
Real-time simulation of contact and cutting of heterogeneous
soft-tissues

Hadrien Courtecuissea,b,c,*, Jérémie Allardc, Pierre Kerfridenb, Stéphane P.A. Bordasb,
Stéphane Cotinc, and Christian Duriezc

aICube / AVR, CNRS, Strasbourg, France

bInstitute of Mechanics and Advanced Materials, Cardiff University, UK

cSHACRA Project, INRIA, France

Abstract

This paper presents a numerical method for interactive (real-time) simulations, which considerably

improves the accuracy of the response of heterogeneous soft-tissue models undergoing contact,

cutting and other topological changes. We provide an integrated methodology able to deal both

with the ill-conditioning issues associated with material heterogeneities, contact boundary

conditions which are one of the main sources of inaccuracies, and cutting which is one of the most

challenging issues in interactive simulations. Our approach is based on an implicit time integration

of a non-linear finite element model. To enable real-time computations, we propose a new

preconditioning technique, based on an asynchronous update at low frequency. The preconditioner

is not only used to improve the computation of the deformation of the tissues, but also to simulate

the contact response of homogeneous and heterogeneous bodies with the same accuracy. We also

address the problem of cutting the heterogeneous structures and propose a method to update the

preconditioner according to the topological modifications. Finally, we apply our approach to three

challenging demonstrators: (i) a simulation of cataract surgery (ii) a simulation of laparoscopic

hepatectomy (iii) a brain tumor surgery.

Keywords

Medical simulation; Contacts and collision detection; Interactive cutting; Heterogeneous
structures; GPU parallelization

1 Introduction

Interactive simulation of surgical procedures could open avenues leading to improved patient

care and reduced risks.1 The main requirement to construct useful surgical simulators is to

be able to reproduce the mechanical response of organs. To do so, surgical simulators

involves at least four major challenges:

*Corresponding author at: ICube / AVR, Université de Strasbourg, France. hcourtecuisse@unistra.fr (H. Courtecuisse).
1Surgical simulators are meant here as computer-based tools used to simulate a surgeon’s intervention in a virtual environment.

Europe PMC Funders Group
Author Manuscript
Med Image Anal. Author manuscript; available in PMC 2019 April 26.

Published in final edited form as:
Med Image Anal. 2014 February ; 18(2): 394–410. doi:10.1016/j.media.2013.11.001.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

1. The material properties of living tissues need to be characterized. Such properties

are patient-specific and it is difficult predict the mechanical behavior of in vivo

tissues.

2. The geometry of the organ models must be acquired from medical images, and

this process is still not automatic, requiring difficult segmentation and mesh

generation.

3. Significant numerical issues must be overcome, as most organs have an

heterogeneous stiffness (which leads to ill-conditioned problems), are composed

of multiple tissue types (which may lead to difficulties in defining boundary

conditions) and are mostly incompressible (which leads to locking for most

widely used finite elements).

4. The response must be computed in real-time to allow user interactions with the

virtual body: pushing, prodding, palpation, needle insertion and cutting. In this

sense, a simulation which would be mechanically realistic, but not interactive

would not fit for our purpose.

Most of the previous works have focused on producing accurate models for the deformations

of soft tissues, but real-time simulations are still usually composed of a single homogeneous

organ with simple boundary conditions. Yet, we believe that it is also fundamental to take

into account the deformable environment of the tissues to obtain a realistic global behavior.

For instance, even if during a hepatectomy the view of the camera is focused on a small part

of the liver tissues (see Fig. 1) the human body is composed of multiple organs playing an

important role in the resulting deformation and motion of the liver (breathing, contact with

neighboring organs, etc.). Indeed, if we look closely at the boundary conditions of the liver:

the upper part is compressed by the diaphragm on which it is attached through several

ligaments including the falciform ligament. Moreover, the liver is in contact with the vena

cava and the stomach and linked to it by the hepatogastric ligament. Therefore, when

studying the motion and deformation, the liver cannot be considered as an isolated organ.

Beyond the importance of boundary conditions, our additional working hypothesis is that

realistic surgical simulation also requires to interactively compute significant topological

modifications of the organs, e.g. cutting. In this case, boundary conditions are also

fundamental because stiff interactions with the tool (controlled by the user) as well as

complex deformable–deformable interactions between the lips of the cut must be solved

simultaneously. Performing this at interactive rate is difficult, in particular for heterogeneous

structures.

The contribution of this paper is to propose a consistent framework to address the

aforementioned requirements of surgical simulations. This framework relies on an implicit

time integration of the non-linear set of equations coming from the finite element model of

the deformation. The core of the method rely on a preconditioning technique which is

updated asynchronously at low frequency. This preconditioner reduces the convergence

issues appearing when computing the deformation of non-linear heterogeneous structures. In

addition, it provides a very good estimate of the compliance2 operator associated with the

coupling between the solids in contact. We also extend the method to cut these

Courtecuisse et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

heterogeneous organs at an interactive rate whilst resolving existing or new contact surfaces

emanating from these topological modifications. Our solution is based on the Sherman

Morison Formula to update the asynchronous preconditioner in case of topological

modifications. Finally the generic nature of the method is demonstrated by three different

types of applications: a simulation of cataract surgery, a simulation of a hepatectomy using

laparoscopy procedure, and a simulation of cerebral tumor removal.

The paper is organized as follows: In Section 2, we briefly review the real-time simulation of

deforming bodies. In Section 3 we define the problem at hand and provide notations and key

concepts necessary to build our method. Section 4 is dedicated to the description of the

asynchronous preconditioner. In Section 5 we propose to use the asynchronous

preconditioner to solve the constraints associated with the multi-deformable-body contact

problem under consideration. This section also provides details on the GPU implementation

to achieve real-time results. In Section 6, we extend the method to handle topological

modifications. In Section 7, we evaluate our method in terms of accuracy and computation

time. Finally, in Section 8 we exercise the methodology in three practical problems

involving complex heterogeneous structures in interaction.

2 Literature review

Biomechanical simulation with user interactions involves many challenges such as real-time

computation of the deformation of soft tissues, collision detection, contact modeling,

topological modification, and haptic feedback (see Nealen et al. (2006) and Payan (2012) for

a broad survey).

2.1 Simulation of deformable bodies

The first methods proposed to simulate the deformation of soft tissues in real-time relied on

mass-spring systems, e.g. Kühnapfel et al. (2000). Although such discrete methods are

simple to implement and very fast, they are difficult to parameterize with material properties

such as the Young’s modulus. Moreover, they introduce anisotropy through the choice of the

mesh giving rise to stability and accuracy issues (node flipping, difficulty to preserve the

volume).

Finite element methods (FEM) provide high bio-mechanical realism (Zienkiewicz and

Taylor, 1991), mainly because the complex non-linear behavior of soft-tissue is directly

accounted for through constitutive relations. Real-time computations were first achieved for

linear elastic material models (see Bro-Nielsen and Cotin (1996), Cotin et al. (1999) or

James and Pai (1999)). In linear elasticity, precomputations (offline) can be used to

accelerate the online simulations. However, the small strain assumption is incorrect in

practice, and produces erroneous results when the solids undergo large deformations. The

use of precomputed solutions for highly non-linear problems is intensively pursued, e.g. in

Niroomandi et al. (2008) for hyper elasticity, and Kerfriden et al. (2011, 2012) for damage

problems.

2Inverse of the stiffness.

Courtecuisse et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

The co-rotational method is an old method, which originated in continuum mechanics

(Freund, 1970) and was introduced by Felippa (2000) within the field of numerical methods.

In this formulation, the stiffness of each element is assumed linear within the local frame

described by its rotated state, which enables to simulate geometric non-linearities (i.e. large

displacements, large rotations but small strains). This enables to produce realistic

simulations, while maintaining the algorithmic complexity at a minimum (Felippa and

Haugen, 2005; Müller and Gross, 2004).

Later, other methods were proposed to simulate both geometric and material non-linearities.

Material non-linearities are expressed through the non-linearity of the constitutive law

relating the strain tensor to the stress tensor, characteristic of soft tissues. Real time models

were recently proposed (Comas et al., 2008; Joldes et al., 2009; Marchesseau et al., 2010),

but these models remain in general complex and expensive, and the simulation of realistic

boundary conditions such as interactions between deformable organs and surgical

instruments is still an issue.

2.2 Time discretization

Explicit integration schemes are widely adopted (Miller et al., 2007; Taylor et al., 2008) in

surgical simulation. The main advantage is that the solution process only involves the mass

matrix, which can be lumped (diagonalised). The equations of motion are thus decoupled

and each degree of freedom can be solved independently, making the solution process very

fast, and inherently well-suited to parallelization (Comas et al., 2008). The major drawback

of explicit dynamics is the need to satisfy the Courant–Friedrichs–Lewy stability condition,

which forces a strict upper bound on the time step used for integration. Explicit methods are

consequently particularly well-suited to very soft tissues such as the brain (Joldes et al.,

2009), but very small time steps (which prevent real-time computations) must be chosen for

stiffer structures. Moreover, explicit simulations do not guarantee that, at each time step, the

residual vector is minimized, and hence, that the external and internal forces balance.

These are the major reasons for developing implicit time integration techniques for real time

simulations. Providing flexibility in the choice of the time step, even for very stiff objects

(Baraff and Witkin, 1998), is required to achieve our aim: simulate user-controlled

interactions between arbitrarily stiff anatomical structures or tools. Of course, the advantages

of such methods come at the cost of having to solve a set of linear equations at each time

step. Yet, this paper aims to show that implicit integration schemes can offer a reasonable

tradeoff between robustness, stability, convergence and computation time, in particular when

combined with a GPU implementation.

2.3 Solving the set of non-linear equations

Using implicit integration, a non-linear set of equations must be solved at each load step.

This set of equations is usually solved using an iterative method based on the Newton–

Raphson method which solves the set of non-linear equations through a sequence of

solutions of linear equations.

The set of linear equations can either be solved by direct solvers or iterative solvers. Direct

solvers provide the solution by computing the actual inverse of the system matrix (Bro-

Courtecuisse et al. Page 4

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Nielsen and Cotin, 1996), or by creating a factorization that can then be used to compute the

solution (Barbič and James, 2005).

These methods are often too costly to be applied at each iteration, and are often used in

combination with an approach to reduce the number of degrees of freedom of the model,

either using condensation on surface nodes (Bro-Nielsen and Cotin, 1996), or reduced-

coordinate models (Barbič and James, 2005). Recently, Hecht et al. (2012) proposed a

method to incrementally update a sparse Cholesky factorization. They obtain fast

performance by making only partial changes to the simulation’s linearized system matrices,

but the method is closely related to the co-rotational formulation and cannot take into

account topological modifications.

