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Abstract

The goal of tumor growth prediction is to model the tumor growth process, which can be achieved 

by physiological modeling and model personalization from clinical measurements. Although 

image-driven frameworks have been proposed with promising results, several issues such as 

infinitesimal strain assumptions, complicated personalization procedures, and the lack of 

functional information, may limit their prediction accuracy. In view of these issues, we propose a 

framework for pancreatic neuroendocrine tumor growth prediction, which comprises a FEM-based 

tumor growth model with coupled reaction-diffusion equation and nonlinear biomechanics. 

Physiological data fusion of structural and functional images is used to improve the subject-

specificity of model personalization, and a derivative-free global optimization algorithm is 

adopted to facilitate the complicated model and accommodate flexible choices of objective 

functions. With this flexibility, we propose an objective function accounting for both the tumor 

volume difference and the root-mean-squared error of intracellular volume fractions. Experiments 

were performed on synthetic and clinical data to verify the parameter estimation capability and the 

prediction performance. Comparisons of using different biomechanical models and objective 

functions were also performed. From the experimental results of eight patient data sets, the 

average recall, precision, Dice coefficient, and relative volume difference between predicted and 

measured tumor volumes were 84.5±6.9%, 85.8±8.2%, 84.6±1.7%, and 14.2±8.4%, respectively.
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1. Introduction

The goal of tumor growth prediction is to accurately model the tumor growth process, which 

is mainly achieved by physiological modeling and model personalization from clinical 

measurements. If accurate prediction can be achieved from noninvasive measurements, 

better treatment planning and patient prioritization can be determined, allowing more 

efficient use of resources. For example, if tumor doubling times of pancreatic 

neuroendocrine tumors can be estimated, the risk of metastatic disease, operative resection, 

and unnecessary testing can be better managed (Blansfield et al., 2007). Furthermore, if 

phenotype or genotype information can be revealed from the personalized growth model, 

outcomes of drug treatments can be improved with reduced toxicity (Clayton et al., 2006; 

Schilsky, 2010).

Tumor growth modeling is particularly pertinent for tumors that are either unresectable, or 

that are not removed until they reach a certain size threshold (Kazanjian et al., 2006; Ehehalt 

et al., 2009). Therefore, image-based tumor growth modeling has been actively researched. 

Image-based tumor growth personalization requires three key components: a tumor growth 

model, medical images, and a parameter estimation algorithm. The tumor growth model 

accounts for the general physiological properties derived from ex vivo or in vitro 

experiments, or in vivo animal tests, providing a powerful tool for tumor growth prediction. 

On the other hand, medical images provide the in vivo measurements of the patient, 

revealing the structural or functional information of the underlying physiological status. 

Through computational or mathematical algorithms, the complementary information from 

the model and images can be combined together to provide patient-specific tumor growth 

prediction.

Tumor growth is the abnormal growth of tissue, which usually involves cell invasion and 

mass effect (Friedl et al., 2012). In collective cell invasion, tumor cells migrate as a cohesive 

and multicellular group with retained cell-cell junctions and penetrate to the surrounding 

normal tissues. Mass effect is caused by expansive growth, for which the increase in tumor 

volume leads to multicellular outward pushing with intact cell-cell junctions, and tumor cells 

may be displaced by the volume expansion and pushing. If coupled with migration, mass 

effect contributes to and enhances collective invasion. To model invasion and mass effect, 

most image-based frameworks use macroscopic models to trade-off between realism and 

computationally efficiency. Cell invasion has mostly been modeled through reaction-

diffusion equations which describe cell migrations and proliferations (Clatz et al., 2005; 

Hogea et al., 2008; Konukoglu et al., 2010; Menze et al., 2011; Chen et al., 2013; Liu et al., 

2014). Cell migrations have been modeled as diffusion of cell densities, which can be 

anisotropic or inhomogeneous when the corresponding tissue structure information is 

available (Clatz et al., 2005; Hogea et al., 2008; Konukoglu et al., 2010; Menze et al., 2011). 

Cell proliferations have been modeled as the increase of local cell densities, which can be 

described by the logistic function (Hogea et al., 2008; Konukoglu et al., 2010; Menze et al., 

2011; Liu et al., 2014) or the Gompertz function (Clatz et al., 2005; Chen et al., 2013). Mass 

effect has usually been modeled using biomechanics. Although nonlinear mechanics should 

be used for soft tissue modeling (Fung, 1993) and is the mainstream in the tissue growth 

modeling society (Menzel and Kuhl, 2012), for simplicity, most image-based tumor growth 
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modeling frameworks use the less realistic linear stress-strain relation with infinitesimal 

strain assumption (Clatz et al., 2005; Hogea et al., 2008; Chen et al., 2013; Liu et al., 2014) 

with few exceptions (Kyriacou et al., 1999). Different approaches have been used to 

incorporate the mechanical models, such as using the traditional solid mechanics approaches 

with finite element methods (FEM) (Clatz et al., 2005; Chen et al., 2013), or approximating 

the mechanical effects as an extra advection term in the reaction-diffusion equation (Hogea 

et al., 2008; Liu et al., 2014).

For subject-specific tumor growth prediction, different personalization frameworks have 

been proposed to incorporate different image modalities to personalize different tumor 

growth models. In Hogea et al. (2008), a reaction-advection-diffusion equation describing 

both the invasion and mass effect of brain gliomas growth was solved using a fictitious 

domain method. Using a Lagrangian functional with manually identified landmarks from 

brain magnetic resonance images (MRI) as measurements, the model was personalized using 

adjoint-based partial-differential-equation-constrained (PDE-constrained) optimization. In 

Konukoglu et al. (2010), a reaction-diffusion-based brain gliomas growth model was 

personalized using structural information from MRI and diffusion tensor images. The 

evolution of the tumor delineation was approximated by a modified anisotropic eikonal 

model, which could be efficiently solved by a recursive anisotropic fast marching approach. 

