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Abstract

Deformable modeling with medial axis representation is a useful means of segmenting and 

parametrically describing the shape of anatomical structures in medical images. Continuous 

medial representation (cm-rep) is a “skeleton-first” approach to deformable medial modeling that 

explicitly parameterizes an object’s medial axis and derives the object’s boundary algorithmically. 

Although cm-rep has effectively been used to segment and model a number of anatomical 

structures with non-branching medial topologies, the framework is challenging to apply to objects 

with branching medial geometries since branch curves in the medial axis are difficult to 

parameterize. In this work, we demonstrate the first clinical application of a new “boundary-first” 

deformable medial modeling paradigm, wherein an object’s boundary is explicitly described and 

constraints are imposed on boundary geometry to preserve the branching configuration of the 

medial axis during model deformation. This “boundary-first” framework is leveraged to segment 

and morphologically analyze the aortic valve apparatus in 3D echocardiographic images. Relative 

to manual tracing, segmentation with deformable medial modeling achieves a mean boundary 

error of 0.41 ± 0.10 mm (approximately one voxel) in 22 3DE images of normal aortic valves at 

systole. Deformable medial modeling is additionally demonstrated on pathological cases, 

including aortic stenosis, Marfan syndrome, and bicuspid aortic valve disease. This study 

demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology.
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1. INTRODUCTION

1.1. Deformable modeling of heart valves in 3D echocardiographic images

Echocardiography is the most commonly used imaging modality for the evaluation of heart 

valve disease. Image segmentation of heart valves in 3D echocardiographic (3DE) data is a 

means of extracting visual and quantitative information about patient-specific in vivo valve 

morphology that can support valve diagnostics and surgical treatment planning (Jassar et al., 

2014, Noack et al., 2013, Veronesi et al., 2009, Vergnat et al., 2011). Image segmentation in 

this context, however, is difficult due to the signal dropouts and noise that are characteristic 

of echocardiographic imaging, as well as the fact that many clinically relevant valve 

landmarks are defined geometrically rather than by distinctive image intensity 

characteristics. For example, several components of the aortic valve complex, such as the 

sinotubular junction (STJ), the commissures, and the attachments of the aortic cusps, are 

identified anatomically rather than by distinctive image intensity patterns. Given these 

challenges, shape-guided deformable modeling methods are well suited for 3DE heart valve 

segmentation. Deformable modeling methods capture the geometry of an image region by 

deforming parametric surfaces under the influence of external data-driven forces and 

internal regularization forces. Shape constraints imposed on the deformable model can fill in 

areas of intensity inhomogeneity or establish boundaries between anatomical components 

that are not demarcated by image gradients. Once a parametric model of the valve is 

obtained, it can be interactively visualized, quantitatively analyzed, and statistically 

compared to other valve geometries.

Several deformable modeling methods for heart valve segmentation in 3DE images have 

been proposed, each of which uses a different means of representing valve shape. Ionasec et 

al. (2010) developed a fully automatic technique for segmenting the aortic and mitral valves 

in 3DE images. Given a database of manually landmarked images, machine learning 

algorithms globally locate and track several valve landmarks throughout the cardiac cycle. 

Spline surfaces are fitted through these points with the aid of learned boundary detectors to 

represent the geometry of the valves. In other work, Schneider et al. (2011) present a 

deformable model-based 4D segmentation of the mitral leaflets in real-time 3DE data in 

which the leaflets are represented with a triangulated mesh. Once the leaflets are segmented 
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at diastole, the mesh deforms to subsequent time points in the cardiac cycle under the 

influence of multiple image-driven and regularizing forces. The regularizing forces 

encourage leaflet stretching during valve closure, prevent excessive leaflet bending and 

collision, and encourage the leaflet free edges to point into the left ventricle. This 

segmentation and deformable modeling method has only been applied to the mitral valve 

and has not yet been extended to the aortic valve.

Our earlier work (Pouch et al., 2013, 2014) differs from the above deformable modeling 

methods in that it represents mitral and aortic leaflet geometry volumetrically, i.e. as 

structures with locally varying thickness. The shape descriptor we use for the deformable 

model is 3D continuous medial representation, or cm-rep (Yushkevich et al., 2006a). This 

representation describes the relationship between the surfaces and the interior, or 

morphological skeleton1, of the leaflets. In (1967), Blum introduced the notion of the medial 

axis in 2D as a means of shape classification and discrimination for biological problems. 

The definition naturally extends to 3D, as described in Section 2.1, and has been leveraged 

for parametric deformable modeling of anatomical structures in medical images. Deformable 

models based on the medial representation were pioneered by Pizer et al. (1999, 2003, 2013) 

and have two particular advantages in medical image segmentation and shape analysis: they 

can be used to constrain the branching configuration of the segmented anatomical structure, 

and they can be used to statistically compare skeleton-derived shape features in a population 

of instances of those segmented anatomical structures. In the continuous medial 

representation (cm-rep) framework described in (Yushkevich et al. 2006a), a deformable 

model represents an object’s medial axis as a parametric surface, and the thickness of the 

object at each point on the medial axis is also parametrically defined. This is in contrast to 

the original medial representation of Pizer et al. (2003), in which the medial axis is 

described using a discrete set of primitives, or “atoms”. The parametric description of the 

skeleton as a surface with thickness can be “inflated” using a simple analytical expression to 

form a volumetric representation of the object, a process referred to as inverse 

skeletonization. (Note that since the object’s boundary is derived from the object’s skeleton, 

