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Abstract

Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, 

which pose significant challenges for analyses of morphological shapes. Existing shape models, 

such as the widely used spherical harmonic (SPHARM) representation, assume topological 

invariance, so are unable to simultaneously parameterize multiple disjoint structures. In such a 

situation, SPHARM has to be applied separately to each individual structure. We present a novel 

surface parameterization technique using 4D hyperspherical harmonics in representing multiple 

disjoint objects as a single analytic function, terming it HyperSPHARM. The underlying idea 

behind Hyper-SPHARM is to stereographically project an entire collection of disjoint 3D objects 

onto the 4D hypersphere and subsequently simultaneously parameterize them with the 4D 

hyperspherical harmonics. Hence, HyperSPHARM allows for a holistic treatment of multiple 

disjoint objects, unlike SPHARM. In an imaging dataset of healthy adult human brains, we apply 

HyperSPHARM to the hippocampi and amygdalae. The HyperSPHARM representations are 

employed as a data smoothing technique, while the HyperSPHARM coefficients are utilized in a 

support vector machine setting for object classification. HyperSPHARM yields nearly identical 
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results as SPHARM, as will be shown in the paper. Its key advantage over SPHARM lies 

computationally; Hyper-SPHARM possess greater computational efficiency than SPHARM 

because it can parameterize multiple disjoint structures using much fewer basis functions and 

stereographic projection obviates SPHARM's burdensome surface flattening. In addition, 

HyperSPHARM can handle any type of topology, unlike SPHARM, whose analysis is confined to 

topologically invariant structures.
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1. Introduction

Multiple disconnected anatomical structures (MIDAS) refer to two or more structures that 

are anatomically and/or functionally separate, and their underlying mathematical feature is 

changing topology (e.g. gaps, holes). Hence, the individual structures forming the MIDAS 

do not have to be physically connected, as there could be gaps separating the individual 

structures from each other, and can have holes. Prominent examples include the limbic 

structures (hippocampi and amygdalae) in the brain and the unfused hyoid bone in the neck. 

Image-based parcellation of MIDAS poses significant challenges for analyses of 

morphological shapes; existing shape models assume topological invariance, so can only be 

applied to a single connected structure. An important problem then is formulating a single, 

coherent mathematical parameterization that can allow for a holistic treatment of MIDAS, 

i.e. treating the entire MIDAS as a single entity.

Probably the most widely applied shape parameterization technique for cortical structures is 

the spherical harmonic (SPHARM) representation (Chung et al., 2010; Gerig et al., 2001; 

Shen et al., 2004; Gu et al., 2004; Styner et al., 2006), which has been mainly used as a data 

reduction technique for compressing global shape features into a small number of 

coefficients. The main global geometric features are encoded in low degree coefficients 

while the noise will be in high degree spherical harmonics. The method has been used to 

model various brain structures such as ventricles (Gerig et al., 2001), hippocampi (Shen et 

al., 2004) and cortical surfaces (Chung et al., 2010; Gu et al., 2004). SPHARM, however, 

can't represent MIDAS with a single parameterization. In such a situation, SPHARM has to 

be applied separately to each individual structure forming the MIDAS. In addition, 

SPHARM-representation requires a 3D anatomical surface to be mapped onto a 3D sphere, 

which is no simple task. Various computationally intensive surface flattening techniques 

have been proposed as a result: diffusion mapping (Chung et al., 2010), conformal mapping 

(Angenent et al., 1999; Gu et al., 2004; Hurdal and Stephenson, 2004), quasi-isometric 

mapping (Timsari and Leahy, 2000) and area preserving mapping (Gerig et al., 2001; 

Brechbuhler et al., 1995). The surface flattening is used to parameterize the surface using 

two spherical angles. The angles serve as coordinates for representing the surface using 

spherical harmonics. Then the surface coordinates can be mapped onto the sphere and each 

coordinate is represented as a linear combination of spherical harmonics.

Hosseinbor et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Any 3D object may be embedded onto the surface of a 4D hypersphere via simple 

stereographic projection. Extending the concept further, two or more disconnected 3D 

objects may be stereographically projected onto the same 4D hypersphere. Consequently, all 

the multiple disconnected 3D objects (forming the MIDAS) exist on the same hypersphere, 

so the entire MIDAS can be represented as the linear combination of 4D hyperspherical 

harmonics (HSH), which are the multidimensional analogues of the 3D spherical harmonics. 

In other words, such a procedure enables the entire MIDAS to be treated as a single entity 

existing along the surface of a 4D hypersphere (see Figure 1 for illustration).

The HSH have been mainly confined to quantum chemistry, where their utility first became 

evident with respect to solving the Schrödinger equation for the hydrogen atom. It had been 

solved in position-space by Schrödinger, himself, but not in momentum-space, which is 

related to position-space via the Fourier transform. Sometime later, V. Fock solved the 

Schrödinger equation for the hydrogen atom directly in momentum-space. In his classic 

paper (Fock, 1935), Fock stereographically projected 3D momentum-space onto the surface 

of a 4D unit hypersphere, and after this mapping was made, he was able to show that the 

eigenfunctions were the 4D HSH. Recently, the HSH have been utilized in a wider array of 

fields than just quantum chemistry, including computer graphics visualization (Bonvallet et 

al., 2007) and crystal-lography (Mason and Schuh, 2008). However, as of yet, they have 

remained elusive for medical imaging.

In this paper, following the approach of Fock, we model multiple disconnected 3D objects in 

terms of the 4D HSH by stereographically projecting each object's surface coordinates onto 

the same 4D hypersphere, and label such a representation HyperSPHARM (Hosseinbor et 

al., 2013). The incorporation of an extra (4th) dimension via stereographic projection imbues 

HyperSPHARM with several key advantages over SPHARM:

1. Stereographic projection onto a 4D hypersphere obviates the difficult and time-

consuming 3D surface flattening required by SPHARM.