By fixing the proliferation rates, the diffusion coefficients were estimated by comparing 

between the simulated and measured tumor delineations using the UOBYQA 

(Unconstrained Optimization BY Quadratic Approximation) optimization algorithm. In 

Chen et al. (2013), kidney tumor growth was modeled by a coupled reaction-diffusion and 

linear mechanical model, which was solved using FEM. Using the segmented tumor 

volumes from contrast-enhanced computed tomographic (CT) images at multiple time 

points, the model parameters were estimated by the hybrid optimization parallel search 

package (HOPSPACK). The estimated proliferation rates at different time points were 

combined together by exponential curve fitting to obtain the proliferation rate at the current 

time point for the growth prediction. In Liu et al. (2014), using a similar model and 

optimization approach in Hogea et al. (2008), a multimodal framework was proposed for 

pancreatic tumor growth prediction. With the intracellular volume fractions (ICVF) obtained 

from contrast-enhanced CT images, and the standardized uptake values (SUV) obtained 

from 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET), the 

model was personalized with fused functional and structural information.

Although these frameworks are promising, several issues may limit their prediction 

performances. For simplicity, most frameworks use linear stress-strain relation with 

infinitesimal strain assumption. In continuum mechanics, linear strain-displacement 

approximation should only be used when deformation is less than 5% (Bathe, 1996; 

Holzapfel, 2000), which is usually not the case for tumor growth. Furthermore, most 

biological tissues should be modeled as hyper-viscoelastic materials (Fung, 1993). For 

parameter estimation, Hogea et al. (2008) and Liu et al. (2014) formulated the problem as 

adjoint-based PDE-constrained optimization, whose formulations are very complicated and 

the analytical derivatives of the model and objective function are required. Such an approach 

is not suitable for more complex models, and may limit the choices of more realistic models 

and better objective functions. Moreover, except Liu et al. (2014), only structural but not 
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functional information was utilized, which may limit the patient-specificity of the 

personalized model and thus its prediction capability.

In view of these issues, we propose here a framework for pancreatic neuroendocrine tumor 

growth prediction (Figure 1). Pancreatic neuroendocrine tumors are abnormal growths of 

hormone-producing cells in the pancreas (Ries et al., 2007; Ehehalt et al., 2009). They are 

very rare, with only about 1,000 new cases in the United States per year. They are also slow 

growing, and usually not treated until reaching a certain size threshold. Our framework 

includes:

• A FEM-based tumor growth model with coupled reaction-diffusion equation and 

hyperelastic biomechanical model to improve physiological plausibility.

• A derivative-free global optimization algorithm for model parameter estimation to 

facilitate the complicated model and accommodate flexible choices of the objective 

function.

• Physiological data fusion of contrast-enhanced CT and FDG-PET images to 

improve subject-specificity.

Using this framework, more complicated objective functions can be studied, and we propose 

an objective function which accounts for both the volume difference and the root-mean-

squared error of ICVF between simulations and measurements. Sensitivity analysis was 

performed to understand the impacts of different model parameters. Experiments were 

performed on synthetic data to verify the parameter estimation capability of the framework 

under different growth rates, and on clinical data for the prediction performance in reality. 

Comparisons of using different biomechanical models and objective functions are also 

presented.

Although this work is partially based on the work of Liu et al. (2014) in terms of computing 

ICVF from contrast-enhanced CT images and computing proliferation rates from FDG-PET 

images, there are fundamental differences between these two works:

i. Biomechanical model. In this paper, a hyperelastic biomechanical model is used 

instead of a linear model. Furthermore, in Liu et al. (2014), the mechanical 

response was approximated as advection in a reaction-advection-diffusion equation 

solved by the finite difference method, which is simple but physically less accurate. 

In contrast, in this paper, the total-Lagrangian formulation is used with FEM for 

more accurate mechanical response but increased computational complexity.

ii. Objective function. In Liu et al. (2014), only the ICVF differences between the 

simulations and measurements were used. In this paper, apart from the ICVF 

differences, the differences between the simulated and segmented tumor volumes 

are also considered.

iii. Optimization method. In Liu et al. (2014), the adjoint-based PDE-constrained 

optimization was used to estimate the model parameters, which requires the 

analytical derivatives of the objective function and model. In this paper, as the 

objective function and model are more complicated, it is difficult to derive the 
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analytical derivatives and thus a more flexible gradient-free optimization method is 

used.

In this paper, the macroscopic tumor growth model is described in Section 2, followed by 

the image-derived information in Section 3, and the model personalization in Section 4. 

Results of the sensitivity analysis are presented in Section 5, and the experimental results on 

synthetic and clinical data are presented in Section 6. The discussion is provided in Section 

7.

2. Macroscopic Tumor Growth Model

The tumor growth model comprises morphological and physiological knowledge obtained 

from ex vivo or in vitro experiments, providing a powerful prediction tool. With the 

consideration of the physiological plausibility of the model, the computational complexity of 

the inverse problem, and the resolution and nature of the radiological images (CT and PET), 

a macroscopic tumor growth model is proposed.

2.1. Reaction-Diffusion Equation for Proliferation and Invasion

Tumor proliferation is the creation of tumor cells, and tumor invasion is the penetration of 

tumor cells to the surrounding tissues (Friedl et al., 2012; Kam et al., 2012). To simulate 

these processes, different cell-based, macroscopic, multiscale, continuum, and discrete 

models have been proposed with different physiological plausibility and computational 

complexity (Alarcón et al., 2003; Jiang et al., 2005; Byrne, 2010; Kam et al., 2012). 

Although cell-based and multiscale models can better account for subcellular physiology, 

these complicated models can be difficult to personalize using medical images because of 

the numbers and natures of the parameters. For discrete models such as those using cellular 

automata, although some are feasible for large-scale simulations, their discrete nature may 

limit the flexibility of choosing the objective function for model personalization. Therefore, 

to facilitate the complicated inverse problem of model personalization from images, the 

macroscopic reaction-diffusion equation is usually used (Hogea et al., 2008; Konukoglu et 

al., 2010; Chen et al., 2013; Liu et al., 2014).

