 

Wc is obtained by 3 small dense matrix products which are performed on GPU using the 

CUBLAS library.

7 Results and evaluation

In this paper, we proposed a method to significantly improve the trade-off between accuracy 

and computation time of an interactive simulation. In the first part of this section, we 

compare the accuracy of our method versus standard algorithms. In the second part of this 

section we measure the performance our method on academic examples. Medical 

applications are presented in the next section.

7.1 Accuracy and validation

7.1.1 Comparison with ABAQUS—Some comparisons of algorithms available in 

SOFA with analytical solutions can be found in Nesme et al. (2005) and Marchal et al. 

(2008). In order to provide a more thorough comparison for our method, in particular in the 

case of contacts, we produced a simulation involving a beam attached at one extremity and 

deforming under gravity until the beam contacts with a plane. The dimension of the beam is 
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120 × 10 × 10 mm, the mesh is composed of 10,779 linear tetrahedral elements and 2481 

nodes. The constitutive law is based on small strain with large displacement (co-rotational), 

the mass density is set at 0:0001 Kg/mm3, the young modulus is set at 10 Mpa and the 

Poisson ration at 0.4.

The same simulation was computed by both SOFA and ABAQUS (Simulia, Dassault 

Systmes S.A.) using the same tetrahedral mesh, the same model (co-rotational for SOFA and 

Large Displacement Theory in ABAQUS), the same boundary conditions and assuming no 

friction during the contact. At equilibrium we computed the Von Mises Stress of the 

ABAQUS solution (see Fig. 8) and of our SOFA implementation (see Fig. 8(b)). Then we 

measured the difference of the stresses computed by the two approaches. Results are 

presented in Fig. 8(c) (using the same scale as the initial stresses) and in Fig. 8(d) using a 

normalized scale, i.e. where red parts correspond to the main difference (to emphasize areas 

where even a small difference exists). Although a maximum error of 20% is found near the 

constrained part of the beam, the average stress error is equal to 0.017 (around 1.7%), which 

is almost negligible. Finally, the positions of the beams match perfectly, and the maximum 

distance between SOFA nodes and ABAQUS nodes, is less than 0.37 mm.

7.1.2 Preconditioner for the contact response—We now measure the error 

introduced when using our asynchronous preconditioner as an approximation of the 

compliance matrix defined in Eq. (12). We created a simulation involving an heterogeneous 

disk which is driven by a sphere through the center of a torus (see Fig. 9). This is a very 

good test for measuring both the deformation process and the contact response. We first 

produced a reference simulation where the exact compliance matrix is computed by 

inverting A at each time step (which is obviously not real-time), and we measured the 

distances between the nodal positions obtained by using an “approximated compliance 

matrix” and the reference simulation.

Relying on the diagonal of A−1 to build W (Diagonal), as done by Dequidt et al. (2009) for 

the vessel wall compliance, the lens cannot be pushed into the cavity. Indeed, the forces 

exerted by the ball are located at the center (stiff part), while other forces are applied by the 

cylinder on the periphery (soft part) and hold the object up. Without coupling, the contact 

forces applied onto the stiff part are not transmitted to the periphery, and the lens remains in 

equilibrium without being deformed. The precomputed inverse of the compliance matrix 

(LDL no update), gives better results when the object is in a similar configuration as the 

rest position (i.e. in the state where the precomputed inverse has been computed). However, 

the rigidity is not properly evaluated in case of large deformations, and a large error is 

introduced in the behavior.

When the preconditioner is updated periodically after a fixed number of time steps (LDL 
update 20 and LDL update 10), the error tends to decrease with the frequency of the 

updates, and for the version where the preconditioner is updated every 10 time steps there is 

no visible error (see Fig. 9(b)). Finally, using the asynchronous version (LDL update 
async), the preconditioner is updated on average every 5 time steps and the error introduced 

throughout the simulation is negligible.
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7.2 Performance evaluation

7.2.1 Convergence rate and computation time—We now evaluated the 

computational time and the convergence rate of standard solvers to solve Eq. (5). We 

produced a simulation where an heterogeneous beam composed of 6500 elements and 1470 

nodes, is deformed under gravity (see Fig. 10). In all our experiments we set the tolerance of 

the preconditioned CG to 10−7, and we use a time step h = 0.02.

Direct solvers must process a complete factorization of the matrix at each time step, to take 

into account the non-linearities of the model. This operation is expensive but it can be 

parallelized using optimized libraries such as Pardiso Schenk et al. (2008). However, due to 

the multiple dependencies and the relatively small size of the system, a parallel version with 

2 threads (Pardiso-2) is only 1.5× faster than a sequential approach (Pardiso-1). With 4 

threads (Pardiso-4) only 2.2× faster, and with 8 threads version (Pardiso-8) only 1.90× 

faster (and slower than Pardiso-4).