The second class of methods are iterative (Saad, 1996), and start from an initial estimate and

iteratively refine it to approach the exact solution. One of the most popular methods is the

Conjugate Gradient (CG) algorithm. Although in theory up to n iterations are necessary to

achieve convergence for n equations in the system, in practice it is possible to stop the

algorithm much earlier depending on the required accuracy. Parallel implementations on

CPU are now well-mastered and optimized: see for example Parker and O’Brien (2009) and

Hermann et al. (2009) and start to appear on GPU (Bolz et al., 2003; Buatois et al., 2009;

Allard et al., 2011). Iterative solvers are usually faster than direct methods, and require less

memory storage, but they converge slowly for ill-conditioned problems, i.e. when the ratio

of the largest and smallest eigenvalues is large. This is the case when solving linear systems

of equations associated with the discretization of heterogeneous structures, as is the case in

this paper.

Another intense area of research aims to improve the performance of the CG algorithm with

the use of preconditioners to speed-up its convergence. In the context of interactive

simulation, Baraff and Witkin (1998) proposed to use a diagonal inverse, often called a

Jacobi preconditioner. More advanced preconditioners such as Cholesky factorizations have

also been studied (Hauth et al., 2003). However, the performance improvement remains

limited since the preconditioner itself is expensive to compute. Domain decomposition

preconditioners are popular, for example in multi-scale parallel simulations (Dryja and

Widlund, 1989) and for extended (enriched) finite element methods (Menk and Bordas,

2011). Multi-grid pre conditioners, e.g. Braess (1986) were developed for real-time

simulations for example in Dick et al. (2011) and to simulate cuts in deformable objects in

Dick et al. (2011) and for fracture problems in Hiriyur et al. (2012), Berger-Vergiat et al.

(2012), and Gerstenberger and Tuminaro (2013).

2.4 Simulation of the interactions

A key requirement for realistic surgical simulators is to treat contact between “soft”–“soft”,

“soft”–“stiff” and “stiff”–“stiff” objects. A common solution to deal with contact consists of

using a penalty method, which modifies the variational principle and solves the contact

condition approximately. A didactic review of constraint enforcement in a variational

context is provided in Hughes (2000) and a review of error estimates associated with this

enforcement of variational inequalities in finite element methods can be found in the seminal

paper Brezzi et al. (1977). In penalty methods, a contact force f = αδn is added at each

Courtecuisse et al. Page 5

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

contact point, where δ is a measure of the interpenetration, n is the contact normal and α is a

stiffness factor known as penalty coefficient. The higher α the better the constraint is

satisfied. However, the higher the value of α, the worse the condition number of the system

is, the higher the spurious oscillations in contact forces, and the smaller the time step. The

selection of α is also problem-dependent, and depends particularly strongly on the stiffness

ratio between the contacting objects. Consequently, the penalty method is limited for the

applications that we have in mind, i.e. contacting heterogenous objects.

Lagrange multipliers or augmented Lagrangian techniques (Hughes, 2000; Renard, 2013;

Jean, 1999; Jourdan et al., 1998; Wriggers and Panatiotopoulos, 1999) are usually preferred

to penalty methods to treat contact constraints accurately and robustly. Methods used to

solve contact equations with Lagrange multipliers can be classified into two categories

which are numerically equivalent: Quadratic Programming (QP) methods and

Complementary Problem methods that could be linear (LCP) or non-linear (NLCP).

QP methods define the constraints directly into the mechanical system. They can be used to

treat the inequality of the contact (Redon et al., 2002; Pauly et al., 2004), and also to

simulate friction using a discretized pyramidal cone (Kaufman et al., 2008). However, these

publications address the case of rigid bodies in contact, where the number of degree of

freedom (DOF) is smaller than the number of contact constraint freedoms. Indeed, the

resulting number of equations with QP methods is of the same order of magnitude as the

number of DOFs of the interacting objects. Therefore, these methods are difficult to adapt to

the simulation of the interaction between finely meshed deformable bodies in real-time.

An important advantage of (N)LCP methods is that the number of constraint equations is

proportional to the number of contacts, which is often much smaller than the number of

DOF in the context of deformable models. LCP can be used to simulate frictionless contact

between deformable models (Duriez et al., 2003) in real-time whereas NLCP methods can

be used to simulate friction contacts with the exact friction cone (Duriez et al., 2006). The

main limitation of these methods is that the solution process involves the compliance matrix,

which is the inverse of a large system composed of the mass, the damping and the stiffness

of the deformable objects. Although the evaluation of this inverse in real-time is crucial to

define the boundary conditions of the deformable structures, very few methods addressed

this issue. Duriez et al. (2004) proposed to precompute the compliance matrix, but the

solution is limited to linear elastic deformation. Otaduy et al. (2009), proposed to compute

the compliance matrix using additional Gauss–Seidel iterations on the deformable models,

but the method was not presented in a real-time context. Saupin et al. (2008) proposed a

method, named compliance warping, which is dedicated to co-rotational models. It consists

of pre-computing the compliance matrix from the rest position, and updating it using a local

estimation of the nodal rotations. However, this approximation can become inaccurate for

large deformations, and the method is limited to relatively coarse meshes. A prediction–

correction scheme is introduced in Peterlik et al. (2011) to mitigate the inaccuracies and the

method extends the formulation to haptic feedback with generic constraints between the

deformable models.

Courtecuisse et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

To our knowledge, it was never demonstrated that any of the above methods are adequate to

enforce contact constraints between geometrically complex deformable objects represented

by moderately fine meshes (thousands of DOFs), both accurately and at interactive rates

(30–50 frames per second). This problem is particularly relevant for medical applications,

since all the organs in a human body are subjected to interactions from other tissues.

Resolving accurately these interactions between organs can be construed as more critical

than the accuracy of the deformation of each individual organ itself. An important

contribution of this article is to propose a generic solution to address this problem.

2.5 Simulation of topological modifications

When cutting through a finite element mesh, discontinuities in the displacement field must

be introduced. This can be done through local re-meshing. Several approaches were

proposed to maintain a relatively good mesh quality (Ganovelli and O’Sullivan, 2001;

Bielser et al., 2003; Molino et al., 2007; Sifakis et al., 2007). One important difficulty is to

preserve the quality and the density of the mesh during the subdivision process, in order to

avoid distorted elements, which lead to convergence difficulties during the simulation. In

addition, few methods were proposed to handle collision detection with the modified

topology (where the quality and the density of the triangulation of the surface around the cut

is difficult to control).

For the mechanical aspect, topological changes require updating of the stiffness matrix. As

most recent real-time deformation methods are based on non-linear models (geometrical

and/or material), topological changes add little overhead to the process. The treatment of the

interactions during the cut is also problematic. Courtecuisse et al. (2010b) proposed to

extend the compliance warping technique using the Sherman Morrison formula to update the

precomputed inverse in case of topological modifications. However, numerical errors

accumulate over time and the method suffers from instabilities after a large number of

modifications. In this paper, we propose a solution that enables to significantly decrease the

numerical issues caused by the cuts, and to preserve the accuracy of the contact response

during the cut.

Alternatives to generating finite element meshes, in particular to handle topological changes

are extended finite element methods (Nicolas et al., 1999). These methods allow cuts,

material interfaces, and domain boundaries to be described independently of a background

mesh, which may also be progressively adapted using a posteriori error estimators (Bordas

and Duflot, 2007; Duflot and Bordas, 2008; Bordas et al., 2008; Ródenas et al., 2008) or

local heuristics (Menk and Bordas, 2011). However, such methods are not yet developed in

the real-time context, and the simulation of collisions and interactions remains unsolved, in

particular because the geometry of the discontinuities is known implicitly.

3 Background

In this section we introduce some of the necessary background on which we build our

method.

Courtecuisse et al. Page 7

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

3.1 Deformable model and time-stepping implicit integration

Let us consider a generic dynamic deformable model. Equations used to model the dynamic

behavior of bodies can be written within a synthetic formulation, given by Newton’s second

law:

𝕄(q)q̈ = ℙ(t) − 𝔽(q, q̇) + ℍ(q)T λ (1)

where q ∈ ℝn is the vector of generalized degrees of freedom (here, the mesh node

positions), (q) : ℝn ↦ ℳn×n is the inertia matrix. represents internal forces applied to

the simulated object depending on the current state and ℙ gathers external forces. ℍ(q)T is a

function that gives the constraint directions depending on the position of the objects, and λ
is the associated the vector of Lagrange multipliers containing the constraint force intensities

(see details below).

(q) and (q, q̇) are derived from the physics-based deformable model. In this paper, we

use the co-rotational formulation as a tradeoff between accuracy and computation time. In

this formulation, the stiffness of the material depends on the current rotation (and thus on the

current positions), which results in a geometrically non-linear elastic formulation (Felippa,

2000). After discretization, the mass matrix noted M in the following, is considered as

constant and lumped (we obtain a diagonal matrix).

Collision response on mechanical objects leads to discontinuities in the velocities of the

colliding points. For such discontinuous events, the acceleration is not defined: the problem

belongs to the field of non-smooth mechanics. To integrate the mechanics and the non-

smooth events due to contact over time, we use a time-stepping method based on an implicit

scheme: The time step is fixed and there is no limitation on the number of discontinuities

that could take place during a time step (Anitescu et al., 1999), but low-order integration

schemes should be used. This could lead to excessive dissipation if the time step is too large

but it provides stable simulations. This is particularly relevant for interactive simulations

involving contact with virtual devices controlled by an operator. With or without haptic

feedback, the motion of the user will not be completely constrained and could lead to

excessive energy input in the simulation. This is why the stability and the robustness of these

types of simulations are crucial.

Let us consider the time interval [ti, tf] which length is h = tf − ti. We have:

M(q̇ f − q̇i) = ∫
ti

t f
ℙ t − 𝔽 q, q̇ dt + h ℍ q

T

λ

q f =qi + ∫
ti

t f
q̇ dt

(2)

Courtecuisse et al. Page 8

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

To evaluate integrals ∫
ti

t f
ℙ t − 𝔽 q, q̇, t dt and ∫

ti

t f
q̇ dt we chose the following implicit

Euler integration scheme:

M q̇ f − q̇i = h ℙ t f − 𝔽 q f , q̇ f + h ℍ q T λ f

q f = qi + hq̇ f
(3)

 is a non-linear function, we apply a Taylor series expansion to and make a first order

approximation:

𝔽 qi + dq, q̇i + dq̇ = f i + δ𝔽
δq dq + δ𝔽

δq̇dq̇ (4)

This linearization is actually the first iteration of the Newton– Raphson algorithm. This

single iteration is done under the assumption of a temporal coherency of the mechanical

behavior; it may lead to small numerical errors in the dynamic behavior, but these errors

tend to decrease at equilibrium or with null velocity. After discretization B = δ 𝔽
δ q̇ and K = δ 𝔽

δq
are known respectively as the damping and stiffness matrices. Replacing (4) in (3) and using

dq = qf – qi = hq̇f and dq̇ = q̇f – q̇i, we obtain:

(M + hB + h2K)
A

dq̇
x

= −h2Kq̇i − h(f i + p f)
b

+ hℍ(q)T λ f (5)

where pf is the value of function ℙ at time tf. Note that using elastic or hyperelastic FEM of

deformations, matrix A is symmetric definite positive. The only remaining unknown values

are the Lagrange multipliers λ but their computation is now detailed.