Consider a reaction-diffusion equation with logistic growth:

(1)

with the first term for tumor invasion and the second term for logistic cell proliferation. N is 

the number of tumor cells and K is the carrying capacity. D is the anisotropic diffusion 

tensor characterizing the invasive property, which is a diagonal matrix with components Dx, 

Dy, and Dz regardless of the tissue structure. Directional diffusion can be included by 

incorporating the tissue structure, but it is not considered as diffusion tensor images are 

unavailable in our data sets, though orthotropic diffusion is used to account for possible 

anisotropic invasion. ρ is the proliferation rate, which can be computed from FDG-PET 

images for better subject-specificity (see Section 3.2). Dividing both sides of (1) by K, we 

have:
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(2)

where θ = (N/K) ∈ [0, 1] represents the normalized tumor cell ratio. As the number of cells 

is proportional to the space they occupy, we represent θ by ICVF, which is the local ratio of 

the intracellular space to the tissue volume. ICVF can be computed from contrast-enhanced 

CT images to provide the initial conditions of (2) (see Section 3.1), and can be used as the 

measurements for model personalization. In our implementation, (2) is reformulated into the 

Galerkin weak form and solved using FEM (Rogers and McCulloch, 1994; Bathe, 1996).

As (2) directly connects ICVF and proliferation rate derived from the images, it plays an 

important role of physiological data fusion. Although this equation is relatively simple, its 

capability of simulating realistic macroscopic tumor growth has been well-verified (Gatenby 

and Gawlinski, 1996; Clatz et al., 2005; Byrne, 2010).

2.2. Hyperelastic Mechanical Model for Mass Effect

Mass effect is the growing tumor mass pushing and displacing the surrounding tissues 

(Friedl et al., 2012). Although nonlinear mechanical models have been proposed to account 

for mass effect (Ambrosi and Mollica, 2002; Graziano and Preziosi, 2007), for simplicity, 

most image-based model personalization frameworks use linear mechanical models (Hogea 

et al., 2008; Chen et al., 2013; Liu et al., 2014) with few exceptions (Kyriacou et al., 1999). 

Nevertheless, infinitesimal strain assumption should only be made for small deformation (< 

5%) (Bathe, 1996; Holzapfel, 2000), which is usually not the case for biological tissues 

(Fung, 1993). Furthermore, non-linear constitutive law is required for enforcing tissue 

incompressibility in large deformation (Holzapfel, 2000). Therefore, for better physiological 

plausibility, we use the modified Saint-Venant-Kirchhoff constitutive law to model the 

tissue as nearly incompressible and isotropic material (Holzapfel, 2000):

(3)

where J = det F, with F the deformation gradient tensor, and J = 1 for isovolumetric 

deformation.  is the isovolumetric part of the Green-Lagrange strain tensor 

 and thus det F̄ ≡ 1. The first and the second term of (3) account 

for the volumetric and isochoric elastic response, respectively, and thus λ is the bulk 

modulus and μ is the shear modulus. In our model, the tumor and its surrounding tissues 

have different mechanical parameters. The second-order second Piola-Kirchhoff (PKII) 

stress tensor (∂ψ/∂ε) and the fourth-order elasticity tensor (∂2ψ/∂ε2) can be derived from (3) 

to provide the nonlinear stress-strain relation.

To simulate mass effect, we compute the pushing force from the ICVF (θ) as (Clatz et al., 

2005):

(4)
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where γ is the force scaling parameter. Therefore, the tumor pushes towards the directions 

with lower tumor cell densities. As the deformation rate is slow for tumor growth, the 

pushing force (fb) is related to the Cauchy stress tensor (σ) using the static equilibrium 

equation:

(5)

From (5), the total-Lagrangian formulation can be derived and the Cauchy stress tensor is 

transformed into the PKII stress tensor (Bathe, 1996). With the stress-strain relation 

provided by the elasticity tensor derived from (3), the biomechanical model is complete and 

can be solved using FEM (Bathe, 1996). The Newton-Raphson method is used with 

incremental decomposition to ensure the accuracy of the nonlinear solution (Bathe, 1996). 

Different passive mechanical parameters λ and μ are assigned to the tumor and its 

surrounding normal tissues.

Apart from the hyperelastic mechanical model, we also performed experiments on a linear 

mechanical model for comparison. The linear stress-strain relation of the model is described 

by the Hooke’s law (Bathe, 1996):

(6)

where ℂ is an isotropic elasticity tensor characterized by the Young’s modulus (E) and 

Poisson’s ratio (ν). Its matrix representation is given as:

(7)

As infinitesimal strain assumption is also used, the mechanical model is linear and the 

Newton-Raphson method is not required.

3. Image-Derived Information

Image-derived information is necessary for patient-specific tumor growth prediction. As 

tumor growth involves morphological and physiological functions (Friedl et al., 2012), both 

structural and functional images are adopted in our framework to improve the patient-

specificity and physiological plausibility of the personalized model.

3.1. ICVF from Contrast-Enhanced CT Images

As the number of cells is proportional to the intracellular space they occupy, we represent 

the normalized tumor cell ratio (θ) in (2) by ICVF, which is the local ratio of the 

intracellular space to the tissue volume that can be computed from contrast-enhanced CT 

images. The concept and formulation of ICVF are based on the computation of extracellular 

volume fraction for assessing interstitial myocardial fibrosis (Nacif et al., 2012). To acquire 

contrast-enhanced CT images, iodine-based contrast agent which causes greater absorption 
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and scattering of x-ray radiation in the target tissue is injected into the blood vessel, and this 

results in contrast enhancement proportional to the injected iodine concentration (Bae, 

2010). The proportionality is nearly constant for a given level of x-ray energy, and the use of 

a lower level of energy results in stronger contrast enhancement per iodine concentration. As 

the intracellular uptake of the contrast agent is minimal, contrast enhancement is 

proportional to the extracellular (vascular and interstitial) concentration of the contrast 

material (Kormano and Dean, 1976; Miles, 1999). Therefore, hypervascular tumors such as 

pancreatic neuroendocrine tumors are enhanced by the contrast agent (Miles, 1999; 

Kazanjian et al., 2006), and the increase in Hounsfield unit indicates the amount of 

extracellular space. In consequence, the ICVF of the tumor can be computed from the pre- 

and post-contrast CT images.

