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Abstract

This paper proposes an observation-driven adaptive differential evolution algorithm that fuses bronchoscopic video sequences,
electromagnetic sensor measurements, and computed tomography images for accurate and smooth bronchoscope three-dimensional
motion tracking. Currently an electromagnetic tracker with a position sensor fixed at the bronchoscope tip is commonly used to
estimate bronchoscope movements. The large tracking error from directly using sensor measurements, which may be deteriorated
heavily by patient respiratory motion and the magnetic field distortion of the tracker, limits clinical applications. How to effectively
use sensor measurements for precise and stable bronchoscope electromagnetic tracking remains challenging. We here exploit
an observation-driven adaptive differential evolution framework to address such a challenge and boost the tracking accuracy and
smoothness. In our framework, two advantageous points are distinguished from other adaptive differential evolution methods: (1)
the current observation including sensor measurements and bronchoscopic video images is used in the mutation equation and the
fitness computation, respectively, and (2) the mutation factor and the crossover rate are determined adaptively on the basis of the
current image observation. The experimental results demonstrate that our framework provides much more accurate and smooth
bronchoscope tracking than the state-of-the-art methods. Our approach reduces the tracking error from 3.96 to 2.89 mm, improves
the tracking smoothness from 4.08 to 1.62 mm, and increases the visual quality from 0.707 to 0.741.

Keywords: Adaptive differential evolution, Camera 3-D motion tracking, Evolutionary computation, Bronchoscope tracking and
navigation, Surgical instrument tracking and navigation.

1. Introduction

Medical endoscopes have been widely used in minimally in-
vasive surgery (MIS). They have been integrated with cameras
at their distal tip and directly inserted into the body through
natural orifices (e.g., mouth and nose) to observe the interior
of hollow organs, e.g., sinuscopes for sinus inspection, colon-
scopes for colon/rectum cancer detection, and angioscopes for
examining the lumen of blood vessels.

The bronchoscope is an indispensable tool for lung and
bronchus cancer diagnosis, staging, and treatment. It is used
to perform diagnostic interventions, e.g., transbronchial lung
biopsy (TBLB) or transbronchial needle aspiration (TBNA), to
puncture suspicious tumors, and to obtain tissue samples for
pathological analysis. However, it is difficult to perform TBLB
or TBNA successfully to obtain proper tissue since a broncho-
scope provides only two-dimensional (2-D) video images with-
out depth information. Hence, physicians have trouble locating
it inside the desired bronchus and easily fail to locate its tip
in complex bronchial structures with thousands of bronchi and
bifurcations.

Bronchoscope tracking was developed to solve the problem
of bronchoscope tip location that physicians are confronted
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with. It determines the bronchoscope position and orientation
in reference three-dimensional (3-D) coordinate systems, such
as computed tomography (CT) and magnetic resonance (MR)
image coordinate systems. Various methods to track the bron-
choscope have been published in the literature. They are di-
vided into two major categories (or a combination of both): (1)
bronchoscope image-registration tracking (BIRT) and (2) bron-
choscope electromagnetic tracking (BEMT).

BIRT usually defines an optimization function to minimize
the pixel differences between bronchoscopic video images and
two-dimensional (2-D) virtual images generated from pre-
operative 3-D CT images by volume or surface rendering tech-
niques (Levoy, 1990; Tiede et al., 1990). Helferty et al. reported
an image registration method on the basis of normalized mutual
information (NMI) for bronchoscope tracking (Helferty et al.,
2007). Chung et al. registered video and virtual images to es-
timate the bronchoscope motion by recovering a bidirectional
reflectance distribution function (BRDF) (Chung et al., 2006).
Deguchi et al. used a modified mean square error (MSE) mea-
sure as the optimization function to spatially synchronize video
and virtual images and track the bronchoscope tip (Deguchi
et al., 2009), which method was further improved by combining
the scale invariant feature transform method (Luo et al., 2012a).
Although BIRT works well, it relies heavily on the video image
quality that might be degenerated by image artifacts (e.g., mo-
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tion blurring or bronchial bubbles) and also easily gets trapped
in the local minima in optimization without a proper initial es-
timate.

BEMT, which is a very active topic of research as well as
the topic of our paper, uses an electromagnetic tracker (EMT)
with a position sensor fixed at the bronchoscope tip to directly
measure bronchoscope motion (Schwarz et al., 2006). Unfor-
tunately, BEMT accuracy is still unavoidably deteriorated by
two drawbacks: (1) sensitivity to location problems due to pa-
tient airway deformation (e.g., respiratory motion) and (2) sen-
sor measurement incorrectness due to magnetic field distortion
from ferrous metals or conductive material within or close to
the working volume. To address these drawbacks, Mori et
al. proposed a hybrid method that combines image registration
and EMT to track the bronchoscope (Mori et al., 2005), which
method was further improved by using Kalman filtering and the
condensation algorithm (Soper et al., 2010; Luo et al., 2010b,
2012b). Gergel et al. used particle filtering to compensate for
breathing motion (Isard and Blake, 1998; Gergel et al., 2010).
Deligianni et al. used a position sensor and a pq-based reg-
istration technique to improve EMT accuracy and stability by
modeling respiratory motion with an active shape model (Deli-
gianni et al., 2006). Magnetic field distortion is very difficult to
correct without optical tracking (Feuerstein et al., 2009). Even
though BEMT has been commercialized for clinical applica-
tions (Schwarz et al., 2006), the above drawbacks remain chal-
lenging.

This work tackles two disadvantages of BEMT to obtain
more accurate and smooth tracking to effectively fuse CT im-
ages, bronchoscopic video sequences, and EMT sensor mea-
surements. Generally speaking, BEMT is a multi-modal
and uncertain tracking procedure since it uses inaccurate or
distorted measurement information, i.e., CT images without
recording breathing motion information, bronchoscopic im-
age artifacts, and incorrect or jitter EMT sensor outputs, to
track the bronchoscope. Therefore, we require a tracking al-
gorithm that can adapt itself to such inaccuracy and distortion.
Currently, as one powerful evolutionary algorithm, differen-
tial evolution (DE), which was originally developed by Storn
and Price (Storn and Price, 1997), has been increasingly ap-
plied as a successful optimization technique to address multi-
dimensional complex problems.However, its performance de-
pends heavily on the evolutionary parameters of the mutation
factor and the crossover rate. We modify the DE algorithm
and propose an observation-driven adaptive differential evolu-
tion (OADE) method, which not only determines the evolution-
ary parameters adaptively on the basis of the current camera
image observation information but also combines the current
EMT sensor observation information to mutate each individual
in a population during optimization. Our OADE strategy very
effectively improves the tracking performance of BEMT.

