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Abstract

The human cerebral cortex develops extremely dynamically in the first two years of life. Accurate

and consistent parcellation of longitudinal dynamic cortical surfaces during this critical stage is

essential to understand the early development of cortical structure and function in both normal and

high-risk infant brains. However, directly applying the existing methods developed for the cross-

sectional studies often generates longitudinally-inconsistent results, thus leading to inaccurate

measurements of the cortex development. In this paper, we propose a new method for accurate,

consistent, and simultaneous labeling of longitudinal cortical surfaces in the serial infant brain MR

images. The proposed method is explicitly formulated as a minimization problem with an energy

function that includes a data fitting term, a spatial smoothness term, and a temporal consistency

term. Specifically, inspired by multi-atlas based label fusion, the data fitting term is designed to

integrate the contributions from multi-atlas surfaces adaptively, according to the similarities of

their local cortical folding with that of the subject cortical surface. The spatial smoothness term is

then designed to adaptively encourage label smoothness based on the local cortical folding

geometries, i.e. allowing label discontinuity at sulcal bottoms (which often are the boundaries of

cytoarchitecturally and functionally distinct regions). The temporal consistency term is to

adaptively encourage the label consistency among the temporally-corresponding vertices, based on

their similarity of local cortical folding. Finally, the entire energy function is efficiently minimized

by a graph cuts method. The proposed method has been applied to the parcellation of longitudinal

cortical surfaces of 13 healthy infants, each with 6 serial MRI scans acquired at 0, 3, 6, 9, 12 and

18 months of age. Qualitative and quantitative evaluations demonstrated both accuracy and

longitudinal consistency of the proposed method. By using our method, for the first time, we

reveal several hitherto unseen properties of the dynamic and regionally heterogeneous

development of the cortical surface area in the first 18 months of life.
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1. Introduction

The human cerebral cortex develops dynamically in both structure and function in first years

of life (Lyall et al., 2014; Nie et al., 2013a; Nie et al., 2012). At term birth, all primary and

secondary cortical folding are present (Hill et al., 2010), resembling the morphology of the

adult brain, and are then well preserved during the dynamic postnatal cortex development

(Li et al., 2013a). For example, in the first year of life, the cortical gray matter volume

doubles (Gilmore et al., 2012) and the cortical surface area expands 1.8 times (Li et al.,

2013a). Increasing evidences suggest that many neurodevelopmental disorders are likely the

results of abnormal development in this critical stage of rapid cortex growth (Gilmore et al.,

2012; Lyall et al., 2014). Thus, studying the dynamic cortex development during this stage

using MR images would greatly increase our limited knowledge on normal early brain

development and also provide important insights into neurodevelopmental disorders

(Gilmore et al., 2012; Li et al., 2014c; Lyall et al., 2014).

Cortical surface-based analysis is particularly suitable for studying the dynamic

development of the highly-folded and thin cortex, as these methods respect the topology of

the cortex and facilitate the alignment, analysis, functional mapping and visualization of

buried sulcal regions (Dale et al., 1999; Van Essen et al., 2001). Moreover, cortical surface-

based measurements, such as the surface area, cortical thickness, sulcal depth, cortical

folding, and cortical gyrification, provide a very detailed picture on how the cortex develops

(Li et al., 2014a). Parcellation of cortical surfaces into a set of Regions of Interest (ROIs) is

of fundamental importance in localizing structural/functional regions and mapping regional

cortex development. However, manual parcellation of the highly-folded cortical surface is

extremely tedious, time-consuming, and subject to inter-rater variation. Accordingly, many

methods have been proposed for cortical surface parcellation in the cross-sectional adult

studies, based on the sulcal-gyral folding geometries from structural MR images (Cachia et

al., 2003; Desikan et al., 2006; Destrieux et al., 2010; Fischl et al., 2004; Hu et al., 2010;

Joshi et al., 2012; Klein and Hirsch, 2005; Klein and Tourville, 2012; Li et al., 2009; Li et

al., 2013c; Liu et al., 2004; Lohmann and von Cramon, 2000; Nie et al., 2007; Rettmann et

al., 2002; Shi et al., 2013; Van Essen et al., 2012; Wan et al., 2008; Yang and Kruggel,

2008; Yeo et al., 2008; Zhang et al., 2010).

Recently, longitudinal neuroimaging studies of the dynamic brain development in the first

years of life have received increasing attention (Almli et al., 2007; Fan et al., 2011; Gilmore

et al., 2012; Li et al., 2013a; Li et al., 2014b; Nie et al., 2013b; Shi et al., 2010; Shi et al.,

2011). Because these longitudinal studies can uniquely capture the dynamic developmental

trajectory of each individual and are also less influenced by the confounding effects of inter-

subject variation, compared with the cross-sectional studies (Bernal-Rusiel et al., 2012; Li et

al., 2014a). Due to the highly convoluted and variable cortical folding (Li et al., 2010b; Nie

et al., 2010; Zhang et al., 2009), cortical surface parcellation often involves the highly

complex nonlinear optimization, thus subtle changes of the cortical folding could lead to

significantly different parcellation results. Hence, applying existing cross-sectional methods

to each longitudinal infant cortical surface independently is likely to generate the

longitudinally-inconsistent surface parcellation, especially for those small-sized cortical

regions and ambiguous cortical regions. This will eventually lead to inaccurate
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measurements of longitudinal cortex development in infants. Therefore, a method for

accurate and consistent parcellation of longitudinal dynamic infant cortical surfaces is

essential to understand the early brain development in both healthy and high-risk infant

populations.

