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Abstract

Computer-assisted image retrieval applications can assist radiologists by identifying similar

images in archives as a means to providing decision support. In the classical case, images are

described using low-level features extracted from their contents, and an appropriate distance is

used to find the best matches in the feature space. However, using low-level image features to

fully capture the visual appearance of diseases is challenging and the semantic gap between these

features and the high-level visual concepts in radiology may impair the system performance. To

deal with this issue, the use of semantic terms to provide high-level descriptions of radiological

image contents has recently been advocated. Nevertheless, most of the existing semantic image

retrieval strategies are limited by two factors: they require manual annotation of the images using

semantic terms and they ignore the intrinsic visual and semantic relationships between these

annotations during the comparison of the images. Based on these considerations, we propose an

image retrieval framework based on semantic features that relies on two main strategies: (1)

automatic “soft” prediction of ontological terms that describe the image contents from multi-scale

Riesz wavelets and (2) retrieval of similar images by evaluating the similarity between their

annotations using a new term dissimilarity measure, which takes into account both image-based

and ontological term relations. The combination of these strategies provides a means of accurately

retrieving similar images in databases based on image annotations and can be considered as a

potential solution to the semantic gap problem. We validated this approach in the context of the

retrieval of liver lesions from computed tomographic (CT) images and annotated with semantic

terms of the RadLex ontology. The relevance of the retrieval results was assessed using two

protocols: evaluation relative to a dissimilarity reference standard defined for pairs of images on a

25-images dataset, and evaluation relative to the diagnoses of the retrieved images on a 72-images

dataset. A normalized discounted cumulative gain (NDCG) score of more than 0.92 was obtained

with the first protocol, while AUC scores of more than 0.77 were obtained with the second

protocol. This automatical approach could provide real-time decision support to radiologists by
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showing them similar images with associated diagnoses and, where available, responses to

therapies.
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tomographic (CT) images

1. Introduction

Diagnostic radiologists need to maintain high interpretation accuracy while maximizing

efficiency with increasing volumes of images. They are now confronted with the challenge

of efficiently and accurately interpreting cross-sectional studies that often contain thousands

of images (Rubin, 2000). Currently, this is largely an unassisted process (except for image

visualization, volume measurement and for specific image analysis tasks such as lung

nodule detection and mammography screening), and a radiologist’s accuracy is established

through training and experience. Despite this training, there is variation in interpretation

among radiologists, and accuracy varies widely (Robinson, 1997). A promising approach to

maintain interpretative accuracy in this “deluge” of data is to integrate computer-based

assistance into the image interpretation process. Several general-purpose image retrieval

systems have been proposed in the literature (Akgül et al., 2011). Among these systems, an

emerging technique is content-based image retrieval (CBIR) that could assist users in

finding visually similar images within large image collections. For medical purposes, the

role of CBIR is powerful: in addition to enabling image similarity-based indexing, it could

provide computer-aided diagnostic support based both on image content and on other meta-

data associated with images.

The main idea of CBIR is to search for similar images based directly on their visual content.

This is usually performed by example, where a query image is given as input and an

appropriate distance is used to find the best matches in the corresponding feature space

(Aigrain et al., 1996). In general, each image is represented by a set of quantitative features,

extracted from regions of interest (ROIs) of the image (e.g., lesions), that focus on their

specific visual contents (e.g., shape, texture). Although these features are powerful to

describe the image in an automated fashion, they are often not specific enough to capture

subtle radiological concepts in medical images. In addition, the performance of CBIR

systems is often constrained by the low-level properties of these features because they

cannot effectively model the user’s high-level expectations (Mojsilovic and Rogowitz, 2001)

(referred to as the “semantic gap” problem in the literature). Since this problem remains

unsolved, current research in CBIR focuses on new methods to characterize the image

content with higher levels of semantics, closer to that familiar to the user and more useful in

retrieving similar medical cases (Liu et al., 2013).

In recent works on medical image retrieval that includes semantics, the images were

characterized using a set of semantic terms (Demner-Fushman et al., 2009; Napel et al.,

2010). These semantic terms can be used to describe a variety of information about the

image content (e.g., lesion shape or enhancement), and they are directly linked to the user’s
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high-level understanding of image features. Semantic terms can improve diagnosis decision

making by enabling radiologists to search image databases for cases that are similar in terms

of shared high-level imaging features to the query case. Since they describe the image

contents using terminologies used by radiologists to record their observations, they can be

considered as robust features for CBIR systems. Thus, incorporating semantics into CBIR

systems can be a promising attempt to bridge the semantic gap between the visual

description of an image and its meaning (Ma et al., 2010).

Despite many efforts conducted to design innovative CBIR systems (Liu et al., 2007), two

issues remain unsolved when using semantic descriptors to characterize medical images. A

first issue is the automation of image annotation: usually the semantic descriptors are

manually provided by radiologists. Although many approaches have been proposed to

predict these semantic features from quantitative features extracted from the image content

(Zhang et al., 2012), this automation remains challenging for complex lesions. A second

issue is that most of the existing CBIR systems based on semantic features do not consider

the intrinsic relations among the semantic terms for retrieving similar images (e.g., relations

between imaging observations). Consequently, we distinguish two unmet needs that we

propose to address in this article. To this end we present a semantic framework that enables

retrieval of similar database images based on their visual and semantic properties.

This article is organized as follows. Section 2 studies the state-of-the-art in semantic image

retrieval and presents our research contributions. Section 3 describes our framework for the

retrieval of images annotated with semantic terms. Section 4 gathers experiments enabling to

assess its relevance. Conclusions will be found in Section 5.

2. Image retrieval based on semantic features

2.1. Related work

The integration of semantics in medical image retrieval applications has been largely studied

in the literature. Among the proposed approaches, “bag-of-words” (BOW) has become a

popular representation to describe images with a higher level of semantics. BOW are generic

models that have been successfully used in text information retrieval (Voorhees, 1999) to

capture a summary of the semantic entities contained in textual documents based on word

occurrence probabilities. As an extension of BOW, “bag-of-visual-words” (BOVW) models

have been proposed to derive visual words from the image content (Van Gemert et al.,

2010). BOVW methods represent an image as a distribution of local salient (or dense)

patches, and the visual words are obtained by clustering the feature space populated with

local image patches. Once the visual vocabulary has been built, an image is represented as a

vector of visual word occurrences, similarly to the BOW approach. This representation is a

compromise between low-level image features and high-level semantic features. Different

approaches have been proposed to build the visual vocabulary from the image content. The

authors of (Yang et al., 2012) have proposed a method for the retrieval of similar liver

lesions in contrast-enhanced CT images at different injection phases, where the bags

represent the lesion content. In the field of endomicroscopy, a method has been proposed in

(Andre et al., 2012) to transform the low-level visual signatures of the images into semantic

signatures. The latter reflects how much the presence of each semantic concept is expressed
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by the visual words describing the video frames. This approach relies on a linear

discriminant analysis method that builds visual words based on semantic signatures. The

main advantage of such approaches is that they do not require a manual annotation step to

describe the image content. However, this advantage often leads to an underlying drawback:

the visual vocabulary relies on low-level features and does not correspond to the user’s high-

level expectations about the semantic content of the image (Liu et al., 2012). In addition,

BOVW models do not benefit from the domain knowledge included in semantics of image

annotations (Rubin, 2012).

In medical imaging, an image can be characterized by a set of semantic terms, linked to the

user’s high-level understanding of image features, that accurately describe its visual content

(Napel et al., 2010). However, the performance of CBIR systems based on semantic

annotations relies on the choice of the terms being used to describe the content of the

images: this choice is dependent of the application and the user experience. Consequently, it

leads to different possible descriptions for a same image, thwarting good performance of

CBIR systems based purely on semantic image descriptions. To deal with this issue, recent

works used controlled vocabularies for describing the images (Deng et al., 2009). A

controlled vocabulary provides a set of pre-defined terms with definitions that can facilitate

the annotation of images since it provides standard terms for describing their visual features.