2. HyperSPHARM is not constrained by topological variance, unlike SPHARM. The 

parameterization of an object containing a hole (e.g. doughnut) or the simultaneous 

parameterization of multiple disjoint objects is not possible with SPHARM. 

HyperSPHARM, however, treats MIDAS holistically by representing it with a 

single (linear) mathematical parameterization, given by the 4D HSH. SPHARM has 

to be applied separately to each individual structure forming the MIDAS.

3. HyperSPHARM possesses greater computational efficiency than SPHARM 

because it can more sparsely represent the MIDAS, which we will demonstrate in 

this paper.

The method is applied to parameterize the MIDAS comprising the left and right 

hippocampus and amygdala for an imaging dataset of healthy adult human brains. The 

HyperSPHARM representations are employed as a surface smoothing technique, while the 

HyperSPHARM coefficients are used in a support vector machine (SVM) setting for gender 

classification.
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The paper is organized as follows: in Section 2, we review the 4D HSH and its properties. In 

Section 3, we discuss in detail the HyperSPHARM algorithm. Section 4 goes over the 

imaging dataset used in this study and the necessary image processing steps. In Section 5, 

we compare Hyper-SPHARM and SPHARM, utilize HyperSPHARM representations as a 

data smoothing technique, and employ HyperSPHARM coefficients as features of object 

classification using SVM. Lastly, we discuss our results and future applications of 

HyperSPHARM in Section 6.

2. 4D Hyperspherical Harmonics

Consider the 4D unit hypersphere S3 existing in  that is defined by three angles: the 

azimuthal angle ϕ, the 3D zenith angle θ, and the 4D zenith angle β. The Laplace-Beltrami 

operator on S3 is defined as

(1)

where ΔS2 is the Laplace-Beltrami operator on the unit sphere S2. The eigenfuctions of Eq. 

(1) are the 4D hyperspherical harmonics :

The 4D HSH are defined as (Domokos, 1967)

(2)

where Ω = (β, θ, Φ) obey (β ∈ [0, τ], θ ∈ [0, τ], Φ ∈ [0, 2τ]),  are the Gegenbauer (ultra-

spherical) polynomials, and  are the 3D spherical harmonics. The index n refers to the 

degree of the HSH and is commonly referred to as the principal quantum number; and the 

three integers (n, l, m) obey the conditions n = 0, 1, 2, ..., 0 ≤ l ≤ n, and − ≤ l m ≤ l. The 

number of HSH corresponding to a given degree n is (n+1)2 The HSH form an orthonormal 

basis on the hypersphere, and the normalization condition reads

(3)

The first few 4D HSH are shown in Table 1. The n = 1 4D HSH define a 4D hypersphere of 

radius . The spherical harmonics of any dimension are discussed in Appendix A.

3. HyperSPHARM Algorithm

In this section, we will elaborate on the HyperSPHARM algorithm, which consists of five 

basic steps: translation, stereographic projection, 4D HSH expansion, linear least squares 

estimation, and interpolation. Before proceeding, we need to mathematically define the 

MIDAS.
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Suppose some MIDAS is composed of k individual structures. Each structure is assumed to 

be both 3D finite and compact (i.e. has no singularities) and comprising surface coordinates 

, where j = 1, 2, ..., k. We further assume that each structure's surface 

coordinates are unique, i.e. no two structures have overlapping coordinates. Denote Nj as the 

number of mesh vertices forming structure j, which means the dimension of pj is Nj x 3. Lets 

combine the surface coordinates of all k structures in order to facilitate a holistic treatment 

of the MIDAS. Define v = (v1 v2 v3) as the combined 3D surface coordinates across all k 

structures, where

and the symbol T denotes transpose. In other words, the MIDAS's surface coordinates are 

defined by v. The dimension of v is M x 3, where  is the total number of mesh 

vertices comprising the 3D MIDAS. We denote each (vector) coordinate component of v as 

vi, where i = 1, 2, 3.

3.1. Translation

Note that SPHARM and HyperSPHARM are not translation invariant representations, which 

reduces their goodness of fit. Translating the MIDAS's surface coordinates v closer to the 

origin (0, 0, 0) improves the accuracy of the fitting. We achieve this shift towards the origin 

by subtracting each vi by its mean value:

where s = (s1 s2 s3) is the M x 3 matrix denoting the MIDAS's shifted surface coordinates 

and 〈vi〉 is the mean of vi.

3.2. Stereographic Projection of 3D MIDAS’s Surface Coordinates onto 4D Hypersphere

In order to model the MIDAS’s (shifted) surface coordinates with the HSH, we need to map 

them onto a 4D hypersphere, which can be achieved via stereographic projection (Fock, 

1935). The surface coordinates in 3D spherical space are s1 = r sin θ cos Φ, s2 = r sin θ sin 

Φ, and s3 = r cos Φ, where . Consider a 4D hypersphere of radius 

po, whose coordinates are defined as
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The relationship between (s1, s2, s3) and (u1, u2, u3, u4), according to stereo-graphic 

projection, is

(4)

Eq. (4) establishes a one-to-one correspondence between the 3D volume and 4D 

hypersphere (Fig. 2). As shown in Fig. 2, stereographic projection's inherent lack of volume 

preservation is not an issue in HyperSPHARM analysis; the projected MIDAS lying on the 

hypersphere experiences metric distortion, but we are solely interested in the 

(HyperSPHARM-reconstructed) back-projected MIDAS. We derive stereographic 

projection to any dimension in Appendix B.