To ensure the longitudinal consistency of cortical surface parcellation, one can first

parcellate the cortical surface of a selected time point (e.g., typically the first or the last time

point) by using an existing cross-sectional method, and then propagate its parcellation result

onto the cortical surfaces of other time points. However, this type of parcellation results

would be biased by the selected time point, in addition to the propagation of potential

labeling errors. Accordingly, efforts have been made recently towards unbiased and

temporally consistent parcellation of longitudinal cortical surfaces from adult serial MR

images (Reuter et al., 2012). For example, in the longitudinal pipeline of FreeSurfer (Reuter

et al., 2012), a within-subject template is first built by rigidly aligning all longitudinal

images of a subject to its median time-point image. Then the cortical surfaces of the within-

subject template are reconstructed and parcellated using the conventional cross-sectional

method (Fischl et al., 2004). Next, the parcellated cortical surfaces of the within-subject

template are rigidly transformed back to the space of each longitudinal image as the

initialization. Finally, the initialized cortical surface parcellation is further refined

independently for each time point to achieve the longitudinal consistency (Reuter et al.,

2012). Although this independent refinement of each longitudinal surface might be suitable

for the adult brains with small longitudinal changes (Reuter et al., 2012), it becomes

problematic when applied to the infant brains with dynamic longitudinal development.

In this paper, we present a new method for accurate, consistent, and simultaneous

parcellation of longitudinal dynamic cortical surfaces from serial infant brain MR images.

The proposed method is explicitly formulated as a minimization problem of an energy

function, which includes a data fitting term, a spatial smoothness term, and a temporal

consistency term. Inspired by the recent success of multi-atlas based labeling, the data fitting

term is designed to integrate the contributions from multiple atlas surfaces adaptively,

according to the similarities of their local cortical folding with that of the subject cortical

surface. The spatial smoothness term is designed to adaptively encourage the label

smoothness based on the local cortical folding geometries. The temporal consistency term is

further designed to adaptively encourage longitudinal label consistency based on the

temporal similarities of local cortical folding. The energy function is efficiently minimized

by the alpha-expansion graph cuts method (Boykov and Kolmogorov, 2004). In our method,

all longitudinal cortical surfaces of the same infant are treated equally and labeled jointly,

thus the longitudinal surface parcellation results are unbiased (not dominated by any specific

time-point). Since adaptive temporal constraints are imposed in our method, the longitudinal

surface parcellation results are temporally consistent, with no temporally-unrealistic

(bumpy) changes. The proposed method has been applied to label the longitudinal cortical

surfaces of 13 healthy infants, each with 6 serial MRI scans at 0, 3, 6, 9, 12 and 18 months

of age. Both qualitative and quantitative evaluation results demonstrate the accuracy and

consistency of the proposed method.
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A preliminary version of this work was presented at the International Conference on

Medical Image Computing and Computer Assisted Intervention (MICCAI) (Li et al.,

2013b). This paper significantly extends the preliminary version with more details on

introduction of methodology and also more extensive validations and discussions.

Moreover, by using the proposed method, this paper presents several hitherto unseen

properties of the dynamic, age-related, and regionally heterogeneous development of the

cortical surface area in the first 18 months of life.

2. Materials and Methods

2.1 Subjects and MR Image Acquisition

This study was approved by the Institutional Review Board of the University of North

Carolina (UNC) School of Medicine. Pregnant mothers were recruited during the second

trimester of pregnancy from the UNC hospitals. Informed consent was obtained from both

parents. Exclusion criteria included abnormalities on fetal ultrasound, or major medical or

psychotic illness in the mother. Infants in the study cohort were free of congenital

anomalies, metabolic disease, and focal lesions. No sedation was employed and all infants

were imaged during natural sleep. A physician or nurse was present during each scan, and a

pulse oximeter was used to monitor heart rate and oxygen saturation. More information on

subjects can be found in (Li et al., 2014a; Nie et al., 2012; Wang et al., 2012b). Each infant

was planned to be scanned every 3 months from birth till year 1 and again at 18 months. 13

healthy infants (9 males/4 females), each with 6 serial MRI scans (acquired at 2 weeks, 3, 6,

9, 12 and 18 months of age, respectively), were used in this study.

Serial T1-, T2-, and diffusion-weighted MR images of each infant were acquired using a

Siemens 3T head-only MR scanner with a 32 channel head coil. T1 images (144 sagittal

slices) were acquired with the following imaging parameters: TR = 1900 ms, TE = 4.38 ms,

flip angle = 7, acquisition matrix = 256 × 192, and voxel resolution = 1 × 1 × 1 mm3. T2

images (64 axial slices) were acquired with the imaging parameters: TR/TE = 7380/119 ms,

flip angle = 150, acquisition matrix = 256 × 128, and voxel resolution =1.25 × 1.25 × 1.95

mm3. Diffusion-weighted images (DWI) (60 axial slices) were acquired with the parameters:

TR/TE = 7680/82 ms, acquisition matrix = 128 × 96, voxel resolution = 2 × 2 × 2mm3, 42

non-collinear diffusion gradients, and diffusion weighting b =1000s/mm2. More information

on image acquisition can be found in (Nie et al., 2012; Wang et al., 2012b).