Ontologies, which are related to controlled terminologies but also model explicit

specification of relations among semantic terms, provide a formal way to model knowledge

(Guarino, 1995). As they are machine-accessible and usually built from a consensus of

domain experts, they represent a powerful way to structure semantic terms belonging to a

particular knowledge source. In the context of medical imaging, numerous ontologies are

being developed to organize biomedical terms in a comprehensive manner (e.g., Medical

Subject Headings (MeSH) (Lowe and Barnett, 1994), Unified Medical Language System

(UMLS) (Bodenreider, 2004), Systematized Nomenclature of Medicine – Clinical Terms

(SNOMED CT) (Stearns et al., 2001), Unified Language of Radiology Terms (RadLex)

(Langlotz, 2006)).

Semantic terms can be leveraged to tackle the problems raised by the low-level properties of

imaging features in CBIR systems. However, medical CBIR applications based on semantic

terms are limited since they often require manual annotations of the images, which is a

subjective time-consuming process. Different approaches have been proposed to automate

the annotation process (Rasiwasia et al., 2007). The authors of (Gimenez et al., 2011) have

proposed a machine learning strategy based on LASSO (Least Absolute Shrinkage and

Selection Operator (Tibshirani, 1996)) regression models for the prediction of image

annotations from low-level features (i.e., shape, color) extracted from CT images. A limit of

this approach is the difficulty of understanding the correlations between low-level imaging

features and the predicted semantic annotations. In recent work (Depeursinge et al., 2014b),

semantic terms were predicted from texture features based on Riesz wavelets, whose multi-

scale properties are adapted to accurately model the visual signatures of the image

annotations. An advantage offered by this approach is the possibility of visually representing

the computed visual signatures, which enables understanding the intrinsic correlations

between annotations and low-level imaging features.

Kurtz et al. Page 4

Med Image Anal. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



A common problem raised by BOW and BOVW models is retrieving similar images given

an input query image (Allampalli-Nagaraj and Bichindaritz, 2009). Under these models,

images are often represented as vectors of values where each element represents the

likelihood of appearance of a particular word, and the likeness between images is evaluated

by computing the distance between these vectors (Gondra and Heisterkamp, 2008). The

classical approaches only compare the contents of the corresponding elements of the vectors

using various distance functions (e.g., Manhattan or Euclidean distances). Their main

drawback is ignoring the potential relationships between elements. Indeed, most of the

classical approaches assume that every high-level term describing an image is independent

of other features (no intrinsic relations between the words that are contained in a bag). To

deal with this issue, different approaches based on the concept of Bag-of-Visual-Phrases

have been recently proposed (Pedrosa and Traina, 2013; López-Monroy et al., 2013). In

these approaches an image is represented as a combination of n-consecutive visual words

that are constructed by considering the spatial information among visual words. Although

these approaches provide encouraging results, they do not directly consider the visual and

semantic relations between the visual words. In the case of characterization of medical

images with semantic features, the visual and semantic relations among descriptive imaging

terms are crucial (Deselaers and Ferrari, 2011) since these features usually have a strong

correlation with each other (Fig. 1 presents an example using shape features).

The similarity between semantic features can be evaluated by considering their visual

dissimilarity or their semantic dissimilarity (Kesorn et al., 2011). The visual dissimilarity

between semantic terms is generally assessed using their image-based dissimilarity. Image-

based dissimilarity consists of evaluating the dissimilarity between semantic terms by

computing the distance between low-level quantitative features (e.g., shape, color, texture)

that characterize these terms in the image (Jiang and Ngo, 2009). Assessing semantic

dissimilarity requires evaluating semantic proximity using external sources of linguistic

knowledge. To this end, it is possible to use the ontological structure to quantify the

semantic dissimilarity between the terms (Batet et al., 2011). Indeed, ontologies specify

different kinds of taxonomic relations among the semantic terms (e.g., subtype/supertype,

homonyms, synonyms relationship) and can be seen as an oriented graph in which semantic

terms are linked by taxonomic relations.

Although several efforts have been conducted to take into account the proximity between

semantic features into CBIR applications, most of the proposed approaches focus either on

the visual proximity or on the ontological relations between the semantic terms.

Consequently they do not focus on the potential of combining these two relations. However,

such a combination seems essential when evaluating the likeness between semantic terms:

two lesions being similar in appearance may have been annotated by ontologically dissimilar

terms while two lesions annotated by ontologically similar terms may look visually

dissimilar.1 During the interpretation of an image, the radiologist considers both visual and

semantic dissimilarities. Consequently, there is an opportunity to improve CBIR

applications by mimicking this process. To this end, our approach to improving CBIR is to

1For example, the ontological terms homogeneous and heterogeneous both describe texture properties (and thus are close in the
RadLex ontology that represents a unified language of radiology terms), but they are visually antagonists.
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consider both the image-based and semantic relations among the semantic terms when

assessing the distance between pairs of images.

Given a dissimilarity relation between semantic terms, the next step is to consider this

relation in computing the distance between images described as BO (V) W. In the domain of

histogram comparison, “cross-bin” distances have been proposed to compare corresponding

vector elements as well as non-corresponding ones (Cha and Srihari, 2002). Based on this

property, these distances can consider the relations between the elements of the vectors to be

compared. Practically, this can be done by assigning, to each pair of vector elements, a

weight (called “ground-distance”) modeling their degree of dissimilarity (Niblack et al.,

1993). Based on this paradigm, a distance called HSBD (Hierarchical Semantic-Based

Distance) has been proposed, relying on a hierarchical merging strategy (Kurtz et al., 2013).

Its computation relies on the iterative merging of the semantically closest vector elements to

create coarser vectors of higher semantic levels. This hierarchical strategy is the cornerstone

of this distance: it enables considering the multilevel semantic correlations among the vector

elements and it induces a lower computational cost than quadratic costs required for cross-

bin distances. In its original definition, the HSBD distance was proposed for comparing low-

dimensional vectors, and the ground-distances (i.e., the dissimilarities) between the elements

of the vectors had to be manually defined. Recently, this distance has been extended to the

comparison of images described with high-dimensional vectors of semantic terms (Kurtz et

al., 2014). In this generic extension, the dissimilarity between semantic terms can be

provided by any term dissimilarity measure. Furthermore, the extension of this distance,

which has been applied to medical image retrieval, has provided encouraging results.

2.2. Research contributions

Based on these methodological considerations, we propose a novel semantic framework,

devoted to the retrieval of similar medical database images described with high-level

semantic annotations. The contribution of the current study is threefold:

1. We employ an original strategy proposed in (Depeursinge et al., 2014b) to

automatically annotate the content of radiological images with semantic terms from

a biomedical ontology. This strategy relies on learning, from a database of

previously annotated images, specific term visual signatures based on Riesz

wavelets that characterize semantic terms. Given a new query image, this strategy

avoids the requirement of manual image annotation by the radiologists and it

allows the end-users to search databases of images for cases that are similar in

terms of high-level visual features;

2. We propose to consider the similarity between semantic terms during the retrieval

of similar database images. To this end, we propose a new term dissimilarity

measure enabling us to quantify both the image-based relations among the terms,

which are provided by their visual signatures, and the semantic relations among the

terms, which are automatically evaluated from the structure of the ontology. In this

measure, the contributions of the image-based and the ontological dissimilarities

are automatically evaluated from data examples using a learning strategy based on

maximizing the agreement between the perceptual image dissimilarity provided by
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the radiologist and the global term dissimilarity value. This strategy provides a

potential solution to the limitations of BOW approaches that assume that every

term describing an image is independent of other features;

3. We use the HSBD distance proposed in (Kurtz et al., 2014) to enable comparing

high-dimensional vectors of semantic features. The main advantage of this vector

distance is to consider the multiscale dissimilarities among the semantic terms

when comparing images characterized with BOW, with a lower computational cost

than the ones induced by the classical approaches in CBIR. The retrieval strategy

relies in this study on an extension of the HSBD distance to consider the proposed

term dissimilarity measure during the comparison of vectors of semantic features.

The automatic image annotation strategy combined with the proposed radiological image

retrieval step can be considered as a potential solution to the semantic gap problem. To show

the value of considering the relations among semantic terms in the context of the retrieval of

medical images, we apply it to the challenging task of retrieving similar computed

tomographic (CT) images of the liver. We evaluate the effectiveness and the gain of

considering this framework to retrieve relevant similar images in a database compared to

state-of-the-art approaches.

