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Abstract

Point Distribution Models (PDM) are among the most popular shape description techniques and 

their usefulness has been demonstrated in a wide variety of medical imaging applications. 

However, to adequately characterize the underlying modeled population it is essential to have a 

representative number of training samples, which is not always possible. This problem is 

especially relevant as the complexity of the modeled structure increases, being the modeling of 

ensembles of multiple 3D organs one of the most challenging cases. In this paper, we introduce a 

new GEneralized Multi-resolution PDM (GEM-PDM) in the context of multi-organ analysis able 

to efficiently characterize the different inter-object relations, as well as the particular locality of 

each object separately. Importantly, unlike previous approaches, the configuration of the algorithm 

is automated thanks to a new agglomerative landmark clustering method proposed here, which 

equally allows us to identify smaller anatomically significant regions within organs. The sig-

nificant advantage of the GEM-PDM method over two previous approaches (PDM and 

hierarchical PDM) in terms of shape modeling accuracy and robustness to noise, has been 

successfully verified for two different databases of sets of multiple organs: six subcortical brain 

structures, and seven abdominal organs. Finally, we propose the integration of the new shape 

modeling framework into an active shape-model-based segmentation algorithm. The resulting 

algorithm, named GEMA, provides a better overall performance than the two classical approaches 

tested, ASM, and hierarchical ASM, when applied to the segmentation of 3D brain MRI.
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1. Introduction

The segmentation and shape analysis of human organs is of crucial importance to better 

design tools for diagnosis and treatment, study diseases, and perform patient follow-up 

Heimann and Meinzer (2009). Due to the inherent limitations of traditional bottom-up 
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segmentation methods based solely on pixel-level information, the analysis of organs in 3D 

radiological data calls for shape description methods capable of dealing with the high 

variability and complexity of the human anatomy, and the presence of image inaccuracies 

(e.g., partial volume effects ngel Gonzlez Ballester et al. (2002), occlusions, image noise, or 

low contrast), as it is often the case of medical images.

Several statistical shape models, such as deformable templates Grenander et al. (1991) or 

spherical harmonic descriptors Kelemen et al. (1998), emerged at the end of the last century. 

The Point Distribution Model (PDM) proposed by Cootes et al. (1995) has been of 

considerable research interest since its inception in the early 1990s, and its versatility and 

relative simplicity facilitated the emergence of a large number of extensions of the original 

framework (Cootes et al. (1994); Duta and Sonka (1998); Hamarneh and Gustavsson (2004); 

Rajamani et al. (2007)).Traditionally, medical imaging and statistical shape models have 

focused on single-organ applications. However, aware of the importance of shifting from 

organ-based to organism-based approaches, there has been growing interest in the 

development of more comprehensive models in recent years (Linguraru et al. (2012); Okada 

et al. (2008)). An interesting property of PDMs is their inherent capacity to model multi-

object structures by concatenating the descriptors of all the objects and performing global 

statistics on the resulting tuple. However, two major drawbacks limit its utility when 

working with structures of increased complexity. First, PDMs do not respect object-based 

scale levels, lacking the ability to explicitly describe important local geometric information, 

such as locality or inter-organ relations. Secondly, the models typically face the high-

dimension-low-sample-size (HDLSS) problem, which appears when the number of 

parameters needed to accurately describe the geometry is larger than the number of training 

samples available, as it is the case in many medical imaging applications.

Trying to overcome the shortcomings of PDMs, some authors have proposed interesting 

versions of the classical PDM, exploiting the possibilities of incorporating multi-resolution 

hierarchical analysis into shape modeling. Davatzikos et al. (2003) proposed a hierarchical 

decomposition of shape into small pieces of information via the wavelet transform. 

However, whereas the independent modeling of these bands allows reducing the 

dimensionality of the problem, and thus the HDLSS effect, it also reduces the robustness of 

the model as shown by Cerrolaza et al. (2012). An interesting attempt to describe the 

interrelations between objects at different scales statistically is the multi-scale framework 

proposed by Lu et al. (2007) using m-reps as the geometric representation of shapes. In spite 

of the valuable multi-scale properties of m-reps, they are less intuitive than the landmark-

based representation used in PDMs, which is probably one of the simplest and most generic 

methods used to represent shapes. The inter-organ relation is also integrated into the 

framework presented by Okada et al. (2013), where the spatial correlations among organs 

were encoded into a correlation graph. This information was used to define the sequential 

segmentation of multiple organs in abdominal Computer Tomography (CT) images. The aim 

of this hierarchical approach was to improve the accuracy in segmenting more challenging 

abdominal organs, such as the gallbladder and pancreas, relying on the available 

segmentation of more stable organs surrounding them. However, the errors in the 

segmentation of the stable organs are also propagated, and thus affecting the subsequent 

predictions and segmentations due to the proposed sequential formulation. Inter-organ 
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relations were also incorporated in the method proposed by Suzuki et al. (2012), whose 

atlas-based multi-organ segmentation approach was able to automatically handle missing 

organs due to surgical resection. In our previous work (Cerrolaza et al. (2012)), we proposed 

a new multi-resolution hierarchical variant of PDM (MRH-PDM), able to efficiently 

characterize inter-object relations, as well as the particular locality of each object separately. 

