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Abstract

In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased

patient registration framework. Both segmentation and registration problems are modeled using a

unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image

domain. Segmentation is addressed based on pattern classification techniques, while registration is

performed by maximizing the similarity between volumes and is modular with respect to the

matching criterion. The two problems are coupled by relaxing the registration term in the tumor

area, corresponding to areas of high classification score and high dissimilarity between volumes.

In order to overcome the main shortcomings of discrete approaches regarding appropriate

sampling of the solution space as well as important memory requirements, content driven

samplings of the discrete displacement set and the sparse grid are considered, based on the local

segmentation and registration uncertainties recovered by the min marginal energies. State of the

art results on a substantial low-grade glioma database demonstrate the potential of our method,

while our proposed approach shows maintained performance and strongly reduced complexity of

the model.
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1. Introduction

Gliomas are the most common type of primary brain tumors and arise from glial cells. They

are classified in 4 grades by the World Health Organization (WHO), grade I corresponding

to benign tumors with excellent prognosis and Grade IV gliomas (Glioblastoma Multiforme)

being the most common and lethal. WHO grade II Low Grade Gliomas (LGG) are a specific

kind of glioma that represent about 30% of the brain tumors and can affect younger patients

(Soffietti et al., 2010). They are characterized by a continuous slow growth and yield mild

symptoms. They generally undergo anaplastic transformation into a fast growing malignant

tumors and therefore have to be monitored closely via frequent MRIs. Knowing the size and

extent of a brain tumor is of extreme importance in order to evaluate its growth, its reaction

to therapy and for surgery planning Currently, the physicists compute the main tumor

diameters and approximate it as an ellipsoid, a highly imprecise measure that tends to

overestimate the volume of the tumor (Pallud et al., 2012). The current gold standard is

manual segmentation, which on top of being a tedious and time consuming task, is also

subject to a high inter and intra operator variability. Automatic tumor segmentation is thus

an active research field that aims at obtaining fast and robust segmentations. It is a

particularly difficult subject due to the extreme heterogeneity between the tumors in

appearance, shapes and size and their overlapping intensities with the healthy tissue. LGG

are diffusively infiltrative tumors with extremely irregular and fuzzy boundaries, rendering

the segmentation task even more difficult.

Fuzzy clustering and knowledge based methods were amongst the first considered for tumor

segmentation with limited success (Clark et al., 1998; Fletcher-Heath et al., 2001). Level

sets and Active Contours have been a popular approach (Ho et al., 2002; Cobzas et al., 2007;

Taheri et al., 2010), but suffer from their strong sensitivity to initialization. The idea is to

model the tumor boundary as a parametric curve that evolves depending on the image

properties and curvature constraints. Statistical classification methods offer an efficient way

of detecting tumor voxels. The voxels are treated independently and separated by a classifier

that is learned from a set of training samples. Examples refer to the Support Vector

Machines (SVM) (Verma et al., 2008; Zhang et al., 2004; García and Moreno, 2004),

Boosting (Xuan and Liao, 2007) or the Decision Forests (Zikic et al., 2012). Despite

promising performance, those methods are plagued by the i.i.d assumption that treats each

voxel independently, leading to irregular segmentations. Morphological filtering (Zhang et

al., 2004) or neighborhood dependent features (Zikic et al., 2012) offer limited improvement

on the local consistency of the segmentation. Notable improvement is observed when

coupling the statistical classification with local neighborhood dependencies (Lee et al, 2008;

Gorlitz et al., 2007; Wels et al., 2008; Bauer et al., 2011), modeled by a random field

(Markov Random Field (MRF), Conditional Random Field (CRF)) (Wang et al., 2013)

based spatial prior. In this context, the segmentation is locally smoothed by penalizing

neighbors that are assigned different segmentation labels, but still lacks global information
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regarding the tumor's position and the brain boundaries. Stronger dependencies can be

modeled via a hierarchical approach. Gering et al. (2002) proposed a multi layer MRF

approach where the tumor is detected as an outlier from manually selected training voxels.

At each layer, the segmentation is refined based on higher level information and the

previous layer's segmentation. Corso et al. (2008) combine Bayesian classification using

Gaussian Mixture Models with a hierarchical graph affinity model, where the spatial

dependencies are modeled by assigning an affinity to each graph edge.

Atlas-based segmentation methods rely on the registration of an annotated volume to the

subject in order to segment the structures of interest. The use of a brain atlas allows for

structural spatial prior information, but the task is more difficult when the structure to

segment is a tumor since it cannot be matched in the atlas. That is often addressed through a

model for tumor detection. Kaus et al. (2001) alternate kNN classification based on intensity

and anatomical location with a registration step based on the structures' segmentation, the

tumor being labeled as white matter in the registration process. In (Prastawa et al., 2003) a

probabilistic atlas is affinely registered to the patient, enabling to define prior probabilities

on the expected intensities of the structures. The atlas is modified to account for tumor

presence (detected by contrast enhancement) and edema. Similarly to Gering et al. (2002),

the tumor voxels can be detected as outliers from the healthy voxels (Menze et al., 2010;

Prastawa et al, 2004). The healthy structures' features are estimated from a registered healthy

atlas. Additional local spatial constraints are modeled via Markov Random Fields (Menze et

al., 2010) or level sets (Prastawa et al., 2004).