3. Methodology

This section describes the proposed semantic framework, dedicated to the retrieval of

medical images annotated with semantic terms. Section 3.1 introduces useful notations. The

workflow of this framework is presented in Section 3.2. The offline steps composing this

workflow are then detailed in Section 3.3 and the online steps are presented in Section 3.4.

3.1. Notations and definitions

An interval on ℝ, bounded by a, b ∈ ℝ, will be noted [a, b] while an interval on , bounded

by a, b ∈ , will be noted [[a, b]]. A set  of k unordered elements ei with i ∈ [[0, k − 1]] is

denoted by {e0, e1, …, ek−1}. A list (vector) L of k ordered elements ei with i ∈ [[0, k − 1]] is

denoted by 〈e0, e1, …, ek−1〉. A semantic term is noted xi while its likelihood of presence in

an image  is denoted ai ∈ [0, 1].

3.2. Workflow

The workflow of the proposed CBIR framework is divided into five steps that can be

grouped in two phases:

• an offline phase (composed of two steps) used to build a visual model of the

semantic terms employed to characterize the database images. The first step

consists of learning, from the database images, a visual signature for each

ontological term. These term signatures are used to (1) predict the image

annotations from linear combinations of Riesz wavelets and (2) establish visual

“image-based” dissimilarities between the semantic terms. The second step consists

of pre-computing the global term dissimilarities using a combination of their

image-based and ontological relations;
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• an online phase (composed of three steps) used to retrieve similar images in the

database given a query image. The first step consists of manually delineating an

abnormality within the query image to capture the boundary of an ROI. The second

step consists of automatic annotation of this image ROI by predicting semantic

term likelihood values based on the visual term models built in the offline phase.

These “soft” annotations are then summarized into a vector of semantic features

modeling the image content. The third step consists of comparing the query image

to previously annotated database images by computing the distance between their

term likelihood vectors. The vectors are compared using the HSBD distance based

on a term dissimilarity measure that leverages both the image-based and

ontological term relations computed in the offline phase.

Fig. 4 provides a visual workflow of the offline (orange boxes) and online (blue boxes)

phases. Each step of each phase is represented as a box whose content is detailed hereinafter.

3.3. Offline phase

3.3.1. Learning of the visual term signatures—In this framework, we use an

automatic strategy to predict semantic terms, belonging to an ontology Θ, that characterize

the lesion contents. In order to reduce the semantic search space we created pre-defined lists

of semantic terms taken from the ontology Θ. An experienced radiologist chose a set of

semantic terms that are commonly used to describe the content of the images in a specific

application. Among these terms, we selected those describing the margin and the internal

texture of the lesions because they are difficult to describe in a reproducible manner when

compared to semantic terms describing overall lesion shape and lesion focality. We denote

as  ={x0, x1, …, xk−1} with xi ∈ Θ the resulting vocabulary.

Our strategy to predict semantic terms, originally proposed in (Depeursinge et al., 2014b),

relies on the automatic learning of the visual term signatures from quantitative texture

features derived from the image ROIs (Fig. 4①). Given a set of previously annotated image

ROIs (i.e., a training set), this approach automatically learns the image description of each

semantic term using support vector machines (SVM) and Riesz wavelets (Depeursinge et al.,

2012; Depeursinge et al., 2014a). The multi-directional and multi-scale properties of the

Riesz wavelets allow for accurately modeling the visual signatures of the terms from the

image content: they can model specific features of each semantic terms at multiple scales

from sharp edges (finer scales) to larger nodules (coarse scale). Consequently, our

assumption is that features based on Riesz wavelets are well suited to characterize subtle

medical imaging concepts related to the description of lesion margin and inner texture in

radiological images, which are key aspects of the visual appearance of lesions assessed by

radiologists.

Practically, each annotated ROI is divided in a set of 12 × 12 image patches extracted from

the margin and the internal texture of the lesion. Each patch is characterized by the energies

of multiscale Riesz wavelets and then represents an instance in the feature space. The

learning step of this approach relies on linear SVMs, which are used to build visual term

signatures in this feature space.2 The direction vector of the maximal separating hyperplane

in one-versus-all configurations defines the visual signature of the corresponding semantic
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term. Once the visual signatures have been learned, we obtain for each semantic term xi ∈ 

a model that characterizes a multi-scale visual description of the term into the image content.

The visual signature Γi of a term xi ∈  can be modeled as the direction vector

 where each  represents the weight of the u-th Riesz template. The

length U of this vector depends on the order N of the Riesz transform and the number J of

dyadic scales as: U = J · (N + 1). The choice of N and J is presented in the experimental part

(Section 4). Given a semantic term, its visual signature is a vector that contains the ability of

each texture feature to visually express the presence of the semantic term in the images.

The visual model of a term can be represented by depicting the profiles of its signature

related to the linear combination of Riesz templates using a color scale. This visualization

strategy provides a means of analyzing comprehensively the correlations between the

semantic annotations and their representation in terms of imaging features. Fig. 2 presents

examples of visual signature models learned for terms related to the descriptions of liver

lesions.

The visual term signature models are used both to predict the likelihood of the presence of

the terms for new image ROI (Section 3.4.2) and to establish the image-based dissimilarity

between semantic terms (Section 3.3.2).

3.3.2. Term dissimilarity assessment—The image retrieval step of our CBIR

framework takes into account the term dissimilarity when comparing images described by

vectors of semantic terms. We propose in this work to compute the term dissimilarities using

both their image-based and ontological relations in an offline step described hereinafter (Fig.

4②).

To model the dissimilarity (from 0: equal, to 1: totally different) between the k semantic

terms of the considered vocabulary , we define a k × k symmetric term dissimilarity matrix

 that contains the intrinsic relations between all the terms of the considered vocabulary x

∈ X = {x0, x1, …, xk−1} as

(1)

where d ∈ [0, 1] represents any function that computes the dissimilarity between two

semantic terms xi and xj. In this work, we use a dissimilarity function based on the

combination of image-based dissimilarity provided by the visual signatures of the terms and

semantic dissimilarity extracted from the structure of an ontology. These two measures and

their combination are presented below.

2Our hypothesis is that the semantic terms employed to visually describe the image contents are not mutually exclusive. This means
that one image ROI representing a lesion can be annotated by multiple semantic terms, and these terms may even refer to antagonist
visual concepts related to the image content (e.g., one lesion may be annotated simultaneously by the terms homogeneous and
heterogeneous that describe local texture properties of the lesion). This assumption justifies the fact that the visual signature of each
semantic term is learned independently without considering the visual signatures of the other terms composing the vocabulary.
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3.3.2.1. Image-based term dissimilarity: The image-based dissimilarity between two

semantic terms xi, xj can be evaluated by computing the Euclidean distance between their

visual signatures Γi, Γj as

(2)

where  is a normalization factor evaluating the

maximal dissimilarity value between two terms. This dissimilarity models the proximity

between the terms according to their visual expression into the image. The cornerstone of

this measure is to capture the multi-scale organization of local orientations provided by the

Riesz signatures. Fig. 2 presents the idea of evaluating the image-based dissimilarities

between term signatures.

3.3.2.2. Semantic term dissimilarity: The semantic dissimilarity between two semantic

terms xi, xj belonging to an ontology can be evaluated by considering edge-based measures

that consist of inferring the semantic dissimilarity between terms from the ontology structure

(Wu and Palmer, 1994). These measures have been recognized as relevant to accurately

quantify the semantic proximity from ontologies in the biomedical context (Lee et al., 2008).

