
Multi-shell diffusion signal recovery from sparse measurements

Y. Rathia, O. Michailovichb, F. Laund, K. Setsompope, P. E. Grantc, and C-F Westina

aBrigham and Women’s Hospital, Harvard Medical School, Boston

bUniversity of Waterloo, Canada

cChildren’s Hospital Boston, Harvard Medical School, Boston

dGerman Cancer Research Center (DKFZ), Dept. of Medical Physics in Radiology, Heidelberg,
Germany

eMassachusetts General Hospital, Harvard Medical School, Boston

Abstract

For accurate estimation of the ensemble average diffusion propagator (EAP), traditional multi-

shell diffusion imaging (MSDI) approaches require acquisition of diffusion signals for a range of

b-values. However, this makes the acquisition time too long for several types of patients, making

it difficult to use in a clinical setting. In this work, we propose a new method for the

reconstruction of diffusion signals in the entire q-space from highly under-sampled sets of MSDI

data, thus reducing the scan time significantly. In particular, to sparsely represent the diffusion

signal over multiple q-shells, we propose a novel extension to the framework of spherical ridgelets

by accurately modeling the monotonically decreasing radial component of the diffusion signal.

Further, we enforce the reconstructed signal to have smooth spatial regularity in the brain, by

minimizing the total variation (TV) norm. We combine these requirements into a novel cost

function and derive an optimal solution using the Alternating Directions Method of Multipliers

(ADMM) algorithm. We use a physical phantom data set with known fiber crossing angle of 45°

to determine the optimal number of measurements (gradient directions and b-values) needed for

accurate signal recovery. We compare our technique with a state-of-the-art sparse reconstruction

method (i.e., the SHORE method of (Cheng et al., 2010)) in terms of angular error in estimating

the crossing angle, incorrect number of peaks detected, normalized mean squared error in signal

recovery as well as error in estimating the return-to-origin probability (RTOP). Finally, we also

demonstrate the behavior of the proposed technique on human in-vivo data sets. Based on these

experiments, we conclude that using the proposed algorithm, at least 60 measurements (spread

over three b-value shells) are needed for proper recovery of MSDI data in the entire q-space.
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1. Introduction

Diffusion MRI (dMRI) is an imaging modality that is sensitive to the neural architecture and

connectivity of the brain. Consequently, it is increasingly being used in clinical settings for

investigating several brain disorders such as, Alzheimer’s disease, stroke, schizophrenia,

mild traumatic brain injury, etc. (Thomason and Thompson, 2011; Shenton et al., 2012).

Apart from more traditional Diffusion Tensor Imaging (DTI), it is nowadays standard to use

High Angular Resolution Diffusion Imaging (HARDI), which involves acquiring diffusion

signals at a single b-value (single q-shell) in several gradient directions spread over the unit

sphere in a quasi-uniform manner (Tuch et al., 2003; Assemlal et al., 2011). While this

protocol allows for resolving the complex angular structure of the neural fibers, it does not

provide information about the radial signal decay, which is known to be sensitive to various

anomalies of white matter (Cohen and Assaf, 2002).

To obtain accurate information about the neural architecture, diffusion spectrum imaging

(DSI) was proposed by Wedeen et al. (2005). This dMRI technique involves acquiring

multiple measurements over a Cartesian grid of points in the q-space, followed by

application of discrete Fourier transform to obtain an estimate of the ensemble average

propagator (EAP). Unfortunately, a large number of measurements required by DSI makes it

impractical to use in clinical settings. Accordingly, to speed-up the acquisition of dMRI (and

DSI) data, two complementary approaches have been proposed, namely: (i) the use of

compressed sensing (CS) to reduce the number of measurements (Candès et al., 2006;

Donoho, 2006), and (ii) the use of multi-slice acquisition sequences for faster data

acquisition (Setsompop et al., 2011; Feinberg et al., 2010). This work focuses on

methodology (i ), i.e., CS-based reconstruction of diffusion signal from critically under-

sampled measurements.

Several imaging and analysis schemes, which use fewer measurements than traditional DSI,

have recently been proposed in the literature (Wu and Alexander, 2007; Jensen et al., 2005;

Assemlal et al., 2011; Merlet et al., 2012; Barmpoutis et al., 2008; Descoteaux et al., 2010;

Zhang et al., 2012; Ye et al., 2011, 2012; Hosseinbor et al., 2012). Each of these techniques

captures a different aspect of the underlying tissue organization, which is missed by HARDI.

Traditional methods of EAP estimation that account for the non-monoexponential (radial)

decay of diffusion signals, require a relatively large number of measurements at high b-

values (greater than 3000 s/mm2) (Assaf et al., 2004; Mulkern et al., 2001). Consequently,

their associated scan times are deemed to be too long for non-cooperative patients, which is

the main motivation for reducing the number of measurements in dMRI scans.

Although not new in application to MRI, CS-based methods of signal reconstruction has

gained significant attention in the diffusion imaging community over the last few years.

Several works have proposed CS-based algorithms for recovering HARDI, MSDI as well as
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DSI data from undersampled (aka incomplete) measurements (Ye et al., 2011; Merlet et al.,

2012; Landman et al., 2012; Gramfort et al., 2012; Duarte-Carvajalino et al., 2012; Freiman

et al., 2013; Scherrer et al., 2013; Assemlal et al., 2011; Michailovich et al., 2011; Rathi et

al., 2011). To this end, various types of signal representation bases have also been proposed,

each having different sparsifying properties. For example, for HARDI data, spherical

ridgelets were proposed in (Michailovich et al., 2008; Michailovich and Rathi, 2010), and

for MSDI data, spherical polar Fourier (SPF) and its variants (SHORE) were proposed in

(Assemlal et al., 2008; Ozarslan et al., 2008; Cheng et al., 2010; Merlet et al., 2012). In the

case of the SHORE basis, to optimize the accuracy of signal reconstruction, one has to

choose an appropriate scaling parameter, which could potentially be different for different

types of tissue. To address this issue, (Merlet et al., 2012) used a dictionary learning

technique to learn the scaling parameter and the appropriate polynomial to represent the

radial decay term. On the other hand, in (Özarslan et al., 2013), this scaling parameter was

adaptively obtained in a data driven fashion by computing the eigenvalues of a tensor at

each voxel. However, at a fundamental level, both these methods extend the original

SHORE basis to sparsely represent the diffusion data. In this work, we will compare our

technique with the SHORE-based reconstruction (Cheng et al., 2010; Merlet and Deriche,

2013), where sparsity is enforced through the standard l1-norm minimization.