Atlas based methods depend on the quality of the registration. Rigid or affine registration

methods are not sufficient to recover the inter patient anatomical differences, while

traditional non-rigid registration methods fail in this context by attempting to find

correspondences between the tumor and the healthy voxels. An efficient atlas based

segmentation thus requires a registration scheme that accommodates for the presence of the

tumor.

Despite extensive work in deformable image registration (Zikic et al., 2010; Ou et al., 2011;

Berendsen et al., 2013; Sotiras et al., 2013), there has been limited work dedicated to

registration with missing correspondences. Such a registration task is of high interest for the

study of brain tumors through statistical atlases and longitudinal studies. A tumor specific

probabilistic atlas, constructed through affine registration of a large database to the same

reference coordinates, was notably proposed in (Parisot et al., 2011). It enabled the

identification of preferential locations for the tumors and could lead to unraveling position

dependent behaviors and origins. Deformable registration would enable to go further and

study the interactions between the tumors and the brain structures and functional areas.

Understanding the tumors growth patterns and their impact on the brain's functional

organization is of key importance for therapy and surgery planning.

We can distinguish two groups of methods for registration in the presence of a tumor. The

first relies on modeling the tumor growth to evaluate the tumor induced deformation

(Kyriacou et al., 1999; Mohamed et al., 2006; Zacharaki et al, 2008; Cuadra et al., 2004).

Kyriacou et al. (1999) proposed a biomechanical finite element model to simulate the tumor
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induced deformation while assuming a radial uniform growth of the tumor. Using the tumor

growth model, a healthy brain was simulated by contracting the tumor, allowing for a

normal registration process. Cuadra et al. (2004) also assumed radial growth of the tumor.

The registration is performed using the demons algorithm (Thirion, 1998) between healthy

voxels and is based on the distance from a manually selected seed in the tumor area (that has

been segmented prior to the registration process). Mohamed et al. (2006) decomposed the

deformation as inter subject and tumor induced deformations. The latter was modeled via a

biomechanical finite element model whose parameters are learned by statistical learning.

The tumor growth is then simulated in the healthy atlas, enabling normal registration. This

method was extended in (Zacharaki et al., 2008) towards a computationally efficient

biomechanical model taking into account the potential infiltrative parts of the tumor by

limiting the tumor growth. Growth models require either user interaction or extensive

computations to evaluate the model parameters and are mostly adapted to space occupying

lesions. Low grade gliomas are infiltrative tumors with little to no mass effect and edemas.

The limited amount of deformation caused by the tumors renders the use of growth model

not adapted and possible prone to errors assuming the tumor pushes tissue instead of

infiltrating it. The second group of methods (Brett et al., 2001; Stefanescu et al, 2004)

adopts a simpler approach and masks the pathology towards excluding it during registration.

The tumor area is discarded during the computation of the similarity criterion and deformed

by interpolation. This kind of approach offers a better modularity with respect to the

pathology since no assumption is made about the pathological area nor the progression of

the tumor. Both approaches require a reliable segmentation of the tumor, making the

registration dependent on the quality of the segmentation of the tumor.

Registration and tumor segmentation appear as two fundamentally correlated problems,

where one could benefit from the other if performed simultaneously. The idea of coupling

segmentation and registration is not a new concept. Yezzi et al. (2003) used an active

contour framework, estimating the registration parameters and reference volume's

segmentation curve by minimizing a joint energy depending on both images. The floating

image is segmented by registering the reference's segmentation. A maximum a posteriori

framework was presented in (Wyatt and Noble, 2003) where the segmentation and rigid

registration parameters are determined alternatively. The segmentation relies on Gaussian

Mixture Models coupled with an MRF prior, while the registration relies on the

segmentation by minimizing the joint class histogram between both images. Mahapatra and

Sun (2012) proposed an MRF based framework where each voxel of the image has to be

assigned a displacement and segmentation label. The different classes are separated based on

the intensities in both images while the registration relies on minimizing conventional

similarity metrics. The registration and segmentation fields are smoothed by enforcing

similar displacement among voxels of the same class. Ashburner and Friston (2005)

proposed a statistical model, where a probabilistic atlas plays the part of a spatial prior for

segmentation and bias field correction. The different classes are separated via a mixture of

Gaussians, allowing for several modes per class. The atlas is globally registered by affine

registration then locally deformed. Last but not least, Pohl et al. (2006) developed an

Expectation Maximization (EM) Bayesian framework, alternatively estimating the

segmentation probabilities and the rigid registration and bias field parameters.
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All those methods rely on the concept that the structures to be segmented appear in both

images. The joint segmentation and registration problem becomes far more challenging in

the presence of a pathology due to the absence of a match in the second image. Most

methods alternatively estimate the registration and segmentation maps. Chitphakdithai and

Duncan (2010) proposed an EM Bayesian framework in the context of a surgical tumor

resection. The resection area was detected by statistical learning on a training set based on

the intensity values and deformed by interpolation (constant registration cost in the resection

area). In the same clinical context, Risholm et al. (2009) coupled the demons algorithm with

level sets. They alternate segmentation of the resected area by evolving a level set based on

the image gradient and intensities disagreements, with a demons based registration that

accommodates the resection by only allowing displacement towards the area. The problem is

more challenging in the context of tumors that have complex intensity profiles. Gooya et al.

