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Highlights 

 Spine tracking over time using statistical models and probability maps 

 Correlative two-photon/electron microscopy datasets used for benchmarking 

 Analysis of spine orientation and detection precision in organotypic slice culture 

 Application 1: Automatic identification of synaptically connected spines 

 Application 2: Automatic analysis of organelle motility in spines 

 

Abstract 
Dendritic spines may be tiny in volume, but are of major importance for neuroscience. They are the 

main receivers for excitatory synaptic connections, and their constant changes in number and in 

shape reflect the dynamic connectivity of the brain. Two-photon microscopy allows following the 

fate of individual spines in brain slice preparations and in live animals. The diffraction-limited and 

non-isotropic resolution of this technique, however, makes detection of such tiny structures rather 

challenging, especially along the optical axis (z-direction). Here we present a novel spine detection 

algorithm based on a statistical dendrite intensity model and a corresponding spine probability 

model. To quantify the fidelity of spine detection, we generated correlative datasets: Following two-

photon imaging of live pyramidal cell dendrites, we used serial block-face scanning electron 

microscopy (SBEM) to reconstruct dendritic ultrastructure in 3D. Statistical models were trained on 

synthetic fluorescence images generated from SBEM datasets via point spread function (PSF) 

convolution. After the training period, we tested automatic spine detection on real two-photon 

datasets and compared the result to ground truth (correlative SBEM data). The performance of our 

algorithm allowed tracking changes in spine volume automatically over several hours. Using a second 

fluorescent protein targeted to the endoplasmic reticulum, we could analyze the motion of this 

organelle inside individual spines. Furthermore, we show that it is possible to distinguish activated 

spines from non-stimulated neighbors by detection of fluorescently labeled presynaptic vesicle 

clusters. These examples illustrate how automatic segmentation in 5D (x, y, z, t, λ) allows us to 

investigate brain dynamics at the level of individual synaptic connections.  

 

Keywords: dendritic spines, spine detection, CA1 pyramidal cells, 2-photon microscopy, 

hippocampus, endoplasmic reticulum, image segmentation, statistical models 
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1 Introduction 
Imaging live neurons is a powerful technique to investigate the functionality of the brain. Two-

photon microscopy (2PM), which uses infrared light to locally excite fluorescence, is especially suited 

to image fine neuronal structures deeply embedded in intact tissue. To study the dynamics of 

excitatory synaptic connections between neurons, dendritic spines are often used as a proxy: the size 

of a dendritic spine is correlated with the strength of the synapse impinging on it (Matsuzaki et al., 

2001), and the density of spines on the dendrite is altered in many mental disorders (Nimchinsky et 

al., 2002). The tiny volume of dendritic spines is below the resolution limit of light microscopy and 

therefore not easy to measure or to track over time. While fast scanning systems and motorized 

microscopes have made it possible to generate large amounts of high-resolution fluorescence images 

in relatively short time, detailed analysis and quantification of these large datasets poses a severe 

bottleneck. Manual analysis, placing regions of interest (ROI) on individual structures, is time 

consuming, and the results may vary with the skill and ability of the human analyst. In addition, this 

type of analysis is often done on maximum intensity projections (MIP), ignoring any information in 

the axial (z) direction. Automatic detection, segmentation and evaluation of dendritic spines in 3D 

fluorescence datasets would be very valuable, especially for the analysis of time series data (4D). In 

the past, several approaches for automatic spine detection were presented, driven mostly by 

skeleton and backbone reconstruction. In these approaches, spines are detected as short side 

branches from the dendritic backbone (Cheng et al., 2007; Zhang et al., 2007; Janoos et al., 2009; 

Yuan et al., 2009). Other skeletonizing approaches detect additionally the tip of spines and use them 

to segment spines via grassfire transform or similar (Koh et al., 2002; Rodriguez et al., 2007; Xu et al., 

2006; Zhou et al. 2008). The performance of all automatic detection programs strongly depends on 

resolution and contrast of the input images. As different datasets were used for benchmarking, 

reported values for precision and recall cannot be directly compared between studies.  

A related problem, the automatic tracing of axonal and dendritic branching patterns, has benefitted 

from direct performance comparison in form of an organized competition (DIADEM challenge; Brown 

et al., 2011;, Gilette et al., 2011). Successful segmentation of dendritic spines, however, was not a 

criterion in this competition. From a methodological point of view it is interesting that one of hardest 

problems in automatic backbone reconstruction, the correct merging of separated branches, has 

recently been tackled successfully by machine learning (Gala et al., 2014). Learning of locally 

invariant features in 3D can also be applied to the spine detection problem (Fehr, 2009). Objective 

evaluation of spine detection performance is difficult. Usually, fluorescence images annotated by 

human experts are used as ground truth, and the quality of automatic detection is then 

benchmarked against the manually annotated fluorescence dataset. The resolution of light 

microscopes including confocal and two-photon microscopes, however, is limited by diffraction. 

Especially in axial direction, fine spatial features are efficiently filtered out in the process of imaging, 

and small spines protruding in axial direction are easily missed by automatic detection and by human 

experts, too.  

Here, we rely on the superior resolution of electron microscopy to generate ground truth and 

training datasets in a machine learning approach to spine detection. Our approach uses knowledge 

about the typical shape and size of spines on a particular type of neuron and knowledge about the 

spatial resolution of a particular microscope to detect spines in noisy images.  Statistical shape 

models have proven to be a powerful and unbiased approach to face recognition and related 

problems (e.g. Active Shape Models (ASM) (Cootes et al., 1995), 3D Morphable Model (Blanz and 
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Vetter 1999). To generate statistical models of dendritic spines, it is essential to use training data in 

which spines can be identified and annotated unambiguously. As diffraction-limited light microscopy 

does not provide sufficient spatial resolution, we performed serial block-face scanning electron 

microscopy (SBEM, (Denk and Horstmann, 2004; Briggman and Denk, 2006)) on neurobiotin-filled 

neurons of interest (CA1 pyramidal cells). From high-contrast SBEM data, we generated dendritic 

surface models. Reconstructed dendritic volume was convolved with the point-spread-function (PSF) 

of our two-photon microscope to generate synthetic fluorescence images (SFIs). SFIs were resampled 

orthogonal to the dendritic backbone to generate 2D slices at regular intervals.  After a registration 

procedure to compensate for the non-isotropic resolution of SFIs, two statistical models were 

generated by PCA: One of the characteristic cross-section of a spiny dendrite, and a second one 

containing information about the presence or absence of a spine in that cross-section.  

