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Abstract

3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 

4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently 

modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal 

basis, we derive several well-established q-space indices and numerically estimate the diffusion 

orientation distribution function (dODF). We also derive the integral transform describing the 

relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we 

will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion 

of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis 

achieves comparable signal and better dODF reconstructions than other well-established methods, 

such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in 

all, this work provides a new way of looking at q-space.
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1. Introduction

The aim of diffusion magnetic resonance imaging (dMRI) is to non-invasively recover 

information about the diffusion of water molecules in biological tissues. An important 

mathematical descriptor of the water diffusion profile is the ensemble average propagator 

(EAP), which is a probability density function that describes the (canonically averaged) 

likelihood of a water molecule undergoing a net displacement during the diffusion time. The 

EAP can characterize complex neural architecture, such as crossing fibers, and many 

quantitative features of the water diffusion profile can be derived from the EAP.

Under the narrow pulse assumption (Stejskal and Tanner, 1965), the measured MR signal 

attenuation, E(q), in q-space and the EAP, P(k), are Fourier Transform pairs (Callaghan, 

1991):

(1)

where k is the displacement vector in EAP-space and q is the diffusion wave-vector in 

signal-space. We denote q = qu(θ, ϕ) and k = kr(θ′, ϕ′), where u and r are 3D unit vectors. 

The wave vector q is q = γδG/2π, where γ is the nuclear gyromagnetic ratio and G = gu is 

the applied diffusion gradient direction. The norm of the wave vector, q, is related to the 

diffusion weighting level (b-value) via b = 4π2q2(Δ − δ/3) (Basser, 2002), where δ is the 

duration of the applied diffusion gradients and Δ the time between the two pulses. Eq. (1) is 

valid only if the narrow pulse condition is met, which is rarely the case for q-space dMRI 

performed under experimental conditions. Several studies (Mair et al., 2002; Weeden et al., 

2005; Bar-Shir et al., 2008) however, have shown that even when these assumptions do not 

hold, the Fourier relationship in Eq. (1) is still a reasonable approximation of the 

microstructural features. The diffusion displacements, however, will be consistently 

underestimated (Weeden et al., 2005).

Another mathematical descriptor of the water diffusion profile is the diffusion orientation 

distribution function (dODF), which is simply an angular feature of the EAP The dODF, 

denoted as ψ, is defined as the radial projection of the EAP on the unit sphere (Canales-

Rodriguez et al., 2010):

(2)

where κ is the order of the radial projection and Oκ is the normalization constant. The dODF 

is thus the (angular) marginal density function of the EAP that describes the likelihood of a 

water molecule diffusing into any given solid angle r during the diffusion time. The classical 

dODF was introduced by (Tuch, 2004) as the zeroth-order radial projection, i.e. ψ0(r).

Many dMRI methods already exist that seek to estimate the EAP and dODF. The most 

widely used dMRI technique, diffusion tensor imaging (DTI) (Basser et al., 1994), assumes 

the EAP is described by a multivariate Gaussian function. However, DTI’s inherent 

assumption of Gaussianity is an over-simplification of water diffusion in the brain, and so 

voxels containing complex neural architecture (e.g. crossing fibers) can not be properly 
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described by DTI. In order to recover complex white matter (WM) geometry, high angular 

resolution diffusion imaging (HARDI) (Tuch et al., 2002) was proposed, and many HARDI 

techniques can be used to measure the dODF (Tuch, 2004; Hess et al., 2006; Descoteaux et 

al., 2007; Canales-Rodriguez et al., 2009; Tristan-Vega et al., 2009; Aganj et al., 2010; 

Michailovich et al., 2011). HARDI, in general, does not sample all of q-space but rather 

confines the signal measurements to a single spherical shell in q-space (i.e. single b-value). 

Since the dODF is defined as the radial projection of the EAP, whose estimation requires 

measurements across all of q-space, HARDI gives an incomplete picture of the dODF. 

Diffusion spectrum imaging (DSI) (Weeden et al., 2005) and hybrid diffusion imaging 

(HYDI) (Wu and Alexander, 2007) are multiple b-value techniques that estimate the EAP 

directly from the raw q-space data by evaluating Eq. (1) using the Fast Fourier Transform 

(FFT). The difference between the two methods lies in their sampling schemes: DSI directly 

samples the q-space signal on a Cartesian lattice whereas HYDI samples it along concentric 

spherical shells. DSI requires dense sampling of the lattice (~ 500 diffusion measurements), 

which means long acquisition times and very strong diffusion gradients. HYDI uses much 

fewer samples than DSI (~ 125), but it requires the spherical measurements to be 

interpolated and regridded onto a Cartesian lattice to perform the FFT, and such ad hoc 

processing may have adverse effects on HYDI’s EAP estimation.

In recent years, non-parametric modeling of the q-space signal E(q), in terms of either an 

orthonormal or non-orthonormal basis, has become popular among multiple b-value 

methods because it can facilitate the obtainment of closed-form solutions of the EAP and 

dODF and/or sparse representation of the diffusion process. Each of these non-parametric 

EAP methods offers its own unique interpretation of q-space, which revolves around the 

basis chosen to describe E(q). Prominent non-parametric EAP methods include diffusion 

propagator imaging (DPI) (Descoteaux et al., 2011), simple harmonic oscillator based 

reconstruction and estimation (SHORE) (Ozarslan et al., 2008, 2009), spherical polar 

Fourier imaging (SPFI) (Assemlal et al., 2009a; Cheng et al., 2010a, b), Bessel Fourier 

orientation reconstruction (Hosseinbor et al., 2013a), sparse multi-shell diffusion imaging 

(SMDI) (Rathi et al., 2011), and mean apparent propagator (MAP) MRI (Ozarslan et al., 

2013). These methods are summarized in Table 1.