(2011), inspired from the work of Zacharaki et al. (2008) and Pohl et al. (2006) introduced a

method to to deal with the presence of a tumor. The tumor is simulated in a probabilistic

atlas via a biomechanical model of tumor growth. The EM algorithm is used to iteratively

estimate segmentation posterior probabilities and the tumor growth and registration

parameters. While growth models are able to simulate the mass effect, they suffer from the

computational burden of estimating the model parameters and are hardly generalizable to

other pathologies. Furthermore, the quality of the registration directly depends on the quality

of the model which implies extended knowledge on the pathology.

In (Parisot et al, 2012), we introduced a concurrent segmentation and registration framework

that exploits the dependencies between the two problems in order to adapt the registration

task to the presence of the tumor as well as increase the segmentation quality. The

concurrent registration and segmentation framework is embedded in a discrete graphical

model, where a sparse grid is superimposed to the volume domain and each node will be

simultaneously displaced and classified. The registration term is relaxed in the tumor area

that is detected by statistical classification. Pairwise constraints ensure the smoothness of the

segmentation and deformation fields. This discrete approach raises the problem of defining

the discrete displacement set and resolution of the sparse grid that have to be high enough to

capture small details and remain computationally efficient. In this paper, we extend the

proposed method through a novel content-driven hierarchical coarse to fine approach

exploring segmentation and registration uncertainties as determined by the min-marginal

energies. The displacement set sampling relies on the local structures anisotropy while the

grid refinement is controlled by the local homogeneity of the region and the segmentation

uncertainties. This yields non uniform high resolution grids with a much lower complexity.

The proposed MRF based individual tumor detection and registration framework and their

coupling is described in Section 2 while the uncertainty driven adaptive sampling method is

introduced in Section 3. The experimental validation is part of Section 4 and is carried out

on a large low-grade glioma database as well as the publicly available BRATS dataset.

Discussion and future directions conclude the paper.
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2. Concurrent Tumor Segmentation and Registration

2.1. Statistical Classification based Tumor Segmentation

Let us consider a volume V featuring a tumor that we seek to segment. The tumor can be

efficiently detected via the construction of a classifier separating tumor voxels from healthy

voxels. We adopt the Gentle Adaboost algorithm (Friedman et al., 2000) that builds a strong

classifier as a linear combination of weak classifiers. Let us consider a set of N training

samples {xi, yi}, i ∈ {1, N}, where xi is a voxel extracted from a tumor bearing volume, and

yi is its corresponding label (tumor or background). To each pair is associated a feature

vector Π(xi) and a weight .

At each iteration t, the algorithm selects a feature and a threshold, in order to build a weak

classifier ht(xi) as a decision stump that minimizes the classification error:

(1)

The weights Wi are then updated as Wi = Wi exp(−yiht(xi)) in order to give more importance

to misclassified voxels at the next iteration. The strong classifier H(x) is obtained by

summing the weak classifiers, and yields a classification score that can be converted to

probabilities as:

(2)

The key element of the boosting algorithm is the selection of the feature vector. We adopt a

high dimensional space exploring visual, phase and geometric properties. First, we rely on

the intensity values using patches (9 × 9 × 5) centered on the sample voxel xi Median,

entropy and standard deviation values are extracted from another set of patches of sizes k × k

× 3, where k = {7, 9, 11}. Second, we compute Gabor features (Manjunath and Ma, 1996)

on 2 scales and 10 orientations. We adopt the method of Zhan and Shen (2003) that

approximates the 3D Gabor filters by computing two orthogonal 2D filter banks. Eventually,

we compute a symmetry based feature, since the presence of the tumor will introduce an

asymmetry between the hemispheres of the brain. Assuming a symmetry plane is known, the

symmetry feature is computed as .

(.) is a neighborhood introduced to compensate the approximate symmetry plane, xi,s is

the symmetric of voxel xi and I(.) is the intensity value.

Spatial dependencies are introduced through an MRF model on a graph where each voxel of

the image is a node and the edges connect the node to its 6 immediate neighbors. In this

model, we define a binary label set s = {0, 1}. Each node x (i.e image voxel) is to be

assigned one label, tumor (lx = 1) or background (lx = 0). The optimal labeling is recovered

by minimizing the MRF energy (Boykov and Funka-Lea, 2006):
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(3)

The unary potentials Vx(.) correspond to the classification likelihoods, seeking the most

probable label according to the boosting classification decisions:

(4)

And the pairwise term plays the part of a smoothing prior on the segmentation field, and is

defined as a Potts model that penalizes neighboring nodes labeled differently:

(5)

where β is a constant parameter describing the amount of smoothing.

The main drawback of this approach is the lack of global information on the brain structure,

the spatial dependencies being encoded in a strictly local manner. Coupling segmentation

with registration adds global information, but requires an efficient registration scheme.

2.2. Graph based Registration

Let us consider a source image A and a target image V defined on a domain Ω. In our case,

the source image is a healthy brain and the target image is a diseased brain featuring a

tumor. In the task of image registration, we want to find the geometric transformation  that

will map the source image to the target image:

(6)

We adopt the Free Form Deformation (FFD) approach (Rueckert et al., 1999), where a

sparse grid  ⊂ Ω is superimposed to the volume. The transformation will be evaluated on

the grid's control points, and then on the whole volume by interpolation.

(7)

where dp is the displacement of control point p and η(.) is the projection function that

describes the influence of each control point on voxel x.