After training of the statistical models, we tested the performance of spine detection on data that 

were not part of the training set.  For this benchmarking procedure, we produced correlative 

datasets of spiny dendrites by 2-photon live cell microscopy, subsequent tissue fixation, and SBEM. 

Using correlative two-photon/EM data overcomes a fundamental problem of expert-labeled 

fluorescence data: no expert can detect spines that, after filtering by the point-spread-function (PSF) 

of the microscope, leave no recognizable trace in the light microscopy data. The superior resolution 

of SBEM data revealed an interesting, non-random orientation of spines in organotypic culture and 

allowed to us to benchmark our detection software in an objective fashion. In addition to the 

prediction maps generated by approximation with the statistical models, we analyzed intensity 

changes along the backbone to provide a second criterion for the presence of dendritic spines. 

Once we were satisfied with the performance of our program, we addressed two biologically relevant 

questions as application examples. First, we tried to automatically detect spines that were 

synaptically connected to fluorescently labeled axons from other neurons. To evaluate the 

performance of the automatic analysis, we compared the results to spine calcium transients 

triggered by optogenetic stimulation of the labeled presynaptic axons (Wiegert and Oertner, 2013). 

Spines with functional synaptic connections were successfully identified. As a second example, we 

analyzed the dynamics of endoplasmic reticulum (ER) which moves in and out of dendritic spines, 

potentially altering synaptic properties (Holbro et al., 2009). As multiple color channels (λ) were 

acquired over time (t), the analyzed data had 5 dimensions (x, y, z, t, λ). We detected fast movements 

of the ER that had escaped detection in previous studies with lower temporal resolution (Toresson 

and Grant, 2005).  The prove-of-concept of automated analysis we present here allows us to scale up 

our experiments to large datasets containing thousands of spines, increasing the statistical power 

and reproducibility of morphometric studies. 

2 Methods 
In this section we introduce the concept and methods to successfully detect and segment spines. We 

discuss the conceptual idea of using statistical models of dendrite intensity and spine probability, the 

application to single time points and additional challenges in the analysis of time series. 
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2.1 Concept 

We use statistical dendrite intensity and spine probability models for spine prediction and detection. 

The analysis program was implemented in C++, using ITK1, VTK2, and QT3. To generate a large set of 

training data, we reconstructed stretches of spiny dendrites from SBEM data and generated synthetic 

fluorescence images (SFI) by convolution with the point-spread-function (PSF). In addition, we 

computed SFI of spine structures only and resampled both datasets by backbone-orthogonal, 

registered slices (Fig. 1A). Next, we calculated spine probability maps from corresponding orthogonal 

SFI slices (Fig. 1B). Principal Component Analysis (PCA) models of dendrite intensity and of spine 

probability were computed (Blumer et al., 2011). These two statistical models incorporate the 

knowledge about intensity distributions that signal the presence of a dendritic spine. They have be 

generated only once for a specific microscope and cell type. If fluorescence data from a microscope 

with a very different PSF need to be analyzed, it is advisable to generate a new set of training data to 

calculate appropriate PCA models. 

To detect spines in 3D fluorescence images, we also started by extracting 2D slices orthogonal to the 

backbone (Fig. 1C). These orthogonal slices were the basis of the spine prediction. They were 

approximated by the dendrite intensity model first; model coefficients were then transferred to the 

spine probability model to reconstruct 2D spine probability maps. Typically, individual spines 

contributed fluorescence to several adjacent slices. Therefore, we introduced additional backbone-

parallel features (Section 2.2.3). These features, which were computed over multiple slices (Fig. 2), 

ensured more robust detection results. The 2D prediction results were then projected back to 3D 

space and combined with the backbone-parallel features. Finally, a threshold was applied to binarize 

the computed 3D prediction map (Section 2.2.4). The resulting 3D objects correspond to spines or 

spine candidates for time series. 

In the analysis of time series, we predicted spines independently at every time point. To enable 

analysis of individual spines over time, rigid registration of the input images was performed. 

Following spine prediction, the most probable spine paths were computed (2.2.5). The resulting 

spine paths correspond to the fluorescence intensity of individual spine heads over time, which, in 

the case of soluble (cytoplasmic) fluorescent proteins or dyes, is proportional to their volume. 

2.2 Segmentation using dendrite intensity and spine probability model 

Here we describe the detection and segmentation of spines using statistical models. We extend the 

previously described concept of computing SFIs, dendrite intensity and spine probability models 

(Blumer et al., 2011) to account for multiple spine orientations. 

2.2.1 Training of statistical models  

The statistical models of dendrite intensity and spine probability were based on SBEM data, the 

generation of which is described in section 3.1. We manually traced EM datasets to ensure that also 

spines with very thin necks were correctly reconstructed (Fig. S1). We computed SFIs by convolving 

the geometrically correct reconstruction with a Gaussian approximation of the PSF (Fig. 1A) (Zipfel et 

al., 2003; Zhang et al., 2010). SFIs were computed for dendrites including spines and for spines only. 