3.2 Contact and friction models

Before enforcing the contact between soft tissues or with surgical instruments (rigid or

deformable), one needs to detect them. In our work, we use two types of algorithms: the first

is based on proximity queries,3 and provides the minimal distances between mesh (even

concave meshes); the second is based on detection of volume of interpenetration (details in

Allard et al. (2010)). The first algorithm have the advantage to “anticipate” the contacts

before they actually appears, the second algorithm needs unnatural interpenetration between

models but provide much faster results on complex meshes thanks to GPU optimizations. In

the following, we consider that we use the algorithm based on proximities detection to

enforce contact between point pairs at the surface of the colliding models. The formulation

used for enforcing volume constraints is similar and detailed in Allard et al. (2010).

3The implementation is available on SOFA using the component LocalMinDistance.

Courtecuisse et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Whatever method is used for detection, the collision response is based on the same model:

Signorini’s law. This model is defined for each potential contact provided by the contact

detection algorithm. It expresses that there is a complementarity relation along the direction

n of contact4 between the contact force λn and the distance δn between the contacting object

at the point of contact, that is:

0 ⩽ δn ⊥ λn ⩾ 0 (6)

This model has several physical justifications including non interpenetration and no sticking

force. Moreover the contact force vanishes if the points are not strictly in contact. Using

Signorini’s law, the contact space is along the normal and creates a frictionless response.

Coulomb’s friction law describes the macroscopic behavior in the tangent contact space. In

this law, the reaction force is included in a cone whose height and direction is given by the

normal force. If the reaction force is strictly included inside the cone, objects stick together,

otherwise, the reaction force is on the cone’s border and objects are slipping along the

tangential direction. In this last case, the friction force must be directed along the direction

of motion.

δ̇T = 0 ∥ λT ∥ < μ ∥ f n ∥ (stick)

δ̇T ≠ 0 λT = − μ ∥ λn ∥
δ̇T

∥ δ̇T ∥
= − μ ∥ λn ∥ T(slip)

(7)

where μ is the friction parameter, and T is the direction of motion in the tangential plane to

the contact normal n.

During 3D slipping motion (also called dynamic friction), the tangential direction is

unknown. We only know that the tangential force and the tangential velocity are opposite

along a direction that is to be found. It creates a non-linearity in addition to the

complementarity state stick/slip. Signorini’s law and Coulomb’s law are also valid in a

multi-contact case. However, to solve these laws at every contact point, we have to consider

the coupling that exists between these contact points. This coupling comes from the intrinsic

mechanical behavior of deformable objects.

3.3 Contact mapping

From collision or proximity detection, we have a set of potential contact spots α = 1, … nc,

which are defined on the surface of the deformable bodies (triangles, lines, or points). In

order to transfer the contact informations to the Degrees of Freedom of the objects, we can

build a mapping function that links the positions in the contact space to the motion space

(see Saupin et al. (2008) for details). For each contact point between two objects:

4Complementarity is noted ⊥. It states that one of the two values δn or λn must be null.

Courtecuisse et al. Page 10

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

δα = 𝔸α(q1, t) − 𝔸α(q2, t) (8)

with α(q, t) the mapping function which depends on contact α and the positions q1 and q2

of the two colliding objects. To obtain a kinematic relation between the two spaces (contact,

motion), we use a linearization of Eq. (8). If ℍα(q) =
∂𝔸α
∂q , we obtain, at time t for each

contact:

δ̇α (t) = ℍα(q1)q̇1(t) − ℍα(q2)q̇2(t) (9)

where ℍ is a non-linear function of the position q. The dimensions of this jacobian matrix is

the number of constraints for the rows and the size of q for the columns. To simplify the

solution process, we suppose that this matrix does not change during the contact response

HT λf = ℍ(q)T λf. In the following, this matrix is noted H to emphasize that it is constant

during the time step.

3.4 Constraint-based solution

In the following, we present how the contact laws (6) and friction laws (7) are enforced

while taking into account the dynamic Eq. (5) between 2 contacting objects. To resolve these

laws, we use a Lagrange Multiplier approach and a single linearization by time step. For

both interacting objects we applied Eq. (5):

A1x1 = b1 + hH1
Tλ

A2x2 = b2 + hH2
T λ

(10)

In order to solve λ we follow the following steps.

Step 1: interacting objects are solved independently while setting λ = 0. A set of

independent linear systems of equations Ax = b must then be solved for each object. For our

purposes, this must be done in real-time and we use a GPU-based Conjugate Gradient

algorithm (CG) as described in Allard et al. (2011). This method enables using meshes

comprised of thousands of elements in real-time on standard architectures, but tends to

converge very slowly for ill-conditioned matrices. This is particularly an issue for the

simulation of heterogeneous materials with large phase contrast or for problems obtained

from finite element meshes of non optimal quality (large local difference in element size).

We propose in Section 4 a novel method to simulate the heterogeneities in real-time. Finally,

we obtain what we call the free motion x1
free and x2

free for each object which corresponds to

dq̇1
free and dq̇2

free . After integration, we obtain q1
free and q2

free .

Courtecuisse et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Step 2: the constraint laws are linearized during the time-step. We process a proximity

collision detection between the position of the objects at the previous time step, and using

the linearization we obtain the free interpenetration δfree and the associated H, assumed

constant during the time step:

δ = 𝔸α q1
free − 𝔸α q2

free

δfree

+ hH1dq̇1
cor + hH2dq̇2

cor (11)

with dq̇1
corand dq̇2

cor being the unknown corrective motions when solving Eq. (10) with b1 =

b2 = 0. When gathering Eqs. (10) and (11), we have:

δ = δfree + h2 H1A1
−1H1

T + H2A2
−1H2

T

w
λ (12)

With respect of the Signorini’s law (Eq. (6)), this equation describes a LCP (Linear

Complementarity Problem). If it is combined with Coulomb’s law (Eq. (7)), we obtain a

NLCP (Non-linear complementarity problem). This equation implies to evaluate the inverse

of large matrices A1 and A2 (same dimension as the number of DOFs). We propose in

Section 5 a novel method to obtain an approximation in real-time.

Step 3: We obtain the value of λ using a Gauss–Seidel algorithm dedicated to the NLCP

created by contact and friction equations. Considering a contact α, among m instantaneous

contacts, one can write the behavior of the model in contact space:

δα − Wαα λα
unknown

= ∑β = 1
α − 1 Wαβ λβ + ∑β = α + 1

m Wαβ λβ

frozen

+ δα
free (13)

where Wα,β is a compliance matrix that models the coupling between contact points α and

β. For each contact α, this method solves the contact equations by considering the others

contact points (α ≠ β) as “frozen”. The new value of λα is given by solving Signorini’s law

and the Coulomb’s law on this contact (see Duriez et al. (2006) for details of

implementation and performance).

Step 4: When the value of λ is available, the corrective motion is computed:

q1, t + h = q1
free + h Δ q̇1

cor with Δ q̇1
cor = A1

−1H1
T λ

q2, t + h = q2
free + h Δ q̇2

cor with Δ q̇2
cor = A2

−1H2
T λ

(14)

We finally obtain q1,t+h and q2,t+h, the positions of object 1 and 2 that fullfils the contact and

friction laws.

Courtecuisse et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

In this section, we identified two important difficulties to achieve real-time computations. (i)

To compute the solution of the linear system defined in Eq. (5), in particular for

heterogeneous objects. (ii) To compute the compliance matrix W in Eq. (12).

These two problems are addressed in the two following sections.

4 Asynchronous preconditioner

The condition number k of the matrix A, measures how much the output value of the

function can change for a small change in the input argument. For heterogeneous objects or

ill-structured meshes, the condition number k is often high which raises convergence issues

for the conjugate gradient algorithm used to solve Eq. (5). A common technique is to use a

preconditioner to reduce the condition number, ensuring a faster convergence of the

algorithm. By definition, a preconditioner is an approximation of the system matrix A,

which is less costly to invert. Solving Eq. (5) with a preconditioner P can be written:

P−1Ax = P−1b, such that k(P−1A) < k(A) (15)

In the real-time context, one strong limitation of this technique is the computational

overhead added to the simulation: first, during the computation of the preconditioner itself,

and second, during its use at each iteration of the CG (see Saad (2003) for details). Thus, the

practical usefulness of preconditioners depends on the ability to strike a balance between the

computational overheads and the time saved by decreasing the number of CG iterations.

Several preconditioners can be used, from simple diagonal matrices (Baraff and Witkin,

1998) to precise but costly Cholesky factorizations.

We recently proposed a different approach (Courtecuisse et al., 2010a) that relies on the

assumption that A undergoes small perturbations between two consecutive time steps.

Indeed, if Pt = At
−1 is available at a specific time t, it may remain a “good enough”

approximation for the following time steps. The preconditioner can then be updated at low

frequency on a dedicated CPU thread, and the last preconditioner available can be used to

advance the simulation (see Fig. 2). Therefore, the overhead in computing the preconditioner

is removed from the simulation loop, which allows using more advanced and

computationally costly preconditioners such as a factorization of the system5:

P = A = LDLT (16)

where D is a diagonal matrix and L is a sparse lower-triangular matrix. In our application,

we rely on LDLT factorization since it produce more stable results than a Cholesky

factorization. The factorization is performed by the cs_sparse library (Davis, 2006), using a

single core on the CPU. Other libraries Toledo et al. (2003) and Schenk et al. (2008) propose

5Note that even if we compute an exact factorization of At–h, the preconditioner remains an approximation since its computation is
based on a previous configuration of the objects, and we use it with delay in the simulation.

Courtecuisse et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

parallel factorizations, but we found that cs_sparse provides sufficiently fast updates, and a

sequential factorization enables to save CPU cores to compute the preconditioners of other

objects in parallel.

An important advantage of this factorization is that the resulting L matrix remains sparse,

which makes the application of the preconditioner faster within the CG. This operation

consists in solving two Sparse Triangular Systems (STS):

y = LT −1b
x = L−1 D−1y

(17)

where L is stored in Compressed Row Storage (CRS) (see Barrett et al. (1994) for details on

the structure). Solving the STS is equivalent to performing a Gauß elimination, which is

difficult to parallelize as it involves many dependencies. Therefore, the STS are solved on

CPU6 that can take advantage of caches and of the sparsity of the matrix, to efficiently solve

the system.

For large systems (see Section 7.2.2), the computation cost of the LDLT factorization can

become prohibitive, and the resulting preconditioner can diverge from the actual system.