The most likely displacement should minimize the differences between the deformed image

A( (x)) and target image V(x), evaluated by a similarity measure ρ(.):

(8)
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The similarity measure is evaluated on the whole domain Ω. This information is back

projected on the control points via the function η̅(.).

In order to recover the optimal control points' displacements, we adopt a discrete MRF

model (Glocker et al, 2008a, 2011). Let us consider a discrete set of labels  = {1, …, n},

and a set of discrete displacements Δ = {d1, …, dn}. We seek to assign a label lp to each grid

node p, where each label corresponds to a discrete displacement dlp ∈ Δ. In this setting, the

deformation field is rewritten as:

(9)

In order to recover the optimal labeling, we need to minimize the MRF energy:

(10)

where

(11)

where (.) represents the neighborhood system, defined here as a 6-neighbors

configuration. Vp,q(.) is a pairwise potential, that imposes certain smoothness on the

deformation.

The unary potential Vp(.) is only dependent on node p's configuration and represent the

likelihood of the node being assigned a label. To preserve the independence assumption, we

can approximate the unary potentials as:

(12)

This approach shows great performance for the registration of healthy brains (Glocker et al.,

2008a), but performs poorly in the tumor area where the similarity metric is not reliable. The

most straightforward solution is to mask the pathology and not take the tumor voxels into

account during the evaluation of the similarity criterion ρ(.). This requires a very reliable

segmentation map and would introduce a bias for the registration.

2.3. Concurrent Tumor Segmentation and Registration

Our approach aims at simultaneously performing tumor segmentation and atlas to diseased

subject registration. The coupling of the segmentation with the registration of an atlas

introduces global information on the brain structure, while the registration quality is

improved by acknowledging the presence of the tumor and treating it differently than

healthy tissue during registration. The registration and segmentation energies are coupled in

a single MRF framework, where the tumor is detected concurrently to the registration. In
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this combined framework, we seek to recover the optimal transformation (x) and the

segmentation map (x).

Let us consider a sparse grid  superimposed to the volume, a discrete set of labels c = {1,

…, 2n}, a predefined discrete set of displacements Δ, and the tumor ptm(x) and background

pbg(x) prior probabilities learned via boosting. Each label l ∈ c is associated to a pair

segmentation/displacement {sl, dl} ∈ {0, 1} × Δ, where we define:

(13)

We seek to assign a label lp to each control point p of , simultaneously displacing the grid

node and characterizing it as tumor or background. The segmentation and deformation fields

are then evaluated on the whole volume by interpolation:

(14)

The MRF energy consist of segmentation and registration terms that are interdependent:

(15)

where α is a parameter balancing the importance of the segmentation and registration terms.

The pairwise costs ensure that the segmentation and registration are locally smooth. They

are set as:

(16)

(17)

The strength of the pairwise cost depends on the distance between the connected nodes,

taking into account a possible anisotropy as the distance between nodes would then differ.

The closer the nodes are, the stronger the penalty imposing similar labels. The registration

regularization's role is to preserve the anatomical structure of the brain. Important

deformations can occur in and around the tumor area, requiring a relaxation of the pairwise

cost to allow for those strong deformations.
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Let us now proceed with the definitions of the unary potentials. Outside the tumor area (slp =

0), the registration term seeks correspondences between the atlas and the target's healthy

tissues via the similarity metric ρ(.). However, this metric is not reliable in the tumor area

(slp = 1) since there are no existing correspondences. We use instead a constant cost Ctm that

is independent of the chosen displacement:

(18)

The tumor probabilities and the similarity metric are evaluated on the whole volume and

back projected on the control points. The use of a constant cost causes the displacement

within the tumor area to be determined by interpolation with the neighboring nodes at the

tumor boundary, through the pairwise regularization term. While the main role of this

potential is registration of the two volumes, it allows detection of part of the tumor through

the similarity measure. Indeed, if a strong dissimilarity between voxels is observed, it is

likely that the area belongs to the tumor.

This potential alone is however not sufficient for a precise segmentation of the tumor, due to

the fact that the tumor's local appearance can be similar to healthy tissue and that dissimilar

voxels do not necessarily correspond to tumors. Additional information on the position of

the tumor is introduced by coupling this registration term with a segmentation unary term.

This term relies on the prior probabilities introduced in section 2.1, imposing the label that

has the maximum likelihood probability:

(19)

The tumor segmentation will therefore be determined taking into account anatomical prior

knowledge based on the healthy reference (introduced through the registration term) and the

classification decisions. The segmentation is determined on the sparse grid associated to the

moving target image, it is therefore dependent on the registration as the probability maps are

not aligned with the target image at the start of the process. The position of the node after its

displacement corresponds to the area that is segmented. As the registration improves, the

segmentation quality does as well.

The optimal labeling is recovered using a linear programming based optimization method

(Komodakis et al., 2008) that offers a great compromise between speed and accuracy.