Even though the potential of MRH-PDM was successfully verified in terms of accuracy and 

robustness, the absence of an automatic grouping approach can hinder its practical 

application when working with complex data with a large number of objects. Another 

important limitation of MRH-PDM was the limited capability to model the intra-object 

variability of complex organs, considering the single objects as the simplest structures to 

model at the finest resolution level (i.e., each object modeled separately).

In this paper, we present a new GEneralized Multi-resolution PDM (GEM-PDM) to address 

the above limitations of MRH-PDM: intra-object analysis, and automatic multi-resolution 

hierarchical decomposition. Extending the original hierarchical modeling of PDM 

introduced in Cerrolaza et al. (2012) to sub-parts of single-object structures leads to a more 

versatile and generalizable multi-organ-, organ- and sub-organ-based framework, able to 

model efficiently both, the inter- and intra-organ variability. The configuration of the 

algorithm is built around a new agglomerative landmark clustering approach, which provides 

an automatic hierarchical decomposition of the multi-organ structure under study. A first 

version of the framework described here was recently presented in Cerrolaza et al. (2014), 

showing the potential of GEM-PDM for the statistical modeling of 3D subcortical structures. 

In the present work, we provide an additional and detailed description of the method and 

conduct new tests that allow us to better characterize the performance of the algorithm, and 

its value for segmentation. In particular the behavior of GEM-PDM is evaluated in terms of 

shape modeling accuracy and noise robustness, and compared with two popular alternatives, 

the classical PDM (Cootes et al. (1995)) and the original hierarchical PDM (Davatzikos et 

al. (2003)), using two different datasets for our experiments: sets of six brain subcortical 

structures and groups of seven abdominal organs. Finally, we also analyze the performance 

of the new shape modeling framework when it is integrated into a new segmentation 

algorithm, termed here GEneralized Multi-resolution Active shape model (GEMA).

2. Multi-Resolution Decomposition of 3D Structures

In this section, we introduce the concept of multi-resolution decomposition of 3D structures, 

which is one of the cornerstones of the new GEM-PDM presented in Section 3. Wavelet-

based multi-resolution decomposition will allow us to efficiently model the inter-object 

relations and the local variations of each particular organ in a complex multi-object 

structure. For a detailed description of multi-resolution analysis theory the reader is referred 

to the works presented by Lounsbery et al. (1997); Finkelstein and Salesin (1994); Stollnitz 

et al. (1996) for further information.

Let x be the vector form of a 3D shape defined by the concatenation of the three coordinates 

of the K ∈ N landmarks used to describe the structure. In the most general case of a multi-

object shape composed of M ∈ N single-object structures, the vector form is x = (x1;… ; 

xM)T, where xj (1 ≤ j ≤ M) represents the j-th object. Using the multi-object generalization 
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(Cerrolaza et al. (2012)) of the matrix notation initially proposed by Lounsbery et al. (1997), 

the multi-resolution analysis of x can be formulated as

(1)

(2)

where Ar and Br represent the analysis filters, and r ∈ N indicates the level of resolution, 

with r = 0 being the finest one (i.e. x0 = x). Equation (1) implements the filtering and 

downsampling of xr−1, providing a lower resolution version of it, while (2) captures the lost 

detail between xr−1 and xr. Ar and Br must be constructed so that the original mesh can be 

recovered exactly from the low-resolution version, xr, and the wavelet coefficients, zr. 

During these complementary processes, the coarser version of the polyhedron is refined by 

subdividing each triangle (assuming a triangular mesh is used) into four sub-triangles by 

means of additional vertices at edge midpoints. The resulting refined mesh is modified 

according to the wavelet coefficients previously obtained. These refining and modifying 

steps are computed by the synthesis equation (

(3)

where Fr and Gr represent the synthesis filters. In the work of Lounsbery et al. (1997), the 

authors describe a multi-resolution framework to obtain the analysis and synthesis filters for 

arbitrary topological surfaces. Since all the organs considered in this paper have spherical 

topology, we define the multi-resolution domain using the octahedron as the reference mesh, 

with a 4-to-1 splitting step. The wavelet transform was implemented using the lifting scheme 

and a butterfly predictor, as explained by Schroder and Sweldens (1995). The method 

proposed by Praun and Hoppe (2003) is employed to parameterize each structure onto an 

octahedron. Figure 1 depicts the multi-resolution decomposition of a multi-organ shape 

composed by six subcortical structures.