However, we note that an important part of the error is associated with the rotations (Saupin

et al., 2008) which can vary quickly between time steps. In order to limit the divergence of

the preconditioner, we estimate the nodal7 rotations Rt–h→t that were introduced since the

last update of the preconditioner (i.e. between time t – h) t. The most recent preconditioner

Pt−h is then rotated with the current rotation matrix Rt−h→t as follows:

Pr = Rt − h t
T Lt − hDt − hLt − h

T Rt − h t (18)

where the “rotated preconditioner” Pr is less sensible to geometrical non-linearities. Finally,

the method enables to simulate the deformation of homogeneous as well as heterogeneous

tissues in real-time.

5 GPU-Based preconditioner for contact problems

Eq. (12) requires the computation of A−1, which is a large matrix (same dimension as the

number of DOF) and changes at each time step. Although computing this inverse in real-

time is only possible for coarse models, the resulting operator W plays an important role to

enforce the constraints.

6Using a GPU-based CG with a CPU-based preconditioner, implies to transfer the solution vector b between the CPU and the GPU at
each iteration of the CG. But, since the preconditioner is usually a good approximation of the actual system, only a few iterations are
necessary and the cost of such transfers remains limited.
7Note that nodal rotations give an approximation of the co-rotational formulation where rotations are computed per elements and sum
in the global stiffness matrix. Rt–h→t is a block diagonal matrix, easy to compute and easy to invert.

Courtecuisse et al. Page 14

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

5.1 Compliance and mechanical coupling

In the following, the term “mechanical coupling” describes the coupling between contact

constraints applied on two subsets of the boundary of a deformable body. This coupling

occurs through the deformation of the body itself. Indeed, even if the contact points are only

defined on the boundary of the deformable bodies, they are all influenced by each other

through the stiffness of the material. Consider for example Fig. 3 where, even if the

deformed shapes do not show any interpenetration, the behavior computed in Fig. 3(b) is not

acceptable, since stiff and soft parts deform in the same way. It shows that the contact force

distribution is closely related to the underlying heterogeneity of the material, which is

represented by W.

In the context of explicit schemes matrix W would only be built from a diagonal mass

matrix. If penalty methods are used, the force distribution would mainly depend on the

geometrical interpenetration, not on the inhomogeneities. In both cases, it would lead to

unrealistic configurations such as in Fig. 3(b), at least during transient states. Pre-computing

the inverse A0 at the initial step, and using it all along the simulation provides better results,

but is limited to linear, small displacements models. Another approach adapted to the real-

time context, is to use an approximation of W. For instance, Saupin et al. (2008) proposed

the compliance warping technique, that consists in updating the precomputed A0
−1 with the

nodal rotations, but this solution remains inaccurate for large deformations, and requires

storing a large dense matrix which makes the method unsuitable for fine meshes.

In this paper, we propose to reuse the asynchronous preconditioner of the previous section as

an approximation of the compliance operator W, and we detail our GPU-Based algorithm

that allows for real time computations.

5.2 Optimized preconditioner for contacts

We propose to use the asynchronous preconditioner computed in Section 4 as an

approximation of A−1:

HA−1HT ≈ HP−1HT (19)

Indeed, since P represents a close approximation of the factorization of A, we propose to use

it to compute W in Eq. (12). For each interacting object, substituting Eq. (18) in (19) gives:

HA−1HT ≈ H(R LDLTRT)−1HT (20)

The above equation requires computing the product of the inverse of the preconditioner with

the Jacobian of contacts H, which can be achieved by computing columns independently of

H:

Courtecuisse et al. Page 15

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

LDLT Xi = Hi Xi = (LDLT)−1Hi (21)

where X gives the result of the inverse of the preconditioner times the Jacobian of the

contact. Therefore, we obtain W within 4 steps as detail in Algorithm 1. Steps 1 and 3 are

inexpensive because H and J are sparse matrices, D is a diagonal matrix, and R is a block-

diagonal matrix. Step 4 involves the product of two dense matrices, which can be

parallelized efficiently on GPU using the NVIDIA Corporation (2007) library. Step 2

requires the solution of a STS for each column of J, composed of the lower triangular matrix

L. This operation remains the most expensive task and would quickly become too

prohibitive if it was processed sequentially on a traditional CPU. Therefore, we propose to

parallelize the computation of S on GPU.

5.3 Solution of multiple STS on GPU

Implementation-wise, the simplest solution to solve the multiple STS on GPU is to use

NVIDIA Corporation (2007) library. Nevertheless, this library is optimized for solving large

and very sparse systems of equations (see Naumov (2011)), but the range of size of the

matrices compatible with the real-time constraint is still much smaller. Therefore, to

decrease the computational time of this critical step, we propose a solution to parallelize the

computation of S on GPU. Our solution is based on a two level parallelization strategy

which is inspired from the method introduced in Courtecuisse and Allard (2009). The main

difference is that the underlying L matrix is stored in a sparse format, which makes it

difficult to load efficiently on the GPU processors.

5.3.1 GPU-based parallelization—The multiple right-hand side vectors stored in J
can be computed independently from each other. Therefore, we assign the computation of

each column of S to an independent multiprocessor on the GPU. Each group is therefore

fully processed by a single processor (see Fig. 4) which enables to use fast local

synchronizations directly on the GPU. Then we use a second level of parallelism where each

STS is solved with several threads. Indeed, a lot of data can potentially be treated in parallel

during the solving process of each STS. This two level strategy fits the GPU architectures

where local synchronizations within a group of threads are fast, whereas global

synchronizations over multiple groups are much more costly.

Nevertheless, as mentioned above, solving a STS involves a number of dependencies. For

instance, for the lower triangular system, the computation of the solution sj of a given row j,
requires the result of all previous solutions si such as i < j:

s j = b j − ∑
i = 0

i < j
(siL j, i) (22)

where b is the solution vector and s is the unknown. Therefore, each row must be processed

sequentially (i.e. a synchronization of each row is necessary). However, the partial

Courtecuisse et al. Page 16

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

contributions ∑i = 0
i < j (siLk, i) could be processed simultaneously for any row k such as k > j.

We propose a block-row8 parallelization strategy, that is inspired from the block-column

scheme introduced in Courtecuisse and Allard (2009): First we accumulate the contributions

of the block off-diagonal in parallel; Then we solve the block diagonal sequentially (see Fig.

5).

We use a group of t × t threads to process t rows simultaneously (each row is therefore

treated by t threads in parallel). Since L is sparse, it is difficult to predict if a data is located

on the bloc diagonal before actually reading it in global memory. To avoid reading twice the

CRS matrix, we propose to use two buffers acc and diag stored in shared memory: acc is

used to accumulate the contributions off-diagonal whereas diag is used to copy in dense

format the data located on the block-diagonal (see Fig. 5). A first local synchronization is

then used to ensure that the t rows are fully processed by all the threads. Then, a parallel

reduction (see Martin et al. (2012)) is processed to sum per row the contributions stored in

acc (row 4 in Algorithm 2), then a second local synchronization is necessary (row 5).

Finally, the block-diagonal is solved as a dense problem9 using diag in shared memory (row

5).

In our experiments we use t = 16 and only 3 local synchronizations are necessary to solve 16

rows with 256 GPU threads. Although this implementation may be slower than a CPU-based

solver for a single STS, our GPU-based strategy enables to solve the multiple right-hand

side vectors simultaneously (i.e. with the same cost as a single STS).

6 Simulation of cutting

Simulation of cutting involves two main issues: First to re-mesh the FE structure while

keeping the consistency of the mesh i.e. split correctly the domain in order to be able to

separate the cut parts in the simulation, and avoid degenerated elements such as sharp or thin

elements. The second issue is to update adequately the mechanical properties and the

equation systems of the deformable model when the mesh is cut. In this paper, we only

address this second aspect and we show how to update the asynchronous preconditioner

according to the topological changes.

6.1 Topological modifications, cutting

The method presented in this paper could be used with any re-meshing algorithm, as far as

the modifications remain local and only affect few elements per time step. In our

simulations, we use a re-meshing algorithm similar to Mor and Kanade (2000), where, rather

than reconstructing the overall mesh, we incrementally update it within 3 steps: First we

remove the intersected elements from the current mesh; Second we subdivide the removed

elements; Third, we add back the subdivided elements.

8Block-row strategy instead of a block-column as in Courtecuisse and Allard (2009), because with a block-column solution, writing
conflict in memory cannot be predicted due to the CRS format of L.
9The block-diagonal is solved using a column-based strategy to avoid the need of parallel reductions. This is possible since diag is
stored in dense format.

Courtecuisse et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

The subdivision process affects the stiffness, mass and damping matrices (see Fig. 6), and

the final linear system A (i.e. Eqs. (5), (16) and (20)). Nevertheless, the conjugate gradient

(CG) used to solve Eq. (5) only requires performing matrix vector products. Thus, A can be

directly evaluated from the finite element (FE) mesh to instantly take into account the

modifications in the solution. However, the preconditioner used in Eqs. (16) and (20) is

updated with delay, and the modifications significantly affect its efficiency. Moreover,

contrary to Eq. (16) where the preconditioned CG ensures the convergence of the system, the

preconditioner is directly used to build an approximation of the contact problem in Eq. (20).

Therefore, the delay of the updates can lead to instabilities and inaccuracies, in particular

when treating contact with the instruments and self-collisions between different parts of the

cut.

6.2 Low rank update of the asynchronous preconditioner

We propose to use the Sherman Morrison Formula (SMF) to compute the correction of the

preconditioner due to the topological changes:

P−1 = (P + GNGT)−1 = P−1

Last factorization
−GP−1 N−1 + GP−1GT −1P−1GT

Correction due to the cut

(23)

where P is the modified preconditioner, G is a globalization matrix which maps the rows/

columns to the global system and N is the perturbation of the preconditioner obtained as a

difference between the modified system, and the last preconditioner:

N = GTPG − GT P 0
0 I G (24)

In order to keep a consistent formulation, P is padded with the identity for all the added

nodes during the subdivision process. This approach assumes that the added degrees of

freedom were present before the cut with a unitary mass but not attached to the mechanical

system, and N corresponds to the correction of the padded system. N is fast to compute since

it only involves subtractions of small matrices associated with the nodes affected by the cut.

An important advantage of updating the preconditioner is that it helps to maintain the

number of affected nodes by the perturbations at minimum. Indeed, each new factorization

implicitly contains all anterior modifications to the last update of the preconditioner. The

SMF correction is therefore necessary only for the perturbation that appeared since the last

update, which only involves few affected nodes (see Fig. 7).

Contrary to Courtecuisse et al. (2010b), we do not store the dense inverse of W. Instead we

use the sparse LDLT factorization of A. The SMF cannot be directly applied with such a

factorization because it explicitly requires the inverse of W. Thus, we proceed in two steps:

First we compute the correction for the preconditioner, which is only necessary when a new

topological modification is performed; Then we apply the correction until the next update of

the preconditioner.