To compute the ICVF of the tumor, the pre-contrast CT image is first registered to the post-

contrast CT image using deformable image registration based on mutual information (Pluim 

et al., 2003), and then the difference image is computed to provide the enhancement in 

Hounsfield unit. As different iodine concentrations and x-ray energy levels provide different 

contrast enhancements, a known reference of contrast enhancement per iodine 

concentration, and thus per extracellular space volume, is required. The reference we use is 

the hematocrit (Hct), which is the ratio of the volume of red blood cells to the volume of 

blood. Hct is measurable from patient’s blood samples, however, as the records are not 

always available, the value of 0.45 is used in this paper (Germann and Stanfield, 2005). 

Using also the contrast enhancement at blood pools such as the aorta, the ICVF (θ ∈ [0, 1]) 

of the tumor can be computed as (Liu et al., 2014):

(8)

where HUpost_tumor, HUpre_tumor, HUpost_blood, and HUpre_blood are the Hounsfield units of 

the post- and pre-contrast CT images at the segmented tumor and blood pool (aorta) (Figure 

2). Therefore, the ICVF of the tumor is computed using the ICVF of the blood (Hct) as a 

reference. The computed ICVF can then be used to provide the initial conditions in (2) 

during simulation, and can be used as the measurements during model personalization.

3.2. Proliferation Rates from FDG-PET Images

Proliferation rates are important factors of tumor growth, and PET images can provide the 

corresponding functional information. For cells to grow, energy and materials are 

transported through hierarchical branching networks to the cells and are transformed into 

metabolic energy for life-sustaining activities. Energy provided to tissues can be divided into 

two parts, one for maintaining existing cells and another for creating new cells (West et al., 

2001). Therefore, the incoming rate of energy flow (B) can be represented as:

(9)
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where Bc is the metabolic rate of a single cell, Ec is the metabolic energy required to create a 

cell, and K is the carrying capacity. As  in (9) only accounts for cell creations, with the 

assumption of local logistic tumor proliferation,  can be substituted into (9) 

and the equation becomes:

(10)

As B is the overall metabolic rate, its value can be inferred from FDG-PET images. FDG is a 

biomarker of glucose uptake and metabolism, as it initially follows the same metabolic 

pathway as glucose (Kelloff et al., 2005). Therefore, FDG-PET images can provide valuable 

functional information of increased glucose uptake and glycolysis of cancer cells for 

metabolic abnormalities. To compensate the variation of injected dose and patient weight, 

the standardized uptake value is usually computed (Thie, 2004) (Figure 2):

(11)

with PET the radioactivity concentration provided as the FDG-PET image intensity. As 

SUV is directly proportional to tissue glucose metabolism (Sadato et al., 1998; Thie, 2004), 

we can rewrite (10) in the form:

(12)

where α > 0 and β > 0 are unknown scalars to be estimated. B = αEcKSUV indicates that the 

overall metabolic rate is proportional to SUV. Therefore, the proliferation rate (ρ) can be 

approximated from CT and PET images measured at the same time point. With (2), (8), (12), 

physiologically meaningful quantities can be computed from CT and PET images and 

combined for better patient-specificity.

4. Model Personalization

Model personalization provides personalized model parameters from image-derived 

information. For accurate and robust parameter estimation, both the objective function and 

optimization algorithm should be properly considered.

4.1. Objective Function

To fully utilize the available measurements to improve the subject-specificity of the 

personalized model, our objective function accounts for both the ICVF and volume 

differences. The simulation with model parameters×is rasterized into an ICVF image using 

the CT image at the same time point as a reference, and the following objective function is 

computed:
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(13)

where TPV is the true positive volume, the overlapping volume between the simulated tumor 

volume (Vs) and the measured (segmented) tumor volume (Vm). In the rasterized ICVF 

image, we define the tumor voxels as those with ICVF larger than 50%, as almost all image-

derived ICVF are larger than this value (Table 3). In consequence, Vs is the sum of the 

volumes of the tumor voxels. θ̄ and θ(x) are the respective measured and simulated ICVF 

within TPV. Therefore, the objective function accounts for both the ICVF root-mean-

squared error (RMSE) and volume difference (VD), and wRMSE and wVD control their 

respective contributions. In the RMSE term of (13), the square root is necessary to ensure its 

value is not too small to be useful.

During the personalization process, the model parameters given by the optimization 

algorithm may not be compatible to each other. For example, the force scaling parameter 

may be too large and the simulation of the mechanical part may fail. To handle this 

situation, we can set the objective function to a predefined maximum value. As the 

maximum value of the RMSE term is one and that of the VD term is two, we can set f(x) = 

wRMSE + 2wVD if the simulation fails and the objective function cannot be evaluated. The 

existence of such an upper bound is a merit of the proposed objective function.

Apart from (13) which uses the volume difference explicitly, we also tested another 

objective function which implicitly accounts for the volume difference:

(14)

where θ̄ and θ(x) of the whole image region are considered. This mimics the objective 

function used in Liu et al. (2014).

4.2. Derivative-Free Global Optimization

The gradient of the objective function (13) is difficult to derive analytically. First of all, 

although the RMSE term is differentiable with respect to θ, the derivatives of θ with respect 

to the parameters x are difficult to obtain. Secondly, for the VD term, the analytical 

derivatives of recall and precision are nontrivial and may not exist.