Dividing the SFI of spines by the SFI of the dendrite including spines resulted in 3D maps of spine 

                                                             
1
 ITK: Insight Segmentation and Registration Toolkit, www.itk.org 

2 VTK: Visualization Toolkit, www.vtk.org 
3 QT: User Interface Framework, www.qt-project.org 
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probability. From the 3D probability map and the SFI of a dendrite, we extracted backbone-

orthogonal slices. To correct for the distortion in axial direction introduced by the elongated PSF, we 

registered every slice to a circular template (Fig. S2). We calculated 9 orientation-dependent dendrite 

intensity and spine probability PCA models (Fig. 1B). Eight models were computed having spines into 

one direction (radial 45° segments) and the last model (  {     }      represented a section 

without spine (<2.5% pixels with more than 50% spine probability). The number of radial segments 

was chosen to ensure that a spine occupies mainly one or two regions. Increasing the number of 

segments would reduce the power of each model to contain a complete description of the spine. 

With less segments, the risk that the model must be able to describe multiple spine orientations 

increases. The nine models were also used to improve the backbone position. Data    (spiny 

dendrite intensity slices) and    (spine probability maps) were divided into   
  to   

  and   
  to   

 . In 

the matrices  , the examples are stored vectorized in the columns and the samples are mean-free 

(mean of all corresponding samples, representing fluorescence from the dendritic shaft for the 

intensity model, subtracted from each sample). For each orientation and model, the data was 

decomposed by using Singular Value Decomposition (SVD), resulting in        where U and V 

are the unitary matrices with the Eigenvectors of XXT and XTX respectively. D is a diagonal matrix with 

the corresponding Eigenvalues from XXT and XTX (which are the same) on its diagonal. We computed 

from the mean-free data the models   
  to   

  and   
  to   

 . These models, which incorporate 

knowledge about the typical intensity distribution caused by spine in an image produced by a 

particular microscope, are the basis of our spine detection algorithm. Generation of a new set of 

models is only required in two cases: (A) data from a microscope with a very different PSF has to be 

analyzed, or (B) study of a type of neuron with spines of very different shape or size. 

2.2.2 Backbone optimization 

In the current version of our program, we initialize the backbone by a list of manually clicked points 

   [      ]  where    and    are specified by the user in a volume rendering viewed from top. 

The depth    is automatically set to the point of maximum intensity at position      . The points    

are located in sequence along the dendrite such that a B-spline gives a first approximation of the 

backbone. We can specify multiple line parts to approximate multiple backbone pieces, represented 

by separate B-splines. Thus, several regions of interest (stretches of dendrite) can be analyzed at 

once. Every B-spline is uniformly sampled at regular intervals and backbone-orthogonal 2D slices are 

extracted at the given positions. The intensity in the slices is normalized and the slices themselves 

are registered to the template used for the model computation. Dendritic spines can introduce errors 

(lateral shift) in the backbone generation procedure. To address this problem, we extracted 

additional slices        shifted parallel to the slices      (in the slice plane) at the sampled B-spline 

positions. Thus, for each sampled B-spline position, there exists a number of intensity-normalized 

and registered slices       . For each slice, the probability of good representation of the slice by a 

particular dendrite intensity model can be computed by: 

 (         
 )   (      |  

 ) (  
 ) 

Equation 1 

To find the most probable slices         of the shifted slices        over all sampled B-spline positions, 

we selected the maxima: 

         
 

{ (         
 )} 



7 

Equation 2 

Over the most probable slices         and their 3D locations, a new B-spline was approximated. We 

extracted new seed positions by taking the location with the highest probability and removed all 

neighboring positions within a given radius. Thus, the new B-spline was defined by the most probable 

locations, avoiding registration errors introduced by statistically unlikely slice positions. 

 

2.2.3 Spine prediction 

To predict the presence of spines in synthetic or real fluorescence images (Fig. 1C), we started by 

extracting test slices      orthogonal along the dendritic backbone, identical to the training procedure 

(Section 2.2.1). Test slices were resisted to a circular template to correct for distortion (Fig. S2). 

A slice      was approximated by the model   
  by 

       
 (    

 )    
    

     
  

Equation 3 

After extraction of the coefficients     
  by approximation with the dendrite intensity model, 

coefficients were transferred to the spine probability model to compute the coefficients     
 . As 

introduced in (Blumer et al., 2011) the coefficients are inferred by: 

    
    

   
  

  
   

     
  

Equation 4 

For each test slice, we reconstructed 9 spine probability maps     
  to     

  using all models. The models 

  
  and   

  had no spine contribution and the prediction maps of these models were ignored.  

A limitation of 2D spine probability maps is the lack of information in the third dimension, along the 

dendritic backbone. To overcome the independence of the backbone-orthogonal slices and increase 

the reliability of spine prediction, we computed backbone-parallel features in the slices      (Fig 2A). 

The feature value indicates intensity changes measured parallel to the backbone. If a spine is 

present, intensity along the dendrite show a characteristic peak (Fig.  2B and C). For each pixel in 

every 2D slice, we computed a feature value in the registered and unregistered 2D slices      and  ̃    

respectively (Fig. 2D). As spines vary greatly in intensity, we used local gradients rather than absolute 

values. Depending on the size and orientation of the spine, it is likely to be sampled in multiple slices. 

Therefore, we require a variable distance to calculate the feature. Within a local search region, we 

used the minimum and normalized it by the intensity of the pixel for which we computed the feature. 

For a pixel       of slice      the feature is computed by: 

   (         )  
             

         
           

         
 

             
         

           

         
 

Equation 5 

Backbone-parallel features        were computed in the space of registered slices      and 

corresponding unregistered slices  ̃    , designated      and     , respectively.  