2.2 Image Preprocessing

Distortion correction of DWI was performed and the respective fractional anisotropy (FA)

images were then computed (Wang et al., 2012b; Yap et al., 2011). T2 and FA images were

rigidly aligned onto their T1 image and further resampled to 1 × 1 × 1 mm3 using FLIRT in

FSL (Smith et al., 2004). For each set of aligned T1, T2, and FA images, non-cerebral

tissues, such as the skull, brain stem and cerebellum, were removed. Specifically, the skull

was removed by an infant-specific learning-based method (Shi et al., 2012). The brain stem

and cerebellum were removed by propagation of their masks from the atlas images to the

subject image by using in-house developed registration methods (Shen and Davatzikos,

2002; Wu et al., 2006; Xue et al., 2006; Zacharaki et al., 2008). Intensity inhomogeneity
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correction was performed by N3 (Sled et al., 1998). All longitudinal images of the same

infant were then rigidly aligned using FLIRT in FSL (Smith et al., 2004). Longitudinally-

consistent tissue segmentation was performed by an infant-specific 4D level-set method

(Wang et al., 2014a; Wang et al., 2011; Wang et al., 2012b). It integrates the prior

information from infant brain atlases built by groupwise registration (Jia et al., 2010; Tang

et al., 2009), the longitudinal information by 4D image registration (Shen and Davatzikos,

2004) and also the complementary information from T1, T2 and FA images. After tissue

segmentation, non-cortical structures were masked and filled, and each brain was separated

into left and right hemispheres (Li et al., 2013a; Li et al., 2014b).

2.3 Cortical Surface Reconstruction and Registration

Based on the tissue segmentation results, the inner cortical surface (the interface between

white matter (WM) and gray matter (GM)) of each hemisphere was reconstructed by

tessellating the topology-corrected WM as a triangular mesh (Li et al., 2013a; Li et al.,

2012). The inner cortical surface was then deformed by preserving its initial topology for

reconstruction of the central and outer cortical surfaces (Li et al., 2012). The inner cortical

surface was further inflated and mapped to a standard sphere by minimizing the metric

distortion between the original surface and its spherical representation (Fischl et al., 1999).

For each hemisphere, all longitudinal cortical surfaces of the same infant were group-wisely

aligned to establish the within-subject longitudinal correspondences by using Spherical

Demons (Yeo et al., 2010), based on their cortical folding patterns. Fig. 1(a) shows the

longitudinal inner surfaces of the left hemisphere of a representative infant, color-coded by

the mean curvatures. Fig. 1(b) shows the group-wisely aligned longitudinal spherical

surfaces of the left hemisphere of the infant, again color-coded by the mean curvatures. As

can be seen, all primary and secondary cortical folding are well established at term birth.

Moreover, primary and secondary cortical folding is quite stable during the dynamic

postnatal cortex development, and thus is well aligned by the group-wise surface

registration.

We adopted our multi-atlas surfaces from the publically available 39 cortical surfaces with

manual parcellation based on sulcal bottoms by experts (Desikan et al., 2006; Yeo et al.,

2010). This dataset has been used for training the classifiers for cortical surface parcellation

in FreeSurfer (Fischl, 2012). In these atlases, cortical surfaces were reconstructed by using

FreeSurfer (Fischl, 2012), and each cortical surface was labeled as 35 ROIs, with the

structures listed in Table 1. More information on image acquisition, image processing, and

demographics can be found in (Desikan et al., 2006; Yeo et al., 2010). To align all these

atlas surfaces to a subject surface, one strategy is to perform pairwise registration between

each atlas surface and the subject surface. However, this strategy is computationally

expensive, as for each subject surface we have to repeat this procedure. Herein, we adopted

another efficient strategy. First, we groupwisely aligned all atlas surfaces by using Spherical

Demons (Yeo et al., 2010). Fig. 2 shows the exemplars of atlas surfaces manually labeled by

experts and also the aligned boundaries (blue curves) of their labeled ROIs after group-wise

spherical registration of atlas surfaces, overlaid on the standard spherical surface. As can be

seen, most of the boundaries of ROIs in atlas surfaces are approximately aligned together,

indicating reasonable group-wise registration results. Then, each longitudinal surface of an
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infant was aligned with the group-wisely aligned atlas surfaces based on their group-mean

and variations of cortical folding geometries by using Spherical Demons (Yeo et al., 2010).

Finally, the deformation field from each atlas surface to each subject surface was computed

by concatenating the deformation field from this atlas surface to its group-wisely aligned

atlas surface and that from its group-wisely aligned atlas surface to the subject surface.

Accordingly, each atlas surface can be warped onto each subject surface. Note that the

group-wise registration of all atlas surfaces was performed only for one time, and then used

for all subjects. Note, this is computationally much more efficient than the conventional way

of pair-wisely registering each atlas surface with each longitudinal surface of a subject. On

the other hand, due to the considerable inter-subject variability of the cortical folding and

also the regularization constraints imposed in the surface registration method, a subject

surface and each warped atlas surface might not reach the best matching of their local

cortical folding. This issue will be taken care in our longitudinal surface parcellation

method, which will be introduced in Section 2.4.

2.4 Simultaneous and Consistent Parcellation of Longitudinal Infant Surfaces

After warping multi-atlas surfaces into the spherical spaces of infant surfaces, the proposed

method for consistent and simultaneous labeling of all longitudinal dynamic cortical

surfaces of an infant is explicitly formulated as the following energy minimization problem:

(1)

where Ed is the data fitting term, Es is the spatial smoothness term, and Et is the temporal

consistency term. αs and αt are the weighting parameters for the spatial smoothness term and

temporal consistency term, respectively. Each term is carefully designed to be responsible

for one specific aspect of the longitudinal surface parcellation, as will be detailed in the

following sections.