The preliminary work of our OADE approach was presented
at the Asian Conference on Computer Vision (ACCV) (Luo and
Mori, 2012). This paper is an extension of that ACCV work.
Major modifications include more details of our method, the
fitness computation, reduction of the computational time by
changing the terminating condition of OADE, and more thor-

Figure 1: Coordinate systems C, S , EMT , and CT denote bronchoscopic cam-
era, EMT sensor, EMT system, and CT space, respectively. Transformations
S TC , EMT Tk

S , CT TEMT , and CT Tk
C show relationship among them.

ough experiments based on a dynamic phantom. The main con-
tribution of this work is summarized as follows:

• We proposed a new mutation operation for DE methods
by integrating the current observation of sensor measure-
ments and camera images, which can control the pertur-
bation velocity and the direction of each individual during
evolution, to enhance the DE performance.

• We modified a structural similarity measure to robustly
compute the individual’s fitness. Since bronchoscopic
video images are usually observed with such structural in-
formation as bifurcation and fold shapes, we extract these
shapes to boost the fitness computation and accurately
characterize the individual performance in OADE.

• To the best of our knowledge, our OADE framework is
a novel application of DE in bronchoscope 3-D motion
tracking. We successfully formulated bronchoscope 3-D
motion tracking as an OADE-based stochastic optimiza-
tion process. EMT sensor measurements, bronchoscopic
video images, and CT-based 2-D virtual images can be ef-
fectively combined into OADE to achieve a more robust,
accurate, and smooth bronchoscope tracking method.

• Additionally, our OADE algorithm is suitable to track
other endoscopes, e.g., sinuscopes and colonscopes.

The remainder of this paper is organized as follows. We next
formulate the bronchoscope tracking problem in Section 2 and
briefly review the basic concepts of the standard different evo-
lution algorithm in Section 3. Our proposed framework is de-
scribed in Section 4. Section 5 details our experimental settings.
Section 6 shows evaluation results and discusses them in Sec-
tion 7. Finally, our conclusion and future work are shown in
Section 8.

2. Problem Formulation

This section formulates our tracking problem by parameter-
izing the bronchoscopic camera motion and generating a 3-D
bronchial tree model and 2-D virtual images using CT images.
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Figure 2: CT image segmentation for obtaining a 3-D bronchial tree model
where a virtual camera flies through and generates 2-D virtual images by dif-
ferent camera poses.

2.1. Camera 3-D Motion Representation
Bronchoscope 3-D motion tracking determines the broncho-

scope tip location including six degrees of freedom (6DoF) po-
sition and orientation parameters in CT coordinate systems. It
can use different information of bronchoscopic video images,
EMT sensor measurements, and CT images. Therefore, such
tracking is generally a multi-modal information fusion proce-
dure and involves different coordinate systems (Fig. 1). To in-
tegrate the multi-modal information for BEMT, the relationship
of these coordinate systems is established by:

CT Tk
C = CT TEMT

EMT Tk
S

S TC , (1)

where k indicates the k-th EMT sensor measurement or the k-th
bronchoscopic video image and CT TEMT , EMT Tk

S , and S TC rep-
resent different transformation relationships among four coor-
dinate systems of a bronchoscopic camera, an EMT sensor, an
EMT system, and CT images during bronchoscope 3-D motion
estimation. EMT Tk

S is the EMT sensor measurement of sensor
position EMT tk

S and orientation or rotation EMT Rk
S in the EMT

coordinate system. EMT Tk
S can be represented by a homoge-

neous matrix:

EMT Tk
S =

(
EMT Rk

S
EMT tk

S
0 1

)
4×4

, (2)

which is an inaccurate and distorted measurement of the bron-
choscopic camera movement due to the EMT drawbacks.

Bronchoscope motion is characterized by transformation
CT Tk

C that consists of translation or position vector CT tk
C and

rotation matrix CT Rk
C , and CT Tk

C is represented by:

CT Tk
C =

(
CT Rk

C
CT tk

C
0 1

)
4×4

, (3)

where T indicates the transpose operator, CT tk
C =

[CT tx
C ,

CT ty
C ,

CT tz
C]T , and CT tx

C , CT ty
C , and CT tz

C are the co-
ordinate values of the bronchoscopic camera position in the x-,
y-, and z-axes of the CT coordinate system.

For the rotation part, we used the quaternion but not rota-
tion matrix CT Rk

C to describe it in our implementation, since the
quaternion has been demonstrated to very powerfully character-
ize the rotation part in accordance with such advantages as the
compactness and the avoidance of discontinuous jumps, com-
pared to other representations (e.g., Euler angles). Quaternion
CT Qk

C to represent rotation CT Rk
C is a four-element vector (Dam

et al., 1998):

CT Rk
C ←→

CT Qk
C = [Q0,Qx,Qy,Qz]T , (4)

where the four elements satisfy: Q2
0 + Q2

x + Q2
y + Q2

z = 1.
Therefore, bronchoscopic camera motion can be formulated

as seven-dimensional (7-D) vector Xk at frame k with respect to
position vector CT tk

C and quaternion CT Qk
C:

CT Tk
C ←→ Xk = [ CT tk

C; CT Qk
C ]7×1. (5)

2.2. 3-D Virtual Bronchial Tree Model

During BEMT, the CT image space, which is considered a
reference coordinate system, provides a global map where the
bronchoscope tip is located. We locate the bronchoscope tip
from such a map and segment the CT images to obtain a 3-D
virtual bronchial tree model. We imagine a virtual camera fly-
ing inside the bronchial tree model. The virtual camera with
different position and orientation parameters generates a series
of 2-D virtual images by volume rendering techniques (Levoy,
1990) (Fig. 2). Hence, in this sense, BEMT synchronizes the
motion between the real bronchoscopic and virtual cameras.
BEMT also spatially aligns the current bronchoscopic video
image to the 2-D virtual image. After establishing such spa-
tial alignments among 2-D video and virtual images, the virtual
camera pose (including position and orientation) exactly cor-
responds to the bronchoscopic camera location inside the CT
image coordinate system. Note that CT-based 2-D virtual im-
ages are used to compute the population fitness in our OADE
algorithm.

In general, our problem is how to determine transformation
CT Tk

C from the bronchoscopic camera coordinate system to the
CT coordinate system using bronchoscopic video sequences,
CT-based 2-D virtual images, and EMT sensor measurements.
We propose OADE to address this problem.

3. Differential Evolution

Next we briefly recall the DE algorithm and introduce some
symbols and terms to conveniently explain our OADE method
later. After that, we comment on current DE algorithms and
show an idea to improve DEs.

Basically, the DE algorithm propagates a population of in-
dividuals or vectors {Xi, j|Xi, j ∈ <

N}Pi=1 (P is the population
size, j is the generation index, j = 1, · · · ,G, and N is the di-
mension of the vector) toward the global optimum during any
stochastic optimization procedures. After initializing popula-
tion {Xi, j|Xi, j ∈ <

N}Pi=1, each target vector or individual Xi, j,
which is considered a potential solution to a multi-dimensional
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optimization problem, is evolved by performing three opera-
tions: mutation, crossover, and selection.