3.3. HSH Expansion of MIDAS's Surface Coordinates

Stereographically projecting the 3D MIDAS's surface coordinates onto a 4D hypersphere 

results in them existing along the hypersphere's surface. According to Fourier analysis, any 

square-integrable function defined on a sphere can be expanded in terms of the spherical 

harmonics. Thus, we can expand each coordinate component si in terms of the 4D HSH:

(5)

where  denotes the ith component of the surface coordinates s existing on hypersphere of 

radius po. The realness of the surface coordinates requires use of the real HSH, so we 

employ a modified real basis proposed in (Koay et al., 2009) for . N is the truncation 

order of the HSH expansion, and for a given N the total number of HSH expansion 

coefficients is

3.4. Numerical Implementation

Let Ωj = (βj, θj, ϕj) denote the hyperspherical angles at the j-th mesh vertex. Recall that our 

MIDAS consists of a total of M mesh vertices, so each si is a M x 1 vector. Denote Ci as the 

W x 1 vector of unknown HSH expansion coefficients  for each si, and A is M x W 

matrix constructed with the HSH basis and given by

Thus, the general linear system representing Eq. (5) is described by si = ACi. This system of 

over-determined equations is solved via linear least squares, yielding
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(6)

The reconstructed (shifted) surface coordinates are then given by .

Lastly, we want to estimate the actual surface coordinates v. The recon-structed vi is

(7)

where we have translated the reconstructed (shifted) surface coordinates back to the original 

object space. Hence, our reconstructed 3D MIDAS is defined by the M x 3 matrix 

. The mean squared error (MSE) between the original MIDAS and the 

HyperSPHARM-reconstructed MIDAS can then be computed as

(8)

3.5. Interpolation

Once the HSH coefficients are estimated by Eq. (6), the surface coordinates of the MIDAS 

can be evaluated using a different sampling along the 4D hypersphere. Unlike SPHARM, 

resampling for HyperSPHARM interpolation is not as trivial. Simply resampling points 

along the 3D MIDAS and then mapping them onto the 4D hypersphere will not work; the 

mapped samples will not be uniformly distributed along the 4D sphere due to stereographic 

projection's inherent nonlinearity. We now discuss isotropic sampling along the 4D 

hypersphere, which we will employ for HyperSPHARM interpolation.

Due to the fact that the stereographic projection of the MIDAS usually lies on some regions 

of the hyperspherical surface, the evaluation of the surface coordinates of the MIDAS on the 

4D hypersphere should be carried out on a sampling that is isotropic on the surface of the 4D 

hypersphere. The problem of distributing points uniformly on the 3D sphere is a well known 

problem and was proposed by J. J. Thomson more than a century ago (Thomson, 1904). 

Variants of the Thomson problem that incorporate antipodal symmetry and mirror-reflection 

symmetry have been found useful in other scientific and engineering endeavors, see (Koay, 

2011, 2014a) and references therein. The problem of generating uniformly distributed and 

antipodally symmetric points on the unit 4D hypersphere can be solved via the discretized 

and extended version of the pseudometrically constrained centroidal Voronoi 

tessellations(Koay, 2014b). The antipodal symmetry imposed on the current problem is for 

the sake of computational efficiency. That is, one only needs the coordinates of the upper 

hyper-hemisphere in order to obtain the coordinates of the lower hyper-hemipshere by 

spatial inversion -a 50% saving in terms of time and storage. A key disadvantage of such an 

interpolation scheme is that it precludes the incorporation of the MIDAS's 3D triangular 

connectivity information.

We denote the uniformly distributed and antipodally symmetric points along the surface of 

the 4D hypersphere as hysph mesh interp. The HyperSPHARM coefficients are used to 
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interpolate the cortical surface coordinates using this hyperspherical mesh, and 

denotes the mean squared error between the HyperSPHARM-interpolated values and the 

mesh hysph mesh interp.

Note that the 3D MIDAS is finite, so it will not map onto the entire surface of the 4D 

hypersphere. Rather, the stereographic projection of the MIDAS will lie along a portion of 

the hyperspherical surface. Consider the illustration in Fig 3. The MIDAS's surface 

coordinates are mapped onto the region S′ along the 4D hypersphere. The MIDAS can be 

interpolated at different (hyperspherical) locations that reside within region S′; using 

hyperspherical points outside of S′ will result in extrapolation. Therefore, we only use the 

samples in hysph mesh interp that coincide with S′ in Fig. 3.

4. Data Processing

4.1. Dataset

The dataset used in this study was part of a national study (Midlife in US; http://

midus.wisc.edu) for the health and well-being in the aged population (Van Reekum et al., 

2011). It comprised 68 healthy adults (22 men; 46 women) ranging in age between 38 to 79 

years (mean age = 58.0 ± 11.4 years).

High-resolution T1-weighted inverse recovery fast gradient echo MRI images were obtained 

using a 3T GE SIGNA scanner with a quadrature head RF coil. A 3D, spoiled gradient-echo 

(SPGR) pulse sequence was used to generate T1-weighted images. 124 contiguous 1.2-mm 

axial slices were acquired (TE=1.8 ms; TR=8.9 ms; flip angle = 10°; FOV = 240 mm; 256 × 

256 data acquisition matrix).

4.2. Establishment of Correspondence

Correspondence for SPHARM and HyperSPHARM was established in a similar manner as 

proposed in (Chung et al., 2007). Brain tissues in the MRI scans were automatically 

extracted using Brain Extraction Tool (BET) (Smith, 2002) and trained raters manually 

segmented the amygdalae and hippocampi, which form our MIDAS. A nonlinear image 

registration using the diffeomorphic shape and intensity averaging technique with the cross-

correlation as the similarity metric through Advanced Normalization Tools (ANTS) (Avants 

et al., 2008) was performed on the T1-weighted images, and a study-specific template was 

constructed from a random subsample of ten subjects. The deformation field is then used to 

warp any individual brain to the template. Specifically, we deformed the amygdala and 

hippocampus binary masks to the template space. The normalized masks were then averaged 

to produce the subcortical masks. The iso-surfaces of the subcortical masks were then 

extracted using the marching cube algorithm (Lorensen and Cline, 1987). The number of 

mesh vertices for each cortical structure are as follows: 1296 for left amygdala, 1324 for 

right amygdala, 2444 for left hippocampus, and 2554 for right hippocampus. Hence, the 

MIDAS comprises 7618 mesh vertices.