3. Generalized Multi-Resolution Hierarchical PDM

With the method described in Section 2, it is possible to decompose a multi-object structure 

into different levels of resolution, which allows us to create specific statistical shape models 

characterizing different inter-object associations at each scale. Thus, the particulars of each 

single object/organ can be modeled individually at the finest resolution by different PDMs 

(e.g. one model for each organ) (see Fig.3(d) and 4(d)). Then, as we move towards lower 

levels of resolution, additional spatial restrictions can be imposed by means of more global 

shape models that attend to the inter-object relations not modeled in previous resolutions 

(Fig.3(a)-(c) and 4(b-c)). In particular, a global statistical shape model of the whole multi-

object set is built at the coarsest resolution in order to guarantee the coherent disposition of 

the elements (Fig.3(a) and 4(b)).
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In the original MRH-PDM formulation described by Cerrolaza et al. (2012), single organs 

were considered as the simplest structures to model at the finest resolution levels, which 

limits the capability to model the variability in subparts of a single object. Relaxing this 

condition, we go one step further in the development of hierarchical PDMs, introducing a 

general framework where any possible grouping of landmarks is considered. Whereas MRH-

PDM established a specific division of the M objects into Mr ∈ N disjoint subsets at each 

level of resolution (i.e. only complete objects can be part of a subset), here we propose a 

general definition of the disjoint subsets. Thus, at each level of resolution r we define a 

particular division of the Kr landmarks into Mr separate clustersis, . 

 is formed by the indices of the landmarks contained in this subset, and 

therefore,  and . In addition, the following condition is 

imposed. Suppose  represents the i-th element of the sr−1-th subset defined at the r 

− 1-th resolution level, and  is the propagation of  to r − 1, then

(4)

That is, two sets of landmarks that have been grouped separately at a specific level of 

resolution, should not be jointly modeled at finer resolutions; or equivalently, the clusters 

created in the r-th resolution derive from the fragmentation of clusters in r+1-th resolution. 

Despite the intuitive meaning of (4), there is a challenge yet to be resolved: the propagation 

of the clusters between two consecutive resolutions. Let Lr be a (3Kr × 1) vector (i.e. the 

same size as xr) containing the labels of the subset to which each landmark of xr belongs; 

i.e., if  then Lr (i) = s. With this notation, we can estimate L̂r−1, the propagation of 

the subdivision defined by Lr to the landmarks of the following resolution, r−1. The 

estimation is done by means of the synthesis matrix, Fr, i.e., , where the 

 operator rounds to the nearest integer in the range [a, b].

Once the multi-resolution configuration has been defined (process described in Section 4), it 

is necessary to statistically model the underlying population of each subset via PDM (

(5)

where  represents the average vector of landmarks included in , and  and  contain 

the  main eigenvectors, and the corresponding eigenvalues ( ), respectively. 

The integration of GEM-PDM into a full segmentation framework is discussed in Section 5.

4. Automatic Hierarchical Decomposition

The number of possible hierarchical configurations can be considerably high when working 

with complex structures composed by multiple objects. This makes the manual definition of 

an appropriate configuration difficult and possibly subjective and irreproducible, as 

suggested in Cerrolaza et al. (2012), and limits the practical utility of the MRH-PDM. In this 
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section we introduce a new landmark clustering approach that allows us to automatically 

define the division of landmarks into separate clusters at each resolution. The clustering 

process was initially inspired by the work presented by Roy et al. (2006), which was 

originally conducted for vector field segmentation of moving objects in 2D videos, and 

extended to 3D objects by Reyes et al. (2009) to study the anatomical variability of single 

organs via principal factor analysis. Here we propose a more general approach based on the 

agglomerative hierarchical clustering method presented by Ward (1963). Ward’s approach is 

a general agglomerative hierarchical clustering procedure where, starting from an initial 

state in which all elements are considered as separate clusters, a pair of clusters is chosen to 

merge at each step based on the optimal value of an objective function. Here we propose the 

following tailored objective function

(6)

where α1, α2 and α3 are real values such that . Ω ⊆ S represents a region or 

subdomain within the set of landmarks S we want to divide into an optimal set of clusters. In 

the context of shape modeling, an optimal cluster of landmarks can be intuitively defined as 

a group of points with a similar variability pattern (i.e., deformation vector). Thus, the first 

component of (6) takes into account the colinearity between deformation vectors within the 

domain Ω, Vi, and the predominant vector direction VΩ. The notion of dominant direction of 

a set of vectors was originally proposed by Rao and Schunck (1989) and exploited by Roy et 

al. (2006) to identify regions of vectors with a similar direction (i.e., similar variability 

pattern). Figure 2 illustrates this concept graphically for a 2D example. It can be observed 

(see Fig.2(c)) how the colinearity between Vi and VΩ, defined by the term |VΩ × Vi|/|Vi|, 

which can be rewriten as sin(θΩ, i) where , is lower for those vectors with 

direction similar to VΩ (e.g., vectors within the region Ω). In the particular context of GEM-

PDM, we define the deformation vector at landmark  as

(7)

where  is the corresponding displacement vector defined by the t-th eigenvector of 

. The dominant direction  is defined as the eigenvector associated with the 

highest eigenvalue of the symmetric, positive, 3 × 3 matrix , and 

. If Ω contains landmarks with similar deformation vectors, 

then any vector can represents the dominant direction, and the first term in (6) is equal to 

zero. Even more in this case, any subset of Ω has an energy equal to zero. Since our purpose 

is to find the largest domain Ω containing vector with the same direction (see Fig. 2), the 

second term in equation (6) acts as a maximal area constraint to prevent the trivial solution 

where each landmark is grouped independently.
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The aim of the third term, H(Ω), defined as the Hausdorff distance (Rockafellar and Wets 