Data Fitting Term—Inspired by the recent success of multi-atlas based labeling methods

(Artaechevarria et al., 2009; Heckemann et al., 2006; Langerak et al., 2010; Sabuncu et al.,

2010; Wang et al., 2012a; Wang et al., 2014b; Warfield et al., 2004; Wu et al., 2013), to

define the data fitting term, we take advantage of multiple atlas surfaces to account for

considerable variability of the cortical folding between subjects and atlases. In general, the

data fitting term encourages to propagate the labels from those atlas surfaces with similar

cortical folding as the subject surface. Specifically, given K atlas surfaces with each having

labels defined by experts, the data fitting term is defined as:

(2)

where Px(lx) indicates the probability of assigning a label lx ∈ {1, …, L} to a vertex x in a

subject surface. The label probability at a vertex is computed based on the shape information

of labels in the atlas surfaces, as well as the differences of local cortical folding between the

subject surface and the atlas surfaces. The latter is defined based on the average absolute

difference of their mean curvatures in local surface patches:
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(3)

where D(·,·) is the cortical folding difference between two surface patches, and S(·) is a local

surface patch, defined as a circular region Ωs with the radius of 2.5 mm (which was set

experimentally) surrounding a center vertex (such as x or xk) on the spherical surface, as

illustrated by small red circles in Fig. 3. |Ωs| is the number of vertices in the surface patch.

For the vertex x in a subject surface, xk is its corresponding point in the atlas surface k. y is a

vertex in the subject surface patch, and yk is its corresponding point in the atlas surface k.

H(·) is the mean curvature. Note that other cortical folding measures could also be

potentially used for defining the differences of local cortical folding between the subject

surface and the atlas surfaces.

In multi-atlas based labeling, shape-based methods have been demonstrated to achieve more

reasonable results than voxel-based methods (Rohlfing and Maurer, 2007; Sabuncu et al.,

2010). To use shape information of labels in atlas surfaces, we adopt the logarithm of odds

model (Pohl et al., 2006; Sabuncu et al., 2010) based on the signed geodesic distance map

on the original cortical surface, computed by the fast marching method on triangular meshes

(Kimmel and Sethian, 1998; Li et al., 2010a; Li et al., 2008). For the vertex x in a subject

surface, denote dk,lx(·) as the signed geodesic distance map of the label lx in the atlas surface

k that has been warped onto the subject surface. By setting the inside of the label as positive

values, the label probability of the vertex x is defined as:

(4)

where  is the partition function for atlas surface k. The first

term in Eq. (4) is the weight of the atlas surface k, and the second term in Eq. (4) is the

probability of observing label lx at subject vertex x based on the atlas surface k. Positive

parameters β and γ are experimentally set as 1.0 and 2.0, respectively.  could be the

corresponding point xk in the atlas surface k for the subject vertex x, determined by surface

registration in Section 2.3. However, it might not achieve the maximum similarity of local

cortical folding due to the possible registration errors and smoothness constraints in the

surface registration method. Therefore, after surface registration, a better corresponding

point  in the atlas surface k for the subject vertex x can be further determined by local

search for the most similar surface patch: .

Herein, N′(·) is a search range on the atlas surfaces, defined as a circular region with the

radius of 2.5mm surrounding the vertex x on the spherical surface. The dark circle in Fig. 3

illustrates the cortical regions covered by the surface patch when performing the local

search.

Spatial Smoothness Term—The spatial smoothness term adaptively encourages the

label smoothness on the subject surfaces based on its local cortical folding geometry. It
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represents the sum of the costs of labeling of a pair of spatial neighboring vertices on the

subject surfaces:

(5)

where Ns is the set of the one-ring neighboring vertex pairs in the subject surfaces. 

indicates the cost of labeling a pair of spatial neighboring vertices x and y as lx and ly,

respectively. The costs of discontinuous labeling are set as small values at highly-bended

cortical regions, e.g., the sulcal bottoms. This is because the cytoarchitecturally and

functionally distinct cortical regions are often divided by the sulcal bottoms, and the manual

parcellation in atlas surfaces by experts are also based on the sulcal bottoms (Desikan et al.,

2006). The costs of discontinuous labeling are set as large value at other regions, such as the

flat cortical regions.  is thus defined as:

(6)

where n is the unit normal direction and δ is the Dirac delta function. If lx = ly, δ(|lx − ly|) =

1; otherwise, δ(|lx − ly|). Therefore, if lx = ly, which means that the neighboring vertices x

and y have the same label, the cost  is 0. At the highly-bended cortical regions,

e.g., the sulcal bottoms, x and y belonging to different cortical regions (such as illustrated by

the neighboring vertices a and c (or b and d) in Fig. 4) generally have quite different normal

directions and also large magnitudes of mean curvatures. Therefore, both the first and

second terms in Eq. (6) are small values. On the other hand, if x and y are in the same region

(such as illustrated by vertices a and b (or c and d) in Fig. 4), they generally have similar

normal direction, but large magnitudes of mean curvatures. In this situation, only the second

term in Eq. (6) is a small value. If x and y are at other cortical regions, i.e., the flat cortical

regions (as illustrated by the neighboring vertices e and f in Fig. 4), their normal directions

will be quite similar and their magnitudes of mean curvatures are close to 0. Hence, both the

first and the second terms in Eq. (6) are close to 1.