Standard iterative solvers (standard) require a large number of iterations, and thus a large 

computational time, due to the strong heterogeneity of the material. Indeed, although our 

GPU-based CG does not need to assemble the matrix and provides fast iterations, an average 

of 493 iterations are necessary to obtain a sufficient solution and the computation time is no 

longer compatible with real-time. The Jacobi preconditioner is too simple and does not 

manage to sufficiently reduce the number of iterations.

Pre-computing the LDLT factorization (no update) and using it throughout the simulation, 

enables to remove the overhead of the factorization while keeping a limited number of 

iterations. However in cases of large deformations, the actual stiffness of the material may 

be very different from the rest configuration, and a large number of iterations are necessary. 

Indeed, when the beam undergoes large deformations, we measured a maximum of 121 

iterations necessary to achieve convergence, and the application time of the preconditioner 

was around 210 ms. Interestingly, applying the rotation around the preconditioner (warping 
method) helps to sensibly reduce the number of iteration with a limited overhead. Indeed, 

the unitary cost of a single iteration with the warping method is only 11% higher whereas it 

requires 3.5 times fewer iterations to converge.

When using our method where the LDLT factorization is updated asynchronously (Async), 

the factorization time of the preconditioner is still negligible, and the number of iterations 

remains very low throughout the simulation. For this preconditioner, the (warping method) 

provides only limited improvements. Indeed, the preconditioner was updated on average 

every 8 time steps, and the rotations between two consecutive updates remained limited. The 

warping heuristic is therefore particularly beneficial if the preconditioner cannot be updated 

sufficiently fast (for larger systems for instance). Finally, the asynchronous solution is the 

only method which is compatible with real-time computations. Indeed, the simulation runs 

at 45 FPS, and 1 s in the simulation is simulated in 1 s.

7.2.2 Factorization of the preconditioner—To test the scalability of our method, we 

evaluate the computational time required to factorize the mechanical matrices with 

dimensions up to 10,000 × 10,000 (which corresponds to an object with 3333 nodes with 3 
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dofs per node). This operation is very expensive, but since we process it asynchronously it 

does not impact directly the performances of the simulation.

We also evaluate the number of simulation steps necessary to update the preconditioner with 

a simulation runing asynchronously at 25 FPS (see Fig. 11). Depending on the dimension of 

the matrix, the number of time steps necessary to update the factorization varies between 1 

and 6. With our asynchronous version, this period can twice larger because a first period is 

necessary to compute the factorization, and then it will be used until the next update of the 

preconditioner. However, even for a 9000 × 9000 matrix, the maximum delay due to the 

update the preconditioner is less than 0.5 s.

7.2.3 Computation of the compliance—We now focus on the computation time (see 

Fig. 12) for solving a Sparse Triangular System with multiple right hand side vectors. This 

operation is necessary to set the contact problem in Eq. (12) and (21).

Solving the different STS on the GPU (LDL GPU) is much faster than solving sequentially 

each STS on the CPU (LDL CPU). Indeed, the computation time for the CPU version is 

linear according to the number of right-hand side vectors, whereas the GPU can process 

them in parallel. Therefore, for up to 78 constraints the computation time remains almost 

constant with our GPU implementation. Indeed, below this limit the GPU computing units 

are not fully utilized and the different STS are processed in parallel. Beyond this number, 

some GPU processors will compute several STS successively, and the computational time 

curve takes a staircase appearance. Nevertheless, the GPU processors are able to overlay 

waiting times, due to synchronizations and access in memory, with computations for another 

STS. Thus, solving the system for 140 constraints is only 1.8 times slower than for 70 

constraints.

We also compared our GPU implementation to the NVIDIA Corporation (2007) library 

where an implementation of solving a STS with multiple right-hand side vector has recently 

been released in the procedure cusparseScsrsm_solve. This procedure is implemented 

in two steps: first an analysis of the sparsity of the matrix is process in order to determine the 

dependencies, then the analysis information is used to solve the STS (see Naumov (2011) 

for details). As the analysis is necessary only when the preconditioner is updated, we 

detailed separately the cost with (CUSPARSE + A) and without (CUSPARSE) the analysis. 

For 78 constraints our solution is 4.2 times faster when the analysis is not required (5.72 

times with the analysis), and 2 times faster for 300 constraints (2.4 times with the analysis). 