3. Uncertainty-driven Adaptive Resampling

The main drawback of discrete approaches is the trade-off between precision and

computational complexity. The search space (displacement label set) for registration would

ideally cover the entire area, while a high grid resolution is required to register fine details

and most importantly, to detect the tumor's irregular boundary. However, both are limited in

order to maintain the computational burden manageable.
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These drawbacks are usually dealt with using a hierarchical approach through the use of

coarse to fine grid resolutions. This enables to cover large and precise deformations with a

limited search space, and makes the segmentation more robust by propagating segmentation

decisions that are less sensitive to small variations in the image. In this context, several grid

resolutions j are considered, with a series of iteration t at each resolution. At level { j, t},

the new MRF energy is computed, based on the deformed source image, evaluated at

iteration t-1:

(20)

The displacement information is propagated from one level to the next by composing the

new displacement field with the one obtained at iteration t−1. There are two main challenges

in this approach: (i) the sampling of the discrete deformation space at each iteration and (ii)

the grid resolutions. The most straightforward approach is a uniform refinement of the label

set and grid resolution. This allows for precise results but ignores the local anisotropy of the

structures. Furthermore, quasi voxel-level resolutions are necessary for segmentation, which

cannot be considered in the context of uniform grids. Shi et al. (2012) proposed the Sparse

Free Form Deformations: the multi-level grids are optimized simultaneously with a sparsity

constraint across levels, ensuring that nodes in high resolution levels are given more

importance in areas with discontinuities, and low importance otherwise.

Relying on local segmentation and registration uncertainties offers an alternative and

enables to define an adaptive content-driven grid refinement. Such measurements can lead to

computationally efficient voxel level resolutions while capturing the local anisotropy of the

structure for a more efficient registration. The min-marginals measure the variations of the

energy under different constraints (Kohli and Torr, 2008) and have been considered in the

context of a discrete registration framework (Glocker et al., 2008b) to evaluate the local

uncertainty and adapt the displacement sampling accordingly. We are inspired by this

approach that we combine with segmentation uncertainty in order to define an adaptive

displacement and node sampling.

3.1. Min-marginals and Displacement Sampling

Let us consider a control point cj ∈ j at iteration t, and its corresponding optimal labeling

. We aim at defining the displacement sampling at the next iteration as well as the

resolution of the next grid level j+1 based on the volumes' local properties.

Our approach exploits the min-marginal energies (Kohli and Torr, 2008) that evaluate the

minimum value of the MRF energy under different constraints. By imposing a label k,

different from the optimal label , to control point cj, the min-marginals indicate how

much a label swap costs.

(21)
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Let us recall that the label lcj corresponds to a pair {dlcj, slcj}, therefore, both segmentation

and registration uncertainties can be extracted from the min-marginals. If the segmentation

label is constant (sk = slcj), a label swap represent a local perturbation from the optimal

displacement. A small energy variation means that displacement dk is almost as likely as the

optimal displacement , highlighting the uncertain labeling with respect to that direction.

Inversely, the labeling is quite certain in a direction where a perturbation yields a high

increase of energy. By normalizing the min-marginals over all the possible displacements

associated to the same segmentation label, we can compute the registration uncertainty:

(22)

The highest Ureg(.) correspond to the most likely labels. The registration uncertainty

computed over all the possible displacements can be approximated to a Gaussian

distribution (see Fig.[1]), whose covariance evaluates the local anisotropy. The search space

is resampled following the covariance matrix main axes and scales, allowing for a more

thorough evaluation of the deformation space in the uncertain areas. The registration

uncertainty is not taken into account for the tumor label and when the parameter α is low

where the deformation is mostly driven by the pairwise cost, yielding a spherical covariance

matrix.

3.2. Uncertainty-driven Graph Refinement

Consider a uniform grid j,max of resolution M × N × P, and j : j,max → {0, 1} an

activation function describing the resolution of the current adaptively sampled grid j ⊂

j,max. At the next resolution level, j,max is refined as a grid j+1,max of resolution 2M − 1

× 2N − 1 × 2P − 1, splitting all existing edges in two. The grid j+1,max represents the new

level's maximal resolution, corresponding to a uniform sampling. The new grid j+1

resolution is determined by activating relevant nodes while ignoring the ones that are not

necessary to increase the quality of the registration or segmentation.

A node p ∈ j+1,max can be activated ( j+1(p) = 1) if it satisfies at least one of those three

conditions: (i) the node has a direct correspondent cj ∈ j,max (same coordinates) that is

activated ( j(cj) = 1), (ii) it is connected to nodes in j that have a high segmentation

uncertainty (segmentation activation), (iii) it is connected to nodes in j that have a high

registration uncertainty (registration activation). The registration and segmentation

activations are determined via the definition of two activation terms Ar(p) and As(p)

respectively, both taking value in {0, 1}. To propagate the min-marginals and activation

information, we define an inter level neighborhood system i(.) by connecting cj ∈ j,max

to its 27 closest neighbors (based on the image's spatial coordinates) in j+1,max. The

neighborhood system is shown in Fig.[2]

The registration activation criterion relies on the idea that small and precise displacements

are necessary around salient structures, while increasing the resolution on homogeneous

regions is not necessary. A node should be activated if it is at the interface of adjacent
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structures. Considering a node cj ∈ j, it covers an image region delimited by its maximum

displacement. If the region is not homogeneous, there will be strong min-marginal energies

variations with respect to the displacement label. The activation criterion is based on the

node's energy range and is defined as:

(23)

μ is the mean value over all activated nodes in j, H(.) is the heaviside step function, and N

is the number of nodes in the neighborhood of p. The node p will be activated if the mean

energy range among its neighbors in j is higher than the mean range over all nodes.

Similarly, the segmentation node activation is based on the segmentation uncertainty that

can be evaluated by measuring the energy variation when the segmentation label changes.