To handle this condition, one possible way is to use the finite difference approach (Rao, 

2009), which is a popular alternative when analytical gradient is unavailable. Nevertheless, 

as at least n + 1 function evaluations are required, with n the number of parameters, this 

approach is computationally infeasible. Furthermore, finite difference is sensitive to the step 

size and may lead to numerical instability. Therefore, it is not the optimal choice to our 

problem.
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Another possible way is to use derivative-free optimization (Conn et al., 2009). There are 

different algorithms, some with assumptions which can lead to fast convergence if 

conditions are fulfilled; some with fewer assumptions, which are relatively slow but more 

precise under most conditions. For example, the BOBYQA (Bound Optimization BY 

Quadratic Approximation) algorithm solves the local optimization problem by 

approximating the objective function using a quadratic model through interpolation (Powell, 

2009). This algorithm works well with objective functions which are locally quadratic, 

however, the results of other types of objective functions are less optimal.

Therefore, algorithms that make few assumptions about the objective function should be 

used. In our early trials, the subplex method (SUBPLEX) was adopted (Rowan, 1990), 

which is a generalization of the Nelder-Mead simplex method (NMS) (Nelder and Mead, 

1965). A simplex in n-dimensional space is a convex hull of n + 1 points, for example, a 

triangle in 2D. In NMS, a simplex moves through the objective function space, changing 

size and shape, and shrinking near the minimum. SUBPLEX improves NMS by 

decomposing the searching space into subspaces for better computational efficiency.

Although SUBPLEX is derivative-free with few assumptions of the objective function, we 

found in the experiments on synthetic data that (see Section 6.2), the model personalization 

is dependent on the initial parameters (Figure 3). In view of this issue, as our current 

concentration is on the accuracy and robustness but not speed, the global optimization 

algorithm DIRECT (DIviding RECTangles) has been adopted (Gablonsky and Kelley, 

2001). DIRECT is a sampling algorithm thus does not require the gradient of the objective 

function. It is a deterministic algorithm which systematically divides the search domain into 

smaller hyperrectangles, and is designed to completely explore the variable space for the 

global minimum. With this algorithm, the model personalization can be performed with 

intact model nonlinearity and increased accuracy, although the computational complexity 

increases.

5. Sensitivity Analysis

As the tumor growth model comprises various parameters controlling different physiological 

behaviors, it is advantageous to better understand how the changes of parameters affect the 

outputs of the model. A useful tool is sensitivity analysis, which assesses how variations in 

model outputs can be apportioned, qualitatively or quantitatively, to different input sources. 

It may also reveal the dominant parameters to be varied when generating the synthetic 

ground truths for the experiments, and the parameters to be optimized in the model 

personalization.

5.1. Extended Fourier Amplitude Sensitivity Test

The extended Fourier amplitude sensitivity test (eFAST) was used to perform the sensitivity 

analysis (Marino et al., 2008). eFAST is a variance decomposition method, for which input 

parameters are varied and causing variation in the model output. The algorithm partitions the 

output variance to determine the fraction which can be explained by the variation in each 

input parameter. The partitioning of variance is achieved by varying different parameters at 

different frequencies, so that the identity of a parameter is encoded in its frequency of 

Wong et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variation. Fourier analysis then measures the strength of each parameter frequency in the 

model output, and the model sensitivity to a parameter is measured as how strongly the 

parameter frequency propagates from the input to the output through the model.

eFAST defines a sinusoidal function of a particular frequency for each input parameter with 

sampling size (NS). To avoid the inefficiency caused by repeated samples because of the 

symmetric properties of trigonometric functions, each sinusoidal function is resampled by 

NR times with random phase shifts. As such sampling repeats for each parameter analysis, 

the total number of model simulations is NS × NR × n for n parameters of interest. At output, 

eFAST provides two indices to each parameter analyzed. The first-order sensitivity index S 

indicates the contribution of the parameter of interest to the output variation, which is 

calculated as its output variance divided by the total variance. The total-order sensitivity 

index is given as ST = 1−SC, with SC the sum of the output variances of the complement 

parameters divided by the total variance. Therefore, ST (≥ S) indicates both the contribution 

of the parameter of interest and its higher-order and nonlinear interactions with the 

complement parameters.

In our experiments, we used NS = 129 and NR = 3 chosen empirically. Two outputs were 

studied, which correspond to the average ICVF and the tumor volume:

(15)

with θ and Vs the simulated ICVF and tumor volume, and θ̄ and Vm the referencing ICVF 

and tumor volume before the simulation. The function g(•) is defined in (14). All ten model 

parameters, Dx, Dy, Dz, α, β, γ, λtissue, μtissue, λtumor, μtumor, were studied. The total 

computation time was about 24 hours without parallelization.

5.2. Test Results

Table 1 shows that the proliferation parameters α and β were the most dominant parameters 

to both the ICVF and tumor volume. The next important parameters were the three diffusion 

coefficients Dx, Dy, Dz, which had larger influence to the ICVF but smaller influence to the 

tumor volume. The mechanical parameters were the least dominant, while the force scaling 

parameter γ had higher impact than the passive parameters, especially when the interactions 

with other parameters were considered.

In consequence, Dx, Dy, Dz, α, and β should be estimated during model personalization. For 

the mechanical parameters, the force and stiffness are theoretically inseparable for static 

analysis as any proportional force and stiffness produce the same deformation. As the 

stiffness properties of pancreatic tissues and tumors are better studied than the growing 

force, and also because of their relatively low impacts indicated by the sensitivity analysis, 

we adopted the stiffness parameters from Stylianopoulos et al. (2012), with μtissue = 1.0 kPa, 

μtumor = 5.0 kPa, and λtissue = λtumor = 5.0 kPa. Therefore, the parameters to be estimated 

were x = {Dx, Dy, Dz, α, β, γ}.

Wong et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Experiments and Results

The proposed framework and other frameworks were tested on synthetic and clinical data to 

study the differences between using different biomechanical models and between using 

different objective functions. The tested frameworks were:

• Nonlinear root-mean-squared error (RMSE) and volume difference (VD) (N-
RMSEVD): the proposed framework with nonlinear biomechanics (3) and with 

wRMSE = wVD = 1 in (13).