(2005)) between the objects that compose Ω normalized by the maximum distance among 

objects in S, is to promote the grouping of objects that are spatially close. When minimizing 

equation (6), it is desirable that the colinearity between deformation vectors be the dominant 

term in the generation of clusters, while the second and third term act as additional 

constraints to guarantee the consistency of the final results, i.e. α1 ≫ (α2, α3) Starting with 

the coarsest resolution, r = R, and imposing MR = 1 as additional initial condition, the 

hierarchical configuration of GEM-PDM is obtained by using Wards hierarchical clustering 

in each subset obtained at r + 1.

From the family of partitions provided by Ward (1963) algorithm, we define the optimal 

landmark division based on a tailored version of the Silhouette coefficient (Rousseeuw 

(1987)) defined as follows. Suppose that landmark li is assigned to cluster Ωi. Then, we 

define how well li is assigned to its cluster as ai = J(Ωi)−J(Ωi\li)), where Ωi\li represents the 

cluster Ωi after removing li. Thus, large ai represents a high dissimilarity between li and Ωi. 

In the same way, we define the dissimilarity of li to any other cluster Ωj (j ≠ i) to which li is 

not member as bi =minbi,j, where bi,j = J(Ωj+li) –J(Ωj), and Ωj+li represents the union of li and 

Ωj. Constraining the values of ai and bi to the range [0, 1] by means of the logistic function, 

LF (·), we define the Silhouette coefficient for landmark li as

(8)

Since a value of si close to 1 means that li is appropriately clustered in Ωi, the optimal 

clustering of S will be the one that maximizes the average si. Note that the resolution 

superscript r, was omitted in (8) for clarity. Figures 3 and 4 show the landmark clusterization 

obtained at each resolution for two different cases, the subcortical structures of the brain and 

the set of abdominal organs, respectively.

5. Shape Modeling via GEM-PDM

Once the hierarchical multi-resolution decomposition of the structure has been defined, 

GEM-PDM can be used to generate new instances of the objects of interest (i.e. fitting the 

model to a new set of points that identify the potential location of the structure in a new 

image). In this section, we describe a coarse-to-fine approach to model new shapes via 

GEM-PDM. The potential inconsistency in the border regions of adjacent patches is also 

addressed here. Finally, a step-by-step description of the shape modeling algorithm is 

presented.

5.1. Coarse-to-Fine Shape Modeling

Let x be the vector form of the multi-object structure under study, whose multi-resolution 

hierarchical decomposition (i.e., hierarchical landmark clusterization and statistical 

modeling) is obtained according to the procedures described in the previous sections. 

Suppose that now we want to use the new GEM-PDM to describe a new case, y, i.e., finding 

the best approximation of y in the subspace of allowed shapes described by the statistical 
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model. Starting from the coarsest resolution (r = R), yr is divided into the Mr subsets defined 

in Section 4 (in particular, we impose the initial constraint MR = 1), each being corrected by 

the corresponding PDM (5). The resulting constrained shape, xr is combined with the 

original wavelet information, zr,to create yr−1 by means of the synthesis equation (3). This 

process is repeated at each resolution until r = 0. Because the corrections imposed at r via 

PDM can be altered at the subsequent resolution, r − 1, the above procedure is repeated 

iteratively until convergence or a maximum number of iterations is reached.

5.2. Inter-Regions Consistency

Along with its simplicity, another interesting property of PDM is the capacity to correct 

potential inaccuracies in the target shape, y. In practice, y is typically obtained by means of 

some image-based matching process (see Cootes et al. (1995) or van Ginneken et al. (2002) 

for details), which may contain significant inconsistencies due to the use of over-simplistic 

appearance models, and the presence of noise or artifacts in the image. The creation of new 

appearance models being able to adequately characterize the texture of the organs of interest 

is still a very active research field (Sukno et al. (2007); van Ginneken et al. (2002); Cheng et 

al. (2014); Islam et al. (2013); Rathore et al. (2011)). Despite the possible inconsistency of 

the resulting shape, the legitimacy of the final form is guaranteed by the shape model, 

providing the best approximation of y in the subspace of valid shapes. In GEM-PDM, 

relaxing the definition of the minimum unit than can be modeled independently allows us to 

model complex multi-object structures more efficiently than traditional PDMs. As a result of 

this new paradigm, an organ can be divided into multiple sub-parts as we move towards 

higher resolutions (see Figs. 2 and 3). Despite the fact that the coarse-to-fine multi-

resolution modeling approach described in Section 5.1 guarantees the general consistency of 

the set, additional constraints may be necessary in the border regions between patches in 

order to prevent the overlapping and to preserve the relative position between landmarks. As 

it can be deduced from Section 5.1, the consistency between adjacent regions,  and , is 

partially handled at coarser resolutions since . However, since no 

correction is performed on the wavelet term zr used to estimate yr−1 from xr, it can generate 

some residual overlapping inaccuracies (see Fig. 5(a) and (b)).