Each of the methods described in Table 1, naturally, confines their analysis to 3D. But just 

as a circle may be viewed as a cross-section of a sphere, 3D q-space may be viewed as a 

cross-section of a 4D hypervolume. Specifically, 3D q-space may be embedded onto the 

surface of a 4D hypersphere via stereographic projection, and so 3D q-space can be regarded 

as constituting a single hypersphere in 4D space. An interesting question is then what 

insights will be revealed by a higher-dimensional analysis of 3D q-space.

Although it may seem counterintuitive, higher-dimensional analysis of a 3D problem can 

prove to be surprisingly useful, as is illustrated by the case of the hydrogen atom. One of the 

first physical applications of quantum mechanics was in solving the Schrödinger equation 

for the hydrogen atom. It had been solved in position-space by Schrödinger, himself 

(Schrödinger, 1926), but not in momentum-space, which is related to position-space via the 

Fourier transform. The momentum-space solution was of interest to quantum chemists 

because it could potentially reveal additional quantum mechanical insights about the 
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hydrogen atom not found in the position space solution. Nearly a decade after Schrödinger’s 

landmark publication, V. Fock solved the Schrödinger equation for the hydrogen atom 

directly in momentum-space. In his classic paper (Fock, 1935), Fock stereographically 

projected 3D momentum-space onto the surface of a 4D unit hypersphere, and after this 

mapping was made, he was able to show that the momentum-space hydrogen orbitals could 

be simply expressed in terms of 4D hyperspherical harmonics (HSH), which are the 

multidimensional analogues of the 3D spherical harmonics.

In this paper, we seek to develop a 4D hyperspherical interpretation of q-space (Hosseinbor 

et al., 2013b). Following the work of Fock, we model the 3D q-space signal in terms of the 

4D HSH, which is achieved by stereographically projecting 3D q-space onto the surface of a 

4D hypersphere. Employing a hybrid, non-Cartesian encoding scheme, we estimate the 

dODF using the HSH framework and BFOR and assess their performances. We also 

compute familiar q-space metrics such as zero-displacement probability (Po) (Assaf et al., 

2000; Wu and Alexander, 2007) and q-space inverse variance (QIV) (Wu et al., 2008; 

Hosseinbor et al., 2013a). Most importantly, we will show that such high-dimensional 

analysis of q-space allows for sparser representation of the diffusion process than BFOR.

The paper is organized as follows: in Section 2, we review the 4D HSH and stereographic 

projection, derive the relationship between the q-space signal and EAP on the hypersphere, 

and discuss how to estimate the dODF and several q-space indices using the HSH basis. In 

Section 3, we describe the numerical implementation details of the HSH-framework and 

present the synthetic and in vivo human brain datasets that will be used to validate it and 

compare it BFOR in Section 4. A discussion then ensues in Section 5.

2. Theory

2.1. 4D Hyperspherical Harmonics

Consider the 4D unit hypersphere S3 existing in ℝ4. The Laplace-Beltrami operator on S3 is 

defined as,

where ΔS2 is the Laplace-Beltrami operator on the unit sphere S2. The eigenfuctions of ΔS3 

are the 4D HSH :

The 4D HSH are defined as (Domokos, 1967)

(3)
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where (β, θ, ϕ) obey (β ∈ [0, π], θ ∈ [0, π], ϕ ∈ [0, 2π]),  are the Gegenbauer 

(ultraspherical) polynomials, and  are the 3D spherical harmonics. The Gegenbauer 

polynomials can be expressed in terms of the Gaussian (ordinary) hyper geometric function:

The integers l and m denote the degree and order of the HSH, respectively, and n = 0, 1, 2, 

…. These three integers obey the conditions 0 ≤ l ≤ n and −l ≤ m ≤ l. The number of HSH 

corresponding to a given value of n is (n + 1)2. The first few 4D HSH are shown in Table 2. 

The HSH form an orthonormal basis on the hypersphere, and the normalization condition 

reads

(4)

2.2. 4D Stereographic Projection of q-Space onto Hypersphere

For centuries, cartographers have struggled with the problem of how to represent the 

spherical-like surface of the Earth on a flat sheet of paper. One way to achieve this is via 

stereographic projection. To illustrate it, consider the simpler 3D case. The goal of 

stereographic projection is to associate each 2D point (u, v) in the equatorial plane with a 

unique point P = (x, y, z) on the unit sphere. To achieve this, we construct the 3D line that 

passes through the north pole N = (0, 0, 1) of the sphere and the given point (u, v, 0). This 

line touches the surface of the sphere at exactly one point, P, and so the point P = (x, y, z) is 

the stereographic projection of the point (u, v).

In order to model the q-space signal with the HSH, we need to map 3D q-space onto a 4D 

hypersphere of radius ro, which can be achieved via stereographic projection. The q-space 

coordinates are defined as

The coordinates of the signal-hypersphere are defined by the 4D vector s, whose 

components are

Please note that the hypersphere radius ro has the same dimension as q. We will now derive 

the relationship between q and s as given by stereographic projection.
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The 4D line that passes through the north pole of the hypersphere, (0, 0, 0, ro), and some 

point in q-space (qx, qy, qz) is parameterized as

(5)

The line touches the hypersphere when t satisfies

(6)

whose solution is . Substituting our solution back into Eq. (5) gives the 

relationship between the two coordinate spaces:

(7)

According to Eq. (7), the center of q-space (0, 0, 0) projects onto the south pole (0, 0, 0, −ro) 

of the hypersphere. As q → ∞, the projection (s1, s2, s3, s4) moves closer to the north pole 

(0, 0, 0, ro). Eq. (7) establishes a one-to-one correspondence between q-space and the 4D 

hypersphere. The radius of the hypersphere ro controls the density of the projected q-space 

points onto the surface of the hypersphere.

Stereographic projection exhibits two important properties. First, it is conformal, which 

means it preserves angles - the angles (θ, ϕ) in q-space are preserved in 4D hyperspherical 

space. However, stereographic projection does not preserve volume; in general, the volume 

of a region in the 3D plane doesn’t equal the volume of its projection onto the hypersphere. 