Temporal Consistency Term—The temporal consistency term adaptively encourages

label consistency of temporal corresponding regions. It represents the sum of costs of

labeling pairs of temporal corresponding vertices in longitudinal surfaces:

(7)

where Nt is the set of temporal corresponding vertex pairs, and is defined in any two

longitudinal surfaces of a subject, as illustrated by purple arrows in Fig. 3.  indicates the

cost of labeling a pair of temporal corresponding vertices x and y as lx and ly, respectively.

The cost of discontinuous labeling of temporal corresponding vertices is set based on the

similarity of their local cortical folding. To avoid bias and reduce the computational cost in

the conventional pair-wise registration of longitudinal cortical surfaces, temporal

correspondences are determined by group-wise registration of all longitudinal surfaces of the

same infant as mentioned in Section 2.3.
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Energy Function Minimization—Finally, the multi-label alpha-expansion graph cuts

method (Boykov and Kolmogorov, 2004) is adopted to minimize the above defined energy

function. Specifically, all longitudinal cortical surfaces of an infant are represented as an

undirected weighted graph . Herein, V is the set of nodes, including all vertices

on the longitudinal surfaces and the terminals represented by all labels.  is the

collection of edges, where  is the set of edges formed by both spatial neighboring vertices

and temporal corresponding vertices, called n-links, and  is the set of edges formed by

vertices to terminals, called t-links. In this graph, −logPx describes the edge weight of t-

links, and  and  describe the edge weights of n-links. For more details of the graph

cuts method, please refer to (Boykov and Kolmogorov, 2004).

3. Results

The proposed method has been applied to parcellation of longitudinal dynamic cortical

surfaces of 13 healthy infants, each with serial MRI scans acquired at 0, 3, 6, 9, 12 and 18

months of age. Parameters αs and αt in Eq. (1) were both set as 0.15 in all experiments.

After cortical surface registration, our method took around 10 minutes (for both energy

computation and minimization) to label all longitudinal cortical surfaces of each infant, on a

standard PC with Intel Xeon 2.26GHz CPU and 4GB memory.

3.1 Qualitative Validation

To visually demonstrate the proposed method, Fig. 5 showed the longitudinal cortical

surface parcellation results on the left hemisphere of 5 randomly selected infants by the

proposed method, with each color indicating a cortical region. For convenience of inspection

of the longitudinal surface parcellation in sulci, Fig. 6 provided the close-up views of results

in Fig. 5. As can be seen, the surface parcellation results were visually quite reasonable and

temporally consistent, with many ROIs divided by sulcal bottoms. To further demonstrate

the temporal consistency, Fig. 7 showed close-up comparisons of representative longitudinal

infant surface labeling results by the proposed method and by FreeSurfer (Desikan et al.,

2006; Reuter et al., 2012). For a fair comparison with FreeSurfer, by following the strategy

in longitudinal pipeline in FreeSurfer, we first aligned the within-subject mean surface of the

longitudinal infant cortical surfaces to the FreeSurfer atlas and parcellated this mean surface

using FreeSurfer classifier. Then, we initialized the registration and parcellation of each

longitudinal surface by using their within-subject mean surface. At last, each longitudinal

cortical surface was further refined to achieve the final parcellation. As can be observed in

Fig. 7, the proposed method achieved longitudinally more reasonable and consistent results

than the longitudinal FreeSurfer.

3.2 Quantitative Validation of Accuracy

Since there is no ground truth on longitudinal infant surface parcellation, to quantitatively

validate the accuracy, we manually annotated three representative cortical regions:

precentral gyrus (in frontal lobe), postcentral gyrus (in parietal lobe), and superior temporal

gyrus (in temporal lobe), in both the first and last time-point cortical surfaces of the left

hemisphere in each of the 13 infants. Manual annotation was conducted according to the
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mean-curvature based cortical surface labeling protocol in (Desikan et al., 2006). These

three ROIs were selected due to their relatively unambiguous anatomical boundaries and

important functional roles in the brain. We calculated the Dice coefficients between

automatically and manually labeled ROIs. Fig. 8 showed the Dice coefficients of precentral

gyrus, postcentral gyrus and superior temporal gyrus on the 13 infants by the proposed

method. For comparison, we also provided the results by the proposed method without

temporal constraint (by setting αt as 0) and also the longitudinal FreeSurfer in Fig. 8. For

precentral gyrus, the average Dice coefficients were 0.941±0.008 by the proposed method,

0.932±0.009 by the proposed method without temporal constraint, and 0.918±0.010 by the

longitudinal FreeSurfer, respectively. For postcentral gyrus, the average Dice coefficients

were 0.944±0.007 by the proposed method, 0.934±0.010 by the proposed method without

temporal constraint, and 0.916±0.012 by the longitudinal FreeSurfer, respectively. For

superior temporal gyrus, the average Dice coefficients were 0.939±0.013 by the proposed

method, 0.930±0.013 by the proposed method without temporal constraint, and 0.914±0.015

by the longitudinal FreeSurfer, respectively. As can be seen, the proposed method

consistently achieved higher Dice coefficients than any other two methods.