2. Our contributions

The framework of spherical ridgelets (SR) proposed in (Michailovich et al., 2011) was used

to recover HARDI data on a single b-value shell from highly undersampled set of diffusion

measurements. In this work, we propose a novel extension of this basis for recovering multi-

shell diffusion data. Towards this end, we incorporate a novel radial decay term which is a

monotonically decreasing function with its range bounded between 0 and 1. This property is

quite desirable, since it is known that the values of normalized diffusion signals lie within

this range (Clark and Le Bihan, 2000; Schwarcz et al., 2004; Mulkern et al., 2009). In this

work, we use spherical ridgelets to perform CS-based reconstruction of MSDI signals over

each of their associated b-value shells (q-shells), while using the radial decay term for

representing the signal attenuation with increasing b-values. To obtain an optimal consensus

solution that ensures spatially smooth signal recovery, we propose a novel computational

framework based on the ADMM algorithm. We perform extensive testing of the proposed

algorithm on a physical phantom data set and compare it with the SHORE-based method.

We provide quantitative results in terms of the error in estimation of the orientation,

incorrect number of peaks detected, normalized mean squared error (NMSE) in the

estimation of the signal as well as NMSE in the estimation of the return-to-origin probability

(RTOP). We also provide similar quantitative results on human in-vivo data set.

The primary aim of the algorithm presented in this work is the recovery of diffusion signal

from sub-critically sampled measurements. Following this, any model or methodology (such

as, multi-compartment models, kurtosis, diffusion propagator, free-water, etc.) can be used

to compute diffusion measures or features (Özarslan et al., 2013). Thus, in this work, we do

not focus on recovering model specific diffusion properties as they can be computed once an

estimate of the diffusion signal in the entire q-space is available using the proposed method.
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3. Background

3.1. Diffusion MRI

Under the narrow pulse assumption, the diffusion signal S(q) in the q-space is related to the

EAP P(r) via the Fourier transform as given by (Stejskal and Tanner, 1965)

where E(q) ≜ S(q)/S(0) : ℝ3 → [0, 1] is the normalized diffusion signal, with S(q) and S(0)

being the measured diffusion signal and its corresponding b = 0 value, respectively.

Alternatively, E can be written as a function of b-value and a unit vector u ∈ , such that

E(b, u) : ℝ+ ×  → [0, 1], where b = γ2δ2(Δ – δ/3) ||g||2 s/mm2, with δ being the duration of

the gradient pulse, Δ is the mixing time (i.e., the time between the two diffusion-encoding

gradients), γ is the gyromagnetic constant, and ||g|| denotes the Euclidean norm of the

diffusion-encoding gradient g. In the context of MSDI, the signal E is measured along N

discrete orientations  for several different values of b. Thus, for each b value shell,

the sampling points are spread over the unit sphere, thereby giving the measurements a

multi-shell structure.

3.2. Compressed sensing

The theory of CS provides the mathematical foundation for accurate recovery of signals

from their discrete measurements acquired at sub-critical (aka sub-Nyquist) rate (Candès et

al., 2006; Donoho, 2006; Candes et al., 2011). The theory relies on two key concepts:

sparsity and incoherence, although the latter requirement could be relaxed in certain cases

(Candes et al., 2011). Sparsity implies that the signal of interest should have a sparse

representation in some basis/frame Ψ ∈ , which we term as the representation

dictionary. The signal E ∈  is said to admit a sparse representation in Ψ if its expansion

coefficients contain only a small number of significant coefficients, i.e. if E = Ψc, then most

of the elements of c ∈  are zero. If only K elements of c are nonzero, then the signal E is

said to be K-sparse in Ψ, where K ≪ M.

The framework of CS also relies on a sensing or sampling basis Φ. In the context of

diffusion MRI, since we have a single value E(q) associated to each point q in the q-space,

we assume that the sampling basis Φ consists of rotated versions of a spherical Dirac delta

function. Consequently, denoting by s ∈ ℝP a column vector of P discrete measurements of

E, our goal is to recover the representation coefficients c (and hence the corresponding

diffusion signal) given the data vector

(1)

where η is measurement noise and the basis Φ acts as a subsampling operator. CS theory

asserts that, to reconstruct the full signal from its incomplete measurements s, one can use a

non-linear decoding scheme represented by the following ℓ1-norm minimization problem
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(2)

This minimization problem can be readily solved using a variety of optimization techniques

(Beck and Teboulle, 2009; Asif and Romberg, 2009).

Earlier works on CS focused on signal recovery when Ψ was assumed to be an orthonormal

basis (Candès et al., 2006). In this case, high incoherence between the representation Ψ and

sampling Φ bases was a necessary condition for a successful CS-based signal reconstruction.

For the case when Ψ is chosen to be an overcomplete dictionary (as it is the case in the

present study), the importance of the above condition was recently shown to be much less

critical (Candes et al., 2011). As such, the ability of an overcomplete Ψ to provide sparse

representation for the signals of interest alone can guarantee reliable signal recovery from

incomplete measurements. However, in this scenario, the lower bound on the number of

measurements required for signal recovery is still application dependent and has to be

determined from realistic experimental validation studies. More importantly, this lower

bound depends on the level of sparsity of the representation dictionary Ψ. Consequently, we

will use an experimental setup to determine the minimal number of gradient directions

(measurements) required for proper recovery of dMRI data in q-space.

3.3. Spherical Ridgelets

Spherical ridgelets (SR) form a basis for representing  functions defined on the unit sphere

(Michailovich et al., 2008). Specifically, it was shown to provide sparse representation of

diffusion signals over a single b-value shell. To avoid repetitions, we present only the

principal concepts of SR design, while their detailed description can be found in

(Michailovich et al., 2008).

Spherical ridgelets are constructed using the fundamental principles of wavelet theory.