In fact, the degree of volume distortion in going from a differential volume element in q-

space d3q to that of the hypersphere  can be shown to be

(8)

where dΩ = sin2 β sin θdβdθdϕ is the differential area of the hypersphere. We will derive 

Eq. (8) in Section 2.4.

2.3. Diffusion Signal Modeling via HSH Basis

Stereographically projecting q-space onto the hypersphere results in the q-space signal 

existing along the surface of the hypersphere. According to Fourier analysis, any square-

integrable function defined on a sphere can be expanded in terms of the spherical harmonics. 

Thus, stereographic projection allows the 3D q-space signal to be expanded in terms of the 

HSH:
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(9)

where Ero denotes the q-space signal existing on hypersphere of radius ro and Cnlm are the 

HSH expansion coefficients. The realness of the diffusion signal requires use of the real 

HSH, and so we employ a modified real basis proposed in (Koay et al., 2009) for .

An important axiom to state is that the q-space signal, itself, remains invariant after the 

mapping - that is, for a given q-space point (qx, qy, qz) and its corresponding projection on 

the hypersphere (s1, s2, s3, S4), E(qx, qy, qz) = Ero (s1, s2, s3, S4). In q-space, the diffusion 

signal is even i.e. E(qx, qy, qz) = E(−qx,−qy,−qz). Evenness in q-space doesn’t necessarily 

translate into evenness on the hypersphere. According to Eq. (7), (−qx, −qy, −qz) projects to 

(−S1, − S2, −S3, S4), and so evenness in q-space is tantamount to

on the hypersphere, indicating that the signal is not even on the hypersphere. In other words, 

stereographic projection destroys evenness, i.e. a function even in the plane is no longer 

even on the sphere upon projection. For this reason, we are free to use both the even and odd 

HSH. Thus, for a given truncation order N, the total number of expansion coefficients is

2.4. Relationship between EAP and q-Space Signal on Hypersphere

Since our analysis of 3D q-space is confined to the hypersphere, a natural course of action 

would be to stereographically project 3D EAP-space onto its own hypersphere. But the 

Fourier relationship given in Eq. (1) between the signal attenuation and EAP does not hold 

true on the hypersphere. The question, then, is what integral transform maps from the signal-

hypersphere to the EAP-hypersphere, and this problem is illustrated in Fig. 1. Phrasing the 

problem more generally, we seek the integral transform that describes the relationship 

between any two functions individually existing on some n-dimensional sphere Sn, given 

that the two functions are Fourier Transform pairs on the (n − 1)-plane. We will now 

proceed to derive this hyperspherical integral transform, which has never been derived 

before.

Any point in 3D EAP space, the Fourier pair of q-space, is given by
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Now lets stereographically project 3D EAP-space onto a 4D hypersphere of radius ro, whose 

coordinates are defined by the 4D vector v = (v1, v2, v3, v4). The relationship between k and 

v is then

(10)

Lets now express the Fourier kernel in Eq. (1) in terms of the hyperspherical coordinates 

displayed in (7) and (10). The dot product of the 3D vectors q and k is

(11)

Similarly, the dot project of the 4D vectors s and v is

(12)

We know from (7) that , which means . Similarly, . 

The relationship between the two dot products, (11) and (12), is then

(13)

The next and final step is to find the relationship between the differential volume element in 

q-space, d3q, and that of the hypersphere, dV. The differential volume element in q-space is 

simply d3q = q2 sin θdqdθdϕ, while that of the hyperpshere is . 

Since , it can be shown then that  and . Hence, we have

which is simply Eq. (8).

Substituting relations (13) and (8) into Eq. (1) gives the integral transform relating the 

signal-hypersphere to that of the EAP:

(14)
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where Pro denotes the EAP existing on hypersphere of radius ro. Just as with the q-space 

signal, the EAP remains invariant after the mapping. Eq. (14) is not one of the more familiar 

integral transforms encountered in mathematics literature.

2.5. HSH Metrics

A well-known q-space metric is Po ≡ P(k = 0) (Assaf et al., 2000; Wu and Alexander, 

2007), which is a measure of how minimally diffusive a water molecule is during the 

diffusion time. The origin k = 0 in 3D EAP-space corresponds to the south pole of the EAP-

hypersphere i.e. β′ = π. Hence using Eq. (14) and the HSH basis, we can derive Po on the 

hypersphere:

(15)

The integral in (15) is difficult to evaluate analytically, which is due to the non-volume-

preserving nature of stereographic projection; the signal is now weighted by the distortion 

factor in the integration.

The q-space inverse variance (QIV) (Wu et al., 2008; Hosseinbor et al., 2013a) is a measure 

of the average diffusion displacements from q-space measurements, and is an alternative 

measure of diffusivity to the mean square displacement (MSD). The QIV is a more robust 

measure of diffusivity than the MSD, especially when high b-values are concerned, and 

exhibits white matter/gray matter contrast unlike the MSD (Hosseinbor et al., 2012). The 

QIV is defined mathematically as QIV = [∫q2E(q)d3q]−1. Taking into account the volume 

distortion factor described by Eq. (8) upon stereographic projection of the q-space signal, the 

QIV becomes

(16)

As with Eq. (15) for Po, Eq. (16) is difficult to evaluate analytically due to the weighting of 

the distortion factor in the integration.