Using ANTS, we obtained the deformation vector field, which is defined on voxels, that 

warps an individual brain to the template. On the other hand, the vertices of the subcortical 
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surfaces meshes are located within the voxels, so we simply assigned the vector field onto 

the mesh vertices by linear interpolation.

Please note that SPHARM and HyperSPHARM were not directly used to establish 

correspondence for this dataset. As mentioned, ANTS was used to align and establish non-

linear correspondence, so vertex-to-vertex correspondence was present before application of 

HyperSPHARM/SPHARM. However, SPHARM and HyperSPHARM further register the 

surfaces post-alignment via surface flattening and stereographic projection, respectively. 

Hence, our approach avoids the surface alignment done by coinciding the first order 

ellipsoid meridian and equator in the SPHARM-correspondence approach (Gerig et al., 

2001; Styner et al., 2006). Surface meshes obtained from other segmentation techniques 

such as FreeSurfer (Fischl and Dale, 2000) may require the SPHARM-correspondence 

approach.

4.3. SPHARM Processing

HyperSPHARM is compared to the widely used SPHARM framework. SPHARM 

processing somewhat differs from that of HyperSPHARM, so we will now elaborate on it. 

SPHARM has to be applied to each individual structure forming the MIDAS. Thus, for a 

SPHARM representation of order L, a total of 3(L + 1)2 expansion coefficients parameterize 

a single structure and 12(L+1)2 coefficients all four disconnected structures (i.e. left and 

right hippocampus and amygdala). First, each cortical structure is mapped onto a unit sphere 

using diffusion mapping (Chung et al., 2010), where the number of vertices of the spherical 

mesh is equal to that of the cortical mesh. We denote this spherical mesh as sph mesh interp. 

The spherical mesh is then refined by resampling to a uniform grid along the sphere, whose 

number of vertices totals 40962. SPHARM is then performed using this refined spherical 

mesh, and MSESPHARM denotes the mean squared error between the SPHARM 

reconstruction and refined spherical mesh. The SPHARM coefficients are then used to 

interpolate the cortical surface coordinates using the spherical mesh sph mesh interp, and × 

denotes the mean squared error between the SPHARM-interpolated values and the mesh sph 

mesh interp. This analysis is repeated for each cortical structure forming the MIDAS. Please 

note that the translation of the surface coordinates closer to the origin is also employed for 

SPHARM.

4.4. Selection of Optimal po

Choosing the optimal hypersphere radius po for HyperSPHARM reconstruction may be 

determined by plotting the  versus po for the MIDAS reconstruction. Note the 

analysis is done on the mean population template instead of each individual subject so to 

minimize inter-subject variability. The HSH of truncation order N = 6 are used for the 

HyperSPHARM reconstruction of the template. Lower truncation orders were found to 

interpolate poorly, so are excluded from the analysis. Fig. 4 displays the plot of the 

 of each vi as a function of po, and indicates that  is minimized at po = 

23, which we adopt as our radius.

Table 2 displays the optimal radius for different truncation orders of HyperSPHARM 

reconstruction. The optimal radius is more or less the same across N.
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5. Experiments and Results

5.1. Rotational Variance of HyperSPHARM

The rotational variance of stenographic projection depends on the nature of an object's 

symmetry. Axially symmetric objects will be rotationally invariant over the projection. 

However, non-axially symmetric objects, such as the limbic structures, will be rotationally 

variant over the mapping. Hence, the rotation of the MIDAS will affect the subsequent 

HyperSPHARM reconstruction.

Fig. 6 displays the plot of the  of the population template as a function of the 

rotation angle. The graph is approximately concave down, and the  peaks at 30°.

5.2. Simulation Study

We have performed two simulation studies to determine if HyperSPHARM can characterize 

general shape differences between two distinct populations. Hotelling T2 test and support 

vector machines are used to assess Hyper-SPHARM's effectiveness. HyperSPHARM 

parameters are N = 6 and po = 23, which results in W = 140 expansion coefficients for each 

surface coordinate, while L = 20 SPHARM representation is employed.

Voxel-wise Hotelling T-Squared Test

In the first simulation experiment, we formed two distinct groups by selecting the right 

amygdala and right hippocampus of subjects 10 and 68. As can be seen in Fig. 7, there are 

obvious shape differences between the two subject's limbic structures. We simulated 30 

versions of each group by adding Gaussian noise N(0, 0.01) to each group's surface, thereby 

creating two distinct populations. Hyper-SPHARM and SPHARM are then used to 

reconstruct the surfaces. We test for group differences by carrying out the Hotelling T2 test 

at the voxel level on the HyperSPHARM/SPHARM-parameterized surfaces. The resulting 

p-values were corrected for multiple comparisons across all vertices using false discovery 

rate (FDR) (Benjamini and Hochberg, 1995), and are projected onto the average of the 60 

simulated surfaces for each method (Fig. 8). We detect group differences using each 

method, with all voxels being statistically significant (p-value< 1e − 10), which is what we 

expect given the manifest shape differences between the two populations.