Specifically, let x ∈ ℝ+ and ρ ∈ (0, 1) be a positive scaling parameter. Further, let κ(x) =

exp{−ρx(x + 1)} be a Gaussian function, which we subject to a series of dyadic scalings as

shown below

(3)

where j ∈  := {−1, 0, 1, 2, . . .}. The corresponding spherical ridgelets with their energy

spread around the great circle supported by v is given by:

(4)

where Pn denotes the Legendre polynomial of order n and κ− 1(n) = 0, ∀n and
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(5)

To obtain a finite overcomplete dictionary, we restrict the values of the resolution index j to

a finite set {−1, 0, 1, . . . , J}, where J defines the highest level of “detectable” (high

frequency) signal details. Additionally, the set of all possible orientations v ∈  of spherical

ridgelets needs to be discretized as well. To find a proper discretization scheme, we first

note that the construction in (4) suggests that the bandwidth of the spherical ridgelets (and

therefore the dimensionality of the functional space they belong to) increases proportionally

to 2j. The space of spherical harmonics of degree n has a dimension of (n + 1)2. Similarly,

we define the number of ridgelet orientations at resolution j to be equal to Mj = (2j+1m0 +

1)2, with m0 being the smallest spherical order resulting in κ0(m0) ≤ ε for some predefined 0

< ε ≪ 1 (e.g. ε = 10−6). Consequently, for each j, a total of Mj orientations  are

chosen so that the overcomplete SR dictionary is given by

. Note that, Ψ consists of a total of

 spherical ridgelets. To slightly simplify our notation, in what

follows, the spherical ridgelets in Ψ will be indexed as ψm(u), with m = 1, 2, . . . , M being a

combined index accounting for both different resolutions and orientations. In this and

previous works (Michailovich et al., 2011), the number of spherical ridgelet orientations

were predefined with m0 = 4, resulting in M−1 = 16, M0 = 49 and M1 = 169 ridgelets

spanning the resolution levels j = −1, j = 0 and j = 1, respectively. Thus, the total number of

spherical ridgelets used in the reconstruction was equal to 234, which has been shown to

provide robust estimates of the signal (Michailovich et al., 2011).

Given a sampling set of K diffusion-encoding orientations , one can use (4) to

compute the values of the spherical ridgelets over the sampling set1. The resulting values

can be stored into a K ×M matrix A defined as

(6)

Then, for a given vector s of diffusion measurements acquired at a fixed (yet arbitrary)

spatial location, one can obtain a sparse solution vector c by solving the l1 minimization

problem in (2), i.e.

(7)

1Since the definition in (4) involves an infinite summation, the latter needs to be truncated to render the computations practical. In
practice, we truncate the summation to index nmax for which the magnitude of the summand drops below 10−9.
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4. Methods

In this work, it is assumed that the dMRI data is measured along the same K gradient

directions {uk} at several b-values. This allows for estimating the signal attenuation with

increasing b-values along each gradient direction. In particular, we propose to model the

radial signal decay of E(q) (E(q) = S(q)/S(0), where the signal S(q) is assumed to be

normalized by the signal at b = 0 i.e. S(0)) using a monotonically decreasing function given

by

(8)

which is related to the cumulative probability distribution function of the Burr distribution

(Tadikamalla, 1980). A similar power-law based three-dimensional representation of q-

space using Wishart and Gamma distributions has also been used in earlier works of (Jian

and Vemuri, 2007; Scherrer et al., 2013). Both these works, represent the signal using

probability distributions defined on the space of positive definite tensors. In the present

work, however, we integrate the one-dimensional power-law decay function fα,β with

spherical ridgelets to characterize the diffusion signal in q-space. Note that the proposed

function is bounded in the range fα,β(b) ∈ [0, 1] and can model mono-exponential as well as

multi-exponential decay for appropriate choice of α and β (Figure 1). This property of fα,β(b)

is in contrast to the formulations in (Rathi et al., 2011; Ozarslan et al., 2008; Cheng et al.,

2010), where severe noise at high b-values can lead to “bumps” or non-monotonic signal

values (which cannot arise from biological tissue of the brain). The proposed function, on

the other hand, guarantees a monotonically decreasing estimate of the diffusion signal

despite severe noise at high b-values. Additionally, this function has only two free

parameters, which makes the estimation procedure more robust and stable. On the other

hand, if an interleaved sampling scheme is used to measure data on several q-shells as in Ye

et al. (2012), one would require at-least 2 shells to have the same set of gradient directions.

Note that this function fα,β(b) is a one-dimensional function (in b variable) and hence we

need to estimate the free parameters αk and βk for each gradient direction uk. For better

intuition and visualization, the b-value b is a scaled by dividing the actual b-value by 1000

(so b = 1 (arbitrary units) corresponds to a b-value of 1000 s/mm2 in Figure 1). Note that,

changing the units of b in this manner does not affect the algorithm and is only meant for

visualization purposes. Not scaling b will give the exact same results albeit with an

appropriate scaling of α and β.

We use spherical ridgelets to estimate the diffusion signal at each b-value from

undersampled measurements. Thus, given the measurements  corresponding to gradient

direction uk and b-value bi, we estimate the spherical ridgelet coefficients ci for each bi. We

should note that, since each b-value corresponds to different frequency content (with higher

b-values accounting for higher frequency components of the signal), the dictionary of

spherical ridgelets can be further adjusted for each spherical shell. Such an adjustment can

be done by appropriately estimating the value of parameter ρ in (3) for each bi, thereby

resulting in a set of shell-specific ridgelet dictionaries Ai (more on this in section 4.4).
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Consequently, a separate ℓ1-norm minimization problem (7) needs to be solved for each bi to

obtain coefficients ci.

Our goal is to estimate the diffusion signal in a continuous and consistent fashion in the

entire q-space. However, the above formulation provides the signal estimate in the spherical

domain using spherical ridgelets, and in the radial domain using the radial decay function

(RDF) f(b) for each gradient direction independently. In this case, the estimate using the SR

basis ensures smooth signal in the spherical domain (at a given b-value), while the estimate

using RDF ensures smooth signal decay with b-value at a given direction uk. Due to severe

noise present in dMRI images, the solution using each of these methods will be different and

to obtain a consistent estimate of the diffusion signal in the entire q-space, we need to attain

a consensus between the estimates provided by both these methods.