In order to evaluate the integrals in (15) and (16), we will first compute uncorrected versions 

of Po and QIV by not weighting the distortion factor in the integration. Let γ denote some 

metric of interest that is derived from the integration of the q-space signal along the surface 

of the hypersphere:

(17)

where we use the fact that . The QIV and Po can then be obtained from γ by 

numerically performing a signal weighting operation that will correct for the volume 

distortion, which will be discussed in detail in the Numerical Implementation section.
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2.6. Estimation of dODF

Given the intricacy of Eq. (14), it is difficult to estimate the EAP analytically using the HSH 

framework. However, the classical dODF ψ0(r) can be numerically estimated from the 

signal measurements using the FFT. Lets construct a 11 × 11 × 11 (−qmax : Δq : qmax) 

Cartesian lattice, which we map onto the 4D hypersphere via Eq. (7). Once we have 

computed the HSH expansion coefficients via LLS from the acquired data, Eq. (9) can then 

be used the estimate the signal at any location on the hypersphere, including the projected 

lattice points. The stereographic projection establishes a one-to-one correspondence between 

the lattice and hypersphere, meaning that a given lattice point and its corresponding 

projection on the hypersphere have the same signal value. Hence, taking the FFT of the 

HSH-estimated signal for the lattice gives the EAP. The κ = 0 radial projection of the EAP, 

as given by Eq. (2), then yields the dODF. Since the zeroth-order dODF is not inherently 

normalized, we min-max normalize it (Tuch, 2004).

3. Materials and Methods

3.1. Numerical Implementation

In general, we are given k HARDI shell datasets. The number of encoding directions in each 

shell does not have to be the same. Each HARDI dataset corresponds to a different b-value. 

Across all k shells, we have total of M diffusion measurements (including the b = 0 

measurement). The task then is to estimate the coefficients Cnlm in Eq. (9) from the observed 

signal.

Let Ωj = (βj, θj, ϕj) denote the hyper spherical angles corresponding to the jth diffusion 

measurement. Denote G as the M × 1 vector representing the M diffusion signal 

measurements across all k shells, C the W × 1 vector of unknown expansion coefficients 

Cnlm, and A the M x W matrix constructed with the HSH basis

Thus, we have a linear model of the form G = AC. This system of over-determined 

equations is solved via linear least squares with Laplace-Beltrami regularization (LBR), 

yielding Ĉ = (ATA + λlLreg)−1ATG, where Lreg is the LBR diagonal matrix with entries l2(l 

+ 2)2 along the diagonal. The regularization serves to reinforce the positivity constraint of 

the signal.

Comparing Eq. (15) and (17), we see that Po is distorted by a factor given by Eq. (8). We 

correct for this volume distortion by weighting each signal shell in q-space by , 

where qi is the radius of the ith shell, before signal fitting. The resulting “weighted” 

coefficients are then solely used for computing Po via Eq. (17). The q-shell radii are listed in 
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Table 3. Such q-shell weighting has been employed in (Wu et al., 2008) in the estimation of 

Po.

Similarly, comparing Eq. (16) and (17), we see that the QIV is distorted by a factor 

. We correct for this volume distortion by weighting each signal shell in q-space 

by  before signal fitting. The resulting “weighted” coefficients are then solely 

used for computing QIV via Eq. (17).

3.2. Interpolation via HSH Basis

Once the coefficients are estimated, the signal attenuation can be evaluated at any location 

along the hypersphere using Eq. (9). 1000 uniformly distributed vertices on a unit sphere in 

q-space (i.e. 1000 values of θ and ϕ) were acquired using the approach described in (Wong 

and Roos, 1994), and then stereographically projected onto the hypersphere. The q-space 

signal Ero (β, θ, ϕ) was then interpolated along these 1000 points.

3.3. Diffusion MRI Data Acquisitions for Synthetic and In Vivo Data

The synthetic and in vivo datasets use a hybrid, non-Cartesian q-space sampling scheme 

(HYDI) (Wu and Alexander, 2007), shown in Table 3. Since ODF reconstruction is sensitive 

to angular resolution, the number of encoding directions is increased with each shell to 

increase the angular resolution with the level of diffusion weighting. The number of 

directions in the outer shells were increased to better characterize complex tissue 

architecture.

3.3.1. Synthetic Data—At low b-values (i.e. b ~ 1000 s/mm2), the diffusion signal decay 

is mono-exponential. However, dMRI experiments using high b-values (> 2000 s/mm2) 

have shown that the diffusion signal decay is no longer mono-exponential. Studies in normal 

human brain, with b-values over an extended range of up to 6000 s/mm2, have shown that 

the signal decay is better described with a bi-exponential curve (Mulkern et al., 1999; Clark 

and Le Bihan, 2000). Similar findings were made for rat brain, using multiple b-values of up 

to 10000 s/mm2 (Niendorf et al., 1996). And according to (Assaf and Cohen, 1998), a bi-

exponential fit gives very good agreement with the observed water signal attenuation in 

excised brain tissue from rats for b-values of up to 2 – 3 × 104 s/mm2. Therefore, the HSH 

basis and BFOR were applied to simulations of crossing fiber configurations generated by a 

bi-exponential mixture model.

In the bi-exponential mixture model,

(18)

where Nb is the total number of simulated fibers, fkf the volume fraction of the fast 

component of the kth fiber, and fks the volume fraction of the slow component. The 

summation of all volume fractions is 1, i.e., . Dkf and Dks describe the 
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diffusion tensor for the fast and slow components, respectively, of the kth fiber assuming no 

exchange between the fast- and slow-diffusion compartments. The values of the fast and 

slow Gaussian diffusion functions were taken from (Maier et al., 2004) and are shown in 

Table 4. It should be noted that there is controversy over the assignment of these 

components and whether the bi-exponential model should take into account exchange 

between compartments (Mulkern et al., 1999).

We look at two equally weighed fibers crossing at 45° and 75°, and set eigenvalues of each 

diffusion tensor to be [1.6,0.4,0.4]e-3 mm2/s, which gives FA=0.7071. Monte Carlo noise 

simulations were performed to investigate the effect of SNR on the signal and dODF 

reconstructions. Five SNR levels ([10 20 30 40 80]) for the b = 0 image were simulated, 

1000 times each, by adding Rician noise in a similar manner as in (Descoteaux et al., 2007). 

The HSH estimations are performed using the N =2 (W = 14 fitting parameters), 3 (W = 30), 

& 4 (W = 55) truncation orders and λl = 10−6. The appropriate hypersphere radius for each 

truncation order will be discussed in the Results Section. BFOR parameters are taken from 

(Hosseinbor et al., 2013a): the radial and angular truncation orders are chosen to be 6 and 4, 

respectively, yielding 90 fitting parameters.