8 

Next, we combined information from the BPFs from registered and unregistered slices and the spine 

probability maps in all (eight) directions to produce cumulative spine prediction maps. For each pixel 

the three values were composed together with additional weights to prediction maps   : 

               ( ̃        )     (         )     
              

Equation 6 

The weights represent how strongly the prediction depends on the orientation of the slice (  ) and 

the probability that the slice contains a spine at all (   and    ). The weight of orientation of the 

slice (  ) corresponds to the reliability of the prediction relative to the training data. The models are 

currently not very reliable for horizontally oriented slices (i.e. vertical dendrites), as they were 

trained mainly with horizontally oriented dendritic sections which are dominant in organotypic slice 

cultures. The weight is computed by 

  (    )    |〈 ⃗     〉|    |    | 

Equation 7 

where  ⃗   is the normal of the extracted slice and    the optical axis of the objective. The weight    is 

the probability of having a slice containing a spine. It is computed by: 

  (    )   (          )    
 (       

 )

∑  (       
 ) 

   

 

Equation 8 

The last weighting vector     depends on the orientation-dependent model. Therefore, eight 

versions exist which depend on the selected model ( ). Instead of the original weight, the weight 

    is a normalized version. We normalized the weight to the range [   ] between local minima and 

maxima. The non-normalized weight    
  is computed by: 

   
 (      )  

 (       
 )

 (       
 )   (       

 )
 

Equation 9 

 

The orientation-dependent prediction maps       are combined to a final orientation-independent 

prediction map     by applying a pixel-wise maximum operator: 

            
 

{          } 

Equation 10 

The application of the pixel-wise maximum operator combines positive spine prediction results over 

all model directions. The combination of multiple features (model prediction and backbone-parallel 

features) and the weights proved to be robust in practical use. Robust detection and segmentation 

are essential for a low rate of false positives, i.e. spurious spines. The introduction of backbone-

parallel features increased precision, especially in locations where correct registration of the slices 

was difficult due to strong curvature of the backbone. 
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2.2.4 Binarization 

At the end of spine detection, we needed a clear yes/no decision. Therefore, the spine prediction 

map had to be binarized, which can be done in a global fashion or locally adaptive. We used a locally 

adaptive approach as we had spines with weak and strong detection results. The locally adaptive 

approach detected all local maxima and computed for each maximum a local thresholding value, 

relative to the amplitude of the local maximum. The local threshold was applied inside a search 

window around the local maximum. More complex thresholding algorithms (e.g. Otsu thresholding) 

can be used, but did not improve the results significantly. In our application, we used a relative 

threshold             where   is the local window and    the 3D prediction map. In practice, 

a suitable value was      . If seed points are closely spaced, the search windows can overlap. To 

separate spines, all voxels belonging to multiple search windows had to be assigned to a specific 

spine. In most cases, a distance criterion could be used to make this decision: Each voxel was 

assigned to the closest local maximum. 

2.2.5 Time series analysis 

Automated analysis of time series poses additional challenges for spine detection and segmentation. 

To compensate potential translation and rotation induced by drift of the tissue between time points, 

3D registration is required prior to analysis. Manual backbone initialization for multiple time points is 

too time-consuming. Therefore, we implemented automatic initialization of the backbone based on 

the first time point of a series. Finally, each spine must be identified in each time point to enable 

automated tracking of spine changes over time. Tracking of individual spines is required because 

spines in live tissue show constant micro-movements and dynamic changes in neck length.  

We used a rigid registration algorithm to compensate for translation (x, y and z) and rotation (around 

x-, y-, and z-axis). Each time point was registered to the first point of the series. In practice, rotation 

was minimal and limited to the z-axis, as the sample was placed on the level glass bottom of a 

recording chamber. We find for each input images    with     the following optimal transformation 

  
  by: 

  
        

 
∑          

 

 

 

Equation 11 

where   is the transformation consisting of a translation and rotation and   is the image domain. 

The registered input images made it possible to initialize the backbone only for the first time point. 

Furthermore, instead of a complex tracking of spines, a simpler search of spine paths by path cost 

was established. From the spines of the first time point over all other time points and their spines, all 

possible paths were computed. To each path, a cost-factor was assigned, composed of the distance 

and detection probability. Finally, repeatedly the cheapest path was selected as spine path and 

conflicting ones removed from the set of possible paths. Every spine path corresponds to the trace of 

a single spine over time. The cost of the spine path was defined as the distance and likelihood of each 

spine to its preceding spine and to the first spine of the path: 

 (     
        

)  ∑{
‖ (     

)   (         
)‖

 (     
) (         

)
 

‖ (     
)   (     

)‖

 (     
) (     

)
}

 

   

 

Equation 12 
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where      
 is the   th spine candidate at time point  ,      is the likelihood from the 3D prediction 

map and      is the position of the spine in 3D. The first summand minimizes the movement from 

time point to time point. The second summand restricts the movement away from the first time 

point. As all images were registered, there was little movement over time. Taking into account 

differences in likelihood prefers well-detected spines over weak ones. 

A precisely positioned dendrite backbone proved to be essential for the detection and prediction of 

spines using statistical models. To optimize the backbone starting from the manual initialization, we 

also used the statistical models (Section 2.2.2). Combined with the registration of time series data to 

the first time point, we were able to overcome the issue of backbone initialization for each time 

point. 

3 Results and discussion 
In this section, we report the performance of our spine detection algorithm using correlative datasets 

and show biological applications in multi-channel images and time series. Initially, we used SBEM 

reconstructions of two sections of spiny dendrites from two different neurons to train the statistical 

models. The resulting model was tested on two independent correlative light/electron microscopy 

(CLEM) datasets from two different CA1 pyramidal cell branches. To analyze our application 

examples (Fig. 5 and 6), we generated an improved statistical model based on all four SBEM datasets 

(Fig. S1). Automatic detection and segmentation of spines in single images and time series was 

possible on standard hardware. Typical images sizes (512 x 512 x 30 voxels) were analyzed on current 

personal computers (e.g. Intel (R) Core (TM) i7-870 at 2.93 GHz and 16 GB RAM) in about 5 min. 