Note that since we parameterize the bronchoscopic camera
motion at frame k as vector Xk (Eq. 5), we replace Xi, j with Xk

i, j

and obtain populationHk
j ={X

k
i, j|X

k
i, j ∈ <

N}Pi=1.

3.1. Mutation

The mutation operation expands the potential solutions by
updating target vector Xk

i, j stochastically on the basis of dif-
ference vectors and evolutionary factors. The DE performance
depends heavily on such an operation. For target vector Xk

i, j at
generation j at frame k, its mutant vector Vk

i, j can be obtained
by the frequently used mutation schemes in DEs (Das and Sug-
anthan, 2011):

Vk
i, j = Xk

r1
i , j

+ Fi

(
Xk

r2
i , j
− Xk

r3
i , j

)
(6)

Vk
i, j = Xk

best, j + Fi

(
Xk

r1
i , j
− Xk

r2
i , j

)
, (7)

Vk
i, j = Xk

i, j + Fi

(
Xk

best, j − Xk
i, j

)
+ Fi

(
Xk

r1
i , j
− Xk

r2
i , j

)
, (8)

Vk
i, j = Xk

best, j + Fi

(
Xk

r1
i , j
− Xk

r2
i , j

)
+ Fi

(
Xk

r3
i , j
− Xk

r4
i , j

)
, (9)

Vk
i, j = Xk

r1
i , j

+ Fi

(
Xk

r2
i , j
− Xk

r3
i ,G

)
+ Fi

(
Xk

r4
i , j
− Xk

r5
i , j

)
. (10)

Eqs. 6∼10 correspond to the following five strategies:
DE/rand/1, DE/best/1, DE/target− to−best/1, DE/rand/2,
and DE/best/2, respectively; they are consistent with a general
name or a convention: DE/a/b, where DE denotes the standard
DE algorithm, a indicates the base vector to be perturbed, and
b is the number of difference vectors. Indexes r1

i , r
2
i , r

3
i , r

4
i , and

r5
i are mutually exclusive integers chosen randomly from set
{1, · · · , i − 1, i + 1, · · · , P}. The part in brackets in Eqs. 6∼10,
e.g., (Xk

r1
i , j
−Xk

r2
i , j

), represents the difference vector; Xk
best, j is the

best individual at generation j, and Fi is the mutation factor.

3.2. Crossover

The crossover operation improves the diversity of the pop-
ulation and the ability to avoid being trapped into local min-
ima. It is performed to exploit the potential solution space

Figure 3: Illustration of crossover step in DE.

Algorithm 1: Standard DE algorithm

0. Set population size P;
1. Control parameters: Fi = constant, Cr = constant;
2. At generation j = 0, initializeHk

0 ={Xk
i,0|X

k
i,0 ∈ <

N}Pi=1;
3. Perform the main body of the DE algorithm:
while (termination is unsatisfied)
for i = 1 to P do

Ê Mutation Operation:
Generate mutant vector Vk

i, j for target vector Xk
i, j using

one of Eqs. 6∼10;

Ë Crossover Operation:
Compute trial vector Uk

i, j on the basis of vectors Xk
i, j,

Vk
i, j, and Eq. 11;

Ì Selection Operation:
Evaluate Xk

i, j and Uk
i, j and choose better vector Xk

i, j+1

by Eq. 12;
end
j = j + 1;
end while

by exchanging the N-dimensional information between the tar-
get and mutant vectors (Fig. 3). Current DE algorithms use
either the exponential or binomial crossover (Das and Sugan-
than, 2011). In this work, we use the binomial crossover and
perform it to generate trial vector Uk

i, j = {u1
k,i, j, · · · , u

N
k,i, j} in

terms of target vector Xk
i, j = {x1

k,i, j, · · · , x
N
k,i, j} and mutant vector

Vk
k,i, j = {v1

k,i, j, · · · , v
N
k,i, j}:

ud
k,i, j =

{
vd

k,i, j if (rand[0, 1] ≤ Cr) or (d = dran)
xd

k,i, j otherwise , (11)

where rand[0, 1] is a random number that yields uniform dis-
tribution, Cr is the crossover rate or the probability that deter-
mines whether ud

k,i, j ∈ Uk
i, j is copied from vd

k,i, j ∈ Vk
i, j, and dran

is randomly selected from set {1, 2, · · · , d, · · · ,N}.

3.3. Selection
The selection step is performed to distinguish whether one

target or a trial vector remains or is discarded in the next gener-
ation, since the DE algorithm usually maintains the population
size during different generations. Such an operation guarantees
that all the better individuals are kept in the next generation.

For a maximization problem, the selection operation, which
chooses the better individual for the next generation from Xk

i, j∪

Uk
i, j in terms of their fitness value W(·), can be formulated by:

Xk
i, j+1 =

{
Uk

i, j if W(Uk
i, j, I

k) ≥ W(Xk
i, j, I

k)
Xk

i, j otherwise , (12)

where Ik is the bronchoscopic video image at frame k.
DE is implemented by the above three operations until the

termination is satisfied. The pseudo-code of DE is generalized
in Algorithm 1. For more details on DE, refer to (Storn and
Price, 1997; Das and Suganthan, 2011).
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3.4. Remarks on DEs

During the last decade, the DE family approaches have been
demonstrated to be powerful and easily implemented stochas-
tic optimization algorithms. However, DE performance is con-
trolled by mutation factor Fi and crossover rate Cr. Improper
factors might collapse the DE’s convergence behavior. Small
mutation factor Fi might lead to premature convergence, and
large crossover rate Cr might result in the loss of population di-
versity. Choosing the best factors to achieve the desired conver-
gence rate is difficult. In particular, different optimization prob-
lems may require different factor Fi and rate Cr (Das and Sug-
anthan, 2011). Several adaptive differential evolution (ADE)
methods were proposed and obtained better performance (Liu
and Lampinen, 2005; Brest et al., 2006; Teo, 2006; Qin et al.,
2009; Zhang and Sanderson, 2009). In our framework, we also
compute these evolutionary parameters adaptively introducing
two mutation factors that are based on the individual’s fitness
value, which is computed by the image intensity differences be-
tween the video and the CT-based virtual images, as well as the
crossover rate.

On the other hand, to effectively and successfully solve any
dynamic or stochastic optimization problems, two general ques-
tions must be considered: (1) how to use the current observation
information or the temporally/spatially continuous information
between two consecutive frames/outputs and (2) how to retain
or even enhance the diversity of the population during optimiza-
tion. In DE, mutation operation answers the first question while
the crossover operation deals with the second one. From the
point of view of Doucet et al. (Doucet et al., 2000), the optimal
solution space of any stochastic optimization problems should
be integrated into the current observation. Unfortunately, no
current DE or ADE algorithms take the current observation in-
formation into account. The mutation operation of DE or ADE
disturbs each target vector without any observation information,
possibly creating in the local minima or premature convergence
problem. To enhance the performance of DEs, we combine the
current observation into the mutation operation, as is further
discussed in Section 4.