We assess the quality of the signal fit by computing the normalized mean squared error 

(NMSE):

where S is the ground truth signal given by Eq. (18) and Ŝ is the HSH-estimated signal 

described by Eq. (9). Similarly, the quality of the dODF reconstruction is assessed by 

computing the Kullback-Leibler divergence (KLD) and angular error (Tuch, 2004). The 

KLD is

where ψ and ψ̂ are the ground truth and estimated dODFs, respectively. The ground truth 

dODF was found by taking the FTT of Eq. (18). The angular error metric is defined as

where r̂* = arg maxr ψ̂(r) and r* = arg maxr ψ(r).

3.3.2. Human Brain Data—HYDI was performed on a healthy, adult human using a 3 T 

GE-SIGNA whole body scanner with ASSET parallel imaging. MR parameters were 

TE=102 ms, TR=6500 ms, FOV=24 cm, matrix=96 × 96, voxel size=2.5 × 2.5 mm2, 43 
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slices with slice thickness=3 mm, and scan time=15 min. Diffusion parameters were 

gradient duration δ = 37.86 ms and gradient separation Δ = 43.1 ms.

4. Results

4.1. Results of Synthetic Data

On Selecting the Optimal Hypersphere Radius—Choosing the optimal hypersphere 

radius ro for the HSH framework may be determined by plotting the NMSE of the signal fit 

versus ro. Specifically, the HSH-interpolated signal evaluations for a specific hypersphere 

radius are merged across all five shells and then the NMSE is computed with respect to the 

ground truth. We seek the radius that yields the smallest NMSE. Fig. 2 shows plots of the 

NMSE as a function of ro at 45° crossing, in absence of noise, for different truncation orders 

of the HSH basis: N = 2 (W = 14), N = 3 (W = 30), and N = 4 (W = 55). A unique value of 

ro that minimizes the NMSE of the signal fit can be found for each truncation order N, and 

the results are summarized in Table 5.

Fig. 3 shows plots of the NMSE as a function of ro at 75° crossing, in absence of noise, and 

the optimal radius for each truncation order is displayed in Table 6. Going from 45° to 75° 

fiber crossing only slightly changes the optimal ro for N = 2 and N = 3 HSH reconstruction. 

The influence of crossing angle on the choice of hypersphere radius is moderately more 

pronounced for N = 4 HSH reconstruction, going from po = 54 to po = 46. However, as we 

will show later, using either po = 54 and po = 46 for N = 4 HSH reconstruction will not 

significantly affect the dODF reconstruction.

HSH Signal Reconstruction—Fig. 4 displays the HSH signal fit at 45° crossing, in 

absence of noise, for different truncation orders N of the HSH basis. Naturally, as the 

truncation order increases, the quality of the signal fit improves, with the N = 4 HSH 

reconstruction fitting the signal attenuation nearly perfectly across all b-values. But even the 

N = 2 HSH reconstruction, which is expending only 14 coefficients, fits the signal quite 

well.

Fig. 5 displays the N = 4 HSH signal fit at 75° crossing in absence of noise using the 

optimal radius for both 45° and 75° crossings. The signal fit is nearly identical, and indicates 

that the HSH signal reconstruction is not seriously affected when using the optimal radius 

for 45° crossing in the 75° case.

dODF Estimation—Fig. 6 shows the HSH-estimated dODF at various truncation orders, 

BFOR-estimated dODF, and ground truth dODF for 45° crossing. Note that the N = 2, 3, 

and 4 HSH-estimations are remarkably similar to one another, with the KLD only slightly 

increasing as the truncation order increases. At all three truncation orders, the HSH basis 

successfully captures the geometry and orientation of the dODF profile. However, the HSH 

basis somewhat smoothens the dODF peaks. The BFOR-estimated dODF is not as accurate 

as those of the HSH, with even its KLD being much higher than the N = 2 HSH-estimation. 

Both Figs. 4 and 6 suggest that only 14 HSH-coefficients (i.e. N = 2 HSH-estimation) are 

sufficient to characterize the signal attenuation and dODF.
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Fig. 7 displays the N = 4 HSH-estimated dODF for 75° crossing using the optimal radius for 

both 45° and 75° crossing cases. Again, as with the signal fit, the dODF reconstructions are 

nearly identical, so the HSH estimation of the dODR is not seriously affected when using 

the optimal radius for 45° crossing in the 75° case. And similar to the dODF reconstruction 

at 45° crossing, the HSH basis successfully captures the geometry and orientation of the 

dODF profile, but again somewhat smoothens the dODF peaks.

Although the optimal radius for N = 4 HSH reconstruction is somewhat more influenced by 

fiber crossing angle than that of lower truncation orders, based on the results of both Figs. 5 

and 7, we see that using the optimal radius for one fiber crossing angle will not seriously 

affect the results for another crossing angle. For this reason, we will henceforth employ each 

truncation order’s optimal radius at the 45° crossing case for all subsequent analysis.

Robustness to Noise—Fig. 8 displays the noise simulation results on the signal fit for 

the HSH and BFOR bases, with the NMSE plotted against SNR for each b-value. There is 

very little disparity between the HSH and BFOR bases for the first three b-values. At the 

fourth shell for SNR= 10, the NMSE of the HSH basis is less than 5%, while that of BFOR 

exceeds 5%. At the outermost shell for SNR= 10, the NMSE of the HSH basis is at most 

15%, while that of BFOR is more than twice that.

Table 7 displays the noise simulation results on the dODF estimation for 45° crossing, with 

the KLD and angular error computed across 1000 trials at SNR= 10. As the truncation order 

of the HSH basis decreases, both the KLD and angular error likewise decrease; the KLD and 

angular error of the N = 2 reconstructions is about one-fifth and one-half, respectively, that 

of the N = 4 reconstruction. The BFOR estimation is the most sensitive to noise, with its 

KLD about twice as high as the N = 4 HSH-estimation. BFOR’s angular error is slightly 

lower that of the N = 4 HSH reconstruction.