4.1. Mathematical formulation

One way to obtain a consistent solution is using ADMM, which is a numerical scheme

designed to solve composite optimization problems (Boyd et al., 2011). We propose the

following cost function to obtain an estimate of the signal at each voxel:

(9)

where si ∈ ℝK denotes a (column) vector of K measurements acquired at b-value bi, while sk

∈ ℝNb is a (column) vector of Nb diffusion signals measured along direction uk over Nb

different b-value shells2. Also, the vector f (αk, βk) ∈ ℝNb in (9) represents the values of the

radial model (8) corresponding to different q-shells and it is defined as

We rewrite (9) in a more compact form by using the following notations. First, let c ∈ ℝNbM

be a vector obtained through column stacking the vectors of ridgelet coefficients ci

corresponding to each of the Nb b-shells used for data acquisition, i.e. .

Similarly, let s ∈ ℝNbK be a vector obtained through column stacking the associated HARDI

signals si, i.e. . Then, in the absence of model errors and measurement

noises, the above vectors are related through s = Ac, where A is an NbK × NbM block-

diagonal matrix composed of the ridgelet matrices Ai as given by

2Note that, we have used superscripts to denote variables related to the spherical domain (ridgelets), and subscripts to index variables
corresponding to the radial term.
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Subsequently, the minimization problem in (9) can be redefined as

(10)

where α = [α1, . . . , α K] and β = [β1, . . . , βK] are the vectors of parameters of our radial

decay model corresponding to various diffusion-encoding directions uk, while f (α, β)) can

be viewed as a concatenation of vectors f (αk, βk), with k = 1, 2, ...,K permuted to comply

with the order of coordinates in s. Note that in (10) the original minimization (9) has been

enhanced with an additional equality constraint that couples the variables c, α, and β,

thereby aiming to produce a consensus estimate, for which the ridgelet and the radial decay

models agree over the set of sampling points.

The optimization in (10) is performed at a single voxel, and therefore it ignores the

correlation between the diffusion signal observed at neighboring voxels. To incorporate this

prior knowledge, we add another term to our cost function as described in the next section.

4.2. Spatial regularization via total-variation (TV) minimization

Let Ω ∈ ℝ3 be a discrete (rectangular) volume of interest of size |Ω| = Nx × Ny × Nz over

which the diffusion signal is observed. The reconstruction technique presented in the

previous section estimates both the ridgelet coefficients and the radial model parameters at

each voxel r ∈ Ω. Thus, introducing an explicit dependency on r, (10) can be re-written as

(11)

to compute estimates of c(r), α(r) and β(r) for each r ∈ Ω, independently. However, the

diffusion signal is known to exhibit a certain degree of spatial-domain regularity, which can

be exploited to further improve the accuracy and robustness of the estimation process. In

particular, it is reasonable to assume the diffusion-encoded images to be of bounded

variation which can be incorporated into our estimation procedure by minimizing the total-

variation (TV) semi-norm of the estimated signal. We note that TV-based regularization has

been used by several authors in the context of CS for data restoration from incomplete

measurements (Osher et al., 2005; Yin et al., 2008; Ma et al., 2008; Michailovich et al.,

2011).
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The vector Ac(r) ∈ ℝNb represents the reconstructed MSDI signal at spatial location r ∈ Ω.

When viewed as a function of the spatial coordinate r, the k-th component of this vector

forms a 3D image volume Ik, which approximates the diffusion-encoded image

corresponding to the gradient direction uk (for a particular b-value). For a collection of

image volumes , the TV-norm of  can be written as a sum of individual TV-

norms of each of the image volumes Ik (Blomgren and Chan, 1998)

(12)

where (t) = {(i – 1, j, k), (i, j – 1, k), (i, j, k – 1)}.

Note that the optimization problem in (11) has been formulated for the diffusion signal

observed at a single voxel, while the definition of the TV norm in (12) requires integration

of image information over the whole domain Ω. Therefore, to incorporate the TV

regularization into the proposed estimation framework, the optimization problem in (11)

needs to be properly modified. To this end, we introduce the following notations. First,

when viewed as a function of r, the array of vectors s(r) can be considered to be a (discrete)

vector field s. We denote the set of all such vector fields by  and endow it with the ℓ2 norm

defined in a standard manner as

with sk(r) denoting the k-th component of s(r). Analogously, the array of vectors c(r) can

also be considered to be a (discrete) vector field c ∈ , with  denoting the set of all such

vector fields. Moreover, it is also possible to equip  with the ℓ1 norm of the form

where ck(r) is the k-th component of c(r).

Finally, let :  →  be a linear operator that, for every r ∈ Ω, maps c(r) to Ac(r), thereby

suggesting a data formation model of the form s = c + η, with η ∈  accounting for both

measurement noise and modelling errors. Consequently, the above definitions can be used to

rewrite our optimization problem as given by

(13)
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where  aggregates the values of the radial decay function f(α, β)(r) into a vector field

(similar to that of s). Evidently, this cost functional has two data fidelity terms (one for

spherical and one for radial domain) and two regularization terms (sparsity in the SR domain

and piecewise smoothness in the spatial domain). The regularization parameters λ1, λ2, λ3

determine the relative importance given to the data fitting terms versus the sparsity and TV

regularization terms. Next, we derive a computationally efficient and optimal solution for

solving the cost function in (13) based on the ADMM (Boyd et al., 2011; Yin et al., 2008).

4.3. Optimization Algorithm

The minimization problem in (13) can be efficiently solved using the ADMM algorithm

(Boyd et al., 2011; Yin et al., 2008). This optimization technique allows one to supersede a

complex optimization problem by a sequence of easier problems, which often admit a closed

form solution. Following the methodology developed in (Goldstein and Osher, 2009), we

introduce an auxiliary optimization variable z, leading to the following modified cost

function

(14)

(15)

Then, starting from an arbitrary  and  at iteration t = 0, the above (constrained)

minimization problem can be solved iteratively by the augmented Lagrange multiplier

method, which updates the optimal values of c, z, α, and β according to

(16)

followed by updating the Lagrange multipliers pf and pz as given by

(17)

(18)

for some δf > 0, δz > 0. Moreover, in the case of ADMM, the concurrent minimization over

all the primary and auxiliary variables in (16) is replaced by sequential minimization with

respect to each of the variables separately, which (after a few algebraic simplifications)

results in the following set of update equations for c, z, α, and β:
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(19)

(20)

(21)