Practical tests demonstrated that time series with 20 time points and image size of 1024 x 1024 x 170 

voxels could be processed on the same hardware.  

3.1 Correlative light/electron microscopy dataset 

Previous attempts to detect dendritic spines in fluorescence images have used manual and automatic 

analysis of the same dataset as a benchmark (e.g. (Yuan et al., 2009; Rodriguez et al., 2007; Zhang et 

al., 2007)). Due to the diffraction-limited and non-isotropic performance of light microscopes, this 

approach is quite problematic: Very thin or stubby spines, or spines leaving the dendrite in z-

direction along the optical axis, might generate a signal that is not detectable by even the most 

experienced human observer. Although this form of benchmarking leads to impressive performance 

figures for the automated detection programs, here we are interested in another number: What 

fraction of the complete set of existing spines can be detected in fluorescence images? 

To address this question, we generated correlative light and electron microscopy (CLEM) datasets, 

imaging the same spiny dendrite first live with a two-photon microscope and subsequently with a 

serial block-face scanning electron microscope (SBEM). A similar approach using serial section 

transmission electron microscopy has been used in many in vivo studies to confirm by EM the 

presence of synapses on spines observed in the living mouse brain (Trachtenberg et al., 2002; 

Holtmaat et al., 2005; Knott et al. 2009). The two-photon microscope was based on an Olympus 

BX61-WI microscope with a 60x 0.9 NA water immersion objective and two-color detection (Oertner, 

2002), controlled by ScanImage (Pologruto et al., 2003). The scanning electron microscope (Quanta 

200 FEG, FEI) was equipped with an ultra-microtome (3View, Gatan) in order to cut and image 

automatically inside the microscope. The segmentation problem posed by the very large SBEM 

datasets was solved by photoconversion of neurobiotin, which made the chosen neuron highly 
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electron-dense and generated strong contrast to the surrounding tissue. The strong contrast made it 

possible to perform a first pass 3D reconstruction using a simple thresholding operation (Imaris, 

Bitplane AG). The result of this automatic segmentation procedure had imperfections, however, as 

thin-necked spines were frequently detached from the dendrite and the dendritic surface contained 

holes. Therefore, we resorted to manual tracing of SBEM data to generate the correlative datasets 

used in this study (Fig. S1), putting us in the unique situation to compare the performance of 

automated spine detection on fluorescence images to ground truth data from the very same 

dendritic section. 

To generate additional training data for the statistical spine model, we used a number of SBEM 

reconstructions from neurons that were not previously imaged live (Fig. S1). These 3D 

reconstructions were convolved with the PSF to generate synthetic fluorescence images (SFI). The 

principle of generating training data and train the models is introduced in section 2.2 and (Blumer et 

al., 2011). Automatic spine detection was then tested on independent correlative datasets, starting 

with SFIs (Fig. 3A). On SFIs, detection precision was very high (Fig. 3A bottom, no false positives), 

reflecting the fact that no photon- or background noise was added when generating these images. 

Spines protruding downwards, however, were frequently missed (poor recall) due to strong low-pass 

filtering along the z-axis of the PSF (Fig. 4A). This illustrates a physical limitation of traditional 

diffraction-limited microscopy that can only be cured by reducing the size of the PSF, e.g. by STED 

microscopy (Nägerl et al., 2008; Takasaki et al., 2008; Testa et al., 2012). In the real 2PM images of 

the same dendritic section, recall was comparable, but several false-positive spines were detected in 

the background (low precision, Fig. 3B middle). Using slightly higher excitation laser power, false 

positives could be completely avoided (Figs. 5 and 6). Thus, precision depends on the signal-to-noise 

ratio of the 2p images as well as the threshold used for binarization of the spine probability map and 

is not an inherent problem of our spine detection strategy. Similar results were obtained on a second 

CLEM dataset (Table 1, Fig. S1). For 2PM data, we achieved a precision and recall of about 0.8, which 

might seem low compared to previous publications. However, our result takes into account all spines 

that exist, including spines pointing toward the z-direction. Therefore, the precision and recall figures 

in this study are not directly comparable to the benchmark procedure of other studies.  

Data Source Dataset # Spines TP FP FN Precision Recall 

Synthetic 

fluorescence 

images based on 

SB-EM 

Dendrite #4 15 10 3 5 0.77 0.67 

Dendrite #6 16 11 0 5 1.00 0.69 

Cumulative 31 21 3 10 0.88 0.68 

Two-photon 

microscopy of live 

neuron 

Dendrite #4 15 13 3 2 0.81 0.87 

Dendrite #6 16 12 4 4 0.75 0.75 

Cumulative  31 25 7 6 0.78 0.81 

Table 1: Quantitative results of automatic spine detection on two CLEM datasets. TP, true positives; FP, false positives; 
FN, false negatives. Precision is the fraction of detected spines that are relevant. Recall is the probability that an existing 
spine will be detected. 

The false positive rate in the analysis of 2PM data was higher than for SFI data, chiefly for two 

reasons: First, to generate SFI images, we used a simple Gaussian approximation of the PSF. In 
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reality, the PSF is more complex and includes side maxima that further degrade the image. Second, 

dim structures like dendritic spines suffer from photon shot noise and dark noise of the 

photomultiplier tubes. These noise sources were not simulated when we generated SFI images. Still, 

we identified one problem that produced false positives even in noise-free SFI data: Correct 

placement of the dendritic backbone was critical for the spine detection process. If the backbone 

moves toward one side of the dendritic shaft, for example due to excessive smoothing of a sharp 

bend in the dendrite, false positive detections could occur at the outside corner of the bend. Thus, 

the second round of backbone optimization based on the orthogonal slices was important for a 

reliable result. Detection precision is less of a concern in time series analysis, because spurious 

detections in single time points are efficiently filtered out in the process of spine registration over 

time. As automatic analysis of time series is of particular interest to us, we optimized system 

parameters to perform well for time series and used the same settings for the analysis of the 

correlative data. We were surprised about the number of false negatives in the analysis of SFI data, 

including some small spines that were correctly detected in the real two-photon images. The 

threshold for binarization of spine probability maps was identical in all analyses. It is possible that 

fluorescent dye molecules had accumulated in spines, leading to a stronger fluorescence signature 

than expected from the convolution of spine head volume with the PSF. Further correlative studies 

will be needed to investigate the distribution of different dyes in neurons. 