Let xi and xj be two semantic terms. We define path(xi, xj) = {l0, …, ln−1} as a set of links

connecting xi and xj in the ontology. Let |path(xi, xj)| ≥ 0 be the length of this path. In order

to quantify a semantic dissimilarity value between xi and xj, an intuitive method has been

originally proposed in (Al-Mubaid and Nguyen, 2006). It relies on a cluster-based strategy

that combines the minimum path length between the semantic terms and the taxonomical

depth of the considered branches. The underlying idea is that the longer is the path, the more

semantically distant the terms are. Starting from the root of the hierarchy, this measure

requires the creation of clusters for each main branch of the ontology (each branch is

considered as a cluster of term nodes). The idea is then to assess the common specificity

(CS) of two terms by subtracting the depth of their lowest common ancestor (LCA) from the

depth Dc of their common cluster (i.e., branch). The common specificity is used to consider

that lower level pairs of term nodes are more similar than higher level pairs. In a previous

study (Kurtz et al., 2014), we have extended this definition to normalize it and to give an

equal weight to the path length and the common specificity features. The proposed

definition becomes:

(3)

where  is a normalization

factor evaluating the maximal dissimilarity value between two terms and CS(xi, xj) = Dc −

depth(LCA(xi, xj)) is the common specificity of the terms. In practice, we set γ = 1 to force

the proposed measure to be positive. Since this measure considers both the common
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specificity and the relative path length between the semantic terms, it presents powerful

properties to evaluate the semantic dissimilarity between two ontological terms. Fig. 3

presents an extract of the RadLex ontology and the idea of evaluating the term dissimilarity

from its hierarchical structure.

3.3.2.3. Combination of image-based and ontological dissimilarities: To combine both

the image-based and the ontological dissimilarities, we define a weighted sum of dΓ and dΘ

as

(4)

where ρxi,xj ∈ [0, 1] is a scalar weight factor that can vary for each couple of terms (xi, xj).

This formulation allows to adapt the contributions of the image-based and ontological

dissimilarities for each pair of semantic terms xi and xj.

To automate the choice of the ρxi,xj values, a learning strategy has been employed to directly

extract the optimal weights from the training set. The premise of this strategy relies on the

fact that during the interpretation of an image, the radiologist considers both visual and

semantic image features. Consequently, our assumption is that when assessing the

dissimilarities between image pairs, the opinion of the radiologist will reflect a “perceptual”

combination of visual and semantic image dissimilarities. Our strategy to learn the optimal

weights is based on mimicking this process by extracting these perceptual combinations.

This optional step requires the definition of a reference standard that models the perceptual

dissimilarity between pairs of images of the training set. This reference standard can be

defined visually by a radiologist by providing examples of reference dissimilarity values

between pairs of images, without considering their annotations. Given this reference

standard, the underlying idea is to optimize the values of the weights ρxi,xj by maximizing

the agreement between the perceptual image dissimilarity value provided by the radiologist

and the global term dissimilarity values . In this way, the optimal perceptual

combination of the image-based dΓ(xi, xj) and semantic dΘ(xi, xj) term dissimilarities can be

determined.

Let us consider two images ,  from the training set, which have been manually annotated

with semantic terms xi ∈ . These two images are modeled by two sets of terms A, B. We

denote as Dpercep( , ) the perceptual image reference dissimilarity provided by the

radiologist between  and . We consider that the perceptual dissimilarity between the pair

of images  and  can be used to evaluate the dissimilarity between the sets of terms A, B

that describe the two images leading to Dpercep(A, B) = Dpercep( , ). By pursuing this

reasoning, we make the assumption that the perceptual dissimilarity between the two sets of

terms A, B can be reported at the term level, between each couple of terms employed to

annotate  and , leading to dpercep(xi, xj) = Dpercep(A, B), ∀(xi, xj) ∈ A × B (where × is the

Cartesian product between the two sets of terms A and B). The reference standard of

dissimilarities between pairs of images Dpercep( , ) can be used to initialize a system of

linear equations, where each equation can be defined as , ∀(xi,

xj) ∈ A × B. By substituting  by its formulation (Eq. (4)), we obtain for each
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equation a reference image dissimilarity value equals to a linear combination of the weight

ρxi,xj associated to the image-based and ontological dissimilarity values between couple of

terms xi and xj belonging to A and B:

(5)

where the weights ρxi,xj are the unknown variables. The weights ρxi,xj can then be obtained

as

(6)

The two last cases of the equation above are used to constrain the weights ρxi,xj ∈ [0, 1]. As

the analytical system solution depends directly on the reference dissimilarity values

Dpercep( , ) picked from the reference standard to solve the system, the following

strategy was then repeated 200 times:

1. a subset of the available image reference dissimilarity values – with a size

sufficient to make the solving of the system possible – is randomly selected;

2. a solution of the system is determined using this random subset and the Eq. (6);

3. the weights ρxi,xj are extracted from this solution and stored.

Finally, the mean weights  were computed for each pair of semantic terms (xi, xj).

3.4. Online phase

Once the offline phase has been initialized, this framework enables automatical annotation

of a query image and retrieval of similar database images, previously annotated with

semantic terms.

3.4.1. Delineation of the abnormality—Let  be a query image. An abnormality in the

query image  is first manually identified and delineated to capture the boundary of an ROI

(Fig. 4③). The next step is to automatically characterize the visual content of the ROI in

terms of respective likelihoods of semantic terms belonging to an ontology Θ.

3.4.2. Automatic annotation of a query image

3.4.2.1. Soft prediction of the terms from visual signatures: The visual signatures Γi

learned during the offline phase (Section 3.3) for each semantic term xi ∈  are used to

automatically annotate the content of the input ROI of the query image  (Fig. 4④). The

ROI instance is expressed in terms of the energies Eu of the multi-scale u-th Riesz templates

as: ΓROI = 〈E0, E1, …, EU−1〉. The likelihood value ai of each term xi is computed as the dot

product between the ROI instance ΓROI and the respective visual signatures Γi as
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(7)

3.4.2.2. Image characterization with a vector of semantic features: Once the query image

 has been “softly” annotated (Eq. (7)), vector of semantic features can be built as: A = 〈a0,

a1, …, ak−1〉, where each element ai is a numeric value representing the likelihood of the

appearance of the semantic term xi ∈  in the ROI. The ai values are normalized in [0, 1] for

all semantic terms. The vector A constitutes a synthetic representation of the query image,

which forms the feature clue for retrieval purpose.

3.4.3. Image retrieval with term dissimilarities—Once the query image  has been

characterized with a vector of semantic features, this image description can be used to

retrieve similar images in the database based on their vector distances (Fig. 4⑤). To this

end, the hierarchical semantic-based distance (HSBD) (Kurtz et al., 2013) was extended in

(Kurtz et al., 2014) to enable the comparison of vectors of semantic features based on term

dissimilarities. The computation of HSBD relies on the iterative merging of the semantically

closest vector elements to create coarser vectors of higher semantic levels.

Before actually computing the distance between two vectors A and B that characterize 

and , it is necessary to define a way to hierarchically merge the different semantic terms

into clusters (i.e., instances of higher semantic levels). To this end, it is possible to build a

dendrogram  (modeling this merging hierarchy) induced by  (Eq. (1), computed during

the offline phase with the  visual-ontological term dissimilarity values). This

dendrogram is obtained using the ascendant hierarchical clustering (AHC) algorithm (Ward,

1963). The AHC algorithm hierarchically builds clusters of semantic terms while

minimizing their intra-group inertia. Each s stage of  corresponds to a particular semantic

level. Such a hierarchy models an order of fusions between the semantic terms in a

multilevel fashion, relatively to their image-based and ontological dissimilarities.

Once the dendrogram  has been built, HSBD can be computed. This computation is

organized in two steps:

Step 1 Hierarchical element-to-element sub-distances computation: During an

iterative merging process (scanning each stage of the dendrogram from the

leaves to the root), the vectors Av and Bv associated to A and B, which are

induced by the merging of the semantic terms composing each cluster of the

stage Sv, are built. After each iteration, the classical Manhattan “subdistance”

DL1 is then computed between the pair of (coarser) vectors Av and Bv created

previously. The resulting series of element-to-element sub-distances

 enables assignment of vector distances at different semantic

levels.

Step 2 Element-to-element sub-distances fusion: The sub-distances  computed

for all the stages of , and the “energy of merging” required to go from one

stage to the next  (v) (the dissimilarity value computed by AHC), are then
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fused into a function  which is integrated to provide the HSBD distance.