4. Observation-Driven Adaptive Differential Evolution

This section explains our OADE framework in greater detail.
We formulate the BEMT procedure as a stochastic optimization
problem and use our OADE method to solve it.

4.1. Method Overview

Our OADE algorithm consists of six steps: (1) preprocess-
ing, (2) initialization and randomization, (3) observation-driven
mutation, (4) crossover, (5) individual fitness computation, and
(6) determination of the bronchoscope camera motion parame-
ters in 6DoF. The third step is the most advantageous point of
our proposed method. We modified the mutation strategy by
incorporating the current observation information of the video
images and the EMT sensor measurements. We omit discus-
sion of crossover step since it resembles Algorithm 1. We also
adaptively calculate the mutation factor and the crossover rate

Figure 4: Processing flowchart of our OADE tracking method.

in accordance with the individual’s fitness value. In the fifth
step, we define a fitness function on the basis of the image in-
tensity difference between the current observation information
of the video and CT-based 2-D virtual images. We evaluate
each individual in the population and eventually obtain the best
individual from the updated population as the current estimate
of the camera 3-D motion pose. Fig. 4 illustrates the process-
ing flowchart of our approach with its different steps, which are
discussed in the subsequent sections.

4.2. Preprocessing

We segment the CT images to obtain the 3-D bronchial tree
model. The virtual camera inside it is located differently to
generate different 2-D virtual images. In Eq. 1, transforma-
tions S TC and CT TEMT must be determined beforehand using
sensor measurement EMT Tk

S . We perform camera and hand-
eye calibrations to compute S TC (Luo et al., 2010a) and use a
fiducial-based method to implement a rigid registration to cal-
culate CT TEMT (Schwarz et al., 2006). Hence, we can obtain
bronchoscopic camera motion estimates from EMT. However,
these estimates are involved in big errors due to respiratory mo-
tion, EMT jitter and magnetic field distortion, and rigid regis-
tration for CT TEMT . Therefore, OADE is performed to improve
the BEMT performance and provide more accurate and smooth
tracking.

4.3. Initialization and Randomization

Our OADE algorithm approximates the global optimal solu-
tion in a 7-D space from a randomly initialized population. We
use EMT estimate CT T1

C (at frame k = 1) to initialize each in-
dividual in the population in terms of Eq. 5 and obtain H1

j at
generation j:

H1
j = {CT T1

C ←→ X1
i, j}

P
i=1. (13)

Note that during any stochastic optimization problem, the diver-
sity of the population in the DE methods plays a positive role
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Figure 5: Illustration of our mutation strategy to generate mutant vector Vk
i, j in

accordance with three perturbations including observation Ωi
(
Ek − Ek−1

)
and

two difference vectors of Fb
i

(
Xk

best, j − Xk
i, j

)
and Fr

i

(
Xk

r1
i , j
− Xk

r2
i , j

)
.

in the optimization performance. To enhance the population di-
versity, we randomize population H1

j in terms of the normal
distribution and achieve populationHk

j at frame k:

Hk
j = {Xk

i, j}
P
i=1, Xk

i, j = Γ(X1
i, j, πi∆), (14)

where πi is a normally distributed random number, ∆ is a pre-
defined vector, and Γ is a transform function to add πi∆ to X1

i, j

and obtain Xk
i, j. Such a randomization is only performed once;

i.e., it is only implemented at frame k = 1.

4.4. New Mutation Operation

The mutation operation is the key step of any DE method.
Various research work has focused on how to modify the mu-
tation equation to enhance the standard DE performance (Price
et al., 2005; Liu and Lampinen, 2005; Mezura-Montes et al.,
2006; Brest et al., 2006; Teo, 2006; Qin et al., 2009; Zhang
and Sanderson, 2009). Many mutation strategies were pro-
posed, as shown in Eqs. 6∼10. The advantages and limitations
of different mutation schemes were discussed (Das and Sug-
anthan, 2011). In our framework, we modify the strategy of
DE/target− to− best/1 (Eq. 8) that has good convergence per-
formance due to its usage of the best solution or individual in-
formation (Mezura-Montes et al., 2006). However, using the
best individual information might result in the loss of popula-
tion diversity and cause unreliable or precocious convergence.
To address such a limitation, we propose a new mutation that
combines the current sensor and camera observations to gener-
ate mutant vector Vk

i, j with two difference vectors Vb
i , Vr

i on the
basis of DE/target − to − best/1:

Vb
i = Fb

i

(
Xk

best, j − Xk
i, j

)
Vr

i = Fr
i

(
Xk

r1
i , j
− Xk

r2
i , j

)
Vk

i, j = Xk
i, j + Ωi

(
Ek − Ek−1

)︸            ︷︷            ︸
Sensor observation

+Vb
i + Vr

i

, (15)

where Ek and Ek−1 are the EMT estimates on the basis of the
EMT sensor measurements at times or frames k and (k − 1). In-
ertia factor Ωi determines how much the current observation is
reserved, and we set it to uniformly distributed random number:
Ωi ∈ [0, 1]. On the other hand, we calculate mutation factors
Fb

i and Fr
i adaptively on the basis of the fitness value of Xk

best, j,
Xk

i, j and current camera observation (image) Ik:

Fb
i =

2W

Xk
best, j,

Camera observation︷︸︸︷
Ik

(
W

(
Xk

best, j, Ik
)

+ W
(
Xk

i, j, Ik
)) , (16)

Fr
i =

2W
(
Xk

i, j, I
k
)(

W
(
Xk

best, j, Ik
)

+ W
(
Xk

i, j, Ik
)) . (17)

In our new mutation operation, for each individual Xk
i, j, sen-

sor observation term (Ek − Ek−1) serves as the external deter-
ministic perturbation that is utilized in terms of random num-
ber Ωi. Self-deterministic change Vb

i seeks to constrain the
distance between the individual and the current best solution.
Vector Vr

i plays the role of stochastic perturbation. Due to
the employment of the current sensor observation, perturbation
Ωi

(
Ek − Ek−1

)
is very beneficial to lead the population to the

best solution space. The self-deterministic and stochastic per-
turbations are also helpful to diversify the population with vari-
ous modes. Moreover, we calculate mutation factors Fb

i and Fr
i

adaptively to control the movements of best difference vector
(Xk

best, j −Xk
i, j) and stochastic difference vector (Xk

r1
i , j
−Xk

r2
i , j

). In
particular, these factors are related to the individual’s fitness
that is determined on the basis of the current camera obser-
vation information of the video image. In general, our mu-
tation operation introduces the current sensor and camera ob-
servations to update the population and computes the two mu-
tation factors adaptively to control the individual’s movement,
enhancing the exploitation and the exploration abilities of the
ADE methods, as will be proved in our experimental results.
Fig. 5 shows our mutation procedure to generate vector Vk

i, j.
During the binomial crossover operation, we automatically

update the crossover rate for each individual on the basis of fit-
ness values Vk

i, j and Xk
i, j. Since Cr was suggested within interval

[0, 1] for balancing the global and local searching abilities (Qin
et al., 2009), we can calculate it adaptively by:

Cr =

(
W

(
Xk

i, j, I
k
)

+ W
(
Vk

i, j, I
k
))

2
, (18)

which shows a new strategy to control Cr in terms of fitness
W(·) relative to the current camera image observation.