In the second simulation experiment, we looked at two distinct groups that barely have any 

shape differences. We selected the right hippocampus and right amygdala of subject 10. The 

first group was formed by simulating 30 versions of subject 10's right limbic structures by 

adding Gaussian noise N(0, 0.01) to the surface. The second group was formed by 

simulating 30 versions using Gaussian noise N(0, 0.16). Fig. 9 displays a member of each 

group. HyperSPHARM and SPHARM are then used to reconstruct the surfaces. We test for 

group differences by carrying out the Hotelling T2 test at the voxel level on the 

HyperSPHARM/SPHARM-parameterized surfaces. The resulting p-values were corrected 

for multiple comparisons across all vertices using FDR, and are projected onto the average 

of the 60 simulated surfaces for each method (Fig. 10). No group differences are detected 

using each method, with all voxels being statistically insignificant (p-value= 1), so 
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indicating that both methods will not distinguish between two groups that are nearly 

identical in shape.

Fig. 11 plots the number of statistically significant voxels obtained by HyperSPHARM/

SPHARM for each simulation experiments as a function of the truncation order, indicating 

that the same detection results can be achieved using lower order HyperSPHARM/

SPHARM expansions. It should be noted that L = 2 SPHARM reconstruction greatly over-

smoothens the MIDAS, as shown in Fig. 12, while L = 10 moderately over-smoothens. For 

this reason, we feel L = 20 is the most appropriate truncation order for SPHARM.

These two experiments demonstrate that HyperSPHARM is capable of detecting sufficiently 

large shape differences, and further demonstrate that what HyperSPHARM detected in the 

real data is of a sufficiently large shape difference. Otherwise, it would not have the detected 

group-wise differences in the first place.

Support Vector Machines

For each simulation experiment, we also employed the HyperSPHARM coefficients as 

features of object classification using linear support vector machines (SVM). Linear SVM 

(Cortes and Vapnik, 1995) seek an optimally separating hyperplane to distinguish between 

two classes within a feature space. In our situation, the shape invariants (i.e. 

HyperSPHARM and SPHARM coefficients) form the feature space. Likewise, the binary 

classes in each experiment are the two distinct groups. We used MAT LAB Statistics T 

oolbox (MATLAB, 2013) to perform the SVM analysis.

Each surface is characterized by 420 HyperSPHARM features and 2646 SPHARM features. 

The number of features for each method is too large to train a good model given our total 

number of surfaces, i.e. 60. Feature selection is needed.

Following (Shen et al., 2004), we test the effectiveness of the features by employing a 

simple two-sample t-test on each feature. We obtain a p-value associated with the test 

statistic

(9)

where N1 and N2 are the sample sizes,  and  are the sample means,  and  are the 

sample variances, and the samples are the values of each feature across all subjects in the 

two respective classes. A lower p-value implies stronger group differences statistically and 

corresponds to a more significant feature.

We performed a leave-one-out test for each simulated surface, where we selected the first n 

features ordered by p-value associated with t-test applied to each leave-one-out training set 

separately. Hence, different leave-one-out tests may have different numbers of significant 

features. For an impartial comparison between SPHARM and HyperSPHARM, we make 

sure the number of significant features expended by each method is approximately the same. 

In the first simulation experiment, the outputting of 1-2 significant features for each leave-
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one-out test by feature selection yielded a 100 % classification accuracy for both SPHARM 

and HyperSPHARM. Likewise, the outputting of 40-44 significant features for each leave-

one-out test also resulted in a 100 % classification accuracy for both methods. In the second 

simulation experiment, no significant features were yielded for either method.

The linear SVM results are consistent to those of the Hotelling T2 test, and these two 

differing analyses demonstrate that both the HyperSPHARM-parameterized surface 

coordinates and HyperSPHARM coefficients are able to distinguish between two groups that 

exhibit sufficiently large shape differences. Most importantly, according to both the 

Hotelling T2 and SVM results, HyperSPHARM's performance is comparable to SPHARM in 

a controlled simulation study.

5.3. HyperSPHARM Reconstructions and Comparison to SPHARM

HyperSPHARM was used to reconstruct the MIDAS comprising the left and right 

hippocampus and amygdala for 68 subjects. For the entire MIDAS, the HyperSPHARM 

parameters were radius po = 23 and N = 6, which results in W = 140 HSH expansion 

coefficients for each si. So a total of 420 HSH coefficients parameterize the entire MIDAS. 

SPHARM has to be applied to each individual structure forming the MIDAS. The L = 20 

SPHARM representation was used, which results in 1323 SPHARM coefficients 

parameterizing each cortical structure and 5292 parameterizing the entire MIDAS.

Fig. 5 shows the HyperSPHARM-reconstructed surfaces for two different subjects. The 

length of the residual is also computed and plotted on the reconstructed surfaces. The 

MSEHSH for the first subject is on the order of 10−6 while that of the second subject is 10−2.

Tables 3 and 4 display the reconstruction errors of SPHARM and HyperSPHARM 

representations, respectively. According to the two tables, MSESPHARM < MSEHSH for the 

amygdalae, which is not surprising since SPHARM performs very well on approximately 

spherical objects. However, MSESPHARM > MSEHSH for the hippocampi, which 

significantly deviate from a spherical-like shape. An impartial comparison of the 

interpolation errors between SPHARM and HyperSPHARM is difficult because a different 

interpolating mesh was used for each method. However, HyperSPHARM's interpolation 

error  is reasonably low, and much smaller and less variable than SPHARM's 

interpolation error in the hippocampi. Hence, we can conclude that HyperSPHARM is 

appropriate as an interpolating scheme.