• Nonlinear VD (N-VD): same as N-RMSEVD but only the volume difference was 

considered in the objective function, i.e. wRMSE = 0 and wVD = 1 in (13).

• Nonlinear RMSE (N-RMSE): same as N-RMSEVD but using the objective 

function in (14), which accounts for the volume difference implicitly through the 

ICVF RMSE.

• Linear RMSE and VD (L-RMSEVD): same as N-RMSEVD but using the 

Hooke’s law in (6). The Young’s moduli (E) of the tissue and tumor were 1.0 and 

5.0 kPa, respectively. Poisson’s ratios ν = 0.45 for linear model incompressibility.

Measurements at three time points were required in each experiment. Simulation was 

initiated on the model at the first time point, with the ICVF and SUV images providing the 

initial conditions and proliferation rates in (2). The simulated model was rasterized and 

compared with the measured ICVF and tumor volume at the second time point to evaluate 

the objective function for parameter estimation. Prediction was performed by simulating the 

tumor growth using the personalized model, with the FEM mesh, ICVF, and SUV at the 

second time point as the inputs. The prediction performance was evaluated using the 

measurements at the third time point, and it was represented as recall, precision, Dice 

coefficient, relative volume difference (RVD), average surface distance (ASD), and ICVF 

root-mean-squared error (RMSE). Recall, precision, and RMSE are defined in (13). To 

compute ASD, for each node on the simulated tumor surface, its absolute distance to the 

nearest node on the measured tumor surface is computed. ASD is the average of all these 

distances of all nodes. Dice coefficient and RVD are defined as:

(16)

with TPV, Vs, and Vm defined in (13).

Please note that as the models and implementations between this work and Liu et al. (2014) 

are very different, and as the data sets are only partially overlapped because of the addition 

and removal of data based on the availability and framework requirements, their results 

cannot be fairly compared.

6.1. Tumor Segmentation, Registration, and Meshing

The tumor volumes at all time points were segmented from the post-contrast CT images by a 

level set algorithm with region competition in ITK-SNAP (Yushkevich et al., 2006). For 

each data set, using the segmented tumor at the first time point as a reference, PET images 
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and segmented tumors at other time points were center-aligned through rigid registration to 

preserve the sizes of the tumors, and the corresponding SUV and ICVF were computed 

(Figure 2). Center-alignment was used as the pancreas is highly deformable, and thus it is 

difficult to accurately align the tumors using the surrounding features. Linear tetrahedral 

FEM meshes (3.2 to 4.5 × 104 elements) were built from the segmented tumors and their 

surrounding tissues using iso2mesh (Fang and Boas, 2009) (Figure 2).

6.2. Synthetic Data

6.2.1. Experimental Setups—We studied the parameter estimation capability using 

synthetic data. Using the FEM mesh, SUV, and ICVF images of a patient at the first time 

point (Day 0, Figure 4(a)), the tumor at the second time point (Day 300) was simulated with 

the ground-truth model parameters using the proposed model (Table 2). This FEM 

simulation was rasterized into an ICVF image which was used as the input to the 

experiments (Figure 4). The estimated parameters were then used to predict the tumor at the 

third time point (Day 600), which was compared with the simulated ground truth for the 

prediction performance. As the rasterized image lost all deformation information and some 

ICVF information of the FEM simulation, the parameter estimation is nontrivial.

To study the performances at different growth rates, simulated ground truths with different 

model parameters were produced. The baseline parameters were {Dx, Dy, Dz} = {2.0, 1.0, 

0.0} × 10−3 mm2/day, α = 3.5 mm3/g/day, β = 2.0 × 10−2 day−1, and γ = 2.0 kPa. As the 

sensitivity analysis in Section 5 shows that the SUV scaling parameter α is the most 

dominant parameter for tumor growth, we simulated ground truths with α = 2.5, 3.0, 3.5, 

and 4.0 mm3/g/day. We also simulated ground truths with γ = 1.0, 2.0, 3.0, and 4.0 kPa to 

study the performances under different magnitudes of mass effect (Figure 4). Consistent 

with the sensitivity analysis, Figure 5 shows that the tumor growth was more sensitive to α, 

though γ should also be considered for more accurate results.

For the model personalization, DIRECT does not require the initial values of the parameters 

but their lower and upper bounds. In our experiments on synthetic data, {Dx, Dy, Dz} ∈ [0.0, 

5.0] × 10−3 mm2/day, α ∈ [0.0, 5.0] mm3/g/day, β ∈ [0.0, 5.0] × 10−2 day−1, and γ ∈ [0.0, 

5.0] kPa. The maximum number of function evaluations was 2,000. As accuracy is more 

important than computational time in these experiments, a conservative convergence 

criterion was used, with the objective function value less than 10−3 to stop the optimization.

6.2.2. Results—Table 2 shows the estimated parameters and the prediction performances 

for synthetic data, and Figure 6 shows the differences between the estimated and ground-

truth parameters. For parameters α and β, the estimated values of all frameworks were 

similar in general. The estimated values of β were mostly around 2.5 ×10−2 day−1 to 

compensate for the estimated values of α that were mostly around 0.6 mm3/g/day larger 

than the ground-truth values (Table 2(a) and (b)). When the ground-truth α = 4.0 mm3/g/

day, the estimated values of β were close to 0.8 × 10−2 day−1 to compensate for the 

underestimated α with values around 2.5 mm3/g/day (Table 2(a)). Despite these differences 

from the ground truths, the prediction performances, especially those of the N-RMSEVD 

and L-RMSEVD frameworks, were nearly perfect. This means that different combinations 
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of α and β can lead to similar proliferation rates, and thus they are not totally separable. In 

fact, this property can be inferred from (12). With known SUV and θ from the 

measurements, (12) is a plane in 3D space, and any α and β on the same contour contribute 

to the same proliferation rate. Nevertheless, as both α and β are dominant parameters to the 

tumor growth model, we prefer to estimate them together until a formal solution is found.