Given , we define the expansion of grade 1 of this region, , as the union of  and 

those landmarks directly connected to the border of the region; i.e., those landmarks that 

belong to the same triangular face (assuming we use triangulated meshes to represent 

objects) than the border points of , but not included in it. Recursively,  can be defined 

as the expansion of grade 1 of , and so on (see Fig. 5(c)). This allows us to define 

overlapping areas when creating the statistical shape models for each region.

The final location of those landmarks included in more than one region is defined as the 

average of the positions suggested by each expanded statistical model (i.e., ), 

weighted by the distance function , where D is the geodesic distance ((Mitchell et al., 

1987)) to the original non-expanded region,  (see Fig. 5 (d)). Suppose landmark l belongs 

to the expanded regions  and , and that ľ1 and ľ2 are the new corrected positions for l 
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proposed by the statistical shape models of  and , respectively. Thus, the final 

location for l is defined as

(9)

where Dl,1 and Dl,2 are the geodesic distance of l to the original  and  respectively. In 

our experience, working with expansions of grade 1 or 2 is sufficient to guarantee 

satisfactory results.

5.3. Description of the Algorithm

A step-by-step description of the new shape modeling algorithm is detailed in Algorithm 1.

6. Results

In this section we present a set of experiments to analyze and quantify the potential of the 

new hierarchical shape modeling framework presented here to characterize the underlying 

population of a given set of training shapes and its ability to generate new valid instances. 

We also characterize the performance of the model in terms of robustness and its capacity to 

adequately correct invalid cases out of the subspace of allowed shapes. The behavior of 

GEM-PDM is compared with two alternative methods: the original PDM proposed by 

Cootes et al. (1995), and one of the most popular hierarchical variants presented by 

Davatzikos et al. (2003), the hierarchical PDM (HPDM).To evaluate the utility of GEM-

PDM in the context of a real segmentation task, GEM-PDM is also compared with the two 

segmentation approaches based on PDM and HPDM, i.e., the classical ASM framework 

(Cootes et al. (1995, 1994)), and the hierarchical ASM (HASM), respectively. Finally, we 

analyze the potential of GEM-PDM for the study of anatomical variability within organs, 

and its correlation with known anatomical deformations

In our experiments, we use two different databases. First we use a set of 18 T1-weighted 

brain MRI volumes obtained from the Internet Brain Segmentation Repository (IBSR) 

(IBSR (2006)) (pixel resolution 0.94×0.94×1.5 mm; volumes: 256 ×256 ×128 voxels). In 

particular, we work with a multi-object configuration composed of six subcortical structures, 

including the left and right lateral ventricles, left and right caudate nuclei, and left and right 

puta-mens (see Fig. 1). We also use a proprietary database of 18 CT abdominal studies 

(pixel resolution: 0.58×0.58×1.00 mm; volumes: 512×512×360 voxels). In this case, the 

structure under study consists of 7 abdominal organs, including the liver, the gallbladder, the 

spleen, the pancreas, the stomach, and the left and right kidneys (see Fig. 3(a)). In both 

cases, the maximum resolution is defined by the lowest number of landmarks necessary to 

represent the shapes of interest with an average point-to-surface error lower than 0.01 mm. 

Thus, we define a multi-resolution domain with 5 levels, i.e.RS = 4, using 1026 points to 

describe each organ at the finest resolution level. The dense point correspondence between 

all shapes of the training sets was established via mesh-to-mesh registration (Heimann and 

Meinzer (2009)). In particular, we use the shape context method proposed by Belongie et al. 
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Belongie et al. (2002), where regularized thin-plate splines are used to align two shapes 

based on the point correspondences obtained from the shape context descriptors (i.e., an 

expanded vector of features defined for each point).

6.1. Hierarchical Configuration

In GEM-PDM there are three configuration parameters that control the clusterization 

process, α1, α2 and α3 (see (6)). Following the general guidelines described in Section 4, 

α1, α2 and α3, are set to 0.8, 0.1 and 0.1, respectively. Experimentally, we observed great 

similarity between the clusters obtained when α1 ∈ [0.7, 0.9] with α2 = α3 = (1 − α1)/2. For 

α1 < 0.7, the landmarks grouped into a single large cluster, as the second and third term of 

(6) control the clusterization process. For α1 > 0.9, the landmarks were over-clustered due to 

the under penalization of partitions. Imposing the initial constraint MR = 1, the resulting 

configurations for both databases are shown in Figs. 2 and 3. In the case of the subcortical 

structures of the brain, the hierarchical configuration proposes the division of the organs into 

two groups at r = 3, coinciding with the left and right hemisphere of the brain. At r = 2, 

adjacent objects are modeled together, and at r = 1, each subcortical structure is considered 

independently. The subdivision of each organ into smaller subsets of landmarks at r = 0 can 

be observed in Fig. 2(e).

