
Computer-Aided Detection of Exophytic Renal Lesions on Non-
Contrast CT Images

Jianfei Liua, Shijun Wanga, Marius George Lingurarub, Jianhua Yaoa, and Ronald M. 
Summersa,*

Ronald M. Summers: rms@nih.gov
aRadiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 
USA

bSheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, 
Washington, DC, USA

Abstract

Renal lesions are important extracolonic findings on computed tomographic colonography (CTC). 

They are difficult to detect on non-contrast CTC images due to low image contrast with 

surrounding objects. In this paper, we developed a novel computer-aided diagnosis system to 

detect a subset of renal lesions, exophytic lesions, by 1) exploiting efficient belief propagation to 

segment kidneys, 2) establishing an intrinsic manifold diffusion on kidney surface, 3) searching 

for potential lesion-caused protrusions with local maximum diffusion response, and 4) exploring 

novel shape descriptors, including multi-scale diffusion response, with machine learning to 

classify exophytic renal lesions. Experimental results on the validation dataset with 167 patients 

revealed that manifold diffusion significantly outperformed conventional shape features (p < 1e − 

3) and resulted in 95% sensitivity with 15 false positives per patient for detecting exophytic renal 

lesions. Five-fold cross-validation also demonstrated that our method could stably detect 

exophytic renal lesions. These encouraging results demonstrated that manifold diffusion is a key 

means to enable accurate computer-aided diagnosis of renal lesions.
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1. Introduction

Renal cancer is estimated to cause 13,860 deaths and 63,920 new cases in the United States 

in 2014 (NCI, 2014). It manifests as malignant renal lesions and, in many cases, the majority 
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of renal cell carcinomas are asymptomatic (Lee et al., 2002). They are found incidentally on 

noninvasive imaging performed for unrelated problems (Jayson and Sanders, 1998; Luciani 

et al., 2000; Homma et al., 1995), such as colon cancer detection in computed tomographic 

colonography (CTC) (Dachman et al., 2010). Renal lesions are one important extracolonic 

finding (Kimberly et al., 2009; Veerappan et al., 2010; Pickhardt et al., 2010; Yao and 

Burns, 2013), belonging to C-RADS E2-E4 type (Zalis et al., 2005). Therefore, developing a 

computer-aided diagnosis system on CTC images can increase the chance of early detection 

of high-risk renal lesions with economic benefits.

Renal lesions are generally classified as exophytic lesions (on the kidney surface) and 

endophytic lesions (inside the kidney). This paper mainly focuses on the detection of 

exophytic renal lesions. However, detection of exophytic renal lesion on CTC images poses 

substantial challenges due to low contrast with surrounding objects. Low image contrast 

hinders accurate kidney segmentation, which is used to limit the search range of renal 

lesions. Kidney intensity values are similar to the adjacent muscle, vein, and liver, etc. 

Irregular kidney shapes deformed by large renal lesions disallow shape-constrained 

segmentation methods (Cootes et al., 1995; Zhang et al., 2012; Rousson and Cremers, 2005). 

Such methods require kidney shapes that satisfy certain distributions with controllable shape 

variance. Even though kidney segmentation is feasible, detecting exophytic renal lesions is 

still challenging because kidney and lesion have similar intensity values (Fig. 1a). We 

instead detect exophytic renal lesions in the shape space because they often present as 

protuberances on the kidney surface (Fig. 1b). Moreover, conventional shape descriptors, 

such as shape index (Koenderink and Doorn, 1992), a popular shape descriptor that was 

successfully used for renal lesion classification (Linguraru et al., 2011), fail to accurately 

and smoothly represent geometric changes on the kidney surface (Fig. 1c). Although shape 

index is large at the lesion regions and small at flat or concave areas, almost all protrusion 

surfaces have high shape index values (red regions), partly due to noise, which introduce 

many false positives.

In this work, we develop a novel computer-aided diagnosis system established on two key 

technologies, efficient belief propagation and intrinsic manifold diffusion. Kidneys are first 

segmented by embedding probabilistic kidney atlases into an efficient belief propagation 

framework (Felzenszwalb and Huttenlocher, 2006). An intrinsic manifold diffusion (Liu et 

al., 2013b) is then computed on the kidney surface to accurately describe geometric 

transitions (Fig. 1d). Manifold diffusion response has large values in the protuberances 

(yellow), while suppressed in all other areas (green). Exophytic renal lesions can thus be 

detected by searching for local maximum diffusion response. Finally, support vector 

machine is exploited to classify renal lesions using multi-scale diffusion response as shape 

features, in conjunction with appearance features.

The presented framework extends two preliminary conference papers (Liu et al., 2013a,b), 

where manifold diffusion with fixed scales were employed to detect ex-ophytic renal lesions 

and the sum of the Harr wavelet response from speeded up robust features (Bay et al., 2008) 

were used as appearance features to classify renal lesions. In this work, we investigate the 

influence of scales on renal lesion detection and incorporate histogram of oriented gradients 

(Dalal and Triggs, 2005) and local binary pattern (Ojala et al., 1996) as appearance features. 
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We also apply efficient belief propagation to segment pathologic kidneys with renal lesions. 

Moreover, we extensively evaluate our detection framework on a validation dataset with 167 

CTC images containing renal lesions with different sizes and densities.

2. Related Work

This section describes relevant work on kidney segmentation, renal lesion detection and 

shape analysis.