4.5. Fitness Computation

After the population mutation and crossover, we obtain trial
vector set {Uk

i, j}
P
i=1. By selecting from sets {Xk

i, j}
P
i=1 and {Uk

i, j}
P
i=1,

we can generate target vector Xk
i, j+1 at generation ( j + 1). Dur-

ing the selection operation, the fitness of each target and the
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(a) Structural information (b) Generated patches (c) Removed patches (d) Remaining patches (e) Selected patches

Figure 6: Extract structural regions in one bronchoscopic image to calculate similarity during fitness computation step. One yellow square denotes one patch and a
green point is its center.

trial vectors in the population sets must be determined. We de-
fine the fitness as the intensity similarity between current video
image Ik and 2-D virtual image Iv(Xk

i, j) (or Iv(Uk
i, j)) generated

from the virtual camera with its 6DoF position and orientation
parameters of Xk

i, j (or Uk
i, j):

W
(
Xk

i, j, I
k
)

= S
(
Iv(Xk

i, j), I
k
)
, (19)

where S (·) is the intensity similarity function. We define S (·)
on the basis of the structural similarity (SSIM) measure (Wang
et al., 2004) and explore a modified structural similarity func-
tion.

As previously discussed (Wang et al., 2004), separating an
image into a number of patches and calculating the similar-
ity locally in each patch is more consistent than directly and
globally computing the similarity for the whole image. This
is because human observers are usually more sensitive to lo-
cal statistical features. In bronchoscopic video images, specific
structural information, e.g., bifurcations and folds (Fig. 6(a)),
is easily perceived by humans. Therefore, extracting the struc-
tural information is very useful to compute the similarity. To
detect the structural information, we first divide bronchoscopic
video image Ik (its size A × B) into a∗ × b∗ patches (Fig. 6(b)).
All pixel coordinates (x, y) in patch Lk

a,b(x, y) can be presented
by:

(â − 2)
A
a∗
≤ x ≤ (â + 1)

A
a
, (b̂ − 2)

B
b∗
≤ y ≤ (b̂ + 1)

B
b
, (20)

where â and b̂ range with 2 ≤ â ≤ (a∗ − 1) and 2 ≤ b̂ ≤
(b∗ − 1). We choose patches from {Lk

a,b(x, y)} (a = 1, · · · , a∗,
b = 1, · · · , b∗) in terms of two intensity-based features of patch
Lk

a,b(x, y), standard deviation αLk
a,b

and brightness βLk
a,b

:

αLk
a,b

=

√√√ 1∣∣∣∣Lk
a,b

∣∣∣∣
∑

(x,y)∈Lk
a,b

(
Ik(x, y) − Îk

)2
, (21)

βLk
a,b

=
1∣∣∣∣Lk
a,b

∣∣∣∣
∑

(x,y)∈Lk
a,b

Θa,b

(
Ik(x, y)

)
, (22)

where Îk is the image average intensity and |Lk
a,b| is the number

of pixels in patch Lk
a,b. Function Θa,b(·) determines the pixel

color information of saturation λ(x, y) and lightness σ(x, y) in

the hue-saturation-lightness (HSL) color model. Θa,b(·) deter-
mines whether pixel (x, y) belongs to the highlighted and the
lighter areas:

Θa,b

(
Ik(x, y)

)
=

{
1 λ(x, y) ≤ λ̂ and σ(x, y) ≥ σ̂
0 otherwise , (23)

where λ̂ and σ̂ are two pre-defined thresholds. We remove the
white patches without the structural information by βLk

a,b
> β̂ (a

fixed constant) (Fig. 6(c)). The remaining patches (Fig. 6(d))
were sorted descendingly in terms of αLk

a,b
. Finally, we select

φ = η · a∗ · b∗ patches {Lk
φ} (Fig. 6(e)) to calculate the local

similarity. Now the similarity between images Ik and Iv(Xk
i, j) in

the selected structural regions {Lk
φ} is computed by:

S
(
Iv(Xk

i, j), I
k
)

=
1
φ

∑
Lk

a,b∈{L
k
φ}

1∣∣∣∣Lk
a,b

∣∣∣∣
∑
Lk

a,b

M, (24)

where patch similarity measure M is defined based on the SSIM
measure, which was significantly better than a MSE-based mea-
sure (Wang et al., 2004). We compute M by:

M =
(2ξkξv + C1)

(
2δk,v + C2

)(
ξ2

k + ξ2
v + C1

) (
δ2

k + δ2
v + C2

) , (25)

where δk,v is the correlation between Ik and Iv(Xk
i, j) at patch

Lk
a,b; ξk and ξv are the mean intensity values, δk and δv are the

intensity variances, and C1 and C2 are constants.
In general, Eq. 23 shows a new image similarity measure that

very effectively computes the fitness. We detect the structural
information from the bronchoscopic video images and calcu-
late the similarity patch by patch to evaluate the individual’s
performance during our OADE method.

4.6. Camera Pose Determination
Based on the fitness computation and individual selection

steps, we obtain new population Hk
j+1={Xk

i, j+1}
P
i=1 at genera-

tion ( j + 1). We find optimal solution Xk
∗, j+1 with best fit-

ness W(Xk
∗, j+1, I

k) after each generation and obtain set Hk =

{Xk
∗, j+1}

G
j=1. From Hk, we further choose optimal solution Xk

∗,∗

in terms of the fitness value for the current bronchoscopic cam-
era motion estimation:

Xk
∗,∗ = arg max

Xk
∗, j+1∈H

k
W(Xk

∗, j+1, I
k). (26)
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Algorithm 2: OADE-based bronchoscope tracking

Input: Bronchoscopic video sequences, EMT sensor
measurements, and CT images

Output: A series of camera 3-D pose (position and
orientation in 6DoF) CT T̃k

C in the CT coordinate system

Ê Preprocessing: bronchial model and rigid registration;
Ë Initialization and randomization (Eqs. 13∼14);
for k = 1 to K (Frame or measurement number) do

Update fitness of each target vector Xk
i, j using current

image Ik (Eqs. 19∼25), find best target Xk
best, j;

for j = 1 to G (Generation number) do
for i = 1 to P (Population number) do

Ì New mutation: Get Vk
i, j (Eqs. 15∼17);

Í Crossover: Get Uk
i, j (Eqs. 11 and 18);