Similarly, Table 8 displays the noise simulation results on the dODF estimation for 75° 

crossing, with the KLD and angular error computed across 1000 trials at SNR= 10. Again, 

as the truncation order of the HSH of the HSH basis decreases, both the KLD and angular 

error likewise decrease; the KLD and angular error of the N = 2 reconstructions is about 

one-fifth and one-half, respectively, that of the N = 4 reconstruction. Note that the KLD and 

angular errors at 75° are similar to those at 45°.

The lack of robustness of higher order HSH expansion to noise can simply be attributed to 

how the model fits the data. The HSH basis expansion, like any Fourier expansion, wiggles 

around the data in order to fit it in the least squares sense. In our situation, at higher orders, 

we see that the HSH expansion wiggles more than at lower orders, so it does not the fit the 

data as well. Equivalently, lower order HSH expansions smoothen out the noise, while 

higher order ones capture more noise.

Both Fig. 8 and Table 7 indicate that the HSH basis is more robust to noise than BFOR, with 

even the lowest order HSH estimation outperforming BFOR. The N = 2 HSH reconstruction 

is slightly more robust to noise than higher order HSH reconstructions, as assessed by the 

NMSE of the signal fit. But in terms of the KLD and angular error of dODF estimation, the 
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N = 2 HSH reconstruction is much more robust to noise than higher order HSH 

reconstructions. Most importantly, the noise simulations suggest that the 14 fitting 

parameters from the N = 2 estimation are more than adequate to accurately compute both the 

signal attenuation and dODF.

4.2. Results of In Vivo Data

Imposing Antipodal Symmetry—The HSH basis is not symmetric on the hypersphere 

(since both odd and even HSH are used), which poses a problem with regards to in vivo 

dODF reconstruction. Unlike synthetic experiments, where the q-space signal is guaranteed 

to be symmetric, the q-space signal acquired from in vivo data may not be symmetric due to 

noise, motion, geometric distortion, etc. Such asymmetry does not pose a problem for the 

BFOR basis because its inherent symmetry will impose symmetry on the in vivo data. 

However, for the HSH basis, asymmetric in vivo data will result in asymmetric dODF 

profiles. Since the q-space signal is theoretically a symmetric (i.e. even) function, we get 

around this problem by requiring that the in vivo data satisfies

That is, the mathematical reflection of the q-space coordinates (used in the acquisition) 

outputs the measured in vivo signal. Essentially, we are inflating our data not by acquiring 

more data, but by exploiting prior information regarding the q-space signal (in this case, its 

symmetry). Henceforth, symmetry will be imposed on all in vivo calculations using the HSH 

basis.

In Vivo dODF Profiles—In Fig. 9, a 4 × 4 ROI was drawn on the splenium of corpus 

callosum. The dODF profile for each voxel in the ROI was estimated using the HSH basis at 

N =2, 3, & 4. The dODF profiles at each truncation order have the fundamental peanut shape 

(i.e. mono- directional) of a single fiber. Although the N = 4 reconstruction is sharper, the N 

=2 and 3 reconstructions are congruous with that of N = 4 in terms of overall shape and 

orientation of fibers, and so suggesting that 14 HSH coefficients are sufficient to 

characterize single fibers.

In Fig. 10, a 4 × 4 ROI was drawn on a region of crossing fibers. The dODF profile for each 

voxel in the ROI was estimated using the HSH basis at N =2, 3, & 4. Fiber crossing 

configurations are recovered and well discriminated by each truncation order. As expected, 

the N = 4 HSH reconstruction is sharper, whereas those of N =2 and 3 are more smoothened. 

However, congruity exists across all three reconstructions in terms of overall shape and 

orientation.

Quantitative Indices—Axial slices of Po, computed via HSH and BFOR bases, are 

shown in Fig. 11. The N = 2, 3, and 4 HSH-estimations of Po are nearly identical and they 

closely resemble BFOR’s, exhibiting both tissue/CSF and WM/GM contrasts. The HSH Po 

maps, however, have sharper WM/GM contrast than BFOR’s (compare the left and right 

putamen in both maps), which probably arises from the signal weighting operation. The 
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results suggest that 14 HSH coefficients, i.e. N = 2 HSH reconstruction, are adequate in 

estimating Po.

Axial slices of QIV, computed via HSH and BFOR bases, are shown in Fig. 12. The N = 2, 

3, and 4 HSH-estimations of QIV are nearly identical and they closely resemble BFOR’s, 

exhibiting both rich tissue/CSF and WM/GM contrasts. However, BFOR’s QIV map has 

some voxels that blow up upon the division operation in computing QIV, which are zeroed 

out in Fig. 12d, but this was not the case for the HSH-estimated QIV. As with the Po 

estimation, the results indicate that 14 HSH coefficients, i.e. N = 2 HSH reconstruction, are 

adequate in estimating QIV.

5. Discussion

We have demonstrated that the N = 2 HSH reconstruction, which expends only 14 fitting 

parameters, is more than adequate in resolving crossing fiber configurations and estimating 

quantitative metrics like Po and QIV. The noise simulations indicate that it is more robust 

than higher order HSH reconstructions and BFOR.

The HSH framework, as with MAP-MRI, captures both the radial and angular contents of 

the q-space signal with a single basis function, while BFOR employs two basis functions: 

one radial (spherical Bessel function) and angular (spherical harmonics). BFOR’s use of the 

spherical Bessel function to model the q-space signal is unrealistic because it infinitely 

oscillates about zero, while the q-space signal radially decays to zero. Table 9 compares the 

number of fitting parameters between BFOR, HSH, and MAP-MRI.

The HSH framework also suffers several limitations. First, the hyperspherical interpretation 

of q-space destroys, via stereographic projection, the q-space signal’s inherent symmetry. 