2.1. Kidney Segmentation

In recent years a large body of research has been conducted on kidney segmentation, the 

majority focusing on contrast-enhanced CT images (Ali et al., 2007; Khalifa et al., 2011; Lin 

et al., 2006; Freiman et al., 2010). Probabilistic atlases are often used in kidney 

segmentation. A set of kidney atlases is first registered to the current patient image. They are 

then integrated to create the probabilistic atlas. Such integration is meaningful because all 

registered atlases are referred to the coordinate of the current patient. Exploiting the 

probabilistic atlas as the shape prior can reduce the segmentation error because the 

probabilistic atlas represents the possible kidney variability amongst individuals. Ali (Ali et 

al., 2007) embedded a probabilistic kidney atlas into Markov random fields represented as 

an energy function. The graph cut algorithm was chosen to minimize the energy function 

and yield kidney segmentation. Yuksel (Yuksel et al., 2007) extended this work to segment 

kidneys on dynamic contrast enhanced MRI images by embedding kidney intensity priors 

into Markov random fields. Similar idea was used in Khalifas approach (Khalifa et al., 2011) 

by exploiting shape and intensity priors except that a geometric deformable model was used 

to initialize kidney borders. Another improvement over Ali et al.'s method was the 

replacement of the parametric kidney atlas with a non-parametric iterative model (Freiman 

et al., 2010). Lin (Lin et al., 2006) detected kidney candidates by using spine positions as 

landmarks and searching for elliptic structures. Adaptive region growing algorithm was then 

employed to segment kidneys on the kidney candidates.

Other researchers treated kidney segmentation within the multi-objects segmentation scheme 

(Campadelli et al., 2009; Linguraru et al., 2012a), which has the potential to improve the 

accuracy of kidney segmentation due to the spatial constraints from other organs. Recently, 

random forest technique (Cuingnet et al., 2012) was applied to kidney segmentation by 

introducing more comprehensive prior information into the segmentation framework, and a 

large number of training examples were used to support this process.

However, the majority of the prior methods took advantage of contrast-enhanced CT images 

and it might be difficult to apply them to non-contrast CTC images. Moreover, shape 

deformation caused by renal lesions is another issue to hinder accurate kidney segmentation 

using shape constraints.

2.2. Renal Lesion Detection

In contrast to the large body of research on kidney segmentation, renal lesion detection was 

seldom addressed. Detection of renal lesions generally consisted of three main steps: kidney 

segmentation, lesion detection and segmentation. Summers (Summers et al., 2001) 
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developed a marker controlled watershed algorithm to segment both kidneys and lesions. 

Thresholding algorithm was employed to extract kidneys in (Kim and Park, 2004), and renal 

lesions were detected and segmented using texture analysis as well as homogeneous region 

growing. Linguraru (Linguraru et al., 2009) improved renal lesion segmentation by 

combining fast-matching and geodesic level set. This method generated accurate lesion 

segmentation, and quantification of renal lesions became feasible. Later on, the lesion type 

was classified using support vector machine on the lesion segmentation (Linguraru et al., 

2011). Landgren (Landgren et al., 2011) used active shape models to extract kidneys in 

children from scintigraphy images and detected renal lesions based on artificial neural 

network. Kulamthaivel also investigated neural networks in combination with wavelet-based 

texture features to classify renal lesions (Kulanthaivel, 2012).

Nevertheless, all these methods investigated texture information of renal lesions because 

contrast enhancement induces notable intensity difference between lesions and normal 

kidney tissues. However, texture feature is not distinctive in non-contrast CTC images (Fig. 

1a), which makes it difficult to apply these methods to detect renal lesions on CTC images.

2.3. Shape Analysis

Instead of detecting renal lesions in the image domain, we studied shape analysis to resolve 

this issue in this work. For this reason, we will briefly review shape analysis in computer-

aided diagnosis of lesions in this section.

Many lesions are presented as certain geometrical shapes, such as mushroom-like colonic 

polyps and spherical hepatic tumors. Shape analysis thus plays important roles in detecting 

lesions and providing meaningful feature descriptors to reduce false positives in computer-

aided diagnosis. Curvature was frequently applied to the detection of colonic polyps (Huang 

et al., 2005; Liu et al., 2011; Sundaram et al., 2007), pulmonary nodules (Kawata et al., 

1999) and liver cancer (Linguraru et al., 2012b). An alternative shape analysis tool is shape 

index (Koenderink and Doorn, 1992), which is a single-value measurement of local surface 

geometry according to the principal curvature. The local geometry can be classified into cup, 

rut, saddle, ridge, and cap according to shape index values. This is a useful property for 

tumor detection in colon (Yoshida et al., 2002), breast (Irishina et al., 2009), and bladder (Li 

et al., 2008). However, shape index is prone to geometric noise in renal lesion detection 

(Fig. 1c). The accuracy of shape index might be improved through smoothing organ surface 

(Desbrun et al., 1999). Surface smoothing is undesirable in renal lesion detection because 

over-smoothing can cause lesions to vanish.

Recent studies in computer graphics introduced versatile shape descriptors (Bronstein and 

Kokkinos, 2010; Sun et al., 2008; Litman et al., 2011) based on heat diffusion (Levy, 2006; 

Reuter et al., 2005). These descriptors are accurate and robust to geometric noise because 

they smooth while preserving geometric details such as lesions. Because these shape 

descriptors were established on the heat kernel, constructions related to the heat kernel led to 

a new research field, called diffusion geometry. Diffusion geometry is intrinsic and 

deformation-invariant (Levy, 2006), which makes descriptors applicable to deformable 

shape analysis. In medical image analysis, Seo (Seo et al., 2010) exploited the heat kernel to 
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smooth organ surface, and Lai (Lai et al., 2010) applied this technique to extract geometric 

features from colon models to perform supine and prone registration.

Our manifold diffusion is also established on the heat kernel. In contrast to the high 

complexity of the conventional heat kernel diffusion (Seo et al., 2010; Lai et al., 2010), we 

propose compact, multi-scale heat kernel features for the detection of renal lesions. 

Although the computation of heat diffusion is simplified, our feature descriptor is still 

invariant under isometric transformation, as proved in (Sun et al., 2008).

3. Methodology

This section elaborates on our computer-aided detection of exophytic renal lesions (Fig. 2). 

In this framework, efficient belief propagation method is first chosen to segment left and 

right kidneys on CTC images. Manifold diffusion is then computed to measure shape 

variance on the kidney surface. We search for kidney surface regions with local maximum 

diffusion response as renal lesion candidates. Finally, we established shape and appearance 

features in the candidate regions and embed them into a support vector machine classifier to 

determine actual renal lesions and remove false positives.