After modeling together the whole set of abdominal organs at the coarsest resolution, two 

groups were created at r = 3 for the left an right abdomen: spleen, stomach, pancreas and left 

kidney, and liver, gallbladder and right kidney, respectively. At r = 2 each organ was 

modeled independently. The subsets in which each organ is divided at finer resolutions are 

depicted in Fig. 3(e) and (f). The possible anatomical interpretation of some of these clusters 

is discussed in Section 6.4. It is interesting to note how the individual organs of interest in 

both databases were automatically clustered at r = 1 and r = 2 for the brain and the 

abdominal databases, respectively, incorporating the modeling of each organ in the multi-

resolution hierarchical model.

Like most of the agglomerative clustering approaches, the complexity of the tailored version 

of Ward’s algorithm (Ward, 1963) presented in Section 4 is O(n3). In particular, the 

computational cost of the hierarchical clustering was 100 min for both databases 

(implementations based on Matlab® R2014a 64-bits, using a 2.80GHz Intel®Xeon®with 

16GB or RAM). Finally, note that the hierarchical clustering process is a one-time offline 

process for each of the databases considered in the study.

6.2. Statistical Shape Modeling Accuracy

The three statistical models under study, PDM, HPDM, and GEM-PDM, were built to 

explain 98% of the variability observed in the training set, restricting the deformation space 

around the mean shape to twice the standard deviation in each deformation vector (i.e., each 

eigenvector). The resulting number of eigenvectors was different for each statistical shape 

model. The accuracy of the three methods to model new instances of the underlying 

population was evaluated in terms of the symmetric point-to-surface distance (P2S) and Dice 

coefficient (DC), using leave-one-out cross-validation. In particular, three different sets of 

shapes were used to characterize the capacity of the models to generate new instances, as 
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well as their robustness, on each database: the original ground-truth (i.e., shapes), and noisy 

shapes in which different levels of Gaussian noise were added to each axis: zero-mean 

normal random noise with standard deviation of 5 mm and 15 mm. The results obtained for 

the brain and the abdominal databases are shown in Tables 1 and 2, respectively. 

Significance was assessed using the Wilcoxon rank sum test and a p-value of 0.05.

When modeling images without noise added, it can be observed that the new GEM-PDM 

provides a significant improvement over the two alternative approaches, PDM and HPDM, 

for most of the subcortical brain structures, obtaining an average P2S distance of 0.68 ± 0.17 

mm, and DC of 0.87 ± 0.04 (only the left putamen provided a p-value higher than 0.05). The 

significant advantage of GEM-PDM over PDM and HPDM was also validated for all the 

abdominal organs considered (average P2S distance of 3.35 ± 1.19 mm and DC of 0.80 

±0.09), with the exception of the spleen, where both hierarchical approaches provided 

similar results.

The good performance of GEM-PDM is also appreciated when working with noisy shapes. 

In the case of the zero-mean normal noise with 5mm of standard deviation, both GEM-PDM 

(P2S: 0.81±0.16 mm; DC: 0.85±0.03) and PDM (P2S: 0.80 ± 0.19 mm; DC: 0.85 ± 0.04) 

provide similar results for the brain database, and both significantly outperform HPDM 

(P2S: 1.55 ± 0.17 mm; DC: 0.61 ± 0.06). For the abdominal structures GEM-PDM (P2S: 

4.53±1.38 mm, DC: 0.74±0.08) provided significantly better results than the two alternative 

methods. In both databases, the performance of GEM-PDM was significantly better than the 

two alternatives approaches for a noise level of 15 mm.

As Cerrolaza et al. (2012) point out, the independent modeling of the bands used in HPDM 

significantly reduces the robustness of the model to noise, being especially sensitive to noisy 

cases. On the other hand, the classical approach of PDM tends to over-restrict the subspace 

of allowed shapes as a consequence of the HDLSS problem. While this provides significant 

modeling robustness to noise by ensuring that only valid shapes are generated even when 

dealing with noisy data, it also restricts the capability of the model to generate new 

instances. Thanks to the coarse-to-fine multi-resolution approach, and the overlapping 

between adjacent regions defined in Section 5.2, GEM-PDM is able to accurately model new 

instances of the underlying population, while equally guaranteeing the consistency of the 

final shape.

It is interesting to note that in general, all methods provided a greater shape modeling error 

for the abdominal cases than for the brain structures. While the number of training samples 

was the same in both cases, a higher variability, not only in the organ shape, but also in the 

spatial relations between them, was observed in the abdominal database, i.e., the HDLSS 

effect becomes more relevant. Despite the limited number of samples available, it can be 

observed that the new GEM-PDM outperformed the two alternative methods considered, 

PDM and HPDM. Finally, note that the P2S distance can be also increased by the larger size 

of the organs involved in the abdominal database.
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6.3. Segmentation of 3D Brain MRI