Î Fitness computation and selection:
Compute fitness W(Uk

i, j, I
k) of trial vector Uk

i, j

(Eqs. 19∼25) and select the better one;
end
Find best target vector Xk

∗, j+1 with best fitness
W(Xk

∗, j+1, I
k) from {Xk

i, j+1}
p
i=1 and store them;

j = j + 1;
if W(Xk

∗, j+1, I
k) == W(Xk

∗, j+2, I
k) then

break;
else

continue;
end

end
Ï Camera pose: Xk

∗,∗ 7→
CT T̃k

C (Eqs. 26∼27):
Find current best solution Xk

∗,∗ fromHk = {Xk
∗, j+1}

G
j=1;

k = k + 1;
end

Eventually, the output of our OADE method becomes opti-
mal solution Xk

∗,∗ = [CT tk,∗
C

CT Qk,∗
C ] relative to bronchoscopic

camera motion parameters CT T̃k
C at frame k:

Xk
∗,∗ 7−→

CT T̃k
C =

(
CT R̃k

C
CT t̃k

C
0 1

)
. (27)

Note that for any optimization problem, a termination con-
dition must be determined. One termination criterion for DE
methods is to set generation or iteration number G as a con-
stant. The optimization automatically stops after G iterations.
On the other hand, the best or optimal fitness is achieved to
terminate the execution of a loop. In our case, the fitness (sim-
ilarity) computation is time-consuming. To reduce the compu-
tational time in our OADE processing, we alternately use the
termination conditions of the fixed generation number and the
optimal fitness and We set the termination condition as G gener-
ations. In OADE, it must render 2-D virtual image Iv(Xk

i, j) and

compute fitness S
(
Iv(Xk

i, j+1), Ik
)

for each individual in popula-
tion {Xk

i, j+1}
P
i=1 at generation ( j + 1). However, virtual image

rendering and fitness computation are time-consuming. This

implies that small generation number G can reduce the compu-
tation time. We initially predefine G as a constant and adjust it
automatically during our OADE tracking method. After itera-
tions in the first two generations, we obtain two best fitnesses,
W(Xk

∗, j+1, I
k) and W(Xk

∗, j+2, I
k). If W(Xk

∗, j+1, I
k) = W(Xk

∗, j+2, I
k),

we can achieve the optimal solution after two generations with-
out performing (G − 2) iterations, since we assume that the re-
maining iterations can very slightly or do not improve the track-
ing accuracy any more; otherwise, we execute all G iterations.
Our alternate termination condition is helpful to decrease the
runtime under the remaining tracking accuracy of OADE.

Our OADE-based bronchoscope tracking method, which
uses EMT sensor measurements, bronchoscopic video images,
and CT-based virtual images, is summarized in Algorithm 2.

5. Experiments

A dynamic phantom that can simulate respiratory motion
was constructed to evaluate our proposed method (Luo et al.,
2012b). A bronchoscope (BF-P260F, Olympus, Tokyo) was
used to acquire 362×370 pixel bronchoscopic video images at
30 frames per second. A 3-D Guidance medSAFE Tracker with
a 9-coil flat type transmitter (Ascension Technology Corpora-
tion, USA) was employed as our EMT system.

We investigate the following EMT-based tracking methods
from the literature: (1) Schwarz et al. (Schwarz et al., 2006), di-
rectly using absolute EMT sensor outputs; (2) Mori et al. (Mori
et al., 2005), integrating absolute EMT sensor outputs into im-
age registration; (3) Luo et al. (Luo et al., 2010a), combining ei-
ther absolute or relative (inter-frame) EMT sensor outputs with
image registration; (4) Luo et al. (Luo et al., 2012b), utiliz-
ing sequential Monte Carlo (SMC) methods to fuse inter-frame
EMT sensor outputs with video image; (5) Zhang et al. (Zhang
and Sanderson, 2009), a method of adaptive differential evo-
lution with optional external archive; (6) our method, as dis-
cussed in Section 4. Note that we compared SMC (Luo et al.,
2012b) and our proposed to show different optimization frame-
works for bronchoscope tracking. We also compared our mod-
ified similarity function (Eq. 24) and a modified mean squared
error (MoMSE) measure (Deguchi et al., 2009) for fitness com-
putation on the basis of our OADE tracking framework to in-
vestigate different similarity measures on bronchoscope motion
estimation. Additionally, we point out that it is somewhat hard
to thoroughly and fairly compare different deferential evolution
approaches due to different experimental setups, implementa-
tions, and applications. We here compare OADE to a previous
method (Zhang and Sanderson, 2009).

We performed 21 experiments (a total of 38,248 broncho-
scopic video frames) within six ground truth datasets (GTDs)
that were generated in terms of a previous method (Luo et al.,
2012b). Additionally, during the fitness computation (Sec-
tion 4.5), we set parameters a∗ = b∗ = 30, η = 0.3, λ̂ = 0.6, δ̂ =

0.7, and β̂ = 0.9 in accordance with previous work (Deguchi
et al., 2009).

We define the tracking error, smoothness, and visual quality
to evaluate the results of each method. Based on GTDs, we
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compute the position and orientation errors (τ, θ) by:

τ = ‖t − tG‖ , θ = arccos((trace(RRG
T ) − 1)/2), (28)

where τ is the Euclidean distance between ground truth position
tG and estimate t and θ is the rotation difference between ground
truth rotation RG and estimate R by the six tracking methods.

It is also important to evaluate whether the tracking proce-
dure is smooth during the bronchoscopic interventions. Smooth
tracking implies that the tracking results include little jitter or
jump errors. It can provide two benefits, including reduction
of physician discomfort and distraction in operations and en-
hancement of such posterior procedures as respiratory motion
modeling and clinical comparison by temporally and spatially
aligning different video sequences from several examinations
on patients. We define the smoothness as the average Euclidean
distance and the standard deviation of the estimated positions
among continuous frames as well as the orientations:

µ =

∑K−1
k=1 ‖tk+1 − tk‖

K − 1
, (29)

ψ =

∑K−1
k=1 arccos((trace(Rk+1Rk

T ) − 1)/2)
K − 1

, (30)

where K is the frame number. Large µ and ψ indicate that large
jitter or jump occurred in the tracking results.

The tracking results are usually represented by mathematical
numbers, i.e., a series of transformation CT T̃k

C with the position
and orientation parameters in 6DoF. We use these parameters to
generate a sequence of 2-D virtual images that can be directly
visualized by physicians. We can check whether these virtual
images resemble the video images and assess the tracking visu-
alization quality. We define visual quality γ on the basis of a
universal image quality index (Wang and Bovik, 2002):

γ =
1
2

1 +
4ϑk,vεkεv(

ϑ2
k + ϑ2

v

) (
ε2

k + ε2
v

)  , (31)

where ϑk,v is the correlation between image Ik and its virtual
image Iv corresponding to estimated pose CT T̃k

C , ϑr and ϑv are
the covariance, and εk and εv are the average values.