Practically, this distance can be obtained by computing the area  under

the curve representing the function . The HSBD distance between two

vectors A and B is then defined as:

(8)

Details about the computation of the HSBD distance were recently described in (Kurtz et al.,

2013). In this paper, we demonstrate that the computational complexity of HSBD is directly

linked to the number s of stages in the dendrogram . If  is a “flat”(i.e., a 2-stage)

dendrogram (s = 2) or a totally balanced dendrogram (s = log2(k)), the complexity of HSBD

becomes Θ(k). If  is a totally unbalanced dendrogram (s = k), then the complexity of

HSBD becomes Θ(k2 ). Consequently, the complexity of HSBD is lower in average than

Θ(k2), namely the complexity of most state-of-the-art “cross-bin” distances.

4. Experimental study

4.1. Experiments and user workflow

To assess our semantic framework, we applied it in a system for retrieving liver lesions from

a database of CT images. Liver lesions stem from a variety of diseases, each with different

(though sometimes overlapping) visual manifestations. Some liver lesions are benign while

others may be malignant. The ability to differentiate these lesions efficiently and accurately

is important to patient treatment and outcome.

Given a new CT image corresponding to a new imaging case/patient, the first step for the

end-user is to select the best slice showing the lesion and then to delineate (manually or

automatically with a segmentation software) an ROI around the lesion. The user can then

enter this image ROI into the system, which will automatically predict the semantic terms

that are the best suited to visually describe the lesion content. Given these semantic image

annotations, the proposed semantic framework will retrieve, in a database of previously

annotated images, and rank by similarities, the images that are the most similar

(semantically and visually) to the query image. This task is crucial since it can help

radiologists to query the database to find similar medical cases and patient cohorts based on

the visual appearance of the images.

4.2. Material

We received institutional review board approval for retrospective analysis of deidentified

images. We used 72 CT images of liver lesions (with one lesion per targeted image) in the

portal venous phase acquired from 44 patients, including six types of lesion diagnoses

(Table 1) that were used in a previous research study (Korenblum et al., 2011). These types

of lesions are common and span a range of visual appearances in CT. Scans were acquired

during the time period February 2007 and August 2008 and used the following range of

parameters: 120 kVp, 140–400 mAs, and 5 mm slice thickness. For each scan, the axial slice
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with the largest lesion area was selected for analysis. Fig. 5 shows representative examples

of this dataset with different lesion diagnoses.

Our approach requires that lesions on CT images be delineated by a 2D ROI. In this

experimental study, a radiologist (C.F.B., 15 years of abdominal CT experience) drew an

ROI around the lesion on these images (Fig. 5). This task led to 72 individual ROIs that

were used as input to our semantic image retrieval framework.

4.3. Offline phase: experiments and results

4.3.1. Learning the visual term signatures—Once the lesions have been

circumscribed by ROIs, the next step is to annotate the ROIs using semantic terms belonging

to an ontology. The considered approach to learn the visual term signatures Γi from Riesz

visual features required the creation of a training set of manually annotated ROIs. To build

the training set, each lesion was annotated by a radiologist with an initial set of semantic

terms from the RadLex ontology (Langlotz, 2006). We consider that the semantic terms are

not mutually exclusive. Among these semantic terms, we selected and conserved those

describing the margin and the internal texture of the lesions. The resulting vocabulary was

composed of 18 terms that are presented in Table 2. The radiologist used the electronic

physician’s annotation device (ePAD) system for annotating the images (Rubin et al., 2008).

Each annotated lesion was used to feed our system that builds a visual signature from Riesz

visual features for each one of the 18 semantic terms. In practice, the number of scales was

chosen as J = ⌊log(12)⌋ = 3 to cover the full spatial spectrum of 12 × 12 patches. The order

of the Riesz transform N = 8 was used, which a previous study showed this provides an

excellent tradeoff between computational complexity and the degrees of freedom of the

filterbanks (Depeursinge et al., 2014a). To avoid any bias during the learning of the visual

term signatures, a specific cross-validation strategy was considered. This strategy is detailed

hereinafter in Section 4.4.1.

Fig. 2 depicts three visual signature models that have been learned for three particular

semantic terms (hypervascular, internal nodules, lobulated margin).

4.3.2. Term dissimilarity computation

4.3.2.1. Dissimilarity measures: To assess independently the contributions of the image-

based and the semantic term dissimilarities in the proposed term dissimilarity measure, four

experiments were carried out (Table 3). In a first experiment, we only considered the image-

based term dissimilarity dΓ provided by the difference between the visual signatures that

characterized the terms in the images (Eq. (2)). In a second experiment, we only considered

the semantic term dissimilarity dΘ computed using the RadLex ontological relations (Eq.

(3)). In a third experiment, we used the combination of the image-based and the semantic

term dissimilarities  (Eq. (4)). In this experiment we assigned an equal weight to the

two term dissimilarity measures ( ). We denote the resulting term dissimilarity measure

as . In the last experiment we used the local weighted version of . We explained

hereinafter how the weight learning approach has been initialized.
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4.3.2.2. Learning the weights of the term dissimilarity measure: We used the learning

strategy (Section 3.3.2) to automatically determine the weights ρ of the term dissimilarity

measure defined in Eq. (4). This learning strategy requires a reference standard that models

the perceptual dissimilarity between pairs of images belonging to the dataset. The reference

standard used in these experiments is described in Section 4.4.4. To avoid any overfitting

problem, we used a leave-one-out cross-validation strategy. We withheld one of the M

images considered in the reference standard and we used the learning strategy described

previously with the remaining M − 1 images and computed optimal values for the weights to

be used in the term dissimilarity measure. This experiment was repeated for all the images

composing the dataset. Given the small size of the reference standard (a subset of M = 25

CT images described previously), it appears that some of the terms belonging to the

vocabulary  have not been used to annotate the images belonging to the reference standard.

This makes it impossible to use the learning strategy to determine the weights of the term

dissimilarity measure for some particular couples of terms. In these particular cases (21% of

the possible couples of terms), we assigned an equal weight ( ) to the image-based and

the semantic term dissimilarity measures.

Fig. 6 presents a subset of the weights learned for 15 pairs of semantic terms. For pairs of

purely descriptive terms, which characterize lesion internal texture (e.g., heterogeneous vs.

homogeneous, line 15), the learning algorithm gives a heavier weight to the image-based

dissimilarity than to the ontological dissimilarity. On the contrary when the terms described

more complex visual concepts including domain knowledge (e.g., normal perilesional tissue

vs. homogeneous enhancement, line 8), the learning algorithm gives a heavier weight to the

ontological dissimilarity.

4.3.2.3. Matrices of term dissimilarity values: The four term dissimilarity measures dΓ,

dΘ,  and  (Table 3) were then used to fill four individual term dissimilarity

matrices (Eq. (1)) containing the dissimilarity values between each possible pair of semantic

terms among the 18 RadLex terms.

These matrices are depicted as color heatmaps in Fig. 7. From these heatmaps, one can note

that the image-based dissimilarity provides a different (but complementary) information

than the semantic dissimilarity: for instance, density terms (e.g., hypodense, water density)

and homogeneity terms (e.g., homogeneous, heterogeneous) are ontologically similar while

they are visually dissimilar. By studying the impact of the optimized weights learned for

pairs of semantic terms (Fig. 6) on the term dissimilarity matrix computed with  (Fig.

7(d)), we deduce some conclusions about the visual perception of the physicians. The value

ρ = 0.79 for the pair {internal nodules, heterogeneous} with dΓ < dΘ may mean that two

images annotated with the terms internal nodules and heterogeneous, respectively, are

perceived as dissimilar by physicians. The value ρ = 0.24 for the pair {homogeneous

enhancement, homogeneous} with dΓ < dΘ may mean that two images annotated with the

terms homogeneous enhancement and homogeneous, respectively, are perceived as similar

by physicians.
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4.4. Online phase: experiments and results

Once the offline phase has been initialized, we evaluated the ability of our framework to

automatically annotate query lesions and rank CT database images in order of visual

similarity.