Thus, the composite cost function in (13) can by solved by iteratively solving (19), (20) and

(21) followed by updating the Lagrange multipliers  and  as given by (17) and (18),

respectively. A typical stopping criteria is to check if  and  have “stopped changing”,

i.e.  and , for some user defined choice of ε1, ε2. The

ADMM algorithm is guaranteed to converge to a global minimum of the cost function as

shown in (Goldstein and Osher, 2009; Deng and Yin, 2012)

Some important points to note from the above update equations are: (i) The iterative update

for ct in (19) is separable in the spatial coordinate, i.e. the l1-minimization can be performed

at each voxel independently. (ii) The update equation (20) is separable in both the spatial

coordinate and gradient directions, i.e. the least squares fitting of parameters α, β can be

carried out for each gradient direction and at each spatial location r independently (iii) The

update equation for z (21) is separable in the gradient directions and b-values, i.e., solving

the TV de-noising problem in (21) amounts to solving a total of KNb scalar TV de-noising

problems on 3-D image volumes corresponding to K different directions of diffusion

encoding and Nb q-shells. It is important to note that the separable structure of the update

equations (21)–(23) suggests significant numerical advantages through the use of parallel

computing.

Intuitively, an optimal solution to (13) is expected to attain a consensus between sparse

ridgelet approximation in the spherical domain, a monotone signal decay in the radial

domain, and piecewise smoothness of 3-D diffusion volumes in the spatial domain. Thus,

the optimal solution would be the one which satisfies the regularity imposed for each of the

three terms (sparsity in spherical, monotonic decay in radial and minimum TV-norm in the

spatial domain). The update equations for  and  exemplify these points where the

“error” between the solution from different domains is fed-back into the system, eventually

converging to zero.

Finally, we note that, if one sets λ3 = 0 in (13), it would lead to solving the cost function

without the TV-norm. In such a scenario, we do not have a variable z and the minimization

proceeds by iteratively updating ct and αt, βt, with δz = 0. Thus, the above update equations
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are a solution to the most generalized problem and specific update equations can be obtained

by setting the appropriate parameters to zero.

4.4. Practical considerations

While the overall minimization procedure is described in the previous section, there are a

few parameters that need to be set for a successful execution of the proposed framework.

Specifically, we first describe a way to set the parameter ρ in the construction of the

spherical ridgelet basis (3). While, this parameter was set to 0.5 in our earlier works

(Michailovich et al., 2008, 2011), here, we use a line search minimization procedure to set

the value of ρi while constructing the basis Ai for each value of bi. Given a representative

sample of the white matter diffusion signal for a given b-value, we find the optimal ρ that

minimizes the error in fitting the signal. The representative sample could be obtained from

in vivo scans, from phantom data set or using a synthetic model of the data. In this work, we

used the data from a single fiber voxel from a phantom data set that closely approximates

the diffusion signal in vivo.

In our experimental study, we set λ1 = λ2 = λ3 = 1, thereby assigning for the terms

corresponding to spherical (SR basis), radial (radial decay function) and TV-norm (spatial

smoothness). Although the ADMM algorithm is guaranteed to converge for an arbitrary

choice of parameters δf > 0 and δz > 0, in our numerical experiments, the fastest convergence

was observed for δf = δz = 0.5. In this work, we used the homotopy based algorithm of (Asif

and Romberg, 2009) to solve the l1-minimization problem in (19), although other choices

are also available (Becker et al., 2009; Beck and Teboulle, 2009; Candes et al., 2008). To

solve the TV-minimization, we used the fixed point algorithm of (Chambolle, 2004) and

utilized the nonlinear least squares fitting routine ‘lsqnonlin’ from the MATLAB

(Mathworks Inc.) toolbox to carry out the minimization in (20).

5. Experiments

To evaluate the proposed algorithm, we constructed a physical phantom with diffusion

properties similar to that of human brain tissue. The phantom consisted of a spherical

spindle wound with 15μm polyfil fibers to obtain a 45° crossing angle. A detailed

description of how the phantom was made is given in (Moussavi-Biugui et al., 2011). The

phantom was scanned using a Siemens 3T scanner at a spatial resolution of 2mm × 2mm ×

7mm, so that the crossing region lay in the center of the axial slice. We used a larger slice

thickness to ensure that all crossing fibers contributed to the diffusion signal (the crossing

region is a few millimeters deep as seen in Figure 2). The average fractional anisotropy (FA)

for the single fiber region at a b-value of 1000 was 0.78. This is very close to the FA value

estimated (0.79) in in-vivo human brain as reported by several authors.

The main goal of this work has been to show that the diffusion signal in the entire q-space

can be recovered using a sub-critical (incomplete) set of measurements. We should point out

that once the signal is recovered, any type of diffusion model can be used to analyze the

resulting data. For example, the signal could be used to compute the orientation distribution

function (ODF), the EAP, return-to-origin probability, kurtosis, fast and slow diffusing
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compartments, free-water compartment, or any of the novel measures proposed in (Özarslan

et al., 2013).

To perform a quantitative comparison of our signal reconstruction technique, we needed a

“gold standard” data set. To obtain one, we acquired 10 separate scans (repetitions) of the

phantom with the following acquisition parameters : b-values of {1000, 2000, 3000, 4000,

5000} s/mm2, 81 gradient directions per shell (a total of 405 measurements) and lines b = 0

image. The 10 scans were then averaged to obtain the “gold standard” data with high SNR

(signal-to-noise ratio).

In order to quantify the effect of noise as well as to ensure that we do not introduce bias in

the signal reconstruction process by subsampling the high-angular resolution data

(subsampling could potentially smooth the data, which does not occur in realistic scenarios),

we acquired the following data sets to test the signal reconstruction accuracy of our

algorithm: For each of the following number of gradient directions K = {16, 20, 24, 26, 30,

36, 42, 60}, we acquired MSDI data over a total of 5q-shells corresponding to b = {1000,

2000, 3000, 4000, 5000} s/mm2. Thus, the first data sample consisted of 16 gradient

directions at each of the b-values (a total of 80 measurements). Further, 5 repetitions were

acquired for each of these data samples to test the effect of noise on signal reconstruction

quality. Signal reconstruction was performed using each of these 5 repetitions separately,

and error metrics were computed from the same. The average SNR for each b-value shell

was b = {15.5, 10.60, 8.02, 7.1, 6.7} and the overall average over all gradient directions and

b-values was 9.5 ( SNR = s/σ, where s is the mean signal and σ is the standard deviation).