The uncertainty with respect to one segmentation label S can be computed by normalizing

over all labels:

(24)

In the case of a binary segmentation, we can simply reformulate the uncertainty as:

(25)

This term measures how certain the chosen label is. A low value of U(cj) infers a highly

reliable labeling. We seek to propagate the segmentation decisions to the next grid level

j+1 based on their reliability, so that the focus is on uncertain areas. This is achieved by

adding an inter-level pairwise potential to the global energy :

(26)

where cj is a control point in Gj in the neighborhood of p. This potential penalizes nodes in

Gj+1 that are assigned a label different than their neighbor in j. The amount of penalty

depends on how certain the labeling of j is. In this neighborhood configuration, a node in

j+1 can be influenced by several nodes in j, so that there is no penalty when the nodes

labels are different and equally likely, the new node being situated at the tumor boundary.

The segmentation activation criterion is controlled by the strength of the penalty and defined

as:
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(27)

Where N is the number of nodes in i (p), tsh is a threshold parameter and H(.) is the

Heaviside step function. This term measures how strong the penalty is on node p, taking into

account the fact that there is no penalty if its neighbors are labeled differently with equally

confident labels. Nodes with a low overall penalty will be activated.

Eventually, we can rewrite the MRF energy at resolution level j and iteration t:

(28)

where N is the number of nodes in j that are connected to node p ∈ j+1, and i(p) is the

corresponding neighborhood.

4. Experimental Validation

Our data set consisted of 110 3D FLAIR MRI volumes of different patients featuring a low-

grade glioma prior any treatment. The complete tumors have been manually segmented in

all volumes by experts. Although additional modalities would have offered increased

segmentation quality, there were not systematically available and provided by our clinical

partners. We therefore focused on the FLAIR modality.

36 volumes were randomly selected for boosting learning. We tested our joint segmentation

and registration framework on the 74 remaining volumes. The reference pose for registration

was a 3D FLAIR MRI volume of a single healthy subject of size 256 × 256 × 24 and

resolution 0.9 × 0.9 × 5.5 mm3. The absence of existing multi subject healthy atlases of

FLAIR modality has motivated the use of a single subject as reference pose to evaluate the

algorithm.

We ran an additional set of experiments on the 10 real low-grade gliomas cases of the

BRATS training database for an easier comparison with existing methods. We segmented

the complete tumors (including active tumor, necrotic core and occasional edema). The

results can be compared for the low-grade glioma case (complete tumor) with the results

presented on the training set in the BRATS proceedings. In order to maintain consistency

with our FLAIR database, only FLAIR images were considered for boosting training which

was carried out through leave one out cross validation experiments. Registration was

performed using the T2-weighted images due to the insufficient quality of the FLAIR

images. Furthermore, this allows the use of the T2-weighted MNI-ICBM multi subject atlas

(Fonov et al., 2009) of size 193 × 229 × 193 and resolution 1 × 1 × 1 as reference for

registration, which is more adapted to anatomical differences between subjects than a single

subject reference pose. This results in exploiting two of the four available modalities for

segmentation and the T2-weighted modality for registration. The reference poses for

registration are shown in Fig. [3].
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As preprocessing, all volumes were skullstripped and rigidly registered to their reference

pose (Ourselin et al., 2000). Their intensity was regularized by simply setting all volumes to

the same median and interquartile range as the reference pose. Since all volumes are rigidly

registered, an approximate symmetry plane of the reference pose is used for all volumes to

evaluate the boosting symmetry feature. We compared the joint registration and

segmentation framework with a sequential approach, where the tumor is segmented using

the single boosting based MRF method and the segmentation is used as a mask for

registration (not taking into account the segmented area). To demonstrate the potential of the

adaptive resampling framework, we compared the results without uncertainties where the

segmentation is propagated from one resolution to the next using a manually set penalty

cost:

(29)

where j is the resolution level and t the current iteration. The uncertainty based framework

was compared with this approach at the maximal and same final grid resolution.

4.1. Implementation

The same set of parameters were used for all volumes in the FLAIR database and were

determined heuristically in order to obtain the best possible results over the whole database.

Our coarse to fine hierarchical approach consisted of 3 image levels and 4 grid levels, where

the resolution of the image increases with the grid resolution. The maximal grid resolution

increased from 9 × 9 × 5 to 65 × 65 × 37. In accordance with the Free Form Deformation

framework, the projection function used was cubic B-splines. We set the parameter α so that

the presence of the tumor has an increasing impact on the registration. It is progressively

diminished from 1 to 0.015, the focus being on segmentation at the finest level. This setting

enables to focus on aligning the main brain structures at coarse resolutions where the tumor

is only roughly detectable then progressively increase the segmentation precision. The

constant cost Ctm for registration is progressively increased, initially set to 5 and 6 times the

mean value of the similarity criterion without and with uncertainties respectively. The

parameter λ describing the influence of the registration smoothing was set to 20 and relaxed

in the tumor area to allow for the potentially important displacements induced by the tumor.

The threshold tsh for node activation was set to 1.6.