For the other parameters, the N-RMSEVD framework had the best estimation by using the 

ground-truth model and the complementary measurements from the ICVF images and tumor 

volumes. In consequence, it had the best prediction performance among the tested 

frameworks. For the N-VD and N-RMSE frameworks, their estimated diffusion coefficients 

had the largest differences from the ground truths. The N-RMSE framework had the worst 

prediction performance, with the minimum Dice coefficient as 79.6% and the maximum 

RVD as 33.8%. This shows that the implicit use of tumor volumes through ICVF (i.e. N-

RMSE) is worse than explicitly comparing both the ICVF and tumor volumes (i.e. N-

RMSEVD). For the L-RMSEVD framework, it had similar capability as the N-RMSEVD 

framework on estimating the diffusion parameters, but it had the largest difference for the 

force scaling parameter (γ) to compensate for the mechanical model mismatch. Despite this 

large force scaling difference, its prediction performance was better than those of the N-VD 

and N-RMSE frameworks. This shows that complementary measurements are more 

important than the biomechanical model. In fact, the small performance difference between 

the N-RMSEVD and L-RMSEVD frameworks is consistent with the results of the 

sensitivity analysis that, the force scaling parameter is not a dominant factor in our model.

Although the N-RMSEVD framework had the best results, other frameworks also had good 

performances. This is reasonable as the frameworks were only incrementally different from 

each other. As all frameworks used the same optimization algorithm, this shows that the 

DIRECT optimization is appropriate for our chosen objective function, and can provide 

accurate results when the models can properly account for the underlying physiological 

status. Nevertheless, as model uncertainties exist in reality, the performances on the clinical 

data were less optimal.

6.3. Clinical Data

6.3.1. Experimental Setups—Images from eight patients (five males and three females) 

with eight diagnosed pancreatic neuroendocrine tumors were used. In this IRB-approved 

protocol for investigation of disease nature, there were no treatments to the tumors until they 

reached 3 cm in diameter. The average age and weight of the patients at the first time point 

were 49.6±13.2 years and 84.9±17.8 kg, respectively. Each set of data had three time points 

of contrast-enhanced CT and FDG-PET images spanning three to four years, and the pixel 

sizes were less than 0.94 × 0.94 × 1.00 mm3 and 4.25 × 4.25 × 3.27 mm3, respectively. 

Table 3 shows the tumor information of all patients at different time points. Some patients 

had similar time spans between the measurements, while some were very different. There 

were also different tumor sizes and maximum SUV values, and the ICVF values were 

mostly between 50% and 90%.

For the model personalization, the ranges of the model parameters were double of those of 

the synthetic data, as larger variations were expected. Therefore, {Dx, Dy, Dz} ∈ [0.0, 10.0] 
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× 10−3 mm2/day, α ∈ [0.0, 10.0] mm3/g/day, β ∈ [0.0, 10.0] × 10−2 day−1, and γ ∈ [0.0, 

10.0] kPa. The maximum number of function evaluations was 2,000, and the objective 

function value had to be smaller than 10−3 for convergence.

6.3.2. Results—Table 4 shows the estimated parameters and the prediction performances 

of different frame-works. As the actual parameter values were unavailable, numerical 

evaluation of the estimated parameters was impossible, though the prediction performances 

could still be verified. Table 4(a) shows that, similar to the synthetic data, the N-RMSEVD 

framework had the best prediction performance. Nevertheless, different from the synthetic 

data, the prediction performance of the L-RMSEVD framework was poor as there was an 

outlier to the results. The outlier was Patient 7, whose RVD was 474.6%. The actual reason 

of this outlier is unclear, though Table 3 shows that Patient 7 had the largest time difference 

ratio between the measurement time points (552 to 168 days) while the percentage growths 

were similar. Figure 7 shows the predicted tumor volumes and ICVF of Patient 7, whose 

data set also contributed to the worst case of the N-VD framework.

Figure 8 shows the results of Patient 4, an example of good prediction. Figure 8(a) and 

Table 3 show that the tumor size and ICVF increased consistently from the first to the third 

time point. Therefore, the model personalized using the measurements at the first and second 

time points could properly predict the tumor growth at the third time point. On the other 

hand, Figure 9 shows the results of Patient 6, the worst case apart from the outlier. Figure 

9(a) and Table 3 show that the tumor size and ICVF increased from the first to the second 

time point, but decreased at the third time point. Therefore, the personalized models 

overestimated the tumor size and ICVF.

To better compare the frameworks, Patient 7 was removed from the data sets, and the 

updated prediction performances are show in Table 4(b). After removing the outlier, the 

differences among the frameworks were more similar to those of the synthetic data. The 

prediction performances of the N-VD and N-RMSE frameworks were similar, and they were 

worse than those of the N-RMSEVD and L-RMSEVD frameworks which had similarly 

good performances. Except the recall and RMSE which were similar in all frameworks, 

other scores of the N-VD and N-RMSE frameworks were worse than those of the N-

RMSEVD and L-RMSEVD frameworks. Especially for the RVD, the maximum values of 

the N-VD and N-RMSE frameworks were up to 60%. These again show the importance of 

the complementary ICVF and tumor volume information for accurate tumor growth 

personalization. Comparing between the N-RMSEVD and L-RMSEVD frameworks, similar 

to the synthetic data, the force scaling parameters γ estimated by the L-RMSEVD 

framework were larger than those of the N-RMSEVD framework to compensate for the 

model difference. Regardless of such a difference, both the N-RMSEVD and L-RMSEVD 

frameworks had promising performances, with the average Dice coefficients around 85% 

and the average RVD less than 15%. This implies that for the predictions of slow growing 

tumors, the use of a linear mechanical model with lower computational complexity can be 

appropriate, though the outliers (e.g. Figure 7) can have larger effect on the linear model.
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7. Discussion

Comparing with other works, this paper presents a relatively complete evaluation of the 

parameter estimation capability and prediction performance of the proposed framework. For 

example, the works of Chen et al. (2013) and Liu et al. (2014) did not have experiments on 

synthetic data, and thus the accuracy and robustness of the parameter estimations were 

unknown, and the potential pitfalls such as the uniqueness of the estimated parameters were 

not studied. On the other hand, while the works of Hogea et al. (2008) and Konukoglu et al. 