To further validate the accuracy, we also computed the average bidirectional boundary

distance errors (Li et al., 2010a) between manually-annotated ROIs and automatically-

parcellated ROIs by different methods, as shown in Fig. 9. Note that the distance was

measured as the geodesic distance on the cortical surface manifold (Li et al., 2010a). For

precentral gyrus, the average distance errors were 1.04±0.14 mm by the proposed method,

1.23±0.15 mm by the proposed method without temporal constraint, and 1.31±0.17 mm by

the longitudinal FreeSurfer, respectively. For postcentral gyrus, these values were 0.96±0.10

mm by the proposed method, 1.18±0.12 mm by the proposed method without temporal

constraint, and 1.25±0.12 mm by the longitudinal FreeSurfer, respectively. For superior

temporal gyrus, these values were 0.89±0.09 mm by the proposed method, 1.05±0.09 mm

by the proposed method without temporal constraint, and 1.20±0.10 mm by the longitudinal

FreeSurfer, respectively. Again, the proposed method consistently achieved lower boundary

distance errors than any other two methods.

3.3 Quantitative Validation of Consistency

To quantitatively validate the consistency of the longitudinal infant surface parcellation, we

defined a consistency measure for each cortical ROI as:

(8)

where a(i,x) is the accumulated time of label changes between each pair of temporally

neighboring time points at vertex x in ROI i, on the aligned longitudinal cortical surfaces. N

is the total number of time points of an infant, which is set as 6 in our application. Thus,

a(i,x) is in a range between 0 and 5. Ideally, C(i) should be close to 1, and larger values of

C(i) indicate better consistency of the longitudinal surface parcellation results. Fig. 10

showed the consistency measures in each of the 35 cortical ROIs of the 13 infants by the

proposed method, the proposed method without temporal constraint, and longitudinal
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FreeSurfer. As we can see, the proposed method is longitudinally much more consistent than

the other two methods in each ROI. Specifically, the average consistency measures for all

ROIs by 3 methods were: 0.980±0.010 (the proposed method), 0.946±0.030 (the proposed

method without temporal constraint), and 0.938±0.030 (longitudinal FreeSurfer),

respectively. Fig. 11 showed the improvement of the consistency measure in each of the 35

cortical ROIs by the proposed method, compared with both the proposed method without

temporal constraint and the longitudinal FreeSurfer. As can be seen, the improvement is

particularly pronounced in those small-sized ROIs without distinctive boundaries, e.g.,

frontal pole, temporal pole, entorhinal cortex, and isthmus cingulate cortex. Thus, for those

small-sized regions, the inconsistent labeling of longitudinal cortical surfaces would

seriously affect the accurate measurement of the infant cortex development.

3.4 Application to Study of Dynamic Cortical Surface Expansion in Infants

In this section, we applied the proposed method to study the dynamic, region-specific

cortical surface area expansion in multiple stages from 0 to 18 months of age, based on the

13 infants. For each pair of neighboring time points, the growth percentage of the cortical

surface area of each ROI was computed, as shown in Fig. 12. Meanwhile, we also preformed

statistical significance testing of the regional cortical surface changes by using 5000

permutation tests, with the p-values (after multiple comparisons correction (Blair and

Karniski, 1993)) shown in Fig. 13. For comparison, in Fig. 13, we also provided the p-values

of the results obtained by longitudinal FreeSurfer. As we can see, the proposed method

achieved more significant p-values than longitudinal FreeSurfer for the majority of cortical

regions at all developmental stages.

During the first 18 months of life, the cortical surface area growth was highly dynamic, age-

related, and regionally heterogeneous. Overall, the regional cortical surface area increased

most dynamically from birth to 3 months (23.2%), followed by an extremely regionally

heterogeneous increase from 3 to 6 months (8.3%) and a substantial increase from 6 to 9

months (13.1%), then exhibited a moderate increase from 9 to 12 months (7.9%) and finally

another substantial increase from 12 to 18 months (9.7%).

• In the first 3 months, the postcentral gyrus (somatosensory cortex), supramarginal

gyrus, precuneus cortex, lingual gyrus, and fusiform gyrus grew most dynamically;

while the transverse temporal gyrus (primary auditory cortex) and orbitofrontal

cortex grew slowest.

• From 3 to 6 months, the lateral occipital cortex (primary visual cortex), cuneus

cortex, pericalcarine cortex, transverse temporal gyrus, superior temporal gyrus,

paracentral lobule, superior parietal cortex and rostral middle frontal cortex

developed faster than other regions. Interestingly, several regions even exhibited

decreased surface area, including supramarginal gyrus, banks of the superior

temporal sulcus, isthmus cingulate cortex, and fusiform gyrus. However, none of

these decreasing regions was statistically significant, as shown in Fig. 13.

• From 6 to 9 months, the somatosensory cortex and vision related regions (including

the lateral occipital cortex, inferior temporal gyrus, fusiform cortex, lingual gyrus

and pericalcarine cortex) exhibited larger growth rates than other regions.
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• From 9 to 12 months, the supramarginal gyrus, fusiform gyrus, lingual gyrus,

middle and inferior temporal gyri exhibited the largest growth; while the lateral

occipital cortex, cuneus cortex and pericalcarine cortex showed the smallest

growth.

• From 12 to 18 months, the association cortex (including the superior frontal gyrus,

medial orbitofrontal cortex, middle temporal gyrus and supramarginal gyrus)

underwent the largest growth; while the primary auditory cortex and the vision

related regions underwent the smallest growth.