4.4.1. Automatic annotation of the lesions—Once the term-specific signatures Γi

were learned, they were used to predict the likelihoods of semantic terms describing the

lesion content of query images. Given the small size of our database, our goal is to learn as

much as possible from the data. Consequently, we use the same database for training and

testing, but we take steps to avoid biasing the results. If we only perform a leave-one-out

cross-validation, the hypothesis of independence is not respected, because several images

are acquired on the same patient. In order to avoid producing bias, we perform a leave-one-

patient-out cross-validation: The images acquired from one of the 42 patients were withheld.

The Riesz features were extracted from the withheld lesions and the visual signature models

learned with the remaining patient images were used to predict the likelihood that a semantic

term appears in the lesion content. This experiment was repeated for all the patient images in

the dataset. For each image, a semantic feature vector of length 18 was created to indicate

the likelihood of appearance of specific observations. The presence of a term did not imply

the absence of all others because our system for the automatic image annotation relies on the

assumption that the semantic terms employed to visually describe the image contents are not

mutually exclusive.

The performances of the term prediction strategy were analyzed using the area under the

receiving operator characteristic (AUC) curves. The global AUC for all 18 semantic terms is

0.76 ± 0.004. These results are detailed and interpreted in a recent specific study

(Depeursinge et al., 2014b).

Fig. 8 presents the mean vectors of semantic term likelihood values obtained for the four

most represented lesion diagnoses. From these diagrams, one can note that cysts are mainly

characterized by homogeneous texture, circumscribed margin and nonenhancing properties

while metastases are characterized by homogeneous texture, circumscribed margin and

homogeneous enhancement. Hemangiomas are mainly characterized by internal nodules,

irregular margin and heterogeneous texture. Hepatocellular carcinomas are characterized by

soft tissue density, enhancing properties and internal nodules. We can observe that the

hepatocellular carcinoma lesions are simultaneously annotated with the terms homogeneous

and heterogeneous that describe the texture properties of the lesion. This may mean that

these lesions present local textural properties: some specific parts of the inner texture of the

lesions may be homogeneous while some other parts may be heterogeneous.

4.4.2. Initialization of HSBD—The computation of the HSBD distance between two

vectors, requires the definition of a merging hierarchy which models the order of the fusions

among the closest elements of the vectors to be compared. From the matrices presented in

Fig. 7, four different dendrograms were automatically built leading to four different

initializations of HSBD: HSBDdΓ, HSBDdΘ,  and . These
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initializations enable to evaluate the interest of considering different term dissimilarity

functions for assessing the term correlations.

4.4.3. Comparison to other distances—To assess the relevance of the proposed

semantic framework, and in particular the use of the HSBD distance for image comparison,

we compared the results obtained with this distance to the results obtained by using other

existing distances (Table 4) that are detailed hereinafter.

To highlight the benefits of considering the image-based and semantic relations between the

features composing the vectors, our results were compared to the results obtained with the

classical Manhattan DL1 and Euclidean DL2 distances that do no take into account the

relations among the features.

To show the interest of using the HSBD distance instead of using an alternative distance that

considers the feature relations, our results were also compared to the ones obtained with the

earth mover’s distance (EMD) (Rubner et al., 2000). Its principle is to estimate the cost of

mapping two vectors. In the EMD, two features are considered as the “earth” and the

“holes”, respectively. Then, the distance measure problem is transformed into the earth

moving problem, where the minimum cost of moving all the “earth” into the “holes”

(relatively to the term proximity values) is calculated. The EMD distance was initialized by

varying the term dissimilarity measure used to consider the feature relations leading to four

different initializations: EMDdΓ, EMDdΘ,  and .

4.4.4. CBIR evaluation and results—We considered two protocols to evaluate the

retrieval performance: the first protocol consists of evaluating the ranking results relatively

to a dissimilarity reference standard defined for image pairs while the second protocol

consists of evaluating these results relatively to the diagnoses of the retrieved images.

4.4.4.1. Evaluation with a reference standard: As it was not conceivable in this study to

generate a dissimilarity reference standard for the M = 72 considered images (would have

required 2926 manual comparisons), we used a subset of the reference standard of image

dissimilarity that has been proposed in (Napel et al., 2010), enabling us to evaluate image

retrieval performances by using the semantic features. This reference standard is composed

of a subset of M = 25 CT images described previously (8 cysts, 7 hemangiomas and 10

metastases). These 25 images were selected based on being the first set of cases collected.

Two radiologists viewed each pair of images twice and reached a consensus opinion on a

dissimilarity measure for the image pair (1, very similar; 2, similar; 3, not similar) by

visually and globally addressing dissimilarity of texture, boundary shape, and sharpness.

They did not consider size or location within the liver, nor did they consider any clinical

data that might have implied a specific lesion type. They strived to base their evaluation

purely on image appearance without considering the semantic annotations of the images.

We used normalized discounted cumulative gain (NDCG) (Järvelin and Kekäläinen, 2002)

to evaluate performance. The NDCG index is a standard technique used to measure the

effectiveness of information retrieval algorithms when ground truth is available, as

represented by our three-point dissimilarity scale defined previously. NDCG is used to
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measure the usefulness (gain) on a scale of 0 to 1 of K retrieved lesions on the basis of their

positions in the ranked list compared with their dissimilarity to the query lesion according to

a separate reference standard. The discounted cumulative gain (DCG) is evaluated with the

weight of each retrieved lesion discounted at lower ranks. The DCG at a particular rank

position K is defined as:

(9)

where reli is the graded dissimilarity of the result at position i in the ranked list. Comparing

a search engine’s performance from one query to the next cannot be consistently achieved

using DCG alone, so the cumulative gain at each position for a chosen value of K should be

normalized across queries. This is done by sorting retrieved images of a result list by

relevance (relatively to the reference standard), producing the maximum possible DCG till

position K, also called Ideal DCG (IDCG). For a query, the NDCG is then computed as:

(10)

Thus, for a given K, higher NDCG (K) means more lesions similar to the query image are

ranked ahead of dissimilar ones, with NDCG (K) equal to 1 implying perfect retrieval of K

images.

4.4.4.2. Results: We withheld each image from the 25-images dataset and ranked the

remaining 24 images according to HSBD and to the other distances used for comparison

(Table 4). For each query image, the mean NDCG value was computed at each K ∈ [[1,M −

1]] (M = 25). Fig. 9 shows the NDCG scores obtained for the different distances considered.

From this graph, one can note that the Manhattan and Euclidean distances appeared to yield

the worst results, with a NDCG score equals to 0.80 and lower than 0.84 for all values of K.

The HSBD distance and its different initializations appeared to yield the best overall results,

with a NDCG score higher than 0.84 for all values of K. Among the HSBD initializations, its

instances initialized with the image-based dissimilarity HSBDdΓ and the ontological one

HSBDdΘ led to the lowest results with NDCG scores equal to 0.89. The combination of the

image-based and the ontological dissimilarities  yielded excellent retrieval results

with a NDCG score equals to 0.89 and higher than 0.87 for all values of K. These retrieval

results are higher than the ones obtained by considering either the image-based or the

ontological relations. The optimized weighted version  appeared to yield the best

overall results with a NDCG score equals to 0.92 and higher than 0.87 for all values of K.

For K = 5,  led to a NDCG score equals to 0.87 that can be considered as an

excellent NDCG retrieval score. For K = 10, the NDCG score was 0.92 for the 

distance, implying nearly perfect retrieval of 10 images. Results obtained with the EMD

distance yielded intermediate overall results, with mean case retrieval accuracy greater than

0.87 and greater than 0.83 for all values of K. In terms of dissimilarity measures between the

features, a similar behavior to HSBD has been observed.
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The paired Wilcoxon (sign-rank) statistical test was used to test the null hypothesis that

there is no significant difference in the accuracy scores obtained from highest score

distances (  and ). As we only compare two paired groups ( 

and ), we do not need to use the Friedman test that is required for the comparison

of three or more matched groups. Fig. 10 presents a plot of the Z-score comparing the

NDCG values obtained with  and , by varying K (where K is the

number of retrieved images). The horizontal line is at Z = −1.98, the value for a (two-sided)

0.05 p-value; the Z-score should be below the line for  to be significantly better

than . For low values of K (K ≤ 4),  is not better than the 

distance. However, for high values of K (K ∈ [[5, 25]]),  is significantly stronger

than . These statistical results confirm the interest of using the proposed

automatical weighting strategy to learn local weights when combining the image-based and

the ontological term dissimilarity measures in the  definition.