(2010) had relatively detailed evaluations of the parameter estimations through synthetic 

data, the evaluations of the prediction capability on clinical data were limited. In contrast, 

we provide detailed evaluation of the parameter estimation capability on synthetic data, 

highlight the potential pitfalls, and compare among different mechanical models and 

objective functions. We also provide detailed prediction performance evaluation on clinical 

data through different metrics such as the Dice coefficient and relative volume difference, 

and analyze the possible causes of the good and bad results. Therefore, our framework is 

properly evaluated through both synthetic and clinical data.

The prediction performance of our framework is promising, with the average Dice 

coefficient as 84.6±1.7% on the clinical data. This performance is comparable to those of the 

state-of-the-art automatic tumor segmentation algorithms (Massoptier and Casciaro, 2008; 

Han et al., 2011; Hamamci et al., 2012) even though we did not use any image information 

of the target tumors during prediction. Although the nature of our work is different from that 

of the automatic tumor segmentation, this gives an idea of the promising prediction 

capability of our framework.

To visualize cellular proliferation, [18F]-fluoro-3′-deoxy-3′-L-fluorothymidine (FLT) PET 

tracer is available for noninvasive imaging of tumor cell proliferation (Been et al., 2004). 

Nevertheless, comparing with FDG, FLT uptake is lower in most cases and does not always 

reflect the tumor cell proliferation rates. Furthermore, FLT-PET is not a common clinical 

practice. Therefore, we utilize the widely-used FDG-PET images to compute the 

proliferation rates instead.

A limitation of this paper is the availability of the measurements. Although using more time 

points can improve the prediction accuracy, as the FDG-PET images are not always 

available, only two time points are used for the model personalization. In consequence, 

when the growth from the first to the third time point is inconsistent, such as the case of 

Patient 6, large prediction errors may occur. Furthermore, as pancreatic neuroendocrine 

tumors are slow growing, the prediction performance of our framework on fast growing 

tumors cannot be validated using the clinical data.

In the future, we will improve both the reaction-diffusion equation and the mechanical 

model. In our current reaction-diffusion equation, we only consider cell proliferation but not 

reduction in the reaction term. As our data are from patients without treatments, this model 

is still appropriate. Nevertheless, if treatment efficacy or tumor necrosis need to be 

considered, extra terms accounting for these conditions need to be included. This can further 
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improve the clinical applicability of the framework and can lead to valuable applications 

such as cancer drug study.

For the mechanical model, although the hyperelastic constitutive law is used for more 

realistic passive mechanical behavior, the use of the ICVF gradient for the outward pushing 

force of the tumor may be less optimal. First of all, the rate of the tumor size change caused 

by mass effect cannot be explicitly included. Furthermore, modeling the tumor size change 

as elastic response contradicts the nearly incompressible nature of most solid tumors, and 

thus the incompressibility of the mechanical model needs to be compromised. To improve 

the realism of the mass effect modeling, approaches of multiplicative growth decomposition 

such as those discussed in Menzel and Kuhl (2012) will be considered.

8. Conclusion

In this paper, we have proposed a pancreatic neuroendocrine tumor growth prediction 

framework which comprises a FEM-based growth model with coupled reaction-diffusion 

equation and nonlinear biomechanics. With the derivative-free global optimization 

algorithm DIRECT, the complementary information from contrast-enhanced CT and FDG-

PET images are physiologically fused together to personalize the model with improved 

patient-specificity. The sensitivity analysis of the model shows that the parameters of the 

reaction-diffusion equation are more dominant than those of the biomechanical model. The 

results of the synthetic data demonstrate the parameter estimation capability of our 

framework, and the results of the clinical data show its promising prediction performance.
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Highlights

• Tumor growth prediction with physiological data fusion.

• A tumor growth model with reaction-diffusion and hyperelastic biomechanical 

model.

• A derivative-free global optimization algorithm for model parameter estimation.

• Physiological data fusion of contrast-enhanced CT and FDG-PET images.

• Average prediction performance: Dice = 84.6
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Figure 1. 
Model personalization framework.
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Figure 2. 
Image-derived information. The SUV image combines with the ICVF image to provide the 

proliferation rates through (12). The ICVF image provides the initial conditions of the 

reaction-diffusion equation (2) and the measurements for model personalization. In the FEM 

mesh, the tumor is red and the surrounding tissues are blue.
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Figure 3. 
Objective function evolutions with SUBPLEX. Different initial parameters lead to different 

results.
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Figure 4. 
Synthetic data. Tumor growth simulations with different model parameters. Left to right in 

each box: the FEM representation of ICVF, the rasterized ICVF image, and the tumor 

volume. (a) Before simulation. (b)–(d) Simulations with different values of SUV scaling 

parameter (α) and force scaling parameter (γ).

Wong et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Synthetic data. Tumor growth curves with different values of SUV scaling parameter (α) 

and force scaling parameter (γ).
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Figure 6. 
Synthetic data. Parameter differences between the estimated and ground-truth values. As the 

ground-truth value of Dz is zero, relative differences cannot be used. The unit of the y-axis 

corresponds to the different units of the model parameters.
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Figure 7. 
Clinical data. Patient 7. (a) CT and ICVF images at the three measurement time points. (b)–

(e): prediction at the third time point, with the measured (red) and predicted (green) tumors 

superimposed.
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Figure 8. 
Clinical data. Patient 4. (a) CT and ICVF images at the three measurement time points. (b)–

(e): prediction at the third time point, with the measured (red) and predicted (green) tumors 

superimposed.
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Figure 9. 
Clinical data. Patient 6. (a) CT and ICVF images at the three measurement time points. (b)–

(e): prediction at the third time point, with the measured (red) and predicted (green) tumors 

superimposed.
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