3.1. Kidney Segmentation

An efficient belief propagation approach is developed to segment kidneys on non-contrast 

CT images for the purpose of limiting the search range of renal lesions. Our method consists 

of three main components, including data processing, right kidney segmentation, and left 

kidney segmentation.

3.1.1. Data processing—This step aims to segment liver, spleen and bone to find some 

anatomical landmarks. These landmarks are used to determine sub-images that envelope the 

kidneys. Extraction of such sub-images can significantly reduce computational cost as well 

as improve the accuracy of kidney segmentation. For instance, knowing liver and spleen 

regions contributes to reduce kidney over-segmentation.

Linguraru's approach (Linguraru et al., 2010) is chosen to segment liver and spleen. Liver 

and spleen atlases are registered to the patient image followed with 4D convolution and 

geodesic active contour to improve boundaries of organ registration, which yields the final 

liver (blue object in Fig. 3a) and spleen (green) segmentations. Bone (red) is segmented by 

using Yao's method (Yao et al., 2012), in which the spine is segmented and localized via 

thresholding, region growing, and directed graph searching. The vertebra borders are further 

refined using a vertebra template. Stemming from the vertebrae, the ribs are then traced by a 

progressive algorithm based on maximizing the cross-section overlap.

3.1.2. Right kidney segmentation—We start with segmenting the right kidney because 

it is adjacent to the liver and the large volume of the liver facilitates determining a sub-

image contain the right kidney. Two key slice indices are first identified from the liver 

segmentation. One is the slice l with the maximum area of segmented liver (Fig. 3a), and the 

other one h is the most inferior slice containing the liver (Fig. 3b). The length of a kidney is 

about 12cm, and it approximately spreads over 120 slices in the CTC images with 1mm slice 
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thickness. Note that the slice h is approximately at the kidney center and the slice l is at one 

end of the kidney. The slice range of the sub-image is thus defined as [l − 10, h + 60] to 

ensure that the kidney is included in the sub-image. The length of the white box in Fig. 3c 

illustrates the slice range of this sub-image. The spatial ranges of the sub-image at x-y image 

plane are next computed according to the bounding boxes of the liver and bone. Assuming 

the bounding box of the liver to be [liverlx, liverhx, liverly, liverhy, liverlz, liverhz] and the 

bounding box of the bone to be [bonelx,bonehx,bonely,bonehy,bonelz,bonehz], the sub-image 

is computed as [bonelx, (bonelx + bonehx)/2, liverly, liverly + 2/3(liverhy − liverly), l −10,h + 

60] (white boxes in Figs. 3a and 3b). We extract a sub-image (Fig. 4a) that mainly contains 

the right kidney, and threshold it into a binary image (Fig. 4b) by choosing the kidney 

intensity range of [1, 176]HU as well as removing liver and bone segmentations. Here, the 

kidney intensity range [1, 176]HU was experimentally determined on our CTC images.

Next, we choose five pairs of reference CT images and their right kidney segmentation 

images to establish a probabilistic kidney atlas. Here, the choice of five reference images is 

suggested by Rikxoort (van Rikxoort et al., 2010). They performed extensive experiments to 

demonstrate that five atlases are often sufficient for atlas-based image segmentation, and 

illustrated their findings in segmenting the heart and the caudate nucleus. The construction 

of the probabilistic atlas involves four steps. First, we extract five pairs of reference sub-

images and their kidney sub-images, and these sub-images have the same size as the ones 

extracted from the patient image. Second, a reference sub-image and the patient sub-image 

are registered by affine registration with 9-parameter affine transform (Studholme et al., 

1999) and non-rigid registration with a free-form, B-splines deformation (Rueckert et al., 

1999). The registration parameters are used to transform the kidney and reference sub-

images. Third, affine and non-rigid image registrations are performed again on the binary 

patient sub-image (Fig. 4b) and the transformed kidney sub-images. The kidney shape 

variability of different individuals is reduced through the previous two-step image 

registration, which registers the reference sub-image to the patient sub-image. The 

transformed kidney sub-image based on registration parameters will be similar to the actual 

kidney in the patient image. This two-step image registration is performed on all five pairs 

of reference sub-image and kidney sub-images. Finally, a probabilistic atlas is established by 

averaging the five registered kidney sub-images (Fig. 4c). The averaging will further reduce 

registration errors and enable the probabilistic atlas to adapt to the kidney shape of the 

current patient.

A distance field D(x) (Maurer et al., 2003) is computed on the probabilistic atlas and 

normalized to [0, 1], which facilitates computing a probability field P(x) of the right kidney. 

In terms of the kidney intensity I(x) and the normalized distance field D(x), we define the 

probability field (Fig. 4d) as

(1)

Here, x is an image point and δ(x) is defined as
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(2)

where [1, 176]HU is the kidney intensity range.

We formulate the kidney segmentation problem as a labeling process and resort to 

minimizing an energy function using the Markov random field.

(3)

where ‖1 represents L1 norm, Ω denotes the sub-image domain, N(x) means the 

neighborhood of x, and 0 ≤ fx ≤ 1 are labels. In the data term ‖P(x) − fx‖1 ∈ [0, 1], we set a = 

0.99 to make the data term robust to kidney over-segmentation, which is often caused by the 

kidney touching surrounding tissues, indicated by a red arrow in Fig. 4a. The truncation 

value b = 3 is used to prevent the smoothness term ‖fy−fx‖1 from over-smoothing during the 

labeling process, and the scaling parameter c = 5 is to balance data and smoothness terms in 

Eq. 3. Here, the constants a, b, and c were selected based on the experimental results in 

Felzenszwalb's work (Felzenszwalb and Huttenlocher, 2006).

Efficient belief propagation (Felzenszwalb and Huttenlocher, 2006) is chosen to minimize 

Eq. 3 due to its high efficiency. It is a process of message propagation over the image graph. 