Although the difference may be less for larger systems, we have optimal performance for the 

scenarios that are compatible with real-time constraint. Indeed, for 300 constraints the 

computation time to build W with our optimized approach is around 0.04 s which is a limit 

for interactive rates.

7.2.4 Topological modifications—Finally, we evaluate the influence of the cut on the 

convergence of the standard CG, and using our method (SMF), on a simulation composed of 

a beam cut lengthwise and falling under gravity (see Table 7.2.3). Build is the time to 

assemble A: For the CG, the matrix is directly evaluated from the mesh structure at each 

iteration, whereas the preconditioner is updated on average every 4.30 simulation steps, each 
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update requiring to fully assemble A to perform the factorization in Eq. (16). Iterations and 

Solve are respectively the number of iterations per time step, and the corresponding time to 

solve the system with a tolerance at 10−7. The method significantly decreases the number of 

iterations, and provides an average speed-up of 2.6× compared to the CG.

The main overhead of the SMF update is the computation U and Q (see Fig. 13), but these 

operations are performed only when a new topological modification is detected (i.e. every 

3.4 simulation steps on the beam example). The computation of U is the most expensive, and 

its GPU parallelization is the key point to enable real-time computation, whereas the 

inversion of Q is inexpensive for small perturbations but quickly becomes costly for large 

perturbations. In practice, the number of impacted nodes remains very small since the 

preconditioner is updated several times per second. Finally the application of the correction 

(i.e. applying xc in Eq. (28) and Wc in (30)) is negligible since it represents less than 1% of 

the computation time of a time step.

8 Applications

We now demonstrate that our method is generic enough to address several kinds of 

simulation in a medical context. We use it to simulate a cataract surgery, an hepatectomy in 

laparoscopic surgery, and a cerebral tumor removal. We show that our method can handle 

the requirements of such simulations in real-time.

8.1 Application to cataract surgery

The cataract is an opacification of lens of the eye, which prevents the passage of light and 

results in partial or complete blindness. Millions of people are affected by this pathology, 

particularly in third world countries. A surgical treatment exists, which consists in extracting 

the diseased lens and replacing it with by an implant. The standard surgical procedure is 

known as Phacoemulsification (Tsuneoka et al., 2002), where the lens is emulsified by an 

ultrasonic tool. However, Phacoemulsification requires advanced technology which is not 

available in many countries where the prevalence of cataract is highest, and hence many 

patients can simply not be treated.

Another surgical procedure known as Manual Small Incision Cataract Surgery (MSICS) 

(Venkatesh et al., 2008) requires only basic technology and leads to quasi-identical results 

when performed by an experienced specialist. This technique requires a slightly larger 

incision (around 5 mm) so that the lens be extracted in a single piece. This involves that the 

eyeball as well as the lens must be simulated because they both undergo large deformations 

and high stresses. The heterogeneity of the lens must also be taken into account since it has 

an impact on the success of the lens extraction (the nucleus of the lens is much stiffer than 

its periphery).

In order to simulate the lens extraction according to the MSICS technique, the lens is 

modeled with 1113 nodes and 4862 tetrahedra, whereas the eye contains 1249 nodes and 

3734 tetrahedra. The center of the lens is 5 times stiffer than the periphery, and the incision 

and meshes of the organs has been generated off-line using the The CGAL Project (2011) 

library. The lens is removed with the help of deformation of the eyeball, and friction with the 
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surgical instrument. To account for both the multiple contacts, and the heterogeneity of the 

lens, we used our asynchronous preconditioner to ensure the convergence of the CG.

The preconditioned CG required an average of 11.6 iterations to converge to 10−5, despite 

strong deformations and heterogeneities. Using our method, we managed to simulate this 

application in real-time (see Fig. 14), while maintaining a computation speed from 18 to 25 

FPS. Within a single time step, the distribution of the computation time was: 40.56% for the 

free motion and 44.69% for the corrective motion.

8.2 Application to liver resection

Nearly 100,000 European citizens die every year of cirrhosis of the liver or liver cancer. 

Surgical procedures remain the options that offer the foremost success rate against such 

pathologies. The ability to simulate liver resection (hepatectomy) is key for both advanced 

training of this complex procedure (in particular when done using a laparoscopic technique). 

But simulation can also have an important impact in the planning phase. Indeed, eligibility 

for liver surgery is based on the minimum safety liver volume remaining after resection, but 

this minimum value varies over time and from one patient to another according to biological 

and biomechanical properties of the liver. Although various preoperative planning software 

have been developed, they only provide the volume of the liver before and after resection. 