5.4. HyperSPHARM as a Data Smoothing Technique: Influence of Age and Gender

HSH and SPHARM representations were obtained for hippocampus and amygdala surfaces 

of all 68 subjects. Such representations behave like a surface smoothing technique that 

removes high frequency noise, as shown in Figure 5. The 69 reconstructed surfaces are then 

averaged to produce the population specific template. The 3D displacement vector field 

from the template to individual surface is taken as the response vector in the multivariate 

general linear model (MGLM) (Chung et al., 2010) and its T -statistic is computed and 

thresholded at p < 0.05. The random field based multiple comparisons are performed to give 

stringent results. Neither method detected gender effects on any of the structures (see Fig. 
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13). However, both methods detected statistically significant age effects, mainly in the tail 

regions of the hippocampus and small portions of the amygdala (see Fig. 14). The statistical 

results given by both HyperSPHARM and SPHARM are nearly identical.

5.5. Hotelling T2 Test on HyperSPHARM Coefficients to Test for Gender Effects

We then carried out the Hotelling T2 test on the HyperSPHARM/SPHARM coefficients 

between each gender to see if any of the coefficients were statistically significant in 

detecting gender effects. For HyperSPHARM, each subject's coefficient matrix is 140 × 3, 

whereas for SPHARM each cortical structure of each subject is characterized by a 441 × 3 

matrix. Merging each subject's SPHARM coefficients across all four cortical structures 

results in a 1764 × 3 matrix. The resulting statistical analysis yielded no statistically 

significant coefficients (corrected for multiple comparison using FDR at 0.01 level) for both 

SPHARM and HyperSPHARM. Hence, not a single coefficient from either method was 

found to significantly differentiate between gender. Such a result is consistent with the 

voxel-wise MGLM analysis, which detected no gender effects in any of the structures.

5.6. Support Vector Machine Classification of Gender

SPHARM parameterization of the hippocampus has been utilized in a support vector 

machine setting to classify schizophrenia (Shen et al., 2004) and Alzheimer's disease 

(Gutman et al., 2009). We now assess the ability of the HyperSPHARM coefficients, which 

form a global shape descriptor of the MIDAS, to classify gender in the hippocampi and 

amygdalae using linear SVM. For gender, there are 22 males and 46 females.

In order to make an impartial comparison to HyperSPHARM, SPHARM SVM analysis is 

done on the MIDAS as a whole. Hence, we combine the SPHARM coefficients across all 

four cortical structures. We define the classification accuracy rate as the probability that a 

class is correctly identified when each subject is left out once.

Each subject is characterized by 420 HyperSPHARM features and 5292 SPHARM features. 

The number of features for each method is too large to train a good model given our number 

of subjects. We employ feature selection in the same manner as done for the simulation 

experiments.

The yielding of 2-11 statistically significant features for each leave-oneout test by feature 

selection resulted in a 57 % gender classification accuracy for both HyperSPHARM and 

SPHARM. Likewise, the outputting of 19-37 significant features for each leave-one-out test 

yielded a gender classification accuracy of 50 % and 54 % for HyperSPHARM and 

SPHARM, respectively.

Females make up a little more than 2/3 of the sample size, so 68% can be viewed as the 

baseline classification accuracy rate. Both HyperSPHARM's and SPHARM's classification 

accuracies are well below that, indicating that the coefficients are unable to well classify 

gender based on shape differences in the limbic structures, alone. Such an observation is 

consistent with the MGLM analysis of the displacement vector field and Hotelling T2 test on 

expansion coefficients, which detected no significant gender effects in the limbic structures.

Hosseinbor et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Discussion

The results from the MGLM analysis, Hotelling T2 test on expansion coefficients, and SVM 

classification suggest that gender-driven shape differences in the limbic structures are 

negligible. However, it could also be that the limbic structures exhibit highly localized shape 

differences between genders; both HyperSPHARM and SPHARM, being global bases, 

would be unable to detect such finely-drawn differences. Localization power, which can be 

obtained via wavelets, is needed to detect subtle shape differences.

Based on our analyses, HyperSPHARM and SPHARM essentially yield the same results. 

The power of HyperSPHARM, however, lies in its simplicity, versatility, and efficiency. It 

is simple and fast because it does not require any sort of laborious pre-processing (e.g. 

surface flattening): mathematically, it is much easier to map a 3D volume onto a 4D sphere 

than a 3D sphere. HyperSPHARM is versatile because it can handle any geometry, 

independent of topology, with relative ease. SPHARM, however, is confined to single 

connected structures. Most significantly, HyperSPHARM possess greater computational 

efficiency than SPHARM because it expends fewer basis functions in parameterizing 

multiple disjoint objects.

Studying and quantifying the development of anatomical structures over time is important in 

medical image analysis. The topology of anatomical structures can change during the course 

of human growth, as is evidenced by the hyoid bone. At birth, the (human) hyoid bone 

consists of three disjoint components, but these components will eventually fuse together at 

around age 40. In other words, before the age of 40 the hyoid bone constitutes a MIDAS, but 

then develops into a single connected surface. In a developmental study on the hyoid bone 

then, such longitudinal bone fusion would not be an issue for HyperSPHARM because of its 

ability to treat multiple disjoint structures as a single entity. SPHARM, however, will 

initially parameterize three different structures, but eventually only a single structure once 

the components have fused. Consequently, there will be a disparity in the number of 

SPHARM coefficients between the two developmental stages (i.e. 3 vs. 1), which poses 

significant statistical challenges in terms of comparison of the coefficients between the two 

stages.

Another advantage of HyperSPHARM with regards to developmental studies is illustrated 

by the following case example: consider a longitudinal study of the hyoid bone that acquires 

measurements of its bone density over time. The hyoid bone's surface coordinates x, y, and z 

and bone density constitute 4D data, which can then be stereographically projected onto a 

5D hypersphere. Consequently, we will obtain a concurrent mathematical representation of 

bone density and surface coordinates in terms of the 5D HSH that can be used to examine 

the hyoid bone's surface evolution in terms of bone density.