The average SNR was estimated by computing the mean of the SNR estimated for each

gradient direction and at each voxel location. Given that the SNR is quite low, the results

obtained in this work show the effectiveness of the proposed method in the presence of high

noise.

5.1. Comparison metrics

To test the signal reconstruction ability of the proposed algorithm, we used a number of

quantitative metrics which are described below.

1. Normalized mean squared error (NMSE) in signal reconstruction: Let s(r)

denote the reconstructed signal at location r, and sg(r) represent the “gold standard”

signal obtained as described earlier. Then, the NMSE error Ns in signal

reconstruction can be computed as

(22)

where |Ω| is the number of voxels in the region of interest.

2. Angular error: The peak of the fiber orientation distribution function (fODF)

indicates the most likely orientation of the fibers at each voxel location. The peaks

of the ODF are often used by deterministic tractography methods to map the

anatomical connectivity of the brain. Thus, accurate estimation of the fODF peaks
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is imperative for proper tracing and study of white matter fiber bundles. For the

case of the phantom data set, the ground truth in the crossing region is known (45°),

whereas for the in-vivo case, the ground truth was computed from the fully

sampled data set. For the phantom data, our main goal was to visualize if any

particular sampling scheme (data sets) overestimated or underestimated the angle

between the two fiber bundles and as such, we computed the deviation of the

estimated fiber orientation from the ground truth of 45°. Consequently, we report

the estimated angle between the fiber bundles in the crossing region of the phantom

data.

Since ground truth is not known for in-vivo data, the angular error AE over a pre-

defined region of interest Ω can be computed using

(23)

where vg is the “gold standard” orientation and v is the estimated orientation. At

each voxel r, we expect one or more significant orientation peaks of the fODF

given by np (number of peaks), and we sum over all peaks to compute the final

error at each voxel.

3. Percentage of Incorrect Peaks: Computation of the angular error as defined in

(23) is feasible only if the number of detected fODF peaks are the same in both, the

test data and the gold standard data. However, in many cases, the recovered signal

may miss a peak or generate spurious peaks that are false positives. Thus,

knowledge of the percentage of incorrect peaks in addition to the angular error can

provide the proper perspective on the accuracy of fODF estimated from the

recovered signal. We compute the fraction of incorrect peaks using the following

expression

(24)

where  is a binary function whose value is 1 if npg ≠ np and 0 otherwise (npg is the

number of peaks at a voxel in the gold standard data and np is the number of peaks

in the recovered data). In other words, we compute the percentage of voxels with

incorrect number of peaks and denote it by Ip.

4. NMSE error in estimation of return-to-origin probability Po: Another quantity

that can be directly computed from the signal is the return-to-origin probability or

zero displacement probability Po (Wu et al., 2008). Mathematically, Po can be

defined as Po = ∫ S(q)dq, where S(q) is the diffusion signal at q-value q. In

practice, however, we restrict the integrand to some maximum q-value (or b-value)

and perform numerical summation of the signal values over this domain. NMSE

error (Np) in the estimation of Po is computed as follows:
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(25)

where Pog is the return-to-origin probability of the gold standard. A significant

error in the computation of Po would imply that the radial decay is not accurately

estimated by a given algorithm.

We use all of these metrics to quantify the reconstruction quality of the data using the

proposed method as well as the l1 3D-SHORE method (Cheng et al., 2010). An important

point to note is that, we compute Ns and Np at all points at which the gold standard data is

available. Thus, essentially, for sparse methods, we compute the error in extrapolating the

data from incomplete samples and lower b-value data to higher b-value data (i.e., the entire

sampled q-space).

5.2. Results: Phantom data

Our goal is to determine the performance of the proposed method while varying the number

of MSDI measurements. Specifically, the community is still debating whether to use more b-

value shells or use more gradient directions per shell. Thus, for example, if the scan time

allows to acquire only 60 measurements, should we use three b-values with 20 directions

each or alternatively use two b-values with 30 directions each? Further, which set of b-

values to use is also not clear. The purpose of the extensive validation we perform in this

work is an attempt to answer these questions using the proposed algorithm.

From the phantom data set acquired above, we create the following multi-shell test data sets

to validate our method: For each of the following number of gradient directions K = {16, 20,

24, 26, 30, 36, 42, 60, 81}, we generated test data with the following b-values: (i) b = {1000,

3000} (2 q-shells), (ii) b = {1000, 2000, 3000} (3 q-shells), (iii) b = {1000, 2000, 3000,

4000} (4 b-shells), (iv) b = {1000, 2000, 3000, 4000, 5000} (5 b-shells). This corresponded

to a total of 36 data sets with differing levels of sparsity. Note that, for each of these 36 test

sets, we had 5 acquisitions (a total of 180 test sets) which we used to compute the average

error metrics described in the previous section.

5.2.1. Signal Reconstruction Error—Figure 3 shows the fODF computed from the

“gold standard” phantom data (81 gradient directions per shell, 5 b-value shells, and 10

repetitions) using the proposed method (spherical ridgelets with radial decay) and using the

SHORE basis. For the proposed method, we used the solid angle formulation of (Tristán-

Vega and Westin, 2011) to estimate the fODF. In the case of the SHORE basis, we set the

scaling parameter ψ = 500 after running several experiments (this choice of ψ gave the best

results). Note that, this choice of the parameter was optimal for the region that contained the

fibers, but not for the noisy isotropic region surrounding the fiber crossing, and hence no

fODFs are seen in this region in Figure 3(b). In particular, in this region, the SHORE

algorithm did not converge. However, our region of interest is really the single fiber and the

crossing fiber region and hence we compute all our error metrics only in this region.
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Figure 4 shows the values of NMSE obtained with each of the tested methods for all b-

values in use. An important point to note here is that, we extrapolate the signal reconstructed

using the incomplete data to all points in the q-space at which the gold standard data is

available. For example, for the case of K = 16 and two b-values b = {1000, 3000}, we

reconstruct the data at each of the 5 q-shells and 81 gradient directions per shell that is

available for the gold standard data. Thus, NMSE is computed over a wide range of q-space

at which one can hope to measure the signal with descent SNR.