Each message is a value given by the number of possible fx. It involves two efficient 

strategies to reduce the computational cost. First, three-resolution image graphs are built on 

the patient sub-image. Messages are quickly propagated in the coarse image graph because 

the local minima of Eq. 3 are rare in the coarse graph. The accuracy of message propagation 

is improved in the fine image graph. Second, since both terms in Eq. 3 are represented as L1 

norm, the belief messages at iteration k can be derived as a nested minimization convolution.

(4)

 is the belief message transmitted from x to y at iteration k, d = 1.0, and

(5)

where s is an image point belonging to six-neighborhood N(y) of y.

Thus, Eq. 3 can be minimized through distance transform (Maurer et al., 2003). The 

computational time of belief propagation is less than one minute due to these two efficient 

strategies, and the right kidney is segmented by choosing object points with fx > 0.05. Here, 

we set a small threshold 0.05 to ensure exophytic lesions are included because they have 

small probability values P(x) at the kidney boundary. Finally, geodesic active contour 

(Caselles et al., 1997) is chosen to smooth right kidney boundaries and recover some missed 
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regions due to large kidney lesions. We initialize zero level set as boundaries of the 

segmented right kidney from efficient belief propagation, and geodesic active contour forces 

the level set to propagate towards true right kidney boundaries.

3.1.3. Left kidney segmentation—After the right kidney is segmented, we project it 

into the left side of the body to determine a sub-image in terms of the body symmetry. We 

follow the same segmentation strategy to build a probabilistic atlas and perform efficient 

belief propagation to extract the left kidney. We also use the segmented spleen to reduce the 

left kidney over-segmentation as well as geodesic active contour to supplement under-

segmentation due to large lesions.

Fig. 5 illustrates three examples of kidney segmentation. An endophytic renal lesion is 

located in the left kidney (Fig. 5a), and our algorithm can accurately segment the kidney 

(Fig. 5b). A right kidney with an ex-ophytic lesion less than 20mm (Fig. 5c) is also 

accurately segmented by using our approach (Fig. 5d). The third example is a difficult case 

because multiple large renal lesions (some larger than 40mm) deform the kidney irregularly 

(Fig. 5e). However, our method can still segment this pathological case by exploring belief 

propagation to extract main portion of the kidney regions followed with supplementation 

using geodesic active contour (Fig. 5f).

3.2. Manifold Diffusion

After kidneys are segmented, we establish a manifold diffusion process to measure 

geometric changes on the kidney surface, so as to identify lesion-caused protrusions. The 

kidney surface is constructed using the Marching Cubes algorithm (Lorensen and Cline, 

1987) on the kidney segmentation.

The kidney surface can be generally treated as a three-dimensional complete Riemannian 

sub-manifold M of ℝ3. Our manifold diffusion on M is governed by the heat equation 

(Bronstein and Kokkinos, 2010),

(6)

where ΔM is the positive semi-definite Laplace-Beltrami operator on the manifold M and 

expressed in the parameterization coordinate as (Sun et al., 2008).

(7)

Here, g is the metric tensor describing the geometric relationship between the manifold M 

and the parameterization coordinates and det is the determinant of the tensor matrix g. If M 

has boundaries and F : M → ℝ denotes an initial heat distribution on M, the solution U(t, x) 

is called the heat distribution at a point x in time t and limt→0 U(t, x) = F. For any M, there 

exists a function K(x, y, t) : ℝ+ × ℝ3 × ℝ3 → ℝ (Hsu, 2002), which leads to
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(8)

K(x, y, t) is called the heat kernel and dy is the volume form at y ∈ M, which is a three-

dimensional form on the manifold that is nowhere equal to zero. K(x, y, t) measures the 

amounts of the heat transferred from x to y at time t.

According to graph spectral theory (Chung, 1996), K(x, y, t) is decomposed as

(9)

Here, λi and ϕi are, respectively, the ith eigenvalue and the ith eigenfunction of the Laplace-

Beltrami operator. The parameter t takes the scale role in shape analysis because adjusting it 

can produce a family of K(x, y, t). Setting x = y, K(x, y, t) is referred to as the auto-diffusivity 

function, which denotes the amount of heat remaining at a point x after time t. Our manifold 

diffusion is defined according to K(x, x, t) by varying the scale t (Fig. 6).

Manifold diffusion at small scales can accurately detect lesion-caused protrusions because it 

is correlated with Gaussian curvature S (x) (Sun et al., 2008) as

(10)

where O(x, t2) is the higher-order term of x and t. Manifold diffusion is superior to Gaussian 

curvature as the diffusion process also eliminates geometrical noise and yields smooth shape 

measurements over the kidney surface. For instance, a small lesion A (Fig. 6a) can be stably 

detected when t = 0.1 because its diffusion response is locally maximum (mapped in green) 

in comparison with its neighboring points (cyan). Large lesions B and C are easily detected 

when t = 1.5 because their responses are more dominant at this scale (Fig. 6b). The kidney 

surfaces with large diffusion response are gradually shifted to the superior and inferior 

kidney segments as they are two most stable protrusions (Fig. 6d). Therefore, our manifold 

diffusion at small scales is a good fit for renal lesion detection.