6. Results

In our OADE tracking method, we experimentally determine
population size P and generation number G. Fig. 7 shows the
tracking error and processing time results under different pop-
ulation sizes and generation numbers. We used population size
P = 25. According to Fig. 7(c), we can initially set genera-
tion number G = 3 for obtaining the best tracking accuracy.
As discussed above (Section 4.6), we automatically adjust G to
reduce the runtime during iterations. The generation number
is not adjusted, i.e., G = 3, when the best individual fitness of
the first generation does not equal the second generation; other-
wise, G = 2. Our choices of P = 25 and G = 2 or 3 can balance
the accuracy and runtime.

Fig. 8 displays the tracking errors of using the six approaches
in Experiments (or Datasets) 5 and 20. Fig. 9 shows an ex-
ample of the tracking smoothness of Experiment 6. Fig. 10
illustrates the tracking visual quality of using the six methods
in Experiments 8 and 14. Table 1 summarizes the average ac-
curacy, the smoothness, and the visual quality of the tracking
results estimated by the six methods. The average tracking er-
rors of the position and the orientation of our OADE method
were about 2.89 mm and 8.18◦, respectively. However, our pre-
vious methods provided tracking error of at least 3.96 mm and
10.47◦. The tracking smoothness of the position and the orien-
tation were also significantly improved from (4.08 mm, 2.65◦)
to (1.62 mm, 2.11◦). Our proposed OADE framework signifi-
cantly outperforms other tracking methods. Fig. 11 investigates
different optimization frameworks and similarity measures for
bronchoscope tracking. The OADE algorithm works better than
SMC (Luo et al. (Luo et al., 2012b)) on the basis of the MoMSE
measure for fitness computation. Our proposed similarity mea-
sure for fitness computation outperforms MoMSE on the basis
of our OADE framework.

Fig. 12 compares the tracking smoothness of the six meth-
ods during 21 experiments. Fig. 13(a) shows the visual quality
of each method in them. Fig. 13(b) investigates the computa-
tional times of each method. The processing times of the five
methods of Mori et al. (Mori et al., 2005), Luo et al. (Luo et al.,
2010a), Luo et al. (Luo et al., 2012b), and Zhang et al. (Zhang
and Sanderson, 2009) were about 0.69, 1.13, 1.83, 0.97, and
0.92 seconds per frame (spf), respectively. Compared to (Luo
and Mori, 2012), we reduced the average runtime from 1.63 to
0.92 spf, since we reduced the population size from 30 to 25
and alternatively used the generation number (G = 2 or G = 3).
Note that the method of Schwarz et al. (Schwarz et al., 2006) is
real-time processing.

Fig. 14 illustrates the estimated camera trajectories of the
methods of Luo et al. (Luo et al., 2012b) and our OADE frame-
work on a pre-built 3-D bronchial tree model. Fig. 15 shows
visual comparisons of the real and virtual bronchoscopic im-
ages at uniformly selected frames from different approaches.
All the 2-D virtual bronchoscopic images were generated from
the virtual camera poses (position and orientation) estimated by
the six methods. Some virtual images in Fig. 15 were generated
with black regions (in circles) since the virtual camera with its
estimated pose was outside the bronchial tree volume. Both
Figs. 14 and 15 further prove that our OADE method estimates
bronchoscope camera movements significantly better than the
other methods.

7. Discussion

In general, our OADE method provides a more accurate and
smooth tracking framework than other available methods to
estimate the bronchoscopic camera 3-D motion. The experi-
mental results demonstrate that our method successfully deals
with the problems of bronchoscopic image artifacts (e.g., due
to specular or inter-reflection, motion blurring, and illumina-
tion changes) and EMT sensor measurement inaccuracy due
to respiratory motion and the magnetic field distortion of the
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(a) Error of different population sizes (b) Time of different population sizes

(c) Error of different generation numbers (d) Time of different generation numbers

Figure 7: Experimentally determined population size and generation number: P = 25 and G = 2 or 3.

EMT system during bronchoscope tracking. The improvement
of tracking accuracy and the smoothness of our OADE method
is attributed to several advantages, as discussed as follows.

7.1. Effectiveness

Our OADE method’s effectiveness contributes to several ad-
vantageous aspects. The main advantage is that our mutation
operation introduces current sensor and camera observations
(sensor measurements and video images) to update the popu-
lation, adaptively computes the two mutation factors to con-
trol the individual’s movement, and automatically calculates the
crossover rate. Such mutation enhances the OADE’s exploita-
tion and exploration abilities and prevents it from premature
convergence. The exploitation ability means that sufficient fit-
ness values occurred in a generation to find even better solu-
tions from the good ones. The larger the individual fitness, the
greater is the individual’s exploitation. The exploration abil-
ity depends on whether all the individuals are distributed suffi-
ciently to cover the solution space and find the global optimum.
It also means the population diversity. The more diverse the

individual, the more potential solutions can be obtained. Inte-
grating the current observation information into the mutation
operation can propagate the individual correctly to enhance the
exploitation and exploration abilities for searching for the best
solution. Due to simulated breathing motions and EMT sensor
jitter errors, our previous method unsuccessfully addressed the
problems, but our OADE can track the bronchoscope success-
fully and correctly align the video and virtual images. On the
other hand, due to the OADE method’s robustness in the fitness
computation, it can also tackle bronchoscopic image artifacts,
as illustrated in Fig. 16.

Furthermore, for the current DE and ADE algorithms, only
stochastic perturbation is performed in the mutation step, which
may prohibit the population from reaching the current broncho-
scope location. However, our modified mutation, which com-
bines the stochastic perturbation with the deterministic pertur-
bation of the current EMT sensor output, can positively guide
individuals in the population to approximate the best solution
space for the current bronchoscope location. Computing the
crossover rate on the basis of the current observation is also
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(a) Position error of Experiment 20 (b) Orientation error of Experiment 20

Figure 8: Plotted tracking error of six methods evaluated in Experiment 20.

(a) Position smoothness (b) Orientation smoothness

Figure 9: Plotted tracking smoothness of six methods evaluated in Experiment 6.

(a) (b)

Figure 10: Plotted visual quality of six methods evaluated in Experiments 8 and 14.
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Table 1: Comparatively quantified average accuracy, smoothness, and visual quality of tracking results of six methods evaluated in six ground truth datasets. They
were calculated in terms of Eqs. 28∼31. Our OADE outperformed other methods.

Compared Average accuracy Average smoothness Average visual
approaches Position τ (mm) Orientation θ (◦) Position µ (mm) Orientation ψ (◦) quality γ

Schwarz et al. (2006) 5.10±2.65 11.46±8.83 4.67±0.90 3.57 ±0.39 0.636±0.008
Mori et al. (2005) 4.43±3.29 10.98±9.45 4.80±0.80 4.91±0.35 0.668±0.086
Luo et al. (2010a) 4.39±4.23 10.63±9.94 4.27±0.86 4.29±0.36 0.680±0.094
Luo et al. (2012b) 3.96±3.60 10.47±8.82 4.08±0.59 2.65±0.33 0.707±0.095

Zhang and Sanderson (2009) 3.63±3.21 9.53±7.55 1.93±0.58 2.35±0.96 0.715±0.004
Our method 2.89±2.87 8.18±6.29 1.62±0.53 2.11±0.69 0.741±0.005

(a) Position error (b) Orientation error

Figure 11: Comparison of different similarity measures and optimization frameworks for 3-D bronchoscope motion estimation in Experiment 9. Tracking error
of the MoMSE+SMC method (Luo et al., 2012b) was 3.95 mm and 9.99◦ while the MoMSE+OADE approach was 3.50 mm and 9.58◦. Our method shows best
performance with 2.69 mm and 8.09◦.

helpful to maintain the population diversity. In contrast to
our previous SMC-based tracking method (Luo et al., 2012b),
OADE has more powerful exploitation and exploration abilities
since it can maintain the multiplicity of population and aug-
ment the capacity of local searches, while SMC is somewhat
constrained on the diversity loss (Fig. 16).