Courtecuisse et al. Page 18

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

6.3 Computation of the correction

For each new topological modification, the correction is obtained by computing the two

following matrices:

U = LDLT −1GT (25)

Q = N−1 + GU −1
(26)

The computation of U involves the product of the inverse of the preconditioner with the

globalization matrix G. This implies to solve equations composed of the lower and upper

triangular systems (see Algorithm 3). Since, the CRS format used to store L prevents access

to matrix LT by columns, and in order to use the same parallelization scheme as described in

Section 5.2, the transpose matrix LT is explicitly computed by the asynchronous thread after

the factorization of the preconditioner.

Eq. (26) requires to compute the inverse of two small matrices (N and N−1 + GU) which are

performed on CPU. As a difference between two mechanical matrices, N is ill-conditioned.

Its inverse is therefore ill-defined, but contrary to Courtecuisse et al. (2010b), our method

does not lead to the accumulation of subsequent round-off errors. Indeed, as soon as a new

factorization is released the perturbation is include in the new preconditioner, and N is

erased so that these numerical errors do not accumulate over time.

6.4 Application of the correction

Once U and Q are computed for a given modification, we use them to correct the

preconditioner until the next update. However, the local rotations used in Eqs. (18) and (20)

vary at each time step, which prevents including them in the formulation of the correction. In

order to use the rotations to improve the efficacy of the preconditioner, we apply them

around the corrected formulation. Substituting (23), (25), (26) in (16) gives:

P−1 ≈ R P−1 − UTQU RT (27)

The rotations are therefore applied around the final corrected solution. To simplify notations

we do not carry those rotations in the upcoming equations. For each iteration of the

preconditioned CG, the application of the preconditioner is corrected:

Px = b x = P−1 − UTQ U b
x = P−1b

xa
− UTQ U b

xc

(28)

Courtecuisse et al. Page 19

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

where xc is the correction of the solution, which involves 3 dense matrix–vector products,

and are performed on GPU using the CUBLAS library. xa is equivalent to applying the

preconditioner without correction as in Eq. (16), except that if nodes are added during the

subdivision process, P is padded with the identity:

xm
a

xa
a = P−1 0

0 I
bm

ba
(29)

where subscripts m and a correspond to the modified and added nodes, respectively.

For the contact response, the corrected Delasus operator W is obtained with:

HPHT = H P−1 − UTQ U HTHP−1HT

Wa
− H UTQ U HT

Wc
(30)

where Wa is the asynchronous Delasus operator, and Wc its correction. As in Eq. (29), H
may involve constraints on the newly created degrees of freedom, so that we pad P with the

identity matrix, and Wa is computed by:

Wa =
HmP−1Hm

T 0

0 HaHa
T (31)

HmP−1Hm
T is solved using the GPU-based algorithm introduced (Section 5.2), whereas HaHa

T

involves a sparse matrix product which is parallelized using the CUSPARSE library. Finally,

Wc is obtained by 3 small dense matrix products which are performed on GPU using the

CUBLAS library.

7 Results and evaluation

In this paper, we proposed a method to significantly improve the trade-off between accuracy

and computation time of an interactive simulation. In the first part of this section, we

compare the accuracy of our method versus standard algorithms. In the second part of this

section we measure the performance our method on academic examples. Medical

applications are presented in the next section.

7.1 Accuracy and validation

7.1.1 Comparison with ABAQUS—Some comparisons of algorithms available in

SOFA with analytical solutions can be found in Nesme et al. (2005) and Marchal et al.

(2008). In order to provide a more thorough comparison for our method, in particular in the

case of contacts, we produced a simulation involving a beam attached at one extremity and

deforming under gravity until the beam contacts with a plane. The dimension of the beam is

Courtecuisse et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

120 × 10 × 10 mm, the mesh is composed of 10,779 linear tetrahedral elements and 2481

nodes. The constitutive law is based on small strain with large displacement (co-rotational),

the mass density is set at 0:0001 Kg/mm3, the young modulus is set at 10 Mpa and the

Poisson ration at 0.4.

The same simulation was computed by both SOFA and ABAQUS (Simulia, Dassault

Systmes S.A.) using the same tetrahedral mesh, the same model (co-rotational for SOFA and

Large Displacement Theory in ABAQUS), the same boundary conditions and assuming no

friction during the contact. At equilibrium we computed the Von Mises Stress of the

ABAQUS solution (see Fig. 8) and of our SOFA implementation (see Fig. 8(b)). Then we

measured the difference of the stresses computed by the two approaches. Results are

presented in Fig. 8(c) (using the same scale as the initial stresses) and in Fig. 8(d) using a

normalized scale, i.e. where red parts correspond to the main difference (to emphasize areas

where even a small difference exists). Although a maximum error of 20% is found near the

constrained part of the beam, the average stress error is equal to 0.017 (around 1.7%), which

is almost negligible. Finally, the positions of the beams match perfectly, and the maximum

distance between SOFA nodes and ABAQUS nodes, is less than 0.37 mm.

7.1.2 Preconditioner for the contact response—We now measure the error

introduced when using our asynchronous preconditioner as an approximation of the

compliance matrix defined in Eq. (12). We created a simulation involving an heterogeneous

disk which is driven by a sphere through the center of a torus (see Fig. 9). This is a very

good test for measuring both the deformation process and the contact response. We first

produced a reference simulation where the exact compliance matrix is computed by

inverting A at each time step (which is obviously not real-time), and we measured the

distances between the nodal positions obtained by using an “approximated compliance

matrix” and the reference simulation.

Relying on the diagonal of A−1 to build W (Diagonal), as done by Dequidt et al. (2009) for

the vessel wall compliance, the lens cannot be pushed into the cavity. Indeed, the forces

exerted by the ball are located at the center (stiff part), while other forces are applied by the

cylinder on the periphery (soft part) and hold the object up. Without coupling, the contact

forces applied onto the stiff part are not transmitted to the periphery, and the lens remains in

equilibrium without being deformed. The precomputed inverse of the compliance matrix

(LDL no update), gives better results when the object is in a similar configuration as the

rest position (i.e. in the state where the precomputed inverse has been computed). However,

the rigidity is not properly evaluated in case of large deformations, and a large error is

introduced in the behavior.

When the preconditioner is updated periodically after a fixed number of time steps (LDL
update 20 and LDL update 10), the error tends to decrease with the frequency of the

updates, and for the version where the preconditioner is updated every 10 time steps there is

no visible error (see Fig. 9(b)). Finally, using the asynchronous version (LDL update
async), the preconditioner is updated on average every 5 time steps and the error introduced

throughout the simulation is negligible.

Courtecuisse et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

7.2 Performance evaluation

7.2.1 Convergence rate and computation time—We now evaluated the

computational time and the convergence rate of standard solvers to solve Eq. (5). We

produced a simulation where an heterogeneous beam composed of 6500 elements and 1470

nodes, is deformed under gravity (see Fig. 10). In all our experiments we set the tolerance of

the preconditioned CG to 10−7, and we use a time step h = 0.02.

Direct solvers must process a complete factorization of the matrix at each time step, to take

into account the non-linearities of the model. This operation is expensive but it can be

parallelized using optimized libraries such as Pardiso Schenk et al. (2008). However, due to

the multiple dependencies and the relatively small size of the system, a parallel version with

2 threads (Pardiso-2) is only 1.5× faster than a sequential approach (Pardiso-1). With 4

threads (Pardiso-4) only 2.2× faster, and with 8 threads version (Pardiso-8) only 1.90×

faster (and slower than Pardiso-4).

Standard iterative solvers (standard) require a large number of iterations, and thus a large

computational time, due to the strong heterogeneity of the material. Indeed, although our

GPU-based CG does not need to assemble the matrix and provides fast iterations, an average

of 493 iterations are necessary to obtain a sufficient solution and the computation time is no

longer compatible with real-time. The Jacobi preconditioner is too simple and does not

manage to sufficiently reduce the number of iterations.

Pre-computing the LDLT factorization (no update) and using it throughout the simulation,

enables to remove the overhead of the factorization while keeping a limited number of

iterations. However in cases of large deformations, the actual stiffness of the material may

be very different from the rest configuration, and a large number of iterations are necessary.

Indeed, when the beam undergoes large deformations, we measured a maximum of 121

iterations necessary to achieve convergence, and the application time of the preconditioner

was around 210 ms. Interestingly, applying the rotation around the preconditioner (warping
method) helps to sensibly reduce the number of iteration with a limited overhead. Indeed,

the unitary cost of a single iteration with the warping method is only 11% higher whereas it

requires 3.5 times fewer iterations to converge.

When using our method where the LDLT factorization is updated asynchronously (Async),

the factorization time of the preconditioner is still negligible, and the number of iterations

remains very low throughout the simulation. For this preconditioner, the (warping method)

provides only limited improvements. Indeed, the preconditioner was updated on average

every 8 time steps, and the rotations between two consecutive updates remained limited. The

warping heuristic is therefore particularly beneficial if the preconditioner cannot be updated

sufficiently fast (for larger systems for instance). Finally, the asynchronous solution is the

only method which is compatible with real-time computations. Indeed, the simulation runs

at 45 FPS, and 1 s in the simulation is simulated in 1 s.

7.2.2 Factorization of the preconditioner—To test the scalability of our method, we

evaluate the computational time required to factorize the mechanical matrices with

dimensions up to 10,000 × 10,000 (which corresponds to an object with 3333 nodes with 3

Courtecuisse et al. Page 22

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

dofs per node). This operation is very expensive, but since we process it asynchronously it

does not impact directly the performances of the simulation.

We also evaluate the number of simulation steps necessary to update the preconditioner with

a simulation runing asynchronously at 25 FPS (see Fig. 11). Depending on the dimension of

the matrix, the number of time steps necessary to update the factorization varies between 1

and 6. With our asynchronous version, this period can twice larger because a first period is

necessary to compute the factorization, and then it will be used until the next update of the

preconditioner. However, even for a 9000 × 9000 matrix, the maximum delay due to the

update the preconditioner is less than 0.5 s.

7.2.3 Computation of the compliance—We now focus on the computation time (see

Fig. 12) for solving a Sparse Triangular System with multiple right hand side vectors. This

operation is necessary to set the contact problem in Eq. (12) and (21).

Solving the different STS on the GPU (LDL GPU) is much faster than solving sequentially

each STS on the CPU (LDL CPU). Indeed, the computation time for the CPU version is

linear according to the number of right-hand side vectors, whereas the GPU can process

them in parallel. Therefore, for up to 78 constraints the computation time remains almost

constant with our GPU implementation. Indeed, below this limit the GPU computing units

are not fully utilized and the different STS are processed in parallel. Beyond this number,

some GPU processors will compute several STS successively, and the computational time

curve takes a staircase appearance. Nevertheless, the GPU processors are able to overlay

waiting times, due to synchronizations and access in memory, with computations for another

STS. Thus, solving the system for 140 constraints is only 1.8 times slower than for 70

constraints.