Shape descriptors based on the manifold diffusion also provide several beneficial properties 

for the classification of renal lesions. First, the Laplace-Beltrami operator is intrinsically 

defined on M, and the feature descriptor established on this operator is invariant under 

isometric transformation (Bronstein and Kokkinos, 2010; Sun et al., 2008). In other words, 

our feature descriptor is insensitive to the variability among renal lesions. Second, the 

collection of manifold diffusion responses at different scales is a compact shape descriptor 

that can densely measure shape variance on the kidney surface. Third, the feature descriptor 

is informative, as it keeps all information about the intrinsic geometry of the manifold (Sun 

et al., 2008). Lastly, the feature descriptor from manifold diffusion accurately preserves all 

local shape information because it is established on the kidney surfaces with original 

resolutions.
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3.3. Renal Lesion Detection and Classification

Manifold diffusion response computed from the previous step is assigned as the vertex 

weight of the kidney surface graph because the kidney surface extracted from the Marching 

Cubes algorithm is naturally a graph representation. Renal lesions are highlighted at small 

scales (Figs. 6a and 6b), and we choose a set of fine scales to allow for our framework to 

identify renal lesions with different sizes. In our implementation, we use t ∈ [0.1, 0.5, 1.0, 

1.5, 2.0] in Eq. 9. The kidney graph is then partitioned to search for sub-graphs with local 

maximum scale response, as renal lesions typically stay in these regions. Fig. 7 summarizes 

the process of our renal lesion detection, which consists of four main steps, including seed 

point determination, graph partition, renal lesion detection, and lesion classification.

3.3.1. Seed point determination—This step searches for a set of vertices with local 

maximum diffusion response at each predefined, small scale. They are used as seed points to 

facilitate partitioning kidney surface graphs. A seed point xs is determined if K(xs, xs, t) = 

arg max x∈ring(5) K(x, x, t), where ring means the neighbors of x on the surface graph 

(Desbrun et al., 1999). A small number of rings will select a large number of seed points 

with local maximum response values which will increase computational cost in the graph 

partition step. On the other hand, a large number of rings will increase the computational 

time of searching for seed points. We ran the experiments using 2-11 rings to search for seed 

points, and found that five rings optimally balanced the computational cost and accuracy of 

seed point determination. Green spheres in Fig. 7a illustrate the detected seed points.

3.3.2. Graph Partition—The normalized cut algorithm (Shi and Malik, 2000) is employed 

to partition the kidney surface graph. Let G = (E, V) be the kidney surface graph with the 

edge set E and the vertex set V. The edge weight is assigned with the sum of diffusion 

response difference across predefined scales,

(11)

Here, we define the interval [0.1, 2] because we choose these scales to detect renal lesions.

A cut is define as

(12)

which is to find a set of edges to separate G into two disjoint sets A and B with similar 

diffusion response values measured by Eq. 11. Normalized cut is computed as

(13)

where assoc(A, V) = Σx1∈A,x2∈V W(x1,x2) and assoc(B,V) is similarly defined. Normalized 

cut is iteratively performed until no graph partitions contain two seed points and the 
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deviation of diffusion values of each partition is also less than 0.1. Fig. 7b shows the 

partition results where each partition is represented as a colored component.

3.3.3. Renal Lesion Detection—A partition is regarded as a lesion candidate if its 

diffusion response is the local maximum and its area is less than a threshold, α =1cm2. α is 

used to distinguish image partitions with local maxima, such as the two partitions indicated 

by arrows in Fig. 7b. The partition indicated by the red arrow belongs to the normal kidney 

surface and it has a large surface area. The partition indicated by the white arrow (an 

exophytic lesion) has a small area. 1cm2 is experimentally determined from the training 

dataset based on the observation in Fig. 7b that the partition includes parts of the lesion 

surface has the limited size. In other words, most of the partitions with renal lesions are less 

than 1cm2. Fig. 7c illustrates the graph partitions in green regions belonging to lesion 

candidates.

3.3.4. Lesion classification—For classification, we map the center point of the lesion 

candidates to the original CT image. A 10×10×10 sub-image centered at the mapped point is 

constructed for computing appearance features. Mean and standard deviation of intensity 

values, local binary pattern (Ojala et al., 1996), histogram of oriented gradients (Dalal and 

Triggs, 2005), as well as speeded up robust features (Bay et al., 2008) are used to describe 

the lesion appearance. Multi-scale manifold diffusion response is used to characterize the 

lesion shape. Table 1 gives the dimensions of all texture features and shape features for 

lesion classification. We combine appearance and shape information to formulate feature 

vectors. LBP, HOG and SURF measure the texture response in different orientations, and 

the combination of all orientations can accurately describe the texture characteristic in the 

current lesion candidate. Our early work (Wang et al., 2012; Liu et al., 2013c) showed that 

using all features could achieve similar detection accuracy to using feature subsets 

determined using feature selection and dimension reduction. Thus, we applied all feature 

vectors to train the support vector machine classifier (Chang and Lin, 2011) using a 

Gaussian radial basis function as the kernel. The final lesion detection after classification is 

shown in Fig. 7d. Here, the green sphere represents true positive and the red one false 

positive.

4. Validation Datasets and Methods

Our lab has collected 1186 non-contrast CTC images from three institutions (Pickhardt et 

al., 2003). Each dataset was scanned during a single breath hold using a four-channel or 

eight-channel CT scanner (General Electric Light Speed or Light Speed Ultra, GE 

Healthcare Technologies, Waukesha, WI). CT scanning parameters included 1.25 to 2.5 mm 

section collimation, 15 mm table speed, 1 mm reconstruction interval, 100 mAs, and 120 

kVp. Retrospective analysis of these images was approved by our Office of Human Subject 

Research. With the assistance of an experienced radiologist, 97 patients were confirmed to 

have renal lesions based on clinical reports from three institutions providing CTC data. 76 of 

patients with renal lesions contained exophytic lesions. We excluded one patient with an 

exceptionally large kidney lesion (125. 12mm) leaving 96 patients with renal lesions. 71 

patients without lesions from the remaining CTC images were also included. Thus, 167 CTC 
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images (patient age range, 43-73 years; mean age, 56±8 years) compose the validation 

dataset to evaluate our renal lesion detection framework.

The total number of lesions from the 96 patients was 179. 141 of them were exophytic, and 

the remaining 38 were endophytic. All lesions were marked by an experienced radiologist as 

the groundtruth. The lesion size range was 0.3-6.6cm and mean size was 2±1.4cm. The 

lesion CT attenuation ranged from -313-40HU with a mean of 2±32HU. The number of left 

kidney surface points reconstructed by the Marching Cubes algorithm was 33684-113492 

(mean point number, 55062±13178), and the number of right kidney surface points was 

34536-98600 (mean point number, 54556±12171).