In this section, we analyze the integration of the new GEM-PDM into a segmentation 

framework. In particular, our example addresses the segmentation of subcortical brain 

structures from MRI, one of the first applications of the original hierarchical model 

presented by Cerrolaza et al. (2012). In this paper, the segmentation was limited to 2D 

structures and the hierarchical configuration was defined manually. In this paper, we address 

the segmentation of 3D brain structures, a more interesting and challenging scenario, where 

to overcome the inherent limitations of the original formulation by GEM-PDM (i.e., the 

difficulty of manually defining the hierarchical configuration that provides optimal 

performance, and the constraint of modeling entire objects at the finest resolution) becomes 

essential. Moreover, the new GEM-PDM can additionally model sub-organ structures, which 

was not possible in the original framework. The performance of the resulting GEneralized 

Multi-resolution Active shape model shape model (GEMA), is compared with the two 

segmentation approaches based on PDM and HPDM, i.e., the classical ASM framework 

(Cootes et al. (1995, 1994)), and the hierarchical ASM (HASM), respectively. To guide the 

matching process to a new image, we used one of the classical search profile appearance 

models frequently used in the context of ASM (Cootes et al. (1995, 1994)), defined by the 

mean and the covariance matrix of the normalized first derivative of fixed-size gray profiles, 

normal to the boundary and centered at each landmark. The length of these profiles was set 

to 5 voxels, defining a search space of 9 pixels. The initialization was obtained by means of 

3D rigid image registration between a reference image from the training set and the target 

image, using the sum of squared differences as similarity measure (Crum et al. (2004); 

Myronenko (2010)). The resulting deformation field was used to obtain the initial estimation 

of the shape. All parameters were identical between the compared methods: ASM, HASM 

and GEMA, respectively.

Table 3 shows the accuracy of the three tested algorithms in terms of P2S and DC, using the 

leave-one-out cross-validation. It can be observed how the new segmentation algorithm, 

GEMA (avg.P2S: 0.83 ± 0.17 mm; avg.DC: 0.85 ± 0.03), provided a significantly better 

overall performance in terms of both P2S and DC than the other two algorithms, ASM 

(avg.P2S: 0.99 ± 0.33 mm; avg.DC: 0.82 ± 0.07), and HASM (avg.P2S: 1.49 ± 0.43 mm; 

avg.DC: 0.68 ± 0.09). Even more, compared to the 2D case considered in Cerrolaza et al. 

(2012), GEMA provides better accuracy than the best manual configuration proposed there 

(DC: 0.81±0.07). It can be appreciated how the segmentations obtained with ASM and 

GEMA were generally better than the ones provided by HASM. As discussed in Cerrolaza et 

al. (2012), HASM is inefficient when dealing with the noisy shapes generated during the 

image-based matching process of a real segmentation process.

Finally, note that the computational cost of the hierarchical approaches, GEMA (~ 5 min.), 

and HASM (~ 7 min.), is slightly higher than the cost of the classical ASM (~ 3 min.), due 

to the additional operations associated with the wavelet-based multi-resolution 

decomposition (all implementations were in Matlab®R2014a 64-bits, using a 2.80GHz 

Intel®Xeon®with 16GB or RAM).
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6.4. Anatomical Variability of Organs

Another interesting application of the hierarchical decomposition introduced in Section 4 is 

the study of anatomical variability of organs, and of inter-organs relations. According to the 

original works presented by Reyes et al. (2009, 2010), the analysis of deformation fields 

showed correlation with existing anatomical landmarks and known anatomical deformations 

of abdominal organs. The subdivision of organs into anatomically significant components 

defined by clusters may be of great utility in the study and analysis of the anatomical 

variability of organs and inter-organs relations, an important research tool for diagnosis, 

modeling, and soft tissue intervention. In particular, Reyes et al. focused their interest in the 

study of abdominal structures, though from a single-organ or local perspective. Here, the 

new general landmark clustering framework introduced in Section 4 allows us to address the 

problem from a more global perspective. Thanks to the energy minimization process defined 

by equations (6) and (8), the clusterization process allows us to identify those groups of 

landmarks with similar anatomical and mechanical characteristics (e.g., similar deformation 

fields, or spatial proximity). Thus, as it was discussed in Section 6.1, broader inter-organ 

relations are considered at coarser resolutions, creating smaller groups as we move towards 

finer resolutions (see Fig. 3). For instance, it is possible to appreciate how the two groups 

created at r = 3 are composed of organs with known anatomical relations between them, 

such as the liver, gallbladder and right kidney, or the left kidney, spleen and pancreas (Fig. 

4(c)). These organ relations or correlations were also observed by Okada et al. (2013).

In Figure 6 we go one step further and show how it is possible to establish a direct relation 

between the clusters obtained at finest resolutions, and known anatomical and functional 

sections of the organs. At this stage of our work, these intra-organ clusters were evaluated 

qualitatively by an expert radiologist. The intra-organ analysis is not a focus of this 

manuscript and these preliminary results are shown for exemplification only.