We also compared our GPU implementation to the NVIDIA Corporation (2007) library

where an implementation of solving a STS with multiple right-hand side vector has recently

been released in the procedure cusparseScsrsm_solve. This procedure is implemented

in two steps: first an analysis of the sparsity of the matrix is process in order to determine the

dependencies, then the analysis information is used to solve the STS (see Naumov (2011)

for details). As the analysis is necessary only when the preconditioner is updated, we

detailed separately the cost with (CUSPARSE + A) and without (CUSPARSE) the analysis.

For 78 constraints our solution is 4.2 times faster when the analysis is not required (5.72

times with the analysis), and 2 times faster for 300 constraints (2.4 times with the analysis).

Although the difference may be less for larger systems, we have optimal performance for the

scenarios that are compatible with real-time constraint. Indeed, for 300 constraints the

computation time to build W with our optimized approach is around 0.04 s which is a limit

for interactive rates.

7.2.4 Topological modifications—Finally, we evaluate the influence of the cut on the

convergence of the standard CG, and using our method (SMF), on a simulation composed of

a beam cut lengthwise and falling under gravity (see Table 7.2.3). Build is the time to

assemble A: For the CG, the matrix is directly evaluated from the mesh structure at each

iteration, whereas the preconditioner is updated on average every 4.30 simulation steps, each

Courtecuisse et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

update requiring to fully assemble A to perform the factorization in Eq. (16). Iterations and

Solve are respectively the number of iterations per time step, and the corresponding time to

solve the system with a tolerance at 10−7. The method significantly decreases the number of

iterations, and provides an average speed-up of 2.6× compared to the CG.

The main overhead of the SMF update is the computation U and Q (see Fig. 13), but these

operations are performed only when a new topological modification is detected (i.e. every

3.4 simulation steps on the beam example). The computation of U is the most expensive, and

its GPU parallelization is the key point to enable real-time computation, whereas the

inversion of Q is inexpensive for small perturbations but quickly becomes costly for large

perturbations. In practice, the number of impacted nodes remains very small since the

preconditioner is updated several times per second. Finally the application of the correction

(i.e. applying xc in Eq. (28) and Wc in (30)) is negligible since it represents less than 1% of

the computation time of a time step.

8 Applications

We now demonstrate that our method is generic enough to address several kinds of

simulation in a medical context. We use it to simulate a cataract surgery, an hepatectomy in

laparoscopic surgery, and a cerebral tumor removal. We show that our method can handle

the requirements of such simulations in real-time.

8.1 Application to cataract surgery

The cataract is an opacification of lens of the eye, which prevents the passage of light and

results in partial or complete blindness. Millions of people are affected by this pathology,

particularly in third world countries. A surgical treatment exists, which consists in extracting

the diseased lens and replacing it with by an implant. The standard surgical procedure is

known as Phacoemulsification (Tsuneoka et al., 2002), where the lens is emulsified by an

ultrasonic tool. However, Phacoemulsification requires advanced technology which is not

available in many countries where the prevalence of cataract is highest, and hence many

patients can simply not be treated.

Another surgical procedure known as Manual Small Incision Cataract Surgery (MSICS)

(Venkatesh et al., 2008) requires only basic technology and leads to quasi-identical results

when performed by an experienced specialist. This technique requires a slightly larger

incision (around 5 mm) so that the lens be extracted in a single piece. This involves that the

eyeball as well as the lens must be simulated because they both undergo large deformations

and high stresses. The heterogeneity of the lens must also be taken into account since it has

an impact on the success of the lens extraction (the nucleus of the lens is much stiffer than

its periphery).

In order to simulate the lens extraction according to the MSICS technique, the lens is

modeled with 1113 nodes and 4862 tetrahedra, whereas the eye contains 1249 nodes and

3734 tetrahedra. The center of the lens is 5 times stiffer than the periphery, and the incision

and meshes of the organs has been generated off-line using the The CGAL Project (2011)

library. The lens is removed with the help of deformation of the eyeball, and friction with the

Courtecuisse et al. Page 24

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

surgical instrument. To account for both the multiple contacts, and the heterogeneity of the

lens, we used our asynchronous preconditioner to ensure the convergence of the CG.

The preconditioned CG required an average of 11.6 iterations to converge to 10−5, despite

strong deformations and heterogeneities. Using our method, we managed to simulate this

application in real-time (see Fig. 14), while maintaining a computation speed from 18 to 25

FPS. Within a single time step, the distribution of the computation time was: 40.56% for the

free motion and 44.69% for the corrective motion.

8.2 Application to liver resection

Nearly 100,000 European citizens die every year of cirrhosis of the liver or liver cancer.

Surgical procedures remain the options that offer the foremost success rate against such

pathologies. The ability to simulate liver resection (hepatectomy) is key for both advanced

training of this complex procedure (in particular when done using a laparoscopic technique).

But simulation can also have an important impact in the planning phase. Indeed, eligibility

for liver surgery is based on the minimum safety liver volume remaining after resection, but

this minimum value varies over time and from one patient to another according to biological

and biomechanical properties of the liver. Although various preoperative planning software

have been developed, they only provide the volume of the liver before and after resection.

However interesting, this limited information is not sufficient to improve the rate of surgical

eligibility. By combining patient-specific anatomical and biomechanical modeling, we can

provide the means to rehearse for the procedure while trying to maximize the future liver

remnant (FLR).

Although simulators of this procedure have been developed in the past (Bourquain et al.,

2002; Lamadé et al., 2002), the originality of our approach is that our simulation is based on

patient specific data. Meshes of the organs are obtained from a semi-automatic segmentation

of a CT (see Soler et al. (2001) for details). We simulate 5 deformable bodies in interaction

(liver, stomach, colon, intestines and diaphragm). Each organ is composed of several

hundred of nodes and thousand of elements with complex shapes composed of several

thousand of triangles (see Fig. 15). An important issue to produce this application concern

the collision detection which is performed by the method introduced in Allard et al. (2010).

This simulation runs at a frequency of 25 FPS, including during cutting phases. The

distribution of computing time in a time step is as follows: 27.77% for free movement,

11.01% for collision detection, 22.48% for the constraint motion. The preconditioned CG

requires an average need of 5.82 iterations to converge. Finally, by taking into account the

mechanical coupling between the contacts, we managed to produce a consistent haptic

feedback. For instance, users can feel the stiffness of ribs behind the liver by applying

contacts on the surface of the organ (see Fig. 16).

8.3 Application to brain tumor resection

The last application that uses our method is the simulation of a surgical resection of a brain

tumor. Brain surgery simulation has been widely studied, and commercial products start to

appear (Luciano et al., 2005; Delorme et al., 2012). A review of computer-based brain

Courtecuisse et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

surgery simulations can be found in Malone et al. (2010) and Alaraj et al. (2011). It is still

an active research topic, for instance for the prediction of the brain shift (Joldes et al., 2010)

or for the Deep Brain Stimulation (Bilger et al., 2011). The brain is a relatively soft tissue,

and most of existing simulations rely on explicit integration. Nevertheless, during the

surgery the accuracy of surgeon’s interactions with the tissues is fundamental, as an error of

few millimeters may often have dramatic consequences for the patient. The main needs of

such simulation are precise modeling and topological modifications, high heterogeneities in

the deformation modeling (the tumor is often stiffer than the brain tissues) and real-time

computation. We show that our method meets these two issues, and may be beneficial to

improve the realism of existing brain simulations.

The brain is modeled as a heterogeneous deformable body, composed of 1734 nodes and

7680 linear tetrahedral elements. The tumor is 20× stiffer than the brain. During the

simulation, the preconditioner is updated every 5.6 steps, and a new topological modification

appears every 5.5 simulation steps, affecting 24 nodes. A total of 553 modifications are

performed, and the method remains stable with an average of 5.70 iterations to solve the

linear system. The collisions and self-collisions are correctly solved while processing the

modifications, and cut parts can instantaneously be separated upon contact with the

instrument. Finally, we achieve between 20 and 40 FPS and the method remains interactive.

9 Conclusion

In this manuscript, we introduce a set of methods for real-time bio-mechanical simulation of

soft anatomical structures, relying on an implicit time integration method. The proposed

paradigm relies on an asynchronous preconditioner that is updated at low frequency, and

permits to significantly reduce the number of iterations in the linear solver. It also improves

the contact response process by taking into account the mechanical coupling between

contact points. We also extended the approach to handle topological modifications without

compromising the interactivity of the simulation. The method is particularly beneficial for

heterogeneous structures. On a simple case, we verify the method by comparing it with

those of a commercial software, and we demonstrate the benefits of the proposed method

through applications in cataract surgery, liver surgery and neurosurgery. In the last two

applications, topological changes due to cutting are also enabled with minimal impact on the

computation time.

For future work, we plan to investigate algebraic model reduction techniques (using the

proper orthogonal decomposition, or multi-scale methods) to decrease the computational

expense through pre computations, and to allow a finer description of organs. We also plan

to investigate the use of enriched finite element methods in the real-time context to handle

continuous cut with the elements. Finally, we will also focus on the estimation of the spatial

and temporal discretisation error and of the model error during our simulations. An analysis

of the model error will require addressing more realistic models including hyper-elastic

materials, where the mechanical matrices undergo ‘faster’ modifications than for the co-

rotational case. We will also investigate the stability of the numerical schemes for nearly

incompressible materials.

Courtecuisse et al. Page 26

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Appendix A. Supplementary data

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors would like to thank Mouhamadou Diallo and Dr. Igor Peterlik for their help and their assistance during
the comparison between SOFA and ABAQUS.

We also would like to thank the financial support of the European Research Council Starting Independent Research
Grant (ERC Stg Grant agreement No. 279578) entitled Towards real time multi-scale simulation of cutting in non-
linear materials with applications to surgical simulation and computer guided surgery.

References

Alaraj A, Lemole MG, Finkle JH, Yudkowsky R, Wallace A, Luciano C, Banerjee PP, Rizzi SH,
Charbel FT. Virtual reality training in neurosurgery: review of current status and future applications.
Surg Neurol Int. 2011; 2

Allard J, Faure F, Courtecuisse H, Falipou F, Duriez C, Kry PG. Volume contact constraints at arbitrary
resolution. ACM Trans Graph (Proc. SIGGRAPH). 2010; 29(3)

Allard, J, Courtecuisse, H, Faure, F. Implicit FEM solver on GPU for interactive deformation
simulationGPU Computing Gems Jade Edition. Hwu, WW, editor. Elsevier; 2011. 281–294.

Anitescu M, Potra F, Stewart D. Time-stepping for three-dimensional rigid body dynamics. Comput
Meth Appl Mech Eng. 1999:183–197.

Baraff, D; Witkin, A. Large steps in cloth simulation. SIGGRAPH ’98: Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques; ACM; 1998. 43–54.

Barbič J, James DL. Real-time subspace integration for St. Venant–Kirchhoff deformable models.
ACM Trans Graph. 2005; 24:982–990.

Barrett, R, Berry, M, Chan, TF, Demmel, J, Donato, J, Dongarra, J, Eijkhout, V, Pozo, R, Romine, C,
der Vorst, HV. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods.
second ed. SIAM; 1994.