However interesting, this limited information is not sufficient to improve the rate of surgical 

eligibility. By combining patient-specific anatomical and biomechanical modeling, we can 

provide the means to rehearse for the procedure while trying to maximize the future liver 

remnant (FLR).

Although simulators of this procedure have been developed in the past (Bourquain et al., 

2002; Lamadé et al., 2002), the originality of our approach is that our simulation is based on 

patient specific data. Meshes of the organs are obtained from a semi-automatic segmentation 

of a CT (see Soler et al. (2001) for details). We simulate 5 deformable bodies in interaction 

(liver, stomach, colon, intestines and diaphragm). Each organ is composed of several 

hundred of nodes and thousand of elements with complex shapes composed of several 

thousand of triangles (see Fig. 15). An important issue to produce this application concern 

the collision detection which is performed by the method introduced in Allard et al. (2010).

This simulation runs at a frequency of 25 FPS, including during cutting phases. The 

distribution of computing time in a time step is as follows: 27.77% for free movement, 

11.01% for collision detection, 22.48% for the constraint motion. The preconditioned CG 

requires an average need of 5.82 iterations to converge. Finally, by taking into account the 

mechanical coupling between the contacts, we managed to produce a consistent haptic 

feedback. For instance, users can feel the stiffness of ribs behind the liver by applying 

contacts on the surface of the organ (see Fig. 16).

8.3 Application to brain tumor resection

The last application that uses our method is the simulation of a surgical resection of a brain 

tumor. Brain surgery simulation has been widely studied, and commercial products start to 

appear (Luciano et al., 2005; Delorme et al., 2012). A review of computer-based brain 
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surgery simulations can be found in Malone et al. (2010) and Alaraj et al. (2011). It is still 

an active research topic, for instance for the prediction of the brain shift (Joldes et al., 2010) 

or for the Deep Brain Stimulation (Bilger et al., 2011). The brain is a relatively soft tissue, 

and most of existing simulations rely on explicit integration. Nevertheless, during the 

surgery the accuracy of surgeon’s interactions with the tissues is fundamental, as an error of 

few millimeters may often have dramatic consequences for the patient. The main needs of 

such simulation are precise modeling and topological modifications, high heterogeneities in 

the deformation modeling (the tumor is often stiffer than the brain tissues) and real-time 

computation. We show that our method meets these two issues, and may be beneficial to 

improve the realism of existing brain simulations.

The brain is modeled as a heterogeneous deformable body, composed of 1734 nodes and 

7680 linear tetrahedral elements. The tumor is 20× stiffer than the brain. During the 

simulation, the preconditioner is updated every 5.6 steps, and a new topological modification 

appears every 5.5 simulation steps, affecting 24 nodes. A total of 553 modifications are 

performed, and the method remains stable with an average of 5.70 iterations to solve the 

linear system. The collisions and self-collisions are correctly solved while processing the 

modifications, and cut parts can instantaneously be separated upon contact with the 

instrument. Finally, we achieve between 20 and 40 FPS and the method remains interactive.

9 Conclusion

In this manuscript, we introduce a set of methods for real-time bio-mechanical simulation of 

soft anatomical structures, relying on an implicit time integration method. The proposed 

paradigm relies on an asynchronous preconditioner that is updated at low frequency, and 

permits to significantly reduce the number of iterations in the linear solver. It also improves 

the contact response process by taking into account the mechanical coupling between 

contact points. We also extended the approach to handle topological modifications without 

compromising the interactivity of the simulation. The method is particularly beneficial for 

heterogeneous structures. On a simple case, we verify the method by comparing it with 

those of a commercial software, and we demonstrate the benefits of the proposed method 

through applications in cataract surgery, liver surgery and neurosurgery. In the last two 

applications, topological changes due to cutting are also enabled with minimal impact on the 

computation time.

For future work, we plan to investigate algebraic model reduction techniques (using the 

proper orthogonal decomposition, or multi-scale methods) to decrease the computational 

expense through pre computations, and to allow a finer description of organs. We also plan 

to investigate the use of enriched finite element methods in the real-time context to handle 

continuous cut with the elements. Finally, we will also focus on the estimation of the spatial 

and temporal discretisation error and of the model error during our simulations. An analysis 

of the model error will require addressing more realistic models including hyper-elastic 

materials, where the mechanical matrices undergo ‘faster’ modifications than for the co-

rotational case. We will also investigate the stability of the numerical schemes for nearly 

incompressible materials.
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Appendix A. Supplementary data

Refer to Web version on PubMed Central for supplementary material.
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Algorithm 1

Optimized algorithm to accumulate the contributions 

of a deformable on W using the asynchronous 

preconditioner (i.e W = W + H R LDLTRT −1HT).