Figure 6 (a) shows the correspondence between the clusters of the spleen with the superior 

and inferior poles, and the renal, gastric, and left colic impressions. Figure 6 (b) identifies 

the three parts in which the pancreas can be divided, the head, the body and the tail. Figure 6 

(c) shows how the clusterization process divides the left lateral ventricle into three different 

regions, which can be identified with the anterior horn, the body, and the posterior and 

inferior horn. It can be observed how the posterior and inferior horns of the left lateral 

ventricle are included within the same clusters, in spite of being two different anatomical 

regions. A possible explanation is the absence of the posterior horn in many instances. The 

posterior horns are very thin structures barely detectable in MRI, due to partial volume 

effects (Rajamani et al. (2007)). As a consequence, the manual segmentations provided by 

the IBSR database are not always consistent, and the posterior horn is missing in many 

cases. This issue suggests an interesting possible extension of our framework: the multi-

structure methodology could be adapted to deal with missing structures.

7. Discussion and Conclusions

In this paper, we presented a general multi-resolution framework for the statistical modeling 

of multi-object structures. Unlike the classical single-object modeling approach of PDM, the 

new GEM-PDM creates different statistical shape models that characterize specific inter-
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organs associations at each level of resolution. The goal of this strategy is twofold: to reduce 

the HDLSS challenge, particularly relevant in new medical imaging applications, where the 

number of training images is often small, and to efficiently capture the interaction between 

adjacent regions, in addition to the shape variation of individual organs. This GEM-PDM 

also tackles the two main drawbacks observed in previous hierarchical approaches: the 

difficulty of manually defining the hierarchical configuration that provides optimal 

performance, and the limitation of considering the single objects as the simplest structure to 

model. Relaxing this latter condition, we go one step further in the development of 

hierarchical PDMs, presenting a general framework where any possible grouping of 

landmarks is considered. Finally, the hierarchical configuration of the algorithm is 

completely automated thanks to the new agglomerative landmark clustering approach, 

whose optimization is controlled by a tailored definition of the Silhouette coefficient.

The performance of GEM-PDM was evaluated in terms of shape modeling accuracy and 

noise robustness, and compared with two popular alternatives: the classical PDM and 

HPDM. The results show how the new general framework significantly outperformed both 

alternative approaches for two different tested databases: the set of six brain subcortical 

structures and the set of seven abdominal organs.

Finally, the new shape modeling framework was integrated into a real segmentation 

algorithm, GEMA, providing a better overall performance than the other two algorithms 

tested, ASM and HASM, when applied to the segmentation of subcortical structures.

In the near future, we will continue exploring the capability of GEM-PDM to automatically 

model comprehesive anatomical structures, from the multi-organ level to the inter- and intra-

object resolution, and formalize the anatomic and functional relations between organs, 

which can be of great interest in the context of full body computational anatomy.
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Algorithm 1

GEM-PDM

Input: y; \\ Target shape to model;

x0 = y; \\ Initialization;

while (not convergence) or (not max. iterations) do

 x0 → {xR,zR,zR−1, …, z1}; \\ Multi-resolution decomposition using (1) and (2);

 for r = R to 1 do

  for s = 1 to Mr do

    ;\\ Build the expansion of grade d for each region ;

    ;

  end

   ;\\ Solve overlapping between regions using geodesic distance;

   ;

  if r > 0 then

    ; \\ Shape resolution updating using (3);

  end

 end

 x0 = x͂0;

end
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Figure 1. 
Example of the multi-resolution decomposition of a multi-object shape. From left to right, 

fine-to-coarse representations of six subcortical brain structures as they are processed by the 

wavelet analysis filter, A.
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Figure 2. 
Dominant vector direction and colinearity. (a) Artificially generated grid of deformation 

vectors. Part of the vectors were generated randomly whereas those inside the region Ω were 

generated from a normal distribution (std = 0.08 rad). (b) Dominant vector direction VΩ 
within the domain Ω. (c) Colinearity between Vi and VΩ: |VΩ × Vi|/|Vi|.
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Figure 3. 
Multi-resolution decomposition and hierarchical configuration provided by the GMRH-

PDM algorithm for the multi-object structure composed by six subcortical structures of the 

brain. At each level of resolution, the set of landmarks depicted with the same color are 

modeled jointly via PDM. At resolution x1 the lateral ventricles are in dark red  and 

yellow , the caudate nuclei in navy  and orange , and the putamens in dark blue 

 and cyan .
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Figure 4. 
Set of the abdominal structures considered in the study. (a) Identification of the seven 

structures under study. Each organ is depicted with a different color for representation 

purpose. (b)-(f) Multi-resolution decomposition and hierarchical configuration for the multi-

object structure composed by seven abdominal structures. At each level of resolution, the set 

of landmarks depicted with the same color are modeled jointly via PDM.
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Figure 5. 
Example of the inter-regions consistency preservation. (a) Example of two adjacent regions, 

 and . The arrows show the new position of the two highlighted landmarks after the 

appearance model-based updating stage. (b) Inconsistency of the shape when using two 

independent shape models  and . (c) Expansion of grade 1, , 

and 2 , of regions  and . (d) New landmarks position using the weighted sum 

of the two expanded shape models (see eq. (9)), i.e.,  and .
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Figure 6. 
Clusterization results of the spleen (a), the pancreas (b), and the left lateral ventricle (c) at 

the finest level of resolution used in this paper, and their qualitative relations to anatomical 

sections of the organs.
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