7. Conclusion

In this paper, we presented a new analytic approach for representing multiple disconnected 

shapes using a single parameterization, which is a linear combination of HSH. The method 

was used to parameterize four disconnected subcortical structures (two amygdalae and two 
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hippocampi), and was found to be more efficient than SPHARM because its 

parameterization expended fewer basis functions. The resulting HSH coefficients are global 

and contain information about all four structures as a whole, so they do not provide any local 

shape information. HyperSPHARM, however, could be adapted to sparse techniques such as 

wavelets, which will be explored in future. Despite HSH being a global basis, by 

reconstructing surfaces at each voxel and using HSH as a way to filter out high frequency 

noise, it was possible to use HyperSPHARM for local inference at vertex level as shown by 

our application. Although the individual image volumes are registered to a template using 

diffeomorphic warping (Avants et al., 2008), we might only need an affine registration to 

initially align the structures and simply match the coefficients as in SPHARM (Chung et al., 

2010), but the issue is left as a future study. Additional future work includes investigating 

whether the HyperSPHARM coefficients (employed in an object classification setting) can 

boost the power of discrimination for clinical populations.
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Appendix A. Generalized Spherical Harmonics

Consider the d-dimensional unit sphere Sd−1 existing in . The eigenfuctions of the 

Laplace-Beltrami operator on Sd−1 are the d-dimensional spherical harmonics 

Yλk...1m(Ωd−1):

where Ωd−1 = (ηd−3, . . . , η1, θ, ϕ) obey (ηd−2 ∈ [0, π], . . . , η1 [0, π], θ ∈ [0, π], ϕ ∈ [0, 

2π]) and are the set of angles defining d-dimensional sphere.

The d-dimensional spherical harmonics are defined as (Aquilanti et al., 1997)

where Yk...1m(Ωd−2) are the (d − 1) spherical harmonics and  are the Gegenbauer 

polynomials. The index λ is the grand orbital angular momentum quantum number, and 

these (d − 1) integers obey the conditions λ = 0, 1, 2, . . . , 0 ≤ k ≤ λ, 0 ≤ l ≤ k, and −l ≤ m ≤ 

l. When d = 4, , i.e. the 4D HSH. The d-dimensional spherical 

harmonics form an orthonormal basis on Sd−1.
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Appendix B. Generalized Stereographic Projection

For centuries, cartographers have struggled with the problem of how to represent the 

spherical-like surface of the Earth on a flat sheet of paper. One way to achieve this is via 

stereographic projection. To illustrate it, consider the simpler 3D case. The goal of 

stereographic projection is to associate each 2D point (u, v) in the equatorial plane with a 

unique point P = (x, y, z) on the unit sphere. To achieve this, we construct the 3D line that 

passes through the north pole N = (0, 0, 1) of the sphere and the given point (u, v, 0). This 

line touches the surface of the sphere at exactly one point, P , so the point P = (x, y, z) is the 

stereographic projection of the point (u, v).

We will now derive the relationship between the coordinates of a (d − 1)-dimensional 

Cartesian lattice and those of the sphere Sd−1 based on stereo-graphic projection. The d-

dimensional sphere Sd−1 of radius ρ is defined by the coordinates

The (d − 1)-dimensional Cartesian lattice is defined by the coordinates x = (x1, x2, . . . , 

xd−1). The d-dimensional line that passes through the north pole of Sd−1, (0, 0, 0, . . . , ρ), 

and some point in the Cartesian lattice is parameterized as

where −∞ < t < ∞. The line touches Sd−1 when t satisfies

whose solution is

Note that t = 0 is a trivial solution because it corresponds to north pole of Sd−1. Upon 

substitution, the relationship between the two coordinate spaces is
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Research Highlights

• Introduce HyperSPHARM for simultaneous parameterization of multiple 

disjoint objects.

• Compare HyperSPHARM to widely used SPHARM in both a controlled 

simulation study and a real dataset, and will show that HyperSPHARM 

possesses greater computational efficiency.

• Employ isotropic sampling along 4D sphere for HyperSPHARM interpolation.

• Employ HyperSPHARM representation as a data smoothing technique and 

HyperSPHARM coefficients for object classification using support vector 

machines.
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Figure 1. Holistic Treatment of Multiple Disjoint Structures
The underlying idea of HyperSPHARM is stereographically projecting n-dimensional data 

onto the (n+1)-dimensional sphere in order to subsequently parameterize the data with the (n

+1)-dimensional spherical harmonics. Here we illustrate the n = 2 case. Three disjoint 2D 

objects are mapped on the 3D sphere. Since each object is unique in 2D, their projections 

onto the sphere will also be unique. Consequently, all three disjoint objects exist on the same 

sphere, so according to Fourier analysis they can be simultaneously parameterized by the 3D 

spherical harmonics. Please note that the shapes’ angles are preserved since stereographic 

projection is conformal. However, the projected shapes lying on the sphere will experience 

metric distortion, e.g. the area of the rectangle existing on the sphere is different from that of 

the rectangle lying on the 2D plane.
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Figure 2. 
The 3D subcortical structures (left) in the coordinates (v1, v2, v3) went through the 4D 

stereographic projection that resulted in conformally deformed structures (right) in the 4D 

spherical coordinates (β, θ, ϕ). The 3D subcortical structure is then embedded on the surface 

of the 4D hypersphere with radius po = 23.
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Figure 3. HyperSPHARM Interpolation
In this 3D illustration, a 2D object is stereographically projected onto the 3D sphere S2. 

Since the object is finite, its projection will not occupy the entire surface of the sphere; 

rather, it will lie along a portion of the spherical surface, which in our illustration is denoted 

as S′. Points residing within S′ can be used for interpolation, whereas outside points will 

lead to extrapolation.
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Figure 4. 