The retrieval results obtained in this study were compared to the ones obtained by some of

the authors in (Napel et al., 2010), where a comparable retrieval method has been applied on

a subset of this database composed of 30 CT images. In this previous study, the images were

manually annotated using a vocabulary composed of 72 semantic terms. During the retrieval

step, the classical Manhattan distance was used to retrieve similar images without

considering the relations among the terms. These experiments led to a NDCG score of 0.94

while the  score is 0.92. Although our results are slightly lower than the ones

obtained in this previous study, our framework is fully automated. The authors of (Napel et

al., 2010) also evaluated the impact of only considering low-level visual features (i.e., 46

texture features and 2 boundary features whose weights were learned from the data by using

a modified version of a machine learning method known as adaptive boosting) extracted

from the image content to retrieve similar images in the database. These experiments led to

NDCG scores lower than 0.80 showing again the interest of considering semantic terms and

their relations for the retrieval of similar radiological images.

4.4.4.3. Evaluation with the diagnoses: To evaluate the ability of our system to find similar

images, we also tested the recall and fall-out of retrieving images of the same diagnosis in

the database of M = 72 lesions belonging to six types. We performed a leave-one-out test on

the retrieval algorithm by querying each lesion against the remaining lesions in the database.

We assessed the recall and fall-out for retrieving images having the same diagnosis as the

query image. The recall and fall-out of the top K retrieval results, with K ∈ [[1,m − 1]]

(where m is the total number of images in the database with the same diagnosis as the query

image) were computed. For a fixed value of K, the recall was calculated by the number of

identical diagnoses in the K retrieval results divided by m − 1. The fall-out is calculated by

the number of non-identical diagnoses in the K retrieval results divided by the total number

of non-identical diagnoses in the database. The performance was analyzed using the area

under the receiving operator characteristic (AUC) curves. The AUC indicates the potential
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effectiveness within the framework for retrieving lesions by diagnosis based on their

annotations, with the maximum area of 1 being optimal.

4.4.4.4. Results: Table 5 presents the different AUC values obtained under these

experimental conditions. When all types of lesions were combined, all queries yielded mean

AUC values greater than 0.50 for each distance, indicating that the retrieval results favor

lesions with similar diagnoses. The Manhattan and Euclidean distances had a similar ranking

behavior and appeared to yield the worst results with mean AUC values of 0.50 and 0.52.

The HSBD distance and its initializations appeared to yield the best overall results, with

mean ROC curve areas always higher than 0.58. Among the HSBD initializations, its

instances initialized with the image-based dissimilarity measure HSBDdΓ and the

ontological one HSBDdΘ led to the lowest results with mean case retrieval accuracy equal to

0.58. The combination of the image-based and the ontological dissimilarity measures

 led to retrieval results with mean AUC equal to 0.65. The optimized version

 appeared to yield the best results with a mean AUC value equals to 0.77. The

same behavior has been observed when evaluating independently the AUC for cyst and

metastasis retrieval. Results obtained with the EMD distance yielded intermediate results,

with mean AUC values always higher than 0.53. In terms of term dissimilarity measures, a

similar behavior than for HSBD has been observed:  led to the best EMD overall

results while EMDdΓ and EMDdΘ led to the worst EMD results.

The paired Wilcoxon (sign-rank) statistical test was used to test the null hypothesis that

there is no significant difference in terms of AUC between  and  for

the three most represented diagnoses. This statistical test led to 3 sub-tests, with a

Bonferroni significance level of 0.05/3 = 0.017. So any comparison with a p-value lower

than 0.017 can be considered significantly different. For the retrieval of cysts we obtained p-

values equal to p ≤ 0.0001 for  versus . For the retrieval of metastases

we obtained p-values equal to p ≤ 0.005 for  versus . Finally, for the

retrieval of hemangiomas we obtained p-values equal to p ≤ 0.003 for  versus

. From these comparisons we deduce that the AUC scores obtained with the

 distance are statistically better than those obtained with the  distance.

These AUC comparison results confirm the relevance of our weight learning strategy in the

definition of .

Fig. 11 illustrates retrieval results with the different EMD and HSBD initializations by using

a hemangioma query. Perfect retrieval (in terms of the diagnoses) would result in a ranked

list of images with only hemangioma lesions. Among the HSBD initializations, its instances

initialized with the image-based dissimilarity measure HSBDdΓ and the ontological one

HSBDdΘ led to the lowest retrieval results while its instances initialized with the

combination of the image-based and the ontological term dissimilarity measures

(  and ) led to the highest retrieval results. The same behavior has been

observed with EMD.
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4.5. Discussion

We have developed a complete framework for the retrieval of medical images described

with high-level semantic annotations. Given a new query image, this system automatically

predicts the semantic terms that are the best suited to visually characterize the image content

using the methodology proposed in (Depeursinge et al., 2014b). The prediction of the

semantic terms relies on the learning, from a database of previously annotated images, of

specific term visual signatures based on Riesz wavelets that model semantic terms through

the image features. The retrieval of similar images in the database is then performed using

the HSBD distance (Kurtz et al., 2014) that has been extended in this study to consider both

the image-based and the ontological relations among the terms describing the images. We

also propose an original strategy to determine the weights of the image-based and the

ontological relations that are automatically evaluated from data examples using a learning

strategy. This retrieval step enables retrieving radiological images described with terms that

are not strictly equal but that are semantically correlated and that can be described in the

same manner relative to the image content. Use of visual and semantic information

associated with images is not new (Ruiz, 2006; Hsu et al., 2009; Xin et al., 2010). However

the fusion in image retrieval systems of image-based and ontological dissimilarities in a

multi-scale fashion is innovative. To the best of our knowledge, we are among the first ever

to investigate this paradigm in medical imaging. In addition, due to the theoretical low

computational cost of HSBD, this framework can be used to deal with large datasets.

We studied the impact of considering different kinds of relations among the semantic terms

(image-based and/or ontological term relations) for retrieving similar database images. We

observe that, in terms of dissimilarity measures between the semantic terms, using only the

ontological semantic term relations when comparing pairs of images leads to better image

retrieval results than when using the image-based term relations. The best results have been

obtained with the optimized combination of the ontological term relations and the image-

based term relations. These results confirm our two premises: (1) the incorporation of a

priori high-level knowledge into the image retrieval methodology (by extracting term

relations from the ontological structure) can improve the retrieval results and performed

better than image retrieval strategies based purely on low-level imaging features, which are

directly extracted from the image content (image-based term relations) and (2) the

combination of high-level knowledge extracted from a biomedical ontology and visual

information extracted directly from the image content enables taking advantages of the

complementarity of both strategies to improve the image retrieval results. This combination

reproduces the image interpretation process of the radiologists that consider both visual and

semantic similarities for retrieving similar medical cases.

Finally, our validations suggest the potential relevance and usefulness of this system for

radiological image retrieval tasks. By combining the HSBD distance with the proposed term

dissimilarity measure, we obtained a NDCG score of more than 0.92 on a 25-images dataset

while AUC scores of more than 0.77 were obtained on a 72-images dataset. For comparison,

the use of EMD, which is an alternative (but with higher-computational cost) distance metric

that also considers the relations among the semantic terms, led to NDCG score of 0.87 and

AUC results of 0.64. The use of classical distances (e.g., Manhattan or Euclidean) that do
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not take into account relations among the semantic terms led to lower accuracy results. Our

results are competitive with the state-of-the-art methods and highlight the interest of using

the proposed semantic image retrieval framework. We provide potential methodological

explanations to these results: the HSBD distance performs better than classical distances to

retrieve similar images because of its ability to retrieve vectors of terms that are not strictly

equal but are visually and semantically similar (e.g., round and ovoid). In spite of the ability

of the EMD distance to deal with outliers by matching terms that are not visually and

semantically similar (e.g., internal nodules and normal perilesional tissue) but that are

occasionally used to describe images belonging to the same category, the HSBD distance

performs better because of its hierarchical property to match terms by considering their

inherent multilevel correlations.