However, this can be remedied by imposing antipodal symmetry on the in vivo data. Second, 

the complexity of fiber architecture, as reflected by the crossing angle, somewhat affects the 

choice of hypersphere radius, especially at higher truncation orders. However, as our 

synthetic results have shown, employing one crossing angle’s optimal radius for some other 

crossing angle will not significantly affect the results.

The major drawback of the HSH framework is the difficulty in analytically estimating the 

EAP via Eq. 14 due to the non-volume preserving nature of stereographic projection. 

Although the signal basis is analytical in the HSH framework, the dODF and q-space 

metrics can not be analytically estimated. The HSH framework requires the q-space 

measurements to be regridded onto and interpolated on a Cartesian lattice, as done in DSI 

and HYDI, in order to estimate the dODF. And ad hoc correction of the Po and QIV maps is 

needed to correct for volume distortion. It should be noted, however, that such numerical 

computations do not significantly impede computational efficiency. BFOR’s key advantage 

over the HSH framework is its analytical estimation of the diffusion propagator and various 

q-space metrics.

Although the encoding scheme in this study consisted of hybrid sampling along equally 

spaced concentric spherical shells, the HSH framework does not require such a scheme. A 

minimum of two diffusion weightings is required, however. Random sampling along q-
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space or even the use of unequally spaced concentric shells is perfectly valid. This, however, 

leads to the important question of what is the best way to sample N diffusion measurements 

in q-space, which have started to be addressed (Assemlal et al., 2009b; Merlet et al., 2011; 

Koay et al., 2012; Caruyer et al., 2013). Although the HSH framework’s efficient 

representation of the dODF may also make it conducive to compressed sensing (Menzel et 

al., 2011; Merlet and Deriche, 2013; Paquette et al., 2014), the HSH basis is global; 

localized functions, by virtue of possessing compact support, will have better sparsity than 

global bases. Future work includes optimizing the HYDI q-space sampling and exploring the 

sparsibility of the HSH basis.

The dODF profiles are not sharp enough to extract the true fiber orientation, as clearly seen 

in Fig. 10. Rather, the fiber orientation is given by the fiber orientation distribution function 

(fODF), which can be computed via spherical deconvolution of some assumed kernel (i.e. 

response function) from the q-space diffusion signal (Tournier et al., 2004; Descoteaux et 

al., 2009). Analytical estimation of the fODF using the HSH framework will be difficult 

because of the stereographic projection’s volume distortion. However, similar to the dODF 

estimation, the fODF can be estimated numerically by evaluating the spherical 

deconvolution via the Richardson-Lucy algorithm (Parker et al., 2013), which will be left as 

future work.

6. Conclusion

We have introduced a new orthonormal basis to model the 3D q-space signal, and from 

which various q-space metrics can be computed. 4D HSH signal modeling allows for the 

capture of the radial and angular contents of the diffusion profile by a single basis function, 

and the basis’ orthonormality provides robust numerical stability. Importantly, we have 

demonstrated the HSH basis’ ability to sparsely represent the diffusion process. In fact, the 

second order HSH reconstruction, which expends 14 fitting parameters, can adequately 

resolve crossing fiber configurations and estimate q-space indices. Such robust performance 

by a sparse representation implies that the HSH framework may be better suited to sparser 

sampling schemes than BFOR, which will be explored in the future. Although the 

hyperspherical interpretation of q-space destroys, via stereographic projection, the signal’s 

inherent symmetry, this can be remedied by imposing antipodal symmetry on the in vivo 

data. The major drawback of the HSH framework is the difficulty in analytically estimating 

the EAP.
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Appendix A. 1D-to-2D Analogue of Eq. (14)

A better understanding of the integral transform described by Eq. (14) can be obtained by 

considering the simpler 1D-to-2D scenario. Consider two infinite 1D lines, one defined by 

the variable x and the other by k. We assume the integral transform mapping from x-space to 

k-space is the Fourier transform; in other words,

(Appendix A.1)

Now lets stereographically project each line onto a circle of radius ro. Stereographic 

projection establishes a one-to-one correspondence between the 1D plane and circle.

Let’s first consider 1D x-space. According to stereographic projection, any point x on the 

line maps to a unique point (u, v) = (rocosθ, rosinθ) along the circle, where θ ∈ [0, 2π]. The 

exact relationship between x and (u, v) given by

(Appendix A.2)

Using Eq. (Appendix A.2), we can deduce that

(Appendix A.3)

and

(Appendix A.4)

Similarly, we project 1D k-space onto a circle of radius ro. According to stereographic 

projection, the relationship between a point k on the line and the point (u′, v′) = (rocosθ′, 

rosinθ′) along the circle is

(Appendix A.5)

Using Eq. (Appendix A.5), we can deduce that
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(Appendix A.6)

The Fourier relationship between 1D x-space and k-space, as described by Eq. (Appendix A.

1), does not hold true on the circle. The question, then, is what integral transform maps from 

the circle associated with x-space to the circle associated with k-space? We now proceed to 

derive this integral transform.

Taking the product of Eqs. (Appendix A.3) and (Appendix A.6) gives

(Appendix A.7)

Substituting Eqs. (Appendix A.4) and (Appendix A.7) into Eq. (Appendix A.1) gives

(Appendix A.8)

where . Eq. (Appendix A.8) describes the relationship between 

any two functions individually existing on a circle, given that the two are Fourier transform 

pairs on the 1D plane.
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Research Highlights

• Derive a 4D hyperspherical harmonic-based framework to estimate the 3D q-

space signal and diffusion orientation distribution function.

• Estimate rotationally invariant q-space indices using our framework, like Po and 

QIV.

• Validate our framework using HYDI-acquired datasets, both synthetic and in 

vivo.

• Compare our framework to existing analytical methods, specifically BFOR.

• Derive a novel integral transform.