Berger-Vergiat L, Waisman H, Hiriyur B, Tuminaro R, Keyes D. Inexact schwarz-algebraic multigrid
preconditioners for crack problems modeled by extended finite element methods. Int J Numer Meth
Eng. 2012; 90(3):311–328.

Bielser, D; Glardon, P; Teschner, M; Gross, M. A state machine for real-time cutting of tetrahedral
meshes. Proceedings of the 11th Pacific Conference on Computer Graphics and Applications
PG ’03; Washington, DC, USA: IEEE Computer Society; 2003. 377

Bilger, A; Dequidt, J; Duriez, C; Cotin, S. In: Fichtinger, G; Martel, A; Peters, T, editors. 14th
International Conference on Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2011, Lecture Notes in Computer Science; Toronto, Canada: Springer; 2011. 339–346.

Bolz J, Farmer I, Grinspun E, Schröoder P. Sparse matrix solvers on the GPU: conjugate gradients and
multigrid. ACM Trans Graph. 2003; 22(3):917–924.

Bordas S, Duflot M. Derivative recovery and a posteriori error estimate for extended finite elements.
Comput Meth Appl Mech Eng. 2007; 196(35):3381–3399.

Bordas S, Duflot M, Le P. A simple error estimator for extended finite elements. Commun Numer
Meth Eng. 2008; 24(11):961–971.

Bourquain H, Schenk A, Link F, Preim B, Prause G, Peitgen H. Hepavision2 – a software assistant for
preoperative planning in living-related liver transplantation and oncologic liver surgery. Can Res.
2002:1–6.

Braess, D. On the combination of the multigrid method and conjugate gradientsMultigrid Methods II.
Springer; 1986. 52–64.

Brezzi F, Hager WW, Raviart P-A. Error estimates for the finite element solution of variational
inequalities. Numerische Mathematik. 1977; 28(4):431–443.

Courtecuisse et al. Page 27

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Bro-Nielsen M, Cotin S. Real-time volumetric deformable models for surgery simulation using finite
elements and condensation. Comput Graph Forum. 1996; 15(3):57–66.

Buatois L, Caumon G, Lévy B. Concurrent number cruncher – a GPU implementation of a general
sparse linear solver. Int J Parallel Emerg Distrib Syst. 2009; 24(3):205–223.

Comas, O; Taylor, Z; Allard, J; Ourselin, S; Cotin, S; Passenger, J. Efficient nonlinear FEM for soft
tissue modelling and its GPU implementation within the open source framework SOFA. ISBMS;
2008. 28–39.

Cotin S, Delingette H, Ayache N. Real-time elastic deformations of soft tissues for surgery simulation.
IEEE Trans Visual Comput Graph. 1999; 5(1):62–73.

Courtecuisse, H; Allard, J. Parallel dense Gauss–Seidel algorithm on many-core processors. High
Performance Computation Conference (HPCC); IEEE CS Press; 2009.

Courtecuisse, H; Allard, J; Duriez, C; Cotin, S. Asynchronous preconditioners for efficient solving of
non-linear deformations. Proceedings of Virtual Reality Interaction and Physical Simulation
(VRIPHYS); 2010a November.

Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S. GPU-based real-time soft tissue
deformation with cutting and haptic feedback. Progr Biophys Mol Biol. 2010b; 103(2–3):159–168.

Davis, TA. CSparse. Society for Industrial and Applied Mathematics; Philadephia, PA: 2006.

Delorme S, Laroche D, DiRaddo R, Del Maestro RF. Neurotouch: a physicsbased virtual simulator for
cranial microneurosurgery training. Neurosurgery. 2012; 71:ons32–ons42.

Dequidt, J, Duriez, C, Cotin, S, Kerrien, E. Towards interactive planning of coil embolization in brain
aneurysmsMedical Image Computing and Computer-Assisted Intervention, MICCAI 2009. Yang,
GZ, Hawkes, D, Rueckert, D, Noble, A, Taylor, C, editors. Vol. 5761. Springer; Berlin/Heidelberg:
2009. 377–385. Lecture Notes in Computer Science

Dick C, Georgii J, Westermann R. A hexahedral multigrid approach for simulating cuts in deformable
objects. IEEE Trans Visual Comput Graph. 2011; 17(11):1663–1675.

Dick C, Georgii J, Westermann R. A real-time multigrid finite hexahedra method for elasticity
simulation using cuda. Simul Modell Pract Theory. 2011; 19(2):801–816.

Dryja, M, Widlund, OB. Towards a Unified Theory of Domain Decomposition Algorithms for Elliptic
Problems. New York University, Courant Institute of Mathematical Sciences, Division of
Computer Science; 1989.

Duflot M, Bordas S. A posteriori error estimation for extended finite elements by an extended global
recovery. Int J Numer Meth Eng. 2008; 76(8):1123–1138.

Duriez, C; Andriot, C; Kheddar, A. Interactive haptic for virtual prototyping of deformable objects:
Snap-in tasks case. EUROHAPTICS; Citeseer; 2003.

Duriez, C; Andriot, C; Kheddar, A. Signorini’s contact model for deformable objects in haptic
simulations. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2004.

Duriez C, Dubois F, Kheddar A, Andriot C. Realistic haptic rendering of interacting deformable
objects in virtual environments. IEEE Trans Visual Comput Graph. 2006; 12(1):36–47.

Felippa, CA. A Systematic Approach to the Element Independent Corotational Dynamics of Finite
Elements. Tech Rep CU-CAS-00-03. Center for Aerospace Structures; 2000.

Felippa C, Haugen B. A unified formulation of small-strain corotational finite elements: I. theory.
Comput Meth Appl Mech Eng. 2005; 194(21–24):2285–2335.

Freund L. Constitutive equations for elastic–plastic materials at finite strain. Int J Solids Struct. 1970;
6(8):1193–1209.

Ganovelli, F, O’Sullivan, C. Animating cuts with on-the-fly re-meshingEurographics 2001, Short
Presentations Programme. 2001.

Gerstenberger A, Tuminaro RS. An algebraic multigrid approach to solve extended finite element
method based fracture problems. Int J Numer Meth Eng. 2013; 94(3):248–2.

Hauth M, Etzmuß O, Straßer W. Analysis of numerical methods for the simulation of deformable
models. The Vis Comput. 2003; 19(7–8):581–600.

Hecht F, Lee YJ, Shewchuk JR, O’Brien JF. Updated sparse Cholesky factors for corotational
elastodynamics. ACM Trans Graph. 2012; 31(5):X:1–X:13.

Courtecuisse et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Hermann, E; Raffin, B; Faure, F. Interative physics simulation on multicore architectures. Proceedings
of the 9th Eurographics Symposium on Parallel Graphics and Visualization (EGPGV’09); 2009
Mar.

Hiriyur B, Tuminaro R, Waisman H, Boman E, Keyes D. A quasi-algebraic multigrid approach to
fracture problems based on extended finite elements. SIAM J Scient Comput. 2012; 34(2):A603–
A626.

Hughes, T. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover
Publications; 2000.

James, D; Pai, D. Artdefo: accurate real time deformable objects. Proceedings of SIGGRAPH of 26th
International Conference on Computer Graphics and Interactive Techniques; ACM; 1999. 65–72.

Jean M. The non-smooth contact dynamics method. Comput Meth Appl Mech Eng. 1999; 177(3–4):
235–257.

Joldes GR, Wittek A, Miller K. Suite of finite element algorithms for accurate computation of soft
tissue deformation for surgical simulation. Med Image Anal. 2009; 13(6):912–919. [PubMed:
19152791]

Joldes G, Wittek A, Miller K. Real-time nonlinear finite element computations on gpu–application to
neurosurgical simulation. Comput Meth Appl Mech Eng. 2010; 199(49):3305–3314.

Jourdan F, Alart P, Jean M. A Gauss–Seidel like algorithm to solve frictional contact problems. Comp
Meth Appl Mech Eng. 1998:33–47.

Kaufman DM, Sueda S, James DL, Pai DK. Staggered projections for frictional contact in multibody
systems. ACM Trans Graph. 2008; 27(5):1–11.

Kerfriden P, Gosselet P, Adhikari S, Bordas S. Bridging proper orthogonal decomposition methods and
augmented Newton–Krylov algorithms: an adaptive model order reduction for highly nonlinear
mechanical problems. Comput Meth Appl Mech Eng. 2011; 200(5):850–866.

Kerfriden P, Goury O, Rabczuk T, Bordas S. A partitioned model order reduction approach to
rationalise computational expenses in nonlinear fracture mechanics. Comput Meth Appl Mech
Eng. 2012

Kühnapfel U, Cakmak H, Maaß H. Endoscopic surgery training using virtual reality and deformable
tissue simulation. Comput Graph. 2000; 24(5):671–682.

Lamadé W, Vetter M, Hassenpflug P, Thorn M, Meinzer H-P, Herfarth C. Navigation and image-
guided hbp surgery: a review and preview. J HepatoBiliary-Pancreat Surg. 2002; 9:592–599. DOI:
10.1007/s005340200079 [PubMed: 12541045]

Luciano C, Banerjee P, Lemole G, Charbel F, Charbel F. Second generation haptic ventriculostomy
simulator using the immersive touch system. Stud Health Technol Inform. 2005; 119:343.

Malone HR, Syed ON, Downes MS, D’Ambrosio AL, Quest DO, Kaiser MG. Simulation in
neurosurgery: a review of computer-based simulation environments and their surgical applications.
Neurosurgery. 2010; 67(4):1105–1116. [PubMed: 20881575]

Marchal, M; Allard, J; Duriez, C; Cotin, S. Towards a framework for assessing deformable models in
medical simulation. Proceedings of ISBMS 2008; Springer; 2008. 176–184.

Marchesseau, S; Heimann, T; Chatelin, S; Willinger, R; Delingette, H. Multiplicative Jacobian energy
decomposition method for fast porous visco-hyperelastic soft tissue model. MICCAI’10; 2010
Sep.

Martin, P, Ayuso, L, Torres, R, Gavilanes, A. Algorithmic strategies for optimizing the parallel
reduction primitive in cudaHPCS. Smari, WW, Zeljkovic, V, editors. IEEE; 2012. 511–519.

Menk A, Bordas S. Crack growth calculations in solder joints based on microstructural phenomena
with x-fem. Comput Mater Sci. 2011; 50(3):1145–1156.

Menk A, Bordas S. A robust preconditioning technique for the extended finite element method. Int J
Numer Meth Eng. 2011; 85(13):1609–1632.

Miller K, Joldes G, Lance D, Wittek A. Total lagrangian explicit dynamics finite element algorithm for
computing soft tissue deformation. Commun Numer Meth Eng. 2007; 23(2):121–134.

Molino N, Bao Z, Fedkiw R. A virtual node algorithm for changing mesh topology during simulation.
Proc Eurograph. 2007:73–80.