Having confirmed our suspicion that small spines protruding in z-direction are impossible to detect in 

real or synthetic fluorescence images, we wanted to know the likelihood of such a spine orientation. 

Based on our EM data, we could show that spines in organotypic slice cultures rarely point upwards 

(Fig. 4B and C). Thus, the fraction of 'invisible spines' in 2p data (false negatives, 19 %) is actually 

lower than would be expected for random spine orientation, and most missed spines are indeed 

hidden below the dendrite (Fig. 4A). 

 

Software Dataset # Spines TP FP FN Precision Recall 

NeuronIQ 2.0 Dendrite #4 15 10 3 5 0.77 0.67 

Dendrite #6 16 7 6 9 0.54 0.44 

Cumulative  31 17 9 14 0.65 0.55 

Table 2: Quantitative results of automatic spine detection on 2PM data using NeuronIQ 2.0. The results can be compared 
to the 2PM data of table 1. 

For comparison, we analyzed our 2PM data with NeuronIQ TE (He et al., 2012). As this software 

requires higher oversampling in z-direction, we resampled our original images accordingly. We tested 

the parameter domain extensively, but found that default settings generated the best results. 

Precision was similar to our approach for Dendrite #4, but worse for Dendrite #6. Recall was worse 

for both datasets (Table 2, Fig. S3A). The commercial software IMARIS (Bitplane AG) contains a 

module for automated tracing of filaments, but had problems distinguishing spines from dendritic 

side branches (Fig. S3B). On images with higher contrast, the performance difference might have 

been less dramatic. In live cell imaging, however, high contrast comes at the cost of increased 

fluorophore bleaching and photodamage, which are major limiting factors in time-lapse studies. The 
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better performance of our approach on noisy datasets highlights the power of using statistical 

models. 

Using CLEM data to benchmark spine detection software is a novel approach, and our results suggest 

that for any software, precision and recall strongly depend on spine orientation. We believe that in 

contrast to expert labeled fluorescence data, detection of z-oriented spines can be studied much 

better if ground truth is available. Thus, to promote further developments in the field, our CLEM 

datasets are available for academic use at http://www.spinedetection.com. 

 

3.2      Automatic detection of synaptically connected spines 

To apply and further test our spine detection software, we used a dataset where spiny dendrites and 

active presynaptic terminals from different neurons were labeled with fluorescent proteins of 

different color (Fig. 5A). A particular challenge was the automatic detection of those spines that were 

in direct contact with a presynaptic terminal. Due to the diffraction-limited spatial resolution of the 

two-photon microscope, structures within the radius of the point-spread-function (0.6 x 0.6 x 1.6 μm) 

cannot be separated optically. In this application, we used the blurring caused by the PSF to our 

advantage: We reasoned that red fluorescence from an adjacent presynaptic terminal should be 

detectable in the voxels assigned to a (green fluorescent) dendritic spine. First, we automatically 

detected and segmented all spines on a stretch of dendrite using the volume channel (Fig. 5B). For 

each spine, we plotted postsynaptic green fluorescence (spine volume) versus presynaptic red 

fluorescence (Fig. 5C). In the example presented here, spine #5 is the only spine that exceeds an 

arbitrary threshold of 2 fluorescence units in the red channel. Therefore, it is potentially in functional 

contact with a labeled presynaptic terminal.  

As we had co-expressed a light-gated channel in the presynaptic axon and calcium-sensing 

fluorescent protein (GCaMP3) in the postsynaptic cell, we could compare the result of our automated 

proximity detection to the results of functional imaging. Indeed, short pulses of blue light induced 

calcium signals in spine #5, but not in any other spine on this stretch of dendrite (Fig. 5D), indicating 

that this and only this spine received glutamate from a light-activated axon. For a more detailed 

description of these optogenetic experiments, please see (Wiegert and Oertner, 2013). Simultaneous 

analysis of multiple color channels opens a wide range of applications, including ratiometric 

measurements of protein concentration in individual spines (Zhang et al., 2008). Here we show that 

automated analysis of pre- and postsynaptic labels is possible, allowing us to successfully identify 

spines that receive synaptic input from a defined subset of axons. 

3.3 Automated analysis of organelle motility in time series  

Live cell imaging is a powerful technique as it allows following biological processes over time. Good 

temporal resolution is particularly important to understand the highly dynamic processes that shape 

the brain. Quantitative analysis of time series, however, is notoriously difficult, as living biological 

tissue is never quite as stable as fixed preparations. Manual analysis of such datasets is extremely 

time consuming and often the limiting factor in terms of throughput and temporal resolution. Here 

we present an example of automatic analysis of individual spines in 5D (3 spatial dimensions, 2 

colors, and time) to track the dynamics of an intracellular organelle, the endoplasmic reticulum (ER). 
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The ER forms a dynamic network inside every neuron (Toresson and Grant, 2005). Spines containing 