We evenly divided the 167 patients into five folds and performed five-fold cross-validation. 

The first three folds have 33 patients and the remaining two have 34. Because we focus on 

the detection of exophytic renal lesions in this work, we also evenly assigned 76 patients 

with exophytic lesions into 5 folds. The first four folds had 15 patients with exophytic 

lesions and the last fold had 16. Table 2 gives the detailed information about the numbers of 

patients and lesions in each fold.

We designed another configuration of training and testing dataset to measure the influence 

of diffusion scale selection, lesion size, lesion density, and lesion type on the detection 

accuracy. We randomly selected the second and the fourth folds to formulate the training 

dataset (67 patients), and the remaining three folds as the testing dataset (100 patients). 

Increasing the number of patients in the testing dataset contributes to better analyze different 

parameter choice on the detection accuracy. There were 30 patients with exophytic renal 

lesions in the training dataset, and 46 patients in the testing dataset. In the training dataset, 

the total number of exophytic renal lesions was 56. In the testing dataset, the number of 

exophytic renal lesions was 85.

We first performed five-fold cross-validation to analyze the stability of computer-aided 

exophytic renal lesion detection. We then chose the testing dataset with three folds to 

evaluate the choice of diffusion scale in exophytic lesion detection by comparing detection 

results using multi-scales (t=0.1, 0.5, 1.0, 1.5, and 2.0), and each individual scale. Here, 

renal lesion detection was considered as true positive if the distance between the detection 

and the reference is less than half of the corresponding lesion size as well as the detected 

point being located within the renal lesion. Otherwise, it was called false positive. The free-

response receiver operating characteristic (FROC) analysis (Hillis et al., 2009) is chosen to 

evaluate the accuracy of renal lesion detection.

We also compared multi-scale manifold diffusion with the conventional shape features 

including shape index, minimum curvature, maximum curvature, Gaussian curvature, and 

mean curvature, to better understand the advantages of manifold diffusion on exophytic 

renal lesion detection. We imported conventional shape features into the same pipeline of 

renal lesion detection and classification in section 3.3. Because conventional shape features 

produced a large number of seed points, we merged seed points if their distance is less than 

1cm to ensure the normalized-cut method stably partition kidney surface.
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Lesion size and density are two important features that describe the lesion shape and 

appearance, and we thus also analyzed detection accuracy as a function of the renal size as 

well as a function of the lesion density to evaluate their influence. Finally, we reported the 

detection accuracy of exophytic and endophytic lesions.

5. Experimental Results

In this section, we report the accuracy of renal lesion detection on the validation dataset.

5.1. Five-fold cross-validation

In Fig. 8, we compared the performance of the proposed method using five-fold cross-

validation. The detection accuracy achieved 95% sensitivity at 12 false positives per patient 

on all five folds except the third fold. The false positives increased to 19 to achieve 95% 

sensitivity. The performance was lower in the third fold because 89% (24/27) of exophytic 

lesions in this fold were less than 2cm compared to less than 57% in the other four folds. 

Moreover, inaccurate kidney segmentations contained many protrusions due to large levels 

of image noise in some CTC images. Such protrusions were similar to the exophytic lesions 

and caused 34% more initial detections than the other four folds.

5.2. Scale selection of manifold diffusion

Fig. 9 compares the detection accuracy of exophytic lesions using multi-scale manifold 

diffusion and single-scale manifold diffusion at different scales. Manifold diffusion at a 

single scale is inappropriate for lesion detection because it missed many renal lesions. The 

highest sensitivity is 70% with 15 false positives per patient (cyan curve) at t=1. In contrast, 

multi-scale manifold diffusion is superior to single-scale manifold diffusion because it 

achieves 95% sensitivity at 15 false positives per patient.

Fig. 10 shows renal lesion detection on the right kidney using multi-scale manifold 

diffusion. Single scales t=0.5 and t=2 can detect lesions with small and large perturbations, 

respectively, in Figs. 10b and 10c. In contrast, multi-scale manifold diffusion can find both 

lesions (Fig. 10d).

5.3. Comparison of manifold diffusion with conventional shape features

This section compares detection results from manifold diffusion with those from 

conventional shape features, including shape index, Gaussian curvature, mean curvature, 

minimum curvature, and maximum curvature. Fig. 11 indicates that manifold diffusion 

significantly outperform conventional shape features because at 15 false positives their 

sensitivities are all less than 50% while our manifold diffusion achieves 95% (p < 1e −r 3 

reported by JAFROC (Chakraborty, 2006)).

5.4. Influence of lesion sizes on the detection accuracy

This section evaluates the influence of lesion size on the detection accuracy. Fig. 12 gives 

the detection results on the lesions with different sizes. Our method tends to achieve high 

detection accuracy on larger renal lesions (30 mm or larger) and comparable accuracy on 

lesions less than 20mm.
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5.5. Influence of lesion densities on the detection accuracy

In this section, we analyze the effect of renal lesion densities on the detection accuracy. We 

can observe that Fig. 13 is similar to Fig. 12. Renal lesions with higher density (≥30 HU) 

have higher detection accuracy.

5.6. Detection accuracy of exophytic and endophytic lesions

We also tested manifold diffusion method on endophytic renal lesions, and the detection 

accuracy of ex-ophytic and endophytic renal lesions are reported in Fig. 14. At 15 false 

positives, the sensitivity of exophytic lesion detection is 95% while it is 80% on the 

endophytic lesion detection. This result is not surprising because manifold diffusion 

attempts to find lesion-caused protuberance on the kidney surface while endophytic lesions 

produce little deformations, such as for lesion A (Fig. 15a). The lack of surface protrusions 

prevents our manifold diffusion method from detecting it (Black sphere in Fig. 15b). 

However, manifold diffusion can detect endophytic lesions near the kidney hilum (lesion B 

in Fig. 15c), because the concave hilum has strong diffusion response.