4. Discussion and Conclusion

This paper presents an original and novel method for consistent and simultaneous

parcellation of longitudinal dynamic developing infant cortical surface by using multi-atlas

surfaces. Previous methods for longitudinal surface parcellation are mainly developed for

the adult brains with subtle longitudinal changes, thus not suitable for the longitudinal

dynamic infant cortical surfaces (Li and Shen, 2011; Reuter et al., 2012). The main

contributions of the proposed method are threefold. First, we propose a data fitting term,

which is adaptively derived from multi-atlas surfaces and is based on the shape information

of manual labels by experts, to ensure the accuracy of the longitudinal surface parcellation

results. Second, we propose a spatial smoothness term adaptive to the local cortical folding

geometries, to ensure the smooth boundaries of the longitudinal surface parcellation results.

Third, we propose a temporal consistency term to explicitly incorporate temporal

consistency into the longitudinal surface parcellation results.

Note that too high values of the temporal consistency coefficient could lead to longitudinal

consistent but incorrect results. To impose adaptive longitudinal constraints, in our method,

the temporal consistency coefficient is modulated by the temporal similarity of local cortical

folding. Therefore, the regions with the high temporal similarity of local cortical folding will

be strongly encouraged to have consistent parcellation, while the regions with the low

temporal similarity of local cortical folding (due to possible errors in surface registration)

will be more allowed to have inconsistent parcellation. Compared with the case of setting

the longitudinal consistency coefficient as 0 and the longitudinal FreeSurfer, our current

setting has led to better accuracy and consistency, although it might not be the optimal

setting. Of note, the accuracy in the regions with distinct boundaries might be higher than

the regions with ambiguous boundaries, where the temporal consistency is actually more

important in longitudinal analysis.

In the previous imaging studies of the infant cortex development, Gilmore et al. (2012)

investigated the development of regional cortical volume from 0 to 1 and from 1 to 2 years

of age. In fact, the cortical volume development is jo intly determined by the growth of the

cortical thickness and the expansion of the surface area, with distinct cellular and genetic

mechanisms (Chen et al., 2013; Panizzon et al., 2009). Therefore, Li et al. (2013a) further

investigated the region-specific expansion of cortical surface area from 0 to 1 and 1 to 2

years of age. Meanwhile, Nie et al. (2012) studied the development of regional cortical

folding in the first year of life.
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For the first time, in this paper, we have applied the proposed method to study the regional

cortical surface area development in multiple stages of the first 18 months of life. Our

results indicate that the cortical surface area development is highly age-related and

regionally heterogeneous during this critical period of rapid cortex development.

Importantly, we revealed several hitherto unseen properties of cortical surface area

development in the first 18 months of life, as detailed below. 1) The regional cortical surface

area increases most dynamically from 0 to 3 months; 2) The regional cortical surface area

increases regionally most heterogeneously from 3 to 6 months, with many regions exhibiting

insignificant changes; 3) The primary visual cortex exhibits a high growth from 0 to 9

months compared with other regions, followed by a low growth from 9 to 18 months; 4) The

primary auditory cortex shows a high growth from 3 to 6 months compared with other

regions, but a low growth at other developmental stages; 5) The somatosensory cortex

exhibits a high growth from 0 to 3 months and from 6 to 9 months compared with other

regions, but a median growth at other developmental stages; 6) The motor cortex exhibits a

median growth at all stages from 0 to 18 months. In our previous study of the region-specific

cortical surface area expansion between birth and 1 year of age, the visual cortex, auditory

cortex, and sensory cortex expanded more rapidly than the motor cortex and association

cortex (Li et al., 2013a). Compared with our previous study, our current work further

provide much more detailed pattern for cortical surface area development in the first 18

months of life by using 6 scanning time points, which greatly advances our understandings

on the normal developmental trajectories of cortical surface area in infants.

There still exist several limitations in our current method. First, in the proposed method, we

adopt the manually annotated cortical surfaces of adults, used in FreeSurfer software, as our

multi-atlas surfaces for longitudinal infant cortical surface parcellation. The rationale is that

all the primary and second cortical folding are established at term birth (Hill et al., 2010),

and are well preserved during the postnatal cortex development (Li et al., 2013a). Although

these adult atlas surfaces have led to reasonable results, using age-matched infant atlas

surfaces would further improve the accuracy of longitudinal infant surface parcellation. As

more longitudinal infant dataset is being collected in our institute, we plan to apply our

current method to this increasing infant dataset and then manually edit and correct

longitudinal cortical surface parcellation results on at least 20 representative infants. In this

way, we can significantly reduce the time for manually annotating the longitudinal infant

cortical surfaces, and directly use these error-corrected infant surface parcellation as infant-

specific atlas surfaces to further improve the results. Second, the parameters in the proposed

method are set experimentally, thus cannot guarantee to generate the optimal results. With

the above-mentioned manually annotated infant cortical surfaces, we will be able to further

optimize these parameters, although the current parameter setting has already led to

reasonable results. Finally, the proposed energy function could also be optimized by other

methods, such as tree-reweighted message passing (Kolmogorov, 2006) and fast primal-dual

scheme (Komodakis et al., 2011), which will be investigated in our further work.