ER tend to have strong synapses and are preferential sites for a particular type of synaptic plasticity, 

mGluR-dependent long-term depression (Holbro et al., 2009). How long ER typically resides in 

individual spines is poorly understood. The goal of this project was the automatic detection of ER as 

it invades individual dendritic spines and an analysis of its temporal dynamics. Individual neurons 

were co-transfected with ER-targeted GFP and cytoplasmic dsRed to visualize the entire volume of 

the cell (Holbro et al., 2009). Image stacks were taken every 10 min at a resolution of 0.063 µm/pixel 

in xy and 0.3 µm/pixel in z-direction. Lateral drift (2-5 µm/h, typically) was compensated by 

refocussing and by post-hoc 3D alignment (2.2.5). We started by automatic detection and 

segmentation of spine candidates in each time point, using the red volume signal (Fig. 6A). In the tree 

of all spine candidates, the most probable path over all time points was determined. Each path 

corresponds to a spine and the path nodes to the different time points of the corresponding spine. In 

the example, 10 spines were successfully detected, segmented and tracked over all time points 

(precision 1.0; recall 1.0). For each spine, all voxels were sorted by intensity and the brightest 5% 

were averaged in both color channels (Fig. 6B, two examples). Spine #5 showed significant increase 

of green fluorescence at time points 4, 8 and 16, indicating transient invasions of ER. A correlation 

between ER invasion and spine volume was not obvious in this example. Spine #6 was apparently 

never invaded by ER, as no green fluorescence maxima were detected over time. Inspection of the 

input images (Fig. 6C) corroborated the result of the automatic analysis. This application example 

demonstrates that it is feasible to detect, segment and track the volume of spines over time and to 

monitor the presence or absence of intracellular organelles in an automated fashion. Even this single 

experiment contains 180 regions of interest that have different shapes and sizes; manual analysis 

would have been tedious. At a lower temporal sampling rate, more suitable for manual analysis, the 

brief visitations of ER into individual spines could have easily escaped detection. Applying automatic 

detection to longer stretches of dendrite allowed us to analyze dwell times of ER in spines, which 

were highly variable (Fig. 6D). Most visits lasted less than 10 min, but some spines were permanently 

occupied by ER (Fig. 6E). Within 5 h, 88% of spines were visited by ER at least once, a surprisingly high 

number. As calcium release from the ER is thought to be important for several forms of synaptic 

plasticity (Jedlicka et al., 2008), it will be interesting to compare the volume of spines before, during, 

and after ER invasion. Picking up subtle changes in spine volume in a highly variable population 

requires analysis of a large number of individual spines across multiple time points. As this example 

shows, reliable spine detection and tracking over time are necessary ingredients to extract 

biologically relevant information from images of neuronal structure. 

4 Conclusion 
We present a machine leaning approach to automatically segment dendritic spines in two-photon 

microscopy data and to trace their fate over time. Our spine detection algorithm is based on the 

computation of statistical dendrite intensity and spine probability models. To generate a large 

amount of training data for the algorithm, we introduced a new method for the generation of 

synthetic fluorescence images (SFI) based on automated SBEM reconstructions of dendritic 

geometry. In the training process, we require no manual classification of spines in the fluorescence 

domain, which is error-prone due to poor z-resolution. Instead, spines were annotated in surface 

models of EM reconstructions, a process that requires no special expertise due to the excellent 

spatial resolution of SBEM. To test the performance of our spine detection software, we generated 

correlative two-photon/EM datasets. Automatic spine analysis of two-photon data was compared to 
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ultrastructural information about the presence or absence of spines. As expected, spines oriented 

along the optical axis of the microscope were not detectable in fluorescence datasets. On the bright 

side, we report that these spines are underrepresented in organotypic slice cultures. Our results 

suggest that about 20% of spines will be missed in the analysis (manual or automatic) of horizontally 

oriented dendrites in diffraction-limited 2PM datasets. 

Our introduction of statistical models for spine detection had two major consequences: First, no 

human expert was needed to label putative spines in fluorescence datasets. Second, spines of typical 

size and shape (i.e. spines that were frequent in the training dataset) were detected best. Thus, the 

program had an inherent bias against detection of non-spines (e.g. filopodia, dendritic side branches, 

and fluorescent debris). In the current version of our software, manual initialization of the backbone 

allows the user to control which dendritic section should be analyzed. This was a useful feature for 

our application, but it prevented fully automatic analysis and batch processing. Sophisticated 

algorithms for automatic backbone reconstruction of neurons in fluorescence images have been 

developed (González et al., 2009; Wang et al., 2011; Chothani et al., 2011), and the Diadem challenge 

provides a useful benchmarking procedure for this computational problem. Similar to the processing 

of time series, it would be feasible to initialize our spine detection software with the result of a 

dendrite tracing algorithm. In future extensions, integration of a dendrite tracing algorithm to 

initialize spine detection could be a powerful strategy to analyze all spines on a neuron. 

In the second part of our study, we applied our spine detection program to address two biological 

problems: First, we performed automatic detection of spines that are in functional contact with 

labeled presynaptic terminals. Second, we tracked the presence or absence of intracellular organelles 

in individual dendritic spines over multiple time points. As our software proved to be useful in these 

applications, it allows us to scale up our experiments from the proof-of-concept level shown here to 

a scale that is limited by the speed of data acquisition, not data analysis. 

With the advent of high-throughput imaging techniques such as spinning disc microscopy, SPIM etc., 

analysis of vast amounts of data has become a severe bottleneck, limiting the statistical power of 

many studies today. We are convinced that automatic segmentation and analysis of dendritic spines 

will open new possibilities for neurobiological studies, simplifying e.g. the analysis of animal models 

of human mental disorders. Manual analysis is not only tedious, but also hard to compare between 

laboratories. The greater statistical power that comes with automated image analysis will make it 

possible to detect subtle changes in brain microanatomy that might have escaped previous studies. 
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Figures 
 

 

Figure 1: Workflow of model computation and spine prediction. (A) Data generation. From SBEM raw 

data, a volume reconstruction and synthetic fluorescence images (SFI) are computed. (B) Model 

computation. From the SFI of dendrites including spines and SFI of spines only, 2D slices are 

extracted, dendrite/spine intensity maps and spine probability model computed. (C) Spine prediction 

and segmentation. From a test image, 2D slices are extracted and a spine prediction is computed, 

using the probability models. Combined with additional backbone-parallel features, a 3D spine 

prediction map is computed and binarized to achieve 3D spine segmentation. 
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Figure 2: Concept of backbone-parallel features. (A) Dendrite with backbone (red dashed line) and 

backbone-parallel profiles (blue lines x1, x2 and x3). (B) Dendrite intensity profile through backbone-

parallel profiles x1, x2 and x3. (C) Backbone-parallel feature values (schematic) along profiles x1, x2, x3. 