1. J = HR (rotate constraints)

2. S = L−1 JT (solve a STS for each column of J )

3. T = D−1 S (apply the diagonal)

4. W = W + ST T (sum the contributions)
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Algorithm 2

Algorithm used to solve a Sparse Triangular System 

with multiple right-hand side vectors on GPU.
1 bx = 0 repeat

2       accumulate_contributions(acc,diag) //seeFig. 5;

3       local_synchronization;

4

      cont[ty] = ∑
i = 0

t
acc[ty][i] //Parallel reduction;

5       local_synchronization;

6       solve_bloc_diagonal(cont,diag) //see Courtecuisse and allard (2009);

7       local_synchronization;

8       bx = bx + t //We treat the next t rows in parallel;

9 until bx < dim ;
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Algorithm 3

Computation of U in the correction of the SMF. Step 

1 and 3 can be imply to solve respectively the lower 

and upper STS for each column of G.
1. S = L−1 GT (solve the lower STS)

2. T = D−1 S (apply the diagonal)

3. U = L−T T (solve the upper STS)
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Fig. 1. 
Hepatectomy in laparoscopy: (left) camera view during a hepatic surgery and (right) 

constraints from the environment.
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Fig. 2. 
The preconditioner is updated asynchronously within a dedicated CPU thread. We use the 

last preconditioner available to advance the simulation so that the simulation never needs to 

wait for the computation of the current preconditioner to be complete.
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Fig. 3. 
Contact force distribution in different scenarii and using different approximation of the 

mechanical coupling. (a) Is homogeneous, (b) is heterogeneous and contacts are solved 

without coupling, and (c) is heterogeneous and contacts are solved with coupling.
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Fig. 4. 
First level of parallelism achieved for solving a Sparse Triangular System with multiple right 

hand side vector on GPU.
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Fig. 5. 
Parallel accumulation of the contributions for solving a STS described by the CRS matrix. t 
× t threads (illustrated here with t = 4) are used such that t rows are processed 

simultaneously (colors). Each being accumulated by t threads in parallel (letters a, b, c, d). 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 6. 
Incremental update of the mesh structure for the cut.
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Fig. 7. 
Correction of the preconditioner during topological modifications. When a modification is 

performed on the mesh, we first compute the correction of the current factorization. Then we 

compute the correction of the preconditioner which was being calculated at the time of the 

cut. After two consecutive updates without topological modification, the preconditioner does 

not need any additional correction.
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Fig. 8. 
Comparison of our SOFA implementation of a co-rotational model in contact with the 

ABAQUS solution.
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Fig. 9. 
Distance of nodal positions by using different approximations of the compliance matrix 

compared to a reference simulation. The reference simulation is obtained by computing the 

compliance matrix as the exact inverse of the system matrix every time step. (a) Root Mean 

Square error of the nodal position (compared to the reference simulation) by using different 

approximation as compliance matrix. (b) Simulated soft disk (blue) with reference (green) 

after 0.8 s of simulation. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.)
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Fig. 10. 
Simulation of an heterogeneous deformable beam falling under gravity and average 

computational time for 200 simulation steps and convergence rate for different 

preconditioners. Red parts are 50× stiffer than bleu parts. Inverse corresponds to the 

inversion of the diagonal matrix for the Jacobi preconditioner, and to the factorization of the 

system for LDLT preconditioners. Solving is the time taken to solve the system. Total is the 

total time of a single time step.
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Fig. 11. 
Time in (ms) to factorize the system depending on the dimension on the system. Simulation 
steps gives the number of simulation steps that are necessary to update the asynchronous 

preconditioner with a simulation running at 25 FPS.
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Fig. 12. 
Computation time for solving a STS with multiple right-hand side vectors.
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Fig. 13. 
Performances and convergence comparison fo the standard CG versus our method based on 

the Sherman Morrison Formula. The main overheads for the computation of the correction 

using the SMF are reported on the graph (right). Matrices U and Q are computed for every 

new topological modification which correspond to the Build step in the table.
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Fig. 14. 
Simulation of the lens extraction using MSICS technique.
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Fig. 15. 
Simulation of an hepatectomy with haptic feedback, and associated dataset used. (left) FE 

mesh used, (middle) boundary conditions from the collision detection and (right) simulation 

of cutting.
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Fig. 16. 
Real-time simulation of a brain tumor resection.
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