Hosseinbor et al. Page 22

Med Image Anal. Author manuscript; available in PMC 2016 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Q-space and EAP-space, which are FT pair, are each stereographically projected onto a 

sphere. As a result, the diffusion signal and EAP each exist on a sphere, and the question 

then is finding the integral transform that maps from the signal-sphere
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Figure 2. 45° Fiber Crossing
The normalized mean squared error (NMSE) of the signal fit as a function of hypersphere 

radius for different truncation orders N of the 4D HSH basis.
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Figure 3. 75° Fiber Crossing
The normalized mean squared error (NMSE) of the signal fit as a function of hypersphere 

radius for different truncation orders N of the 4D HSH basis.
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Figure 4. Signal Fit for 45° Crossing
The ground truth diffusion signal (green) and reconstructed signal (red) using HSH basis 

when noise was absent. Two equally weighted WM fibers were simulated crossing at 45°. 

Measurements from all 5 shells were used.
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Figure 5. Signal Fit for 75° Crossing
The ground truth diffusion signal (green) and reconstructed signal (red) using N = 4 HSH 

basis when noise was absent. Two equally weighted WM fibers were simulated crossing at 

75°. Both the optimal radius for 45° (ro = 54) and 75° (ro = 46) crossings are employed for 

N = 4 reconstruction. We see that the overall signal reconstruction is not seriously affected 

when using the optimal radius for 45° crossing in the 75° case.
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Figure 6. dODF Fit for 45° Crossing
The HSH-estimated, BFOR-estimated, and ground truth dODF’s in absence of noise for two 

equally weighted fibers crossing at 45°. The dODF is normalized to [0 1], and the KLD with 

respect to the ground truth is listed for both HSH and BFOR bases.
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Figure 7. dODF fit for 75° Crossing
The HSH-estimated and ground truth dODF’s in absence of noise for two equally weighted 

fibers crossing at 75°. The dODF is normalized to [0 1]. Both the optimal radius for 45° (ro 

= 54) and 75° (ro = 46) crossings are employed for N = 4 reconstruction. We see that the 

overall dODF reconstruction is not seriously affected when using the optimal radius for 45° 

crossing in the 75° case.
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Figure 8. 
The normalized mean squared error (NMSE) of the HSH signal fit for different truncation 

orders N and BFOR signal fit for each b-value plotted against SNR. 1000 Rician noise trials 

were simulated for each SNR level for two equally weighted fibers crossing at 45°.
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Figure 9. 
Axial slice of GFA(10) map of adult human brain, where a 4 × 4 ROI is drawn on splenium 

of corpus callosum. Plotted are the HSH dODF profiles at N =2, 3, & 4 overlaid onto ROI.
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Figure 10. 
Axial slice of GFA(10) map of adult human brain, where a 4 × 4 ROI is drawn on a region 

of crossing fibers. The genu of the corpus callosum is in the background. Plotted are the 

HSH dODF profiles at N =2, 3, & 4 overlaid onto ROI.
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Figure 11. 
Axial slices of Po computed via HSH and BFOR bases for a healthy, adult human. Note that 

antipodal symmetry was imposed on in vivo data in the computation of Po.
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Figure 12. 
Axial slices of QIV computed via HSH and BFOR bases for a healthy, adult human. Note 

that antipodal symmetry was imposed on in vivo data in the computation of QIV.
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Table 1

Summary of Non-Parametric EAP Methods

Method Interpretation of q-Space

DPI Q-space signal satisfies Laplace’s equation

SHORE Q-space signal behaves like an isotropic (quantum mechanical) simple harmonic oscillator

SPFI Q-space signal basis is a modified version of SHORE

MAP MRI Q-space signal behaves like an anisotropic (quantum mechanical) simple harmonic oscillator

BFOR Q-space signal satisfies the heat equation

SMDI Q-space signal behaves like spherical ridgelets
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Table 2

List of a Few HSH
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Table 3

HYDI Encoding Scheme

Shell Ne q (mm−1) Δq (mm−1) b (s/mm2)

7 0 0

1st 6 15.79 15.79 300

2nd 21 31.58 15.79 1200

3rd 24 47.37 15.79 2700

4th 24 63.16 15.79 4800

5th 50 78.95 15.79 7500

Total=132 qmax=78.95 Mean=15.79 bmax =7500
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Table 4

Fast/Slow Diffusion ADCs & Component Size Fractions (from (Maier et al., 2004))

Region of Interest Corpus Callosum Internal Capsule

ADCf (μm2/ms) 1.176 1.201

ADCs (μm2/ms) 0.195 0.176

ff 0.699 0.643

fs 0.301 0.357
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Table 5

Optimal Radius for a Given Truncation Order at 45° Crossing

N W Optimal ro (mm−1) NMSE

2 14 32 7.15e-4

3 30 44 8.50e-4

4 55 54 2.51e-4

Med Image Anal. Author manuscript; available in PMC 2016 April 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Hosseinbor et al. Page 40

Table 6

Optimal Radius for a Given Truncation Order at 75° Crossing

N W Optimal ro (mm−1) NMSE

2 14 33 1.25e-3

3 30 46 1.54e-3

4 55 46 2.04e-4
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Table 7

KLD & Angular Error of dODF Estimations at SNR= 10 for 45° Crossing

Method KLD Angular Error

HSH N = 2 0.100 ± 0.0247 7.85° ± 4.12°

HSH N = 3 0.209 ± 0.0540 12.3° ± 5.30°

HSH N = 4 0.528 ± 0.109 16.8° ± 5.55°

BFOR 1.02 ± 0.246 14.9° ± 4.78°
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Table 8

KLD & Angular Error of dODF Estimations at SNR= 10 for 75° Crossing

Method KLD Angular Error

HSH N = 2 0.109 ± 0.0242 7.89° ± 4.09°

HSH N = 3 0.210 ± 0.0526 12.3° ± 5.21°

HSH N = 4 0.472 ± 0.108 16.1° ± 5.52°
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Table 9

Number of Fitting Parameters for Different Methods

Method W

BFOR/SHORE Nradial(Nangular + 1)(Nangular + 2)

HSH (N + 1)(N + 2)(2N + 3)/6

MAP-MRI (N + 2)(N + 4)(2N + 3)/24
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