We perform 3 iterations at each grid level. Without exploitation of the uncertainty

information, the displacement sampling is sparse (31 labels, sampled along the main axes)

and refined at each iteration by reducing the maximum displacement. We adopt a dense

sampling (1331 labels) to compute the local uncertainties at the first iteration, and a sparse

sampling at the 2 remaining iterations, the labels being sampled along the covariance matrix

main axes. This enables to exploit the uncertainty information with limited impact on the run

time. When α is low, the local anisotropy cannot be captured efficiently by the min

marginals. A sparse sampling is adopted for all iterations at the last 2 grid levels.
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The parameters were adapted to the BRATS dataset, setting the maximal grid resolution

from 11 × 12 × 11 to 81 × 96 × 81, the constant cost to 6 and 7 times the mean value of the

similarity criterion and progressively increased and the threshold for grid activation as the

mean penalty value over all active nodes. The same parameters were used for the 10

volumes. Experiments were only carried out with sparse sampling.

4.2. Uncertainty based Grid Nodes Activation

The percentage of activated nodes, with respect to the maximum uniform resolution is

shown in Fig.[4]. The complexity of the framework is considerably reduced, only activating

less than 20 % of the nodes at the last level for both datasets. Our current implementation

associates changes of labels of inactive nodes with infinite costs and runs for less than a

minute (sparse sampling) or 2 to 4 minutes (sparse/dense sampling) on the FLAIR database,

and 3 to 8 minutes on the BRATS database of higher resolution. A direct construction of the

grid would significantly impact the run time and memory cost. Considering an MRF with L,

E and N being respectively the number of labels, edges and nodes, we provide a complexity

analysis (excluding the time required to build the data term potentials):

• Computational cost:

 (L ×  (E × N2)) ∼  (L × E × N2) per iteration

• Memory cost: (L × (N + E))

Reducing the number of nodes to approximately 20% at the finer resolution scale

leads to:

• Computational cost:

(L × (0.2E × (0.2N)2)) ∼ (0.008L × E × N2)

When taking into account the number of iterations, we can obtain a complexity that

is approximately 3-4 orders of magnitude lower.

• Memory cost: (L × (0.2(N + E))), approximately one order of magnitude lower.

Fig. [11] shows visual examples of the last two grid levels' resolution. Nodes are activated

around the brain's structures and the tumor's boundary, demonstrating the adequacy of the

registration and segmentation activation terms.

4.3. Segmentation Evaluation

The segmentation results were evaluated by comparing the automatic segmentation AS to the

manual segmentation M. To this end, we compute the Dice score , the rate

of false positives  and the rate of true positives 

and mean absolute distance between contours (MAD). Segmentations were evaluated after

reverting to the patient's space (before rigid registration) where the manual segmentations

were performed. Segmentations of higher quality are obtained using the joint framework on

the FLAIR dataset (especially highlighted by the MAD score), and are equivalent with a

high resolution uniform grid and an adaptively sampled low resolution grid, while the low
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resolution uniform grid yields poor tumor detection. Among the test set, 27 volumes have

been manually segmented by 2 different experts. The inter expert Dice score reaches 89 %

in median and gets as low as 76 %, which highlights the high inter expert variability with

respect to the manual segmentations of tumors and is close to the obtained automatic

segmentations (81% median over the 27 volumes). Error bars of the different scores are

shown in Fig.[5].

Segmentation results on the BRATS dataset are on par with results obtained by the BRATS

2012 challenge winners, (mean Dice score 70-72 %, median 72-73 % with and without

uncertainties respectively), while a strong increase of quality is obtained with respect to the

regularized boosting results (mean Dice score 65 %). The tumors are poorly detected using a

low uniform resolution (mean Dice score 64 %, reduction of the true positive rate of 7%

(with uncertainties) and 11% (without uncertainties)). Error bars of the different scores are

shown in Fig.[6].

Visual segmentation results for both datasets are shown in Fig.[8].

4.4. Registration Evaluation

The registration was evaluated mostly qualitatively. For quantitative analysis, the ventricles

where manually segmented for 33 volumes of the FLAIR dataset and the Dice score, False

and True Positive rate, and MAD were computed between the registered source image and

the target image outside the tumor area and are shown in Fig.[7]. Fig.[9] shows visual

registration results comparing the joint registration and segmentation framework to the

individual registration where the pathology has been masked. Quantitative results show

equivalent performance outside the tumor area, while visual examples show a high increase

in quality of registration in and around the tumor area, in cases where the individual

framework fails. Quantitative results also highlight the maintained performance outside the

tumor area using an adaptively sampled grid, and a lower quality registration considering a

uniform grid of equivalent low resolution.

Visual examples of registration results on the BRATS dataset are shown in Fig. [10]. Cases

where the individual framework and low resolution registration fail are illustrated, as well as

the obtained complete segmentation of an image.

5. Conclusion and Discussion

In this paper we have presented a concurrent registration and tumor segmentation

framework that exploits the interdependencies between the two problems. We adopt a

discrete graphical model on a sparse grid superimposed to the image domain. Each grid node

is simultaneously classified and displaced based on a boosting classifier and image

similarity. The detected tumor area is registered by interpolation with the neighboring nodes.

The progressive impact of the tumor segmentation on the registration allows to deal with the

presence of the tumor without the introduction of an initial bias that can lead to registration

errors, while the introduction of spatial information on the brain structures significantly

reduces the false detections. The inclusion of uncertainties enables to deal with the main

drawback of discrete approaches, that is the trade off between precision and computational
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complexity. Adaptive refinement of the sparse grid yields a much lower complexity

framework. While our current implementation simply discards inactive nodes, direct

construction of the non uniform grid would lead to significant diminution of the run time.