As for exophytic lesions, our method can reliably identify them. Lesion C is a typical 

example (Fig. 15e), and manifold diffusion can find it without false positives (Fig. 15f). 

Manifold diffusion is also robust to inaccurate kidney segmentation (Fig. 15g). Kidney 

segmentation erroneously contains part of the liver (triangular object) and the inferior vena 

cava (round blob). An ex-ophytic lesion is still detected by using manifold diffusion (Fig. 

15h). The patient in the last row contains four exophytic lesions, and our method can detect 

all of them.

32% of false positives were located in the superior and inferior kidney (detection D in Fig. 

15b); 35% near the kidney hilum because kidney segmentation includes part of the vein or 

artery, which caused protrusions in the kidney segmentation (detection E in Fig. 15b); the 

remaining 23% of false positives are due to kidney over-segmentation, such as liver tissue 

(detection F in Fig. 15h). Nevertheless, improvement of kidney segmentation will be 

desirable to reduce the number of false positives.

6. Discussion

In this work, we developed a computer-aided diagnosis system to detect exophytic renal 

lesions on non-contrast CTC images using efficient belief propagation and manifold 

diffusion. Efficient belief propagation successfully segmented kidneys on patients with and 

without renal lesions by embedding a probabilistic kidney atlas from five reference CT 

images and their kidney segmentation. Segmentation results on 167 patients confirmed that 

the probabilistic atlas from five reference images was stable to kidney variability. The 

segmentation results also demonstrated that the efficient belief propagation method was 

robust to some characteristics of CT colonography, such as insufflation of the bowel with 

carbon dioxide.

After kidneys were segmented, a manifold diffusion process was established on the kidney 

surface based on the Riemannian geometry because non-contrast CTC images lack visual 

cues. Manifold diffusion instead smoothly and accurately measured shape changes on the 
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kidney surface, so as to identify lesion-caused protuberances with local maximum diffusion 

response. Moreover, diffusion response was employed as shape features to classify renal 

lesions and reduce false positives. The diffusion response in Fig. 6 indicated that fine-scale 

response was sensitive to small surface protuberances, potentially caused by renal lesions, 

while coarse-scale responses tend to be stable at large protuberance, such as the superior tip 

of the kidney. Thus, fine-scale manifold diffusion was chosen to detect renal lesions. Figs. 9 

and 10 also revealed that diffusion response with a set of small scales generated the most 

accurate detections in comparison with different single scales because renal lesions with 

different sizes demands multi-scale manifold diffusion. For this reason, multi-scale manifold 

diffusion was used to detect exophytic lesions in this work. Five-fold cross-validation also 

proved that manifold diffusion could stably detect renal lesions.

We compared multi-scale manifold diffusion with some conventional shape features 

including shape index, Gaussian curvature, mean curvature, minimum curvature, and 

maximum curvature. Manifold diffusion significantly outperforms conventional shape 

features because at 15 false positives their sensitivities are all less than 50% while manifold 

diffusion achieves 95% (p < 1e−3). Manifold diffusion globally creates smooth and accurate 

shape measurements on the kidney surface. It can accurately identify lesion-caused 

protuberances while eliminating geometrical noise. On the contrary, conventional shape 

features are single-scalar measurements, which highly depend on local geometry. These 

measurements are sensitive to geometrical noise, which yields many false positives. 

Meanwhile, conventional shape features, such as shape index in Fig. 1c, often cause kidney 

surface graph to be over-segmented. Large graph partition fails to fulfill the condition that 

the area of the partition should be less than a threshold α=1cm2, defined in the section of 

renal lesion detection. Thus, conventional shape features also miss many renal lesions. Here, 

the threshold α and some other parameters in our computer-aided diagnosis system were 

experimentally determined in the training dataset. The validation results on the test dataset 

demonstrated that the choice of these parameters can achieve accurate renal lesion detection.

Experimental results in Fig. 12 show that the detection accuracy is highly correlated with the 

lesion size as detection on large lesions achieves high sensitivity with few false positives. 

This result is anticipated because large lesions tend to cause large protuberances on the 

kidney surface. Correspondingly, manifold diffusion response is strong on the kidney 

surface, which facilitates our framework to detect them. Therefore, lesion size has a 

significant impact on the renal lesion detection. A similar finding is observed in Fig 13, 

where the detection accuracy is dependent on lesion densities, and renal lesions with high 

densities are more easily detected than those with small densities. This property might be 

useful for subsequent tasks that further characterize lesion types.

We also analyze the detection accuracy of endophytic and exophytic lesions. At 15 false 

positives, the sensitivity of exophytic lesion detection is 95% while it is 80% on the 

endophytic lesion detection. This result is not surprising because some internal renal lesions 

do not cause the kidney surface to deform (Fig. 15a) and manifold diffusion fails to find 

them. However, manifold diffusion can still detect lesions in the kidney hilum where there is 

a strong diffusion response. Almost all exophytic lesions are accurately detected even in the 

case of inaccurate kidney segmentation (Fig. 15g) because manifold diffusion can identify 

Liu et al. Page 15

Med Image Anal. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



their corresponding protuberances. The superior and inferior tips of the kidneys, the renal 

artery and vein, and inaccurate kidney segmentation are three primary factors that produce 

false positives.

The method we have presented may have important clinical utility for CT colonography 

image interpretation. Extracolonic findings are an important aspect of CTC image 

interpretation. Extracolonic findings must be detected and occasionally will lead to 

additional imaging or even surgery. The kidneys are the primary source of extracolonic 

findings on CTC scans (Yee et al., 2005). Multi-scale manifold diffusion can achieve 95% 

detection accuracy of exophytic renal lesions with only 15 false positives per patient. Based 

on the discussion with radiologists in our institute, they can quickly distinguish true 

detections from false positives. To the best of our knowledge, manifold diffusion is the first 

method applied for the detection of renal lesions on non-contrast CT images. Even in 

comparison with the detection accuracy on contrast-enhanced CT images (96% sensitivity 

with 6 false positive per patients (Landgren et al., 2011) on a validation dataset with 40 

patients), our method is still comparable considering the challenges of non-intravenous 

contrast-enhanced CT colonography images.