Finally, we believe that our modified similarity measure for
fitness computation also enhances the tracking performance. It
is important to accurately evaluate individual performances by
computing fitness during iterations. Extracting the structural in-
formation to calculate the fitness is beneficial to correctly char-
acterize individual performances. Our previous method used
a MSE-based measure to evaluate them. The OADE tracking
approach works much better than the MSE-based method (Luo
et al., 2012b) since the structural similarity measure was proved
to significantly outperform MSE (Wang et al., 2004).

7.2. Limitations

Although our proposed OADE-based tracking approach sig-
nificantly outperforms the state-of-the-art methods, it still has
several potential limitations. The first open issue is its compu-
tational time that requires about 0.92 seconds to process one
frame, which is slower than the camera video rate of 30 frames

per second. The main time was spent computing the fitness val-
ues between the video and virtual images. The fitness compu-
tation for each individual in the population involves both gen-
erating 2-D virtual images by volume rendering techniques and
computing the similarity (Eq. 24). The processing times of both
parts take around 0.65 and 0.26 seconds, respectively. 2-D vir-
tual image generation greatly slows down our OADE tracking.
The similarity computation also takes much time since it pro-
cesses image intensity pixel by pixel. The processing time of
our method challenges current computer devices. We still ex-
ert much effort to improve the computational efficiency in our
future work. One option is to replace volume rendering by sur-
face rendering to reduce the processing time. Another way to
improve the computational efficiency is to reduce the number
of individuals and generations and develop a more robust fit-
ness computation method to characterize individuals after eval-
uation. It might also be helpful to use a graphics processing unit
(GPU) or multi-threading techniques to accelerate processing.
We also clarified that this work focuses on improving contin-
uous tracking accuracy to meet the clinical requirement of 2.0
mm during bronchoscopic navigation. We may sacrifice com-
putational efficiency to enhance the performance of continuous
bronchoscopic navigation. In some cases, e.g., when the bron-
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(a) Position smoothness (b) Orientation smoothness

Figure 12: Comparison of tracking (position and orientation) smoothnesses of six methods during 21 experiments.

(a) Visual quality (b) Computational time

Figure 13: Visual quality of six methods during 21 experiments and computational time of five methods.

choscope has been already navigated to the target regions at the
correct airway, we could reduce the computational time by sac-
rificing tracking accuracy.

We implemented a relatively simple image processing
method that uses HSL model-based color information detec-
tion and involves several predefined thresholds to identify the
structural regions in our fitness computation, possibly resulting
in incorrectly calculated fitness. We consider either inter-pixel
similarity or more robust functions (to replace Eq. 23) without
defining the thresholds to perform patching or aggregation.

Additionally, we did not evaluate our method on clinical
datasets. Of course, such validation is optimal. Unfortu-
nately, obtaining them is really difficult since limited clinical
datasets exist worldwide, even though a commercially available
EMT-based bronchoscopy system, superDimension, has been
increasingly introduced in operating rooms. We also point out
that the current tracking error is relative error since we defi-

nitely introduce error in our ground truth datasets. Obtaining
real ground truth data is very challenging. The current tracking
error on the basis of our dynamic phantom evaluation might
become larger than validating our method on clinical datasets.

In general, our proposed OADE tracking method suffers
from its computational time, which currently limits its clini-
cal applications or practice. Clinical or non-phantom validation
must also be performed before introducing the OADE tracking
framework into operating rooms.

8. Conclusion

This work exploited an observation-driven adaptive differ-
ential evolution approach to accurately and smoothly track the
bronchoscope tip (camera) motion. By integrating the current
sensor and camera observation information in the mutation op-
eration and computing the mutation factor and the crossover
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(a) Experiment 5 (b) Experiment 21

Figure 14: Plotted tracking results (Experiments 5 and 21) as camera motion paths on pre-built 3-D bronchial tree model using our proposed OADE method (blue
dots) and the method of Luo et al. (Luo et al., 2012b) (green dots). Dots demonstrate that our method overlaps more ground truth dots or follow longer camera
movement paths than Luo et al. (Luo et al., 2012b) (cyan dots show ground truth).

0200 0400 0600 0800 01000 1200 1400 1600 1800 2000 2200 2400

Figure 15: Examples of visual comparison of tracking results of Experiment 18. Top row shows frame numbers selected uniformly every 200 frames, and second
row shows corresponding real images. Other rows (from third to sixth) display virtual images generated from tracking results using methods of Schwarz et al.
(2006), Mori et al. (2005), Luo et al. (2010a), Luo et al. (2012b), Zhang and Sanderson (2009), and ours, respectively. Our proposed framework shows the best
performance.
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(a) Continuous bronchoscopic video frames 420∼489 (le f t −→ right, top −→ bottom) of Experiment 7

(b) Corresponding virtual bronchoscopic images estimated from the method of Luo et al. (Luo et al., 2012b)

(c) Corresponding virtual bronchoscopic images estimated from our proposed OADE method

Figure 16: Example images from Experiment 7 illustrate that our proposed method can tackle respiratory motion and bronchoscopic image artifacts. Image artifacts,
such as illumination changes (e.g., Frames 420, 421, and 422), collisions with bronchial walls (e.g., Frames 423∼427), and jumps (e.g., Frames 428 and 49) occurred
frequently. Our method still tracks bronchoscope motions successfully and greatly outperforms the method of Luo et al. (Luo et al., 2012b) since virtual images in
(c) resemble video images much better than in (b).
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rate adaptively, we proposed an improved DE method: OADE.
With an application to bronchoscope motion estimation, our
OADE algorithm can effectively fuse different sensory informa-
tion of bronchoscopic video sequences, electromagnetic sensor
measurements, and computed tomography images and provide
more accurate and smoother bronchoscope tracking. The cur-
rent tracking accuracy and smoothness were about 2.89 mm,
8.18◦ and 1.62 mm, 2.11◦. The tracking performance was sig-
nificantly improved, compared to state-of-the-art methods that
at least show the tracking accuracy and smoothness of 3.96 mm,
10.47◦ and 4.08 mm, 2.65◦. Future work includes the reduction
of runtimes and clinical dataset validation.
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