Figure 4 shows that the NMSE in signal reconstruction Ns using the SR basis is less than 2%

for all data sets. Further, the NMSE for K = 20 and b = {1000, 2000, 3000} is 1.8%, whereas

for the full data set with all directions and b-values it is around 1.2%, which we believe is

not substantially different. On the other hand, the errors using the SHORE basis is less than

5% only if all b-values are used (yellow line in Figure 4b), indicating that it is not

particularly suitable for extrapolating data in the radial q-space domain.

5.2.2. Angular Error—Next, we show the angular error between the principal diffusion

directions obtained from the peaks of the fODFs. A maxima of the fODF is considered a

valid peak, if its value is at-least 20% of the highest peak in that fODF. The fODF peaks

were extracted from a spherical tessellation consisting of 2562 points sampled on the sphere.

The results in Figure 5(a) show that the angular error using the SR basis is never more than

5° even with K = 16 and two b-values (a total of 32 measurements), while it is about 2° for

K = 20 and three b-values. With increasing number of measurements, the error is within 1°.

A slight increase in error (0.42°) for K = 26 compared to K = 24 is partly due to noise in the

data as well as the fact that for K = 26 the measurements were not quite uniformly spread. In

general though, the error decreases with increasing number of measurements. However, note

that the angle between the fibers is underestimated when using two b-values, and

overestimated with three or more b-values. In the case of the SHORE basis, the angular error

is much higher with at-least a 6° error in all cases.

5.2.3. Incorrect Peak Detection—We should note that, the above angular errors were

computed only at voxels within the region of crossing fibers, where two fODF peaks were

detected. However, it is also important to know the percentage of voxels for which an

incorrect number of peaks were found. For the crossing region in the phantom data, we

computed the average number of voxels (normalized) with incorrect peaks (averaged over

the crossing region and the 5 repetitions).

From Figures 5(a) and 6(a), it becomes clear, that even though the angular error is very low

for K = 24 and two b-values (green line), in 10% of the voxels the fiber crossing is not

detected. However, with K = 20 and three b-values, the algorithm performs reasonably well

with about Ip = 5% and angular error of 2°. On the other hand, the SHORE basis does not

find the crossing fibers in a majority of the voxels unless at-least four b-values are used with

K = 42. Note that, in this case as well, about 15% of the voxels show only one peak, when

there exists two peaks in the gold standard data. Thus, the proposed method significantly

outperforms the SHORE-based reconstruction.
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Figure 7 shows the computed fODFs from signal recovered using the proposed method for

two different test sets (K = 20, 3 b-values, and K = 24, 3 b-values), as well as using the

SHORE basis (K = 20, 3 b-values, and K = 42 and 4 b-values). Note that, using the proposed

basis, the voxels where we do not find the second peak are at the interface of single and

crossing fiber regions (voxels which are circled). Further, these voxels have a very small

component that corresponds to the second peak. On the other hand, using the SHORE basis

and with K = 20 and 3 b-values, most of the voxels do not show the crossing fiber region.

However, a descent signal recovery with the SHORE basis can be seen with K = 42 and 4 b-

values (a total of 168 measurements).

5.2.4. Error in Po—Figure 8 shows the NMSE in the estimation of Po, the return-to-origin

probability. The proposed method estimates this quantity to a very high degree of accuracy

for all data sets (error is less than 0.1%). The best case scenario for the SHORE basis is an

error of about 1% when four b-values were used.

5.3. Results: In vivo

To test the proposed method in vivo, we scanned a young adult (age 25 years) in a 3T

Siemens scanner with the following acquisition parameters: (i) spatial resolution: 2.5 mm ×

2.5 mm × 2.5 mm, (ii) TE = 128 ms, TR = 10.4s, (iii) 60 gradient directions for each of the

following four b-values b = {900, 2000, 3600, 5600}s/mm2 and 10 b = 0 acquisitions (a total

of 250 acquisitions). To obtain a sparse set of samples, we subsampled this data set by

fitting an order 10 spherical harmonic basis (without any regularization), which can

characterize the high-frequency noise in the data and then evaluating the values at the

desired location for each b-value. Figure 9 shows the estimated fODF’s using the proposed

method with all measurements (gold standard) and with K = 20 directions and three b-values

b = {900, 2000, 3600}. The return-to-origin probability Po is also shown in the background

for each of the fODF glyphs.

For better visualization, a zoomed-in version of the glyphs where a 3-way fiber crossing is

visible is shown in Figure 10. This is the region in the centrum semiovale, where the corpus

callosum, the cortico-spinal tract and the superior-longitudinal fasciculus (SLF) cross each

other. Note the similarity of the fODF’s in the crossing areas, using the sparsely sampled

data (K = 20 and three b-values) and the gold standard.

On a quantitative note, for the white matter region shown in Figure 9, the average angular

error of the proposed algorithm with respect to the gold standard was 3.6°. The error in

estimation of the signal (NMSE - Ns) was 0.008, whereas the NMSE in estimation of Po was

0.0001.

Figure 11 shows the fODFs estimated using the SHORE basis for the same region shown in

Figure 9. Note that, the SHORE basis fails to detect the crossing at a few voxel locations

even using the gold standard data. On the other hand, the fODF from the sub-critically

sampled data misses a lot of secondary peaks.

We also computed the return-to-origin probability Po in the entire brain using the gold

standard as well as the sub-critically sampled data (K = 20, three b-values). Figure 12 shows
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an axial slice of the computed Po as well as a difference image scaled to better visualize the

areas of differences (NMSE Np). The average NMSE Np computed over the entire brain

region was 1.63 × 10−4, which indicates the accuracy of our estimation approach using

incomplete measurements.

Finally, in Figure 13, we show three representative slices in the brain where we computed

the NMSE error in signal estimation (Ns). The error was computed between the gold

standard and sub-critically sampled data with 60 measurements (K = 20, three b-values). The

average NMSE over the entire brain was 0.0068, however for better visualization we scaled

the error values so that a value of 100 corresponded to an error of 0.1. Note that the signal

estimation error is relatively large mostly in the areas near the skull, and significantly lower

in the gray and white matter areas.