The framework offers great modularity with respect to the similarity measure for

registration, the segmentation prior probabilities estimation, the image modality and the

clinical context. We presented the method in the context of diffuse low-grade gliomas and

registration/segmentation of a healthy subject/atlas to a subject with a tumor. Aside for

enhanced segmentation quality through the healthy brain's anatomical information (obtained

segmentation results are close to the inter expert variability), this offers the possibility to

build statistical atlases of tumor appearances in the brain and to evaluate the impact of the

tumors on the brain's functional organization. Furthermore, the method's modularity allows

easy adaptation to different problems where correspondences are missing, such as

registration between pre operative and intra/post operative images with tumor resection for

surgical guidance.

The choice of pathology masking (instead of growth models) is justified by the infiltrative

nature of the low-grade gliomas, and coupled with the discrete formulation and adaptive

sampling, results in a fast algorithm that shows great performance. It is however not adapted

to fast growing and space occupying tumors that yield strong deformation that would have

to be modeled accordingly.

One limitation of the method is its dependency on the boosting classification output. It is

progressively refined through increasing resolution levels and segmentation propagation/

penalty across levels but still constitutes the baseline of the obtained segmentation. Two

natural extensions of the algorithm are the inclusion of multimodal information and

multiclass segmentation (to separate tumor core, necrosis and edema). Both can easily be

introduced in the model through the boosting feature vector and by increasing the number of

labels (both during boosting classification and construction of the MRF model). Such

extensions are likely to increase the quality of the detection and segmentation.

Last but not least, a drawback of the method is its requirement for manual setting of

important model parameters that can have a strong impact on the results. Optimal learning of

the weights ( (Komodakis, 2011) of the graphical model being considered in this paper from

training data will allow to eliminate the need of manual parameter setting.
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Highlights

• Discrete MRF model for concurrent tumor segmentation and deformable

registration

• Content-driven non-uniform sampling of the parametric space and displacement

set

• Modularity with respect to matching criterion and tumor detection method

• Easily adaptable to other clinical contexts

• Assessment on a large Low-grade gliomas database
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Figure 1.
Registration uncertainty and displacement set resampling for one control point: (a) Min-

marginal values per displacement label (blue: low, red: high energy) associated covariance

matrix centered at the optimal label, (b) Min marginals visualization on a 2D slice, (c)

Original isotropic displacement set and (d) Uncertainty driven displacement set, following

the brain boundaries.
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Figure 2.
Visual representation of the grid refinement from level j (left) to level j+1 (right). Grid

resampling: the nodes that have direct correspondences appear in white, and the new nodes

are red. The edges connecting the 2 grids represent the nodes' neighborhood. The grid is

shown in 2D for increased visibility.
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Figure 3.
Healthy reference poses used for registration. FLAIR (First row) and T2 MNI-ICBM atlas

(second row). Bottom row: MNI atlas Probability maps, from left to right: White Matter,

Gray Matter and CSF.
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Figure 4.
Mean percentage of activated nodes per level. (a) FLAIR database, (b) BRATS database.
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Figure 5.
Quantitative Segmentation Results, FLAIR database: Error bars (mean and standard

deviation) of the Dice score, False Positive (FPR) and True Positive (TPR) rates and MAD

score (in millimeters) for the joint framework with low (JSRLow) and high resolution

(JSRHigh), the individual segmentation framework (SegMRF) and the uncertainty based

approach (Ucy).
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Figure 6.
Quantitative Segmentation Results, BRATS database: Error bars (mean and standard

deviation) of the Dice score, False Positive (FPR) and True Positive (TPR) rates and MAD

score (in millimeters) for the joint framework with low (JSRLow) and high resolution

(JSRHigh), the individual segmentation framework (SegMRF) and the uncertainty based

approach (Ucy).
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Figure 7.
Quantitative Registration results, FLAIR database: Error bar graphs of the Dice, True

Positives (TPR), False Positives (FPR) and MAD scores (in millimeters) obtained for the

joint framework with low (JSRLow) and high resolution (JSRHigh), the individual

registration framework with masked pathology (RegMask) and the uncertainty based

approach (Ucy)
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Figure 8.
Visual Segmentation results on the FLAIR database (first two rows) and the BRATS

database (bottom row, T2 volume). (a) individual framework, (b) Joint framework, high

resolution, (c) Joint framework, with adaptive sampling. Automatic segmentations (blue) are

compared to the manual segmentation
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Figure 9.
Visual Registration results, FLAIR dataset. (a) Target image, (b) individual framework, (c)

Joint framework, high resolution, (d) Joint framework, with adaptive sampling.
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Figure 10.
Visual Registration results, BRATS dataset. First row: comparison with the individual

registration scheme. (a) Target image, (b) individual framework, (c) Joint framework, high

resolution, (d) Joint framework, with adaptive sampling. Second row: close up comparison

with low uniform resolution. (e) Target image, (f) Joint framework, high resolution, (g) Joint

framework, with adaptive sampling, (h) Joint framework, low uniform resolution. Errors in

registration can be seen with respect to the cross lines. Bottom row: example segmentation

using the registered MNI-ICBM probabilities. (i) Target image, (j) Segmented image.
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Figure 11.
Visual examples of the activated nodes for the last 2 levels of the incremental approach. The

nodes are superimposed to the target image.
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