Plot of  as a function of the hypersphere radius po. The HyperSPHARM 

coefficients are estimated using the population template, and then used to interpolate along 

the hyperspherical mesh hysph mesh interp. The HSH of truncation order N = 6 are 

employed. The MSE is minimized at po = 23, which we adopt as our radius.
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Figure 5. 
HyperSPHARM (N = 6) representations of amygdala and hippocampus surfaces for subjects 

10 and 68. The vertex-wise reconstruction errors are also plotted.
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Figure 6. 
We rotate the MIDAS by some angle to see how the subsequent HyperSPHARM 

reconstruction is affected. Plot of  as a function of the rotation angle is shown 

above. The HyperSPHARM coefficients are estimated using the population template, and 

then used to interpolate along the hyperspherical mesh hysph mesh interp. HyperSPHARM 

parameters are N = 6 and po = 23. The plot confirms the rotational variance of 

HyperSPHARM, which is due to stereographic projection being dependent on rotation.
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Figure 7. Simulation Experiment I
We select the right hippocampus and right amygdala of two subjects that exhibit manifest 

shape differences, and create two distinct groups by adding Gaussian noise N(0, 0.01) to 

each subject's surface.
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Figure 8. Simulation Experiment I Results
We carry out a Hotelling T2 test to see if HyperSPHARM/SPHARM can distinguish 

between two groups that have manifest shape differences. The p-values after FDR correction 

(i.e. q-value) are projected back onto the template, which is the average of the 60 simulated 

surfaces. Group differences are detected using each method, with all voxels statistically 

significant.
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Figure 9. Simulation Experiment II
We select the right hippocampus and right amygdala of a subject. We create two distinct 

groups that barely have any shape differences. The first group was formed by adding 

Gaussian noise N(0, 0.01) to the surface, while the second was created using N(0, 0.16).
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Figure 10. Simulation Experiment II Results
We carry out a Hotelling T2 test to see if HyperSPHARM/SPHARM can distinguish 

between two groups that are nearly identical in shape. The p-values after FDR correction 

(i.e. q-value) are projected back onto the template, which is the average of the 60 simulated 

surfaces. No group differences are detected using each method, with all voxels statistically 

insignificant.
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Figure 11. 
Plot of the percentage of statistically significant voxels as a function of truncation order for 

each simulation experiments using Hyper-SPHARM and SPHARM. Experiment I involves 

Hotelling T2 analysis of two distinct groups characterized by major shape differences 

between them, while Experiment II looks at two distinct groups characterized by very little 

shape differences between them.
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Figure 12. 
The SPHARM results for Simulation Experiment I using L = 2 and L = 10. Although 

consistent with L = 20 SPHARM results, the lower-order SPHARM representations over-

smooth the MIDAS, especially L = 2.
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Figure 13. 
Statistical testing for gender effects in the hippocampi and amygdalae thresholded at p < 

0.05 (corrected). A T-statistic exceeding 4.8 indicates statistical significance. No statistically 

significant gender effect was detected using either method.
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Figure 14. 
Statistical testing for age effects in the hippocampi and amygdalae thresholded at p < 0.05 

(corrected). A T-statistic exceeding 4.8 indicates statistical significance. Statistically 

significant age effects were detected, mainly in the tail regions of the hippocampi, using 

both methods.
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Table 1

List of a Few HSH

Z00
0 (β, θ, ϕ) =

1
π 2

Z10
0 (β, θ, ϕ) =

2
π cosβ

Z11
−1(β, θ, ϕ) =

− 2
π sinβ sinθ sin ϕ Z11

0 (β, θ, ϕ) =
2
π sinβ cosθ

Z11
1 (β, θ, ϕ) =

− 2
π sinβ sinθ cos ϕ Z20

0 (β, θ, ϕ) =
1

π 2
(3 − 4 sin2β)

Z21
−1(β, θ, ϕ) =

− 3
π sin 2β sinθ sin ϕ Z21

0 (β, θ, ϕ) =
3
π sin 2β cosθ
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Table 2

Optimal Radius for a Given Truncation Order N

N W Optimal po MSEHSH
interp

2 14 24 5.08

4 55 23 0.424

6 140 23 0.413
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Table 3

SPHARM Mean Squared Error

MSESPHARM MSESPHARM
interp

Left Amygdala 0.0843 ± 0.0183 0.0947 ± 0.0195

Right Amygdala 0.0941 ± 0.0165 0.103 ± 0.0171

Left Hippocampus 0.364 ± 0.732 3.91 ± 3.42

Right Hippocampus 0.192 ± 0.314 1.28 ± 4.82

The mean squared error (MSE) and its standard deviation of reconstruction for SPHARM L = 20 reconstruction. MSE is computed over all mesh 

vertices and averaged over all 68 subjects. Order 20 SPHARM representation expends 212 = 441 basis functions for each surface coordinate of 
each cortical structure.
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Table 4

HyperSPHARM Mean Squared Error

MSEHSH MSEHSH
interp

Left Amygdala 0.147 ± 0.609 NA

Right Amygdala 0.148 ± 0.632 NA

Left Hippocampus 0.129 ± 0.511 NA

Right Hippocampus 0.127 ± 0.504 NA

hysph_mesh_interp NA 0.833 ± 1.09

The mean squared error (MSE) and its standard deviation of reconstruction for HyperSPHARM N = 6 reconstruction. MSE is computed over all 
mesh vertices and averaged over all 68 subjects. Order 6 HyperSPHARM representation expends 140 basis functions for each surface coordinate of 
MIDUS. NA stands for ‘Not Applicable’.

Med Image Anal. Author manuscript; available in PMC 2016 May 01.