In the future, we will investigate three important issues to improve the detect accuracy as 

well as reduce false positives. First, we are studying Gaussian scale space theory 

(Lindeberg, 1994) to develop a metric to automatically select manifold diffusion scale t, 

instead of assigning it with a set of fixed scales from [0.1, 2] in Eq. 11. The number of false 

positives might be reduced because selected diffusion scales are directly correlated with 

different lesions. Second, we are exploring multi-organ segmentation (Linguraru et al., 

2012a) to remove more organs adjacent to kidneys. The elimination of more organs can 

reduce the size of sub-image used in the kidney segmentation and improve the final 

segmentation. Accurate kidney segmentation not only enhances the detection accuracy, but 

also reduces false positives. The last important issue is the detection of endophytic lesions 

not adjacent to the kidney hilum, such as lesion A in Fig. 15a. Based on our observation, 

these lesions tend to present spherical shapes inside the kidney and also have slightly lower 

intensity values than their surround kidney tissues. We are exploring these two 

characteristics to extend our detection system to find such internal lesions by constructing 

multi-scale endophytic lesion atlases.
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Highlights

• We developed a novel computer-aided diagnosis system to detect renal lesions 

on non-contrast CT images.

• We designed an efficient belief propagation method to accurately segment 

kidneys on non-contrast CT images.

• A novel shape descriptor, manifold diffusion, was presented in this work. It was 

compact, isometric invariant, and it can accurately and smoothly measure shape 

changes on the kidney surface.

• We devised a novel renal lesion detection metric by assigning diffusion 

response as the weight of kidney surface graph, exploring normalized-cut 

algorithm to partition kidney surface graph, and detecting renal lesions with 

local maximum diffusion response.

• We extensively validated the proposed method on a large dataset with 167 

patients, and experimental results demonstrated that our manifold diffusion 

method could achieve 95% sensitivity with 15 false positives per patient. We 

also proved that manifold diffusion significantly outperformed conventional 

shape descriptors, such as shape index (p<1e-3).
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Figure 1. 
Renal lesion detection on CTC image. (a) A renal lesion located in the right kidney, (b) 

lesion-caused protuberance on the kidney surface (green sphere), (c) shape index 

distribution on kidney surface, where blue to red means small to large values, (d) manifold 

diffusion developed in this paper with increased and differential response on the lesions.
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Figure 2. 
Pipeline of computer-aided detection of exophytic renal lesion, which includes three main 

components: 1) kidney segmentation (blue frame), 2) manifold diffusion (green), and 3) 

renal lesion detection and classification (red).
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Figure 3. 
Segmentation of bone (red), liver (blue) and spleen (green) for the determination of sub-

images containing the right kidney. (a,b) two slices determined from liver segmentation for 

the computation of kidney slice range, where white boxes in two axial views illustrate the 

right kidney spatial range (x-y plane), (c) slice range (z-direction) of the right kidney 

illustrated by a white box in the coronal view.
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Figure 4. 
Process of kidney segmentation. (a) Sub-image, (b) binary sub-image after selecting image 

regions that satisfies kidney intensity values and removing liver and bone regions, (c) 

probabilistic kidney atlas, and (d) probability field of the right kidney, imported into Eq. 3 to 

yield kidney segmentation.
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Figure 5. 
Kidney segmentation on non-contrast CTC images. Left column: Original CTC image where 

renal lesions are highlighted by red arrows. Right column: corresponding kidney 

segmentation (peach).
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Figure 6. 
Manifold diffusion at different scales. Three renal lesions are marked as A, B, and C in (a), 

which are used to illustrate the influence of manifold diffusion on their detection.
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Figure 7. 
Process of renal lesion detection on a CTC image in Fig. 1a. (a) Seed point determination, 

(b) graph partition, (c) renal lesion detection, and (d) lesion classification.
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Figure 8. 
Comparison of FROC curves of renal lesion detection in five-fold cross-validation.
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Figure 9. 
Comparison of FROC curves of renal lesion detection using multi-scale manifold diffusion 

and single-scale manifold diffusion at t=0.1, 0.5, 1, 1.5, and 2.
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Figure 10. 
Multi-scale effects of manifold diffusion on renal lesion detection. A small scale t=0.5 

accurately detected a renal lesion (green sphere) with small perturbation in (b), while it 

missed the lesion (black sphere) on the top of kidney with large perturbation. On the 

contrary, a large scale t=2 found the lesion on the top while missed the lesion in the right in 

(c). Multi-scale manifold diffusion addresses these issues by combining detection results 

from a set of scales in (d).
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Figure 11. 
Comparison of FROC curves of renal lesion detection using multi-scale manifold diffusion, 

Gaussian curvature, maximum curvature, mean curvature, minimum curvature, and shape 

index. Multi-scale manifold diffusion significantly outperforms all other shape descriptors in 

renal lesion detection (p < 1e − 3).
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Figure 12. 
Comparison of FROC curves of detecting renal lesions with different sizes.
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Figure 13. 
Comparison of FROC curves of detecting renal lesions with different densities.
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Figure 14. 
Comparison of FROC curves of detection accuracy on ex-ophytic and endophytic lesions.
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Figure 15. 
Renal lesion detection on five patient datasets corresponding to five rows. Renal lesion 

annotations are illustrated in the left column where exophytic lesions are in red and internal 

lesions in violet. To better observe internal lesions A and B, the kidney surface is 

transparently visualized in (a) and (c). Lesion detections are presented in the right column, 

where true positives are in green, false positives in red, and false negatives in black.
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Table 1

Dimensions of texture features and shape features for lesion classification.

Features LBP HOG SURF MMD

Dimensions 64 124 48 101
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