(D) Visualization of relation between profiles x1 to x3 and backbone-orthogonal slices sd,i. The profile 

values are sampled from the backbone-orthogonal slices sd,i at all pixel positions x and y. The right 

panel shows the location of the profiles x1, x2 and x3 in the 2D backbone-orthogonal slice sd,i. Further 

slices in a local neighborhood i-l to i+l are used to compute the backbone-parallel feature. 
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Figure 3: Automated spine detection. (A) EM reconstruction of dendrite #6 with its 16 spines (top), 

synthetic fluorescence image (middle), and segmentation result of SFI data (bottom, 11 spines 

detected). (B) Live cell 2-photon microscopy data (top, dendrite #6) and segmentation result 

(middle). True positives (green), false positives (red) and false negatives (orange) are labeled on the 

correlative EM reconstruction (bottom). 

 

 

Figure 4: Orientation of spines in organotypic hippocampal cultures. (A) Automatic spine detection in 

2PM fluorescence data tends to miss spines that are hidden below the dendrite (Dendrite #6, pink: 

false negatives, gray: true positives) due to the strong filtering properties of the PSF in axial direction. 

(B) Histogram of spine angles based on SBEM data, with 0° pointing upwards and 180° pointing 

downwards (n = 213 spines). (C) Polar plot of spine orientation data (blue, mirrored on the vertical 

axis), compared to a perfectly isotropic distribution (green). Spines protruding upwards from the 

dendrite are very rare in organotypic slice cultures, while lateral spines are overrepresented.  
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Figure 5: Automatic detection of synaptically connected spines. (A) Two-photon image (MIP) of live 

organotypic culture. Axons express a light-activated channel and fluorescently labeled vesicle clusters 

(red). Dendrite express the genetically encoded calcium sensor GCaMP3 and CFP. (B) Automatic spine 

detection based on CFP fluorescence (volume) of spiny dendrite. (C) Result of automatic two-channel 

analysis. Spine #5 displays a particularly high value in the red channel, indicating close proximity to a 

red fluorescent terminal. (D) Verification of functional synaptic contact by two-photon calcium 

imaging during optogenetic stimulation. Spine #5, but no other spine in the analyzed section, displays 

light-induced calcium transients, indicating the presence of a functional presynaptic terminal. Mean 

and SEM of 5-10 trials are plotted for every spine. 
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Figure 6: Automated detection of endoplasmic reticulum (ER) invading dendritic spines. (A) 

Automated spine tracking over time. Stars indicate the automatically detected center of mass of 

every spine at every time point. Colors indicate automatically assigned spine identities. Background 

shows MIP of the first time point. (B) Automatically tracked intensities of spine #5 and #6 in red 

fluorescence channel (spine volume, labeled with dsRed) and green fluorescence channel (ER, 

labeled with GFP). Spine #5 shows strong volume fluctuations and seems to be invaded by ER at 3 

time points (black triangles, green intensity exceeding 2σ of baseline). (C) Input images of spine #5 

(pointing up) and spine #6 (pointing down) over all 18 time points (MIPs). Overlay of red and green 

channels results in yellow ER signal. In frames 4, 8 and 16, ER invasion into spine #5 is evident, while 

spine #6 is never invaded. (D) Schematic representation of a time-lapse experiment over 300 min, 

sampling dendritic morphology every 10 min. Spines were detected automatically. Red squares 
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represent spines without ER, yellow squares spines containing ER (n = 60 spines, 1 dendrite). (E) 

Dwell times of ER in spines are highly variable. Most visits last <10 min, but the distribution has a 

long tail towards very long residence times (>5h). Within 5h, 88% of spines were visited by ER at least 

once.  
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Supplementary material 
 

 

Supplemental Figure S1: Stretches of spiny dendrite used for model computation 
Reconstruction and labeling of spines was done manually on electron microscopy data (SBEM). 

Enclosed mitochondria were also reconstructed and subtracted from intracellular volume before SFI 

generation. Dendrite #4 and #6 are part of the correlative light/electron microscopy dataset. Data 

available at www.spinedetection.com 
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Supplemental Figure S2: Registration of backbone-orthogonal slices 

From the slice center (C) to left (L), right (R), top (T) and bottom (B), the distance at which the 

intensity fell under a given threshold was measured. To minimize the influence of spines, the smaller 

value from each pair (left/right and top/bottom) was used. In addition, center-to-threshold distance 

was measured in maximum intensity projections (MIP, 1D) along the x- and y-axis (L’, R’, T’, B’). For 

robust scaling, the average of both measurements (along centerline and in MIP) was used for 

registration (scaling).   
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Supplemental Figure S3: Segmentation results with NeuronIQ and Imaris 

A) Segmentation result of NeuronIQ 2.0 on two-photon image of dendrite #6. Below: Comparison 

with SBEM data. Green: true positives. Red: false positives. Orange: false negatives. B) Segmentation 

result of Imaris 7.7 filament tracer (Bitplane AG, Zürich, Switzerland). This program is designed to 

start backbone reconstruction from the cell body which was outside our images. As the need to find 

a seed point (large blue sphere) interfered with spine detection in our datasets, we did not score the 

results numerically. Some spines were classified as side branches of the dendrite (green).  

 