Our work has some limitations. The dataset and the reference standard used in the first

image ranking task were small and contained only 25 CT images with three diagnoses. We

were unable to develop a larger dataset since it is time consuming for radiologists to assess

and annotate images with semantic terms. In addition, the reference standard only models a

consensus opinion based on a dissimilarity measure for the image pairs provided by two

radiologists. This expert dissimilarity rating may not be sufficient to accurately represent the

inter-reader agreement between radiologists (Faruque et al., 2013). In the future, we plan to

build a larger reference standard by increasing the number of cases and the number of

diagnoses, modeling the opinions of a higher number of radiologists avoiding potential

experimental repeatability issues. Our work is also limited because the clinical protocol used

to acquire our data was old (5 mm thickness slices); thinner slice thickness is now common

in most CT scan acquisitions. We believe our methods are not likely to be affected by such

differences and slice thickness, and we plan to use thinner CT slices for the development of

a future dataset. Another limitation is that we do not evaluate the impact of the selection of

the slice (used as query image for retrieval purpose) in the 3D CT volume, and the impact of

the quality of the ROI delineation. We plan to address in a future study whose goal will be to

evaluate the robustness of this image retrieval approach. Another limitation is that the

current implementation of our framework only focuses on a subset of semantic annotations

(Table 2) that can be predicted from texture features (i.e., Riesz wavelets). These semantic

terms cannot describe the global lesion content (e.g., lesion shape, lesion focality) since they

are more adapted to describe its inner texture. We plan to integrate supplementary

quantitative imaging feature to automatically predict complementary semantic terms to

enhance the lesion high-level annotations. An additional limitation is that the dissimilarity

between the semantic terms partially relies on the quality of the ontology itself and the

texture features used to characterize the terms. We plan to enhance the current framework by

considering simultaneously different ontologies besides RadLex and complementary

quantitative imaging descriptors. A final perspective is that the presented image-based term

dissimilarity measure can be used to learn and/or update existing ontological structures. This

could be studied in future work. Despite the presented limitations, we believe our results

show the potential value of our methods for improving CBIR in the medical imaging

context.
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5. Conclusion

We present a new semantic framework that enables retrieving similar images based on high-

level semantic image annotations. These annotations consist of semantic terms belonging to

an ontology, automatically predicted from the image content, which ensure the performance

reproducibility with radiologists having various levels of experience. In addition, such

annotations could provide a robust alternative to quantitative features extracted from the

image content that are often not sufficient to characterize complex lesions in an accurate and

comprehensive fashion. Thanks to a hierarchical low-computational cost distance, this

framework incorporates the high-level similarities among the semantic terms used to

describe the images when retrieving similar images in a database. A unique aspect of our

approach is the consideration of both image-based and semantic similarities between

ontological terms that describe the image contents. These term similarities are combined in a

global term dissimilarity measure and their respective contributions are learned from data

examples using a machine learning strategy based on the maximization of the agreement

between the perceptual image dissimilarity and the global term dissimilarity value. To

validate this framework, we applied it to the retrieval of medical images of the liver. The

results obtained show reasonable accuracy scores compared with an independently

constructed pairwise visual dissimilarity standard of liver lesions visible on portal venous

CT images. The semantic framework we have developed is generalizable and can be easily

adapted to other anatomic and diagnosis scenarios in which CT or other imaging modalities

are used. Ultimately, this framework opens new opportunities for the development of

computer-assisted image retrieval applications and softwares that can be used by

Radiologists in combination with PACS systems.
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Fig. 1.
3 CT images  of liver lesions annotated with 3 semantic terms (Ovoid, Round, Irregular)

describing the lesion contour. These images could be represented in a 3D space as (1, 0,

0),  (0, 1, 0) and (0, 0, 1) where each image is equidistant to every other image.

However, we know intuitively that  and  are more similar than  (resp. ) and  since

the images annotated with the semantic terms ovoid and round are visually and semantically

closer than the ones annotated with ovoid (resp. round) and irregular.
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Fig. 2.
Visual signatures learned for three semantic terms as linear combinations of multi-scale

Riesz wavelets. The signatures are learned from a training set of previously annotated image

ROIs that is described in Section 4. The color scale shows the profiles of the signatures Γi

obtained as a weighted sum of Riesz basis templates. Each signature is presented with a

representative image ROI (red boundaries) where the term modeled by the signature has a

high probability of appearance. This figure also illustrates the idea of computing the image-

based dissimilarity dΓ between two semantic terms xi and xj to evaluate their visual

proximity. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 3.
An extract of the RadLex ontology that is a controlled terminology for radiology reporting.

This figure also illustrates the idea of using the ontology structure to evaluate the semantic

proximity dΘ between two terms xi and xj .
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Fig. 4.
Workflow of the proposed semantic framework for image retrieval. Orange boxes represent

offline steps while blue boxes represent online steps. The content of each box is detailed in

Section 3. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 5.
6 CT images of liver lesions in the portal venous phase. The boundaries of the lesions are

highlighted in red. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 6.

Example of learned weights of the  term dissimilarity measure for 15 pairs of semantic

terms. The weight ρ is represented as a green dot on a [0, 1] scale. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 7.
Matrices (heatmaps) modeling the term dissimilarities among the 18 RadLex terms used to

characterize the lesions. The color scale varies from 0 (black – similar) to 1 (white –

dissimilar).
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Fig. 8.
Term likelihood values predicted by the automatic annotation step for the four most

represented diagnoses of the dataset. Each diagram represents the mean vector of the term

likelihood values for all lesions of a particular diagnosis. This visualization strategy has

been proposed in (Andre et al., 2012).
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Fig. 9.
NDCG (K) plots, where K is the number of images retrieved in a set of 25 images (cysts,

metastases and hemangiomas).
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Fig. 10.

Z-score from the Wilcoxon test comparing the NDCG scores obtained with  and

, by varying the number K of images retrieved.
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Fig. 11.
Examples of image retrieval for a hemangioma query for the different initializations of EMD

and HSBD. Only the top ten retrieved images are depicted. Dissimilarity rankings go from

lowest (left) to highest (right). The query image is surrounded by a black frame. Retrieved

images having the same diagnosis as the query image are surrounded by green frames while

retrieved images having a different diagnosis are surrounded by red frames. (For

interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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Table 1

The types of diagnoses and the number of lesions.

Diagnosis Type # Of lesions

Cyst 21

Metastasis 24

Hemangioma 13

Hepatocellular carcinoma 6

Focal nodular hyperplasia 5

Abscess 3

Total 72
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Table 2

RadLex terms used to describe the appearance of the liver lesions from CT scans. The 18 semantic terms

describing the margin and the internal textures of the lesions are marked in bold. The ontology tree associated

with these semantic terms is available online at: http://bioportal.bioontology.org/ontologies/RADLEX.

Category Semantic term

Lesion margin and contour Circumscribed margin

irregular margin

lobulated margin

poorly-defined margin

smooth margin

lesion substance internal nodules

perilesional tissue normal perilesional tissue

lesion focality solitary lesion

multiple lesions 2–5

multiple lesions 6–10

multiple lesions > 10

lesion attenuation hypodense

soft tissue density

water density

overall lesion enhancement enhancing

hypervascular

nonenhancing

spatial pattern of enhancement heterogeneous enh.

homogeneous enh.

peripheral nodular enh.

kinetics of enhancement centripetal fillin

homogeneous retention

homogeneous fade

lesion uniformity heterogeneous

homogeneous

overall lesion shape round

ovoid

lobular

irregularly shaped

lesion effect on liver abuts capsule of liver
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Table 3

Dissimilarity measures used for term comparisons. These combinations enable to assess independently the

contributions of the image-based and the semantic dissimilarities between the terms during the image retrieval

step.

Term dissimilarity measure Equation Definition

dΓ(xi, xj) Eq. (2) image-based

dΘ(xi, xj) Eq. (3) ontological

Eq. (4) image-based + ontological (equal contribution)

Eq. (4) image-based + ontological (weighted version)
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