In Figure 14, we computed the mean kurtosis at each voxel using data with 60

measurements, by computing the kurtosis along each gradient direction followed by taking

the mean as is shown in Jensen et al. (2005). Kurtosis measures the amount of non-Gaussian

diffusion, which is highest in tightly bound fiber bundles like the corpus callosum (blue

regions in the figure) and is close to zero in the CSF areas (red) where diffusion is almost

unrestricted.

6. Discussion

In this work, we proposed a novel framework for recovering dMRI data in the entire q-space

from very few measurements. In particular, the proposed method is designed to use diffusion

samples acquired at multiple q-shells by extending the spherical ridgelets basis to be used

within a MSDI framework. We proposed a new monotonically decreasing radial decay

function to be used within the estimation framework, which allows accurate modeling of

single and multi-exponential attenuation of diffusion signal as a function of b-value. A novel

application of the ADMM algorithm along with a total-variation based spatial regularity

term was used for consistent and spatially regular recovery of the diffusion signal from a

sub-critically sampled diffusion measurements.

Through a comprehensive analysis of a physical phantom data set, and from in-vivo

experiments, it is evident that at-least 60 measurements are required for a satisfactory

recovery of the dMRI data that is equivalent to a fully sampled data set with 240

measurements. Some of the conclusions one can draw from the experimental analysis done

earlier are: (i) For the same number of measurements, spreading the acquisition over three q-

shells is slightly better than over two q-shells. For example, from Figures 4, 5 and 6, it is

clear that 60 measurements with three b-values (20 measurements per shell) is a slightly

better than spreading them over two b-values (30 measurements per shell). In making this

choice, we preferred to have fewer incorrect peaks and sacrifice a little of the angular

accuracy (about 1 – 2°). (ii) Depending on the amount of time one is willing to spend on a

dMRI scan, it is evident that at-least 60 measurements are needed for a good recovery of the

dMRI signal (in the entire q-space, and not just in the lower b-value range) using the

proposed method. However, as expected, the more the measurements, the lower the error

(although, the gain in accuracy with more measurements is not substantial). (iii) For the
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phantom and in-vivo data, the measurements estimated beyond a b-value of 3000 was quite

accurate, indicating that acquisition of up-to a maximum b-value of 3000 – 3500 is probably

enough for recovering information in the remaining q-space3.

We should note that, we used one particular method to recover the fODFs in this work.

However, there exist a lot of different formulations which could be used to obtain the fiber

ODF’s, the EAP as well as other measures of diffusion. These methods could be used to

analyze the data once the full diffusion signal is recovered from sparse measurements using

the method proposed in this work. One of the limitations of the present study is that we do

not know how accurately the proposed method preserves long range fiber connectivity. A

detailed investigation of this aspect as well as its effect on network connectivity measures

will form part of our future work.
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Highlights of the paper

1. We present a novel method for reconstruction of the diffusion MRI signal from

sparse measurements

2. A novel function to model the bi-exponential decay of the signal in the radial q-

space.

3. Novel algorithmic derivation for spatially smooth signal reconstruction.

4. Extensive experiments done on phantom and in-vivo data.

5. Our results show very low error in the recovered signal using at-least 60

samples.
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Figure 1.
Radial decay function f(b) that we use to model signal attenuation with increasing b-values.

Various curves for different parameter settings α, β are shown.
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Figure 2.
The spherical phantom with a 45° crossing angle is shown along with the baseline and color

coded FA images.
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Figure 3.
fODF computed form the “gold standard” data using the proposed method (SR basis) and

the SHORE basis.
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Figure 4.
NMSE in signal reconstruction Ns computed using the proposed SR basis (a) and the

SHORE basis (b). x-axis is the number of gradient directions K per b-value, while the

colored plots represent the errors for different number of b-values used. Notice that, for the

SR basis, the signal reconstruction error is significantly lower (by a factor of 10) compared

to the SHORE basis.
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Figure 5.
Estimated fODF angle (in degrees) between the fiber bundles using the proposed SR basis

(a) and the SHORE basis (b). x-axis is the number of gradient directions K per b-value shell,

while the colored plots are the errors for different number of b-value shells used. Note that,

the y-axis in both plots has a very different range.
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Figure 6.
Incorrect number of fiber peaks Ip detected (normalized to 1) using the proposed SR basis

(a) and the SHORE basis (b). Note that, the y-axis has a very different range in both the

plots.
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Figure 7.
Computed fODF’s from dMRI data recovered using the proposed method and from a total of

60 measurements (K = 20, b = {1000K = 20, b = {2000, 3000}) and 72 measurements (K =

24, b = {1000K = 24, b = {2000; 3000}. Also shown is the fODF field recovered using the

SHORE basis with K = 20 and three b-values (where most voxels do not show a crossing) as

well as K = 42 and four b-values. Some of the voxels, where the the second peak was not

found are circled.

Rathi et al. Page 31

Med Image Anal. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8.
NMSE error in return-to-origin probability using the proposed method and SHORE. Note

that, for the proposed method, the error is less than 0.1%, but much higher for the SHORE

basis.
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Figure 9.
fODF glyphs are shown for the rectangular region in the color FA image. Return-to-origin

probability Po was used as the background for the glyphs, with (a) being the gold standard

computed from all the 240 measurements, while (b) was obtained with 60 measurements.
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Figure 10.
Two and three fiber crossing of the fODFs estimated in the centrum semiovale region using

(a) the gold standard, and (b) sub-critically sampled data (60 measurements).
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Figure 11.
fODF glyphs estimated using the SHORE basis with the gold standard and sub-critically

sampled data.
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Figure 12.
(a) shows an axial slice of the estimated return-to-origin probability Po and (b) shows the

NMSE error in estimation of Po. The image in (b) was scaled for better visualization so that

the highest error of 0.01 was scaled to 250.
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Figure 13.
Three representative slices showing the NMSE error in signal estimation using the sub-

critically sampled data with K = 20 and three b-values. The error images were scaled for

better visualization so that the highest error of Ns = 0.1 was scaled to 100.
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Figure 14.
Figure shows a coronal slice with mean kurtosis computed at each voxel. Highest kurtosis is

seen in the tightly bundled white matter region (blue regions), while it decreases in gray

matter (yellow) and CSF areas (red). In this figure, the kurtosis values were scaled to a range

of 0 to 255 for better visualization.
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