Courtecuisse et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Mor, AB; Kanade, T. Modifying soft tissue models: progressive cutting with minimal new element
creation. Proceedings of MICCAI 2000; 2000. 598–607.

Müller, M; Gross, M. Interactive virtual materials. GI ’04: Proceedings of Graphics Interface 2004;
Waterloo, Ontario, Canada: Canadian Human-Computer Communications Society, School of
Computer Science, University of Waterloo; 2004. 239–246.

Naumov M. Incomplete-lu and cholesky preconditioned iterative methods using cusparse and cublas.
2011

Nealen A, Mueller M, Keiser R, Boxerman E, Carlson M. Physically based deformable models in
computer graphics. Comput Graph Forum. 2006:25.

Nesme M, Marchal M, Promayon E, Chabanas M, Payan Y, Faure F. Physically realistic interactive
simulation for biological soft tissues. Recent Res Develop Biomech. 2005; 2:1–22.

Nicolas M, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int
J Numer Meth Eng. 1999; 46:131–150.

Niroomandi S, Alfaro I, Cueto E, Chinesta F. Real-time deformable models of non-linear tissues by
model reduction techniques. Comput Meth Programs Biomed. 2008; 91(3):223–231.

NVIDIA Corporation. CUBLAS Library. 2007.

NVIDIA Corporation. CUSPARSE Library. 2007.

Otaduy MA, Tamstorf R, Steinemann D, Gross M. Implicit contact handling for deformable objects.
Comput Graph Forum (Proc Eurograph). 2009; 28(2):559–568.

Parker, EG; O’Brien, JF. Real-time deformation and fracture in a game environment. Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation; 2009 Aug. 156–166.

Pauly, M; Pai, DK; Guibas, LJ. Quasi-rigid objects in contact. SCA ’04 Proceedings of the 2004 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation; 2004. 109–119.

Payan, Y. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Studies in
Mechanobiology Tissue Engineering and Biomaterials. Springer; Berlin: 2012.

Peterlik I, Nouicer M, Duriez C, Cotin S, Kheddar A. Constraint-based haptic rendering of multirate
compliant mechanisms. IEEE Trans Haptics. 2011; 4(3):175–187. [PubMed: 26963485]

Redon, S; Kheddar, A; Coquillart, S. Gauss’ least constraints principle and rigid body simulations.
IEEE; IEEE International Conference on Proceedings of Robotics and Automation, 2002,
ICRA’02; 2002. 517–522.

Renard Y. Generalized Newton’s methods for the approximation and resolution of frictional contact
problems in elasticity. Comput Meth Appl Mech Eng. 2013; 256:38–55.

Ródenas J, González-Estrada O, Tarancón J, Fuenmayor F. A recovery-type error estimator for the
extended finite element method based on singular + smooth stress field splitting. Int J Numer Meth
Eng. 2008; 76(4):545–571.

Saad, Y. Iterative Methods for Sparse Linear Systems. Vol. 620. PWS publishing company; Boston:
1996.

Saad, Y. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics;
Philadelphia, PA, USA: 2003.

Saupin, G, Duriez, C, Cotin, S, Grisoni, L. Efficient contact modeling using compliance
warpingComputer Graphics International; 2008.

Schenk O, Bollhöfer M, Römer RA. On large scale diagonalization techniques for the Anderson model
of localization. SIAM Rev. 2008; 50(1):91–112.

Sifakis E, Der KG, Fedkiw R. Arbitrary cutting of deformable tetrahedralized objects. Proc Eurograph.
2007:73–80.

Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B,
Smith M, Mutter D, Marescaux J. Fully automatic anatomical, pathological, and functional
segmentation from CT scans for hepatic surgery. Comput Aided Surg. 2001; 6(3):131–142.
[PubMed: 11747131]

Taylor, Z; Comas, O; Cheng, M; Passenger, J; Hawkes, D; Atkinson, D; Ourselin, S. Modelling
anisotropic viscoelasticity for real-time soft tissue simulation. Proceedings of MICCAI 2008; Sep,
2008 703–710.

The CGAL Project. CGAL User and Reference Manual. 3.8 Edition. CGAL Editorial Board; 2011.

Courtecuisse et al. Page 30

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Toledo S, Chen D, Rotkin V. Taucs: A Library of Sparse Linear Solvers Version 2.2. 2003

Tsuneoka H, Shiba T, Takahashi Y, et al. Ultrasonic phacoemulsification using a 1.4 mm incision:
clinical results. J Catar Refract Surg. 2002; 28(1):81–86.

Venkatesh R, Tan C, Singh G, Veena K, Krishnan K, Ravindran R. Safety and efficacy of manual small
incision cataract surgery for brunescent and black cataracts. Eye. 2008; 23(5):1155–1157.
[PubMed: 18566610]

Wriggers, P, Panatiotopoulos, P. New Developments in Contact Problems. Springer; 1999. 384

Zienkiewicz, O, Taylor, R. The Finite Element Method. forth ed. Vol. 1. McGraw-Hill; 1991.

Courtecuisse et al. Page 31

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Algorithm 1

Optimized algorithm to accumulate the contributions

of a deformable on W using the asynchronous

preconditioner (i.e W = W + H R LDLTRT −1HT).

1. J = HR (rotate constraints)

2. S = L−1 JT (solve a STS for each column of J)

3. T = D−1 S (apply the diagonal)

4. W = W + ST T (sum the contributions)

Courtecuisse et al. Page 32

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Algorithm 2

Algorithm used to solve a Sparse Triangular System

with multiple right-hand side vectors on GPU.
1 bx = 0 repeat

2 accumulate_contributions(acc,diag) //seeFig. 5;

3 local_synchronization;

4

 cont[ty] = ∑
i = 0

t
acc[ty][i] //Parallel reduction;

5 local_synchronization;

6 solve_bloc_diagonal(cont,diag) //see Courtecuisse and allard (2009);

7 local_synchronization;

8 bx = bx + t //We treat the next t rows in parallel;

9 until bx < dim ;

Courtecuisse et al. Page 33

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Algorithm 3

Computation of U in the correction of the SMF. Step

1 and 3 can be imply to solve respectively the lower

and upper STS for each column of G.
1. S = L−1 GT (solve the lower STS)

2. T = D−1 S (apply the diagonal)

3. U = L−T T (solve the upper STS)

Courtecuisse et al. Page 34

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 1.
Hepatectomy in laparoscopy: (left) camera view during a hepatic surgery and (right)

constraints from the environment.

Courtecuisse et al. Page 35

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 2.
The preconditioner is updated asynchronously within a dedicated CPU thread. We use the

last preconditioner available to advance the simulation so that the simulation never needs to

wait for the computation of the current preconditioner to be complete.

Courtecuisse et al. Page 36

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 3.
Contact force distribution in different scenarii and using different approximation of the

mechanical coupling. (a) Is homogeneous, (b) is heterogeneous and contacts are solved

without coupling, and (c) is heterogeneous and contacts are solved with coupling.

Courtecuisse et al. Page 37

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 4.
First level of parallelism achieved for solving a Sparse Triangular System with multiple right

hand side vector on GPU.

Courtecuisse et al. Page 38

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 5.
Parallel accumulation of the contributions for solving a STS described by the CRS matrix. t
× t threads (illustrated here with t = 4) are used such that t rows are processed

simultaneously (colors). Each being accumulated by t threads in parallel (letters a, b, c, d).

(For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Courtecuisse et al. Page 39

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 6.
Incremental update of the mesh structure for the cut.

Courtecuisse et al. Page 40

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 7.
Correction of the preconditioner during topological modifications. When a modification is

performed on the mesh, we first compute the correction of the current factorization. Then we

compute the correction of the preconditioner which was being calculated at the time of the

cut. After two consecutive updates without topological modification, the preconditioner does

not need any additional correction.

Courtecuisse et al. Page 41

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 8.
Comparison of our SOFA implementation of a co-rotational model in contact with the

ABAQUS solution.

Courtecuisse et al. Page 42

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 9.
Distance of nodal positions by using different approximations of the compliance matrix

compared to a reference simulation. The reference simulation is obtained by computing the

compliance matrix as the exact inverse of the system matrix every time step. (a) Root Mean

Square error of the nodal position (compared to the reference simulation) by using different

approximation as compliance matrix. (b) Simulated soft disk (blue) with reference (green)

after 0.8 s of simulation. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Courtecuisse et al. Page 43

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 10.
Simulation of an heterogeneous deformable beam falling under gravity and average

computational time for 200 simulation steps and convergence rate for different

preconditioners. Red parts are 50× stiffer than bleu parts. Inverse corresponds to the

inversion of the diagonal matrix for the Jacobi preconditioner, and to the factorization of the

system for LDLT preconditioners. Solving is the time taken to solve the system. Total is the

total time of a single time step.

Courtecuisse et al. Page 44

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 11.
Time in (ms) to factorize the system depending on the dimension on the system. Simulation
steps gives the number of simulation steps that are necessary to update the asynchronous

preconditioner with a simulation running at 25 FPS.

Courtecuisse et al. Page 45

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 12.
Computation time for solving a STS with multiple right-hand side vectors.

Courtecuisse et al. Page 46

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 13.
Performances and convergence comparison fo the standard CG versus our method based on

the Sherman Morrison Formula. The main overheads for the computation of the correction

using the SMF are reported on the graph (right). Matrices U and Q are computed for every

new topological modification which correspond to the Build step in the table.

Courtecuisse et al. Page 47

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 14.
Simulation of the lens extraction using MSICS technique.

Courtecuisse et al. Page 48

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 15.
Simulation of an hepatectomy with haptic feedback, and associated dataset used. (left) FE

mesh used, (middle) boundary conditions from the collision detection and (right) simulation

of cutting.

Courtecuisse et al. Page 49

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 16.
Real-time simulation of a brain tumor resection.

Courtecuisse et al. Page 50

Med Image Anal. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

	Abstract
	Introduction
	Literature review
	Simulation of deformable bodies
	Time discretization
	Solving the set of non-linear equations
	Simulation of the interactions
	Simulation of topological modifications

	Background
	Deformable model and time-stepping implicit integration
	Contact and friction models
	Contact mapping
	Constraint-based solution

	Asynchronous preconditioner
	GPU-Based preconditioner for contact problems
	Compliance and mechanical coupling
	Optimized preconditioner for contacts
	Solution of multiple STS on GPU
	GPU-based parallelization

	Simulation of cutting
	Topological modifications, cutting
	Low rank update of the asynchronous preconditioner
	Computation of the correction
	Application of the correction

	Results and evaluation
	Accuracy and validation
	Comparison with ABAQUS
	Preconditioner for the contact response

	Performance evaluation
	Convergence rate and computation time
	Factorization of the preconditioner
	Computation of the compliance
	Topological modifications

	Applications
	Application to cataract surgery
	Application to liver resection
	Application to brain tumor resection

	Conclusion
	References
	Algorithm 1
	Algorithm 2
	Algorithm 3
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Fig. 13
	Fig. 14
	Fig. 15
	Fig. 16