With the further optimized method and the availability of larger-scale longitudinal infant

dataset, we plan to comprehensively investigate the regional developmental trajectories of

the cortical surface area, cortical thickness, and cortical folding, as well as their correlation
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networks in both healthy and high-risk infants. This would greatly advance our current

understanding on normal cortical developmental trajectories during this critical period of

brain development, and thus provide important insights into neurodevelopmental disorders.
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Highlights

➢ We propose a method for consistent labeling of longitudinal dynamic infant

surfaces;

➢ The method ensures accuracy, spatial smoothness and temporal consistency;

➢ We apply the method to reveal dynamic regional surface area development in

infants;

Li et al. Page 19

Med Image Anal. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
(a) Longitudinal inner cortical surfaces of the left hemisphere of a representative infant from

0 to 18 months of age, color-coded by the mean curvatures. (b) Group-wisely aligned

longitudinal spherical surfaces of the left hemisphere of the infant, color-coded again by the

mean curvatures. Red colors indicate sulci, and blue colors indicate gyri.
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Fig. 2.
Exemplars of atlas surfaces manually labeled by experts, and the aligned boundaries (blue

curves) of their labeled ROIs after group-wise registration of atlas surfaces, overlaid on the

standard spherical surface.
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Fig. 3.
An illustration of the proposed method for consistent parcellation of longitudinal infant

cortical surfaces. All longitudinal cortical surfaces of the same infant (enclosed by the blue

dashed circle) are consistently and simultaneously labeled based on: 1) the subject-atlas

similarities of their local cortical folding (represented by the surface patches enclosed by

small red dashed circles) in a search range (represented by the dark dashed circles on atlas

surfaces) for labeling accuracy; 2) the within-subject temporal similarities of local cortical

folding for temporal labeling consistency; and 3) the local cortical folding geometry for

adaptive spatial labeling smoothness, as will be illustrated in Fig. 4.
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Fig. 4.
An illustration of the mean curvatures and normal directions at different cortical regions.

Note that this cortical region is viewed from the inside to the outside of the brain for

convenience of inspection. The red color region indicates the sulcal bottom, and the green

color region indicates the flat cortical region. Vertices a and b are in the same cortical

region, and c and d are in another cortical region.
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Fig. 5.
Longitudinal cortical surface parcellation results of the left hemisphere on 5 randomly

selected infants, each with 6 longitudinal surfaces at 0, 3, 6, 9, 12 and 18 months of age, by

the proposed method. Each row indicates one infant.
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Fig. 6.
Close-up views of longitudinal infant cortical surface parcellation results from 0 to 18

months of age in the dash orange rectangular regions in Fig. 5. Each row indicates one

infant.
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Fig. 7.
Close-up views of representative results of longitudinal infant cortical surface parcellation

by the proposed method and the longitudinal FreeSurfer. Yellow arrows indicate several

regions with longitudinally-inconsistent labeling by the longitudinal FreeSurfer.
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Fig. 8.
Dice coefficients of precentral gyrus, postcentral gyrus, and superior temporal gyrus at 0

month and 18 months of age by the proposed method, the proposed method without

temporal constraint, and longitudinal FreeSurfer on 13 infants.
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Fig. 9.
Average bidirectional distance errors of boundaries of precentral gyrus, postcentral gyrus,

and superior temporal gyrus at 0 month and 18 months of age by the proposed method, the

proposed method without temporal constraint, and longitudinal FreeSurfer on 13 infants.

Li et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 10.
The longitudinal label consistency in each of 35 cortical ROIs of 13 infants by the proposed

method, the proposed method without temporal constraint, and longitudinal FreeSurfer.
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Fig. 11.
The average improvement of the consistency measure in each of 35 cortical ROIs of 13

infants by the proposed method over other comparison methods. (a) Compared with

longitudinal FreeSurfer; (b) Compared with the proposed method without temporal

constraint. The improvement is particularly pronounced in those small-sized ROIs without

distinctive boundaries.
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Fig. 12.
Change percentage of regional cortical surface area from 0 to 3, 3 to 6, 6 to 9, 9 to 12 and 12

to 18 months of age, on the 13 infants, obtained by the proposed method. Age-specific and

regionally-heterogeneous patterns of the cortical surface area growth can be observed.
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Fig. 13.
P-values (multiple comparisons corrected) of regional cortical surface area changes from 0

to 3, 3 to 6, 6 to 9, 9 to 12, and 12 to 18 months of age by the proposed method and the

longitudinal FreeSurfer, respectively.
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Table 1

List of structures on the cortical surface atlases.

1. Sylvian fissure/unknown 2. Banks of superior temporal sulcus 3. Caudal anterior cingulate cortex

4. Caudal middle frontal gyrus 5. Corpus callosum 6. Cuneus cortex

7. Entorhinal cortex 8. Fusiform gyrus 9. Inferior parietal cortex

10. Inferior temporal gyrus 11. Isthmus cingulate cortex 12. Lateral occipital cortex

13. Lateral orbital frontal cortex 14. Lingual gyrus 15. Medial orbital frontal cortex

16. Middle temporal gyrus 17. Parahippocampal gyrus 18. Paracentral lobule

19. Pars opercularis 20. Pars orbitalis 21. Pars triangularis

22. Pericalcarine cortex 23. Postcentral gyrus 24. Posterior cingulate cortex

25. Precentral gyrus 26. Precuneus cortex 27. Rostral anterior cingulate cortex

28. Rostral middle frontal gyrus 29. Superior frontal gyrus 30. Superior parietal cortex

31. Superior temporal gyrus 32. Supramarginal gyrus 33. Frontal pole

34. Temporal pole 35. Transverse temporal cortex
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