the cm-rep method is considered a “skeleton-first” approach to medial representation.) By 

modifying the parameters of the skeleton, the cm-rep model can be deformed to take on new 

shapes. Gradient-based optimization schemes can be applied to the model parameters in 

order to deform the model to approximate the shape of anatomical structures in 3D image 

data. Typically, these structures are first segmented using some separate segmentation 

algorithm, and the cm-rep model is fitted to the binary or multi-label segmentation of the 

structure of interest (Yushkevich et al., 2006a, 2008; Pouch et al. 2014). However, the 

optimization can also be formulated to fit the model directly to image intensities, as in (Sun 

et al., 2010). The motivation for using cm-rep as a shape descriptor for heart valve leaflets is 

that it is useful for volumetric modeling of thin sheet-like structures. The parametric model 

explicitly defines leaflet thickness, which is an important tissue parameter in biomechanical 

valve simulation (Rausch et al., 2012) and may be indicative of valve pathology, such as 

calcification or degenerative processes. Moreover, the aortic and ventricular surfaces of the 

1Note that in this work, the terms medial axis and morphological skeleton are used interchangeably when referring to either 2D or 3D 
objects. The medial axis of a 2D object is a set of curves, and the medial axis of a 3D object is generically a set of surfaces. We also 
use the term medial scaffold to specifically refer to a 3D medial axis or skeleton.
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aortic cusps are both delineated, and constraints on medial geometry prevent these surfaces 

from intersecting during model deformation.

1.2. Challenges of deformable modeling of the aortic valve apparatus with medial axis 
representation

A major limitation of the cm-rep method described above is that it is limited to modeling 3D 

structures that can be accurately represented using a single-surface medial axis. However, 

many sheet-like anatomical structure can only be described using a medial axis consisting of 

multiple adjoining surfaces, or “branches.” So, while cm-rep has been effectively used to 

describe mitral and aortic leaflet morphology in 3DE images, applying it to the entire aortic 

valve complex (including the sinuses of Valsalva) is not possible. The heart valve leaflets 

themselves can be described in terms of a single non-branching medial manifold; however, 

the entire aortic valve complex has a branching medial representation, as illustrated in Fig. 

1. The aortic root, extending from the left ventricular outlet (LVO) to the STJ, can be 

modeled with a single medial manifold in the absence of the aortic cusps, as in Fig. 1a. The 

aortic cusps can likewise be modeled as individual medial manifolds (Fig. 1b, blue 

surfaces), but the entire valve apparatus is a branching medial model where the cusps attach 

to the aortic root at seams, or branch curves, in the medial scaffold. The cm-rep 

methodology has the limitation that medial axes are difficult to explicitly parameterize along 

curves at which medial surfaces meet. For example, the inverse skeletonization equations 

that are used to obtain a volumetric representation from an object’s medial axis (Yushkevich 

et al., 2006a) are asymptotic at the edges of the medial axis and along branch curves in the 

medial axis. Work that extends the cm-rep paradigm to medial axes with multiple branches 

has been very limited. Terriberry and Gerig (2006) proposed a special spline-based 

representation that allows parametric representation of seam curves and demonstrates it in a 

toy example, but this method has never been shown to work in actual anatomical structures 

or in the context of deformable modeling. Sun et al. (2010) proposes a cm-rep model with 

seams and uses it to model the myocardium, but their model cannot handle seam-edge curve 

junctions and is thus limited to a very special class of anatomical modeling problems. In the 

original m-rep framework (Pizer et al., 2003), complex structures whose medial axis has 

multiple branches are approximated using a union of single-branch m-rep “figures” 

enveloped by a shrink-wrapped surface. While such a representation is versatile, it deviates 

from the actual 3D geometry of medial axes (i.e. the true medial axis of the shrink-wrapped 

surface can be completely different from the skeletons of the two component figures). In this 

work, as in the cm-rep method, our goal is to use 3D medial representations that are faithful 

to the medial geometry described by Blum and others.

Section 1.3. Representation of the aortic valve apparatus with a medially constrained 
boundary-first deformable model

To overcome the challenge of modeling structures with branching medial topologies, a novel 

“boundary-first” deformable medial modeling paradigm was recently proposed (Yushkevich 

et al., 2013). Rather than explicitly parameterizing a structure’s medial axis and determining 

its boundary algorithmically as is done with “skeleton-first” cm-rep, the boundary-first 

strategy explicitly describes the model’s boundary and implicitly maintains medial axis 

topology by imposing geometric constraints on the boundary of the model as it deforms. 
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Since these constraints are nearly identical at the interior of the medial axis and along branch 

curves, the framework supports medial modeling of structures with branching medial axes 

while adhering to the medial axis definition described in (Blum, 1967). To date, the 

feasibility of modeling branching structures with this boundary-first paradigm has only been 

demonstrated with a toy example and has not been translated to real-world applications. The 

contribution of the present work is to leverage this paradigm for segmentation, geometrical 

modeling, and quantitative analysis of the aortic valve in 3DE images2, a schematic of 

which is presented in Fig. 2. First, the aortic valve apparatus is segmented in a target 3DE 

image using multi-atlas label fusion. Then a boundary-first deformable medial model is 

fitted to the result of multi-atlas segmentation, and clinically relevant measurements of valve 

morphology are computed. It is worth noting that if multi-atlas segmentation were 

performed alone without the use of deformable medial modeling, it would be challenging to 

reliably extract clinically relevant geometrical features of the aortic valve apparatus, such as 

the crown-shaped annular contour. The multi-atlas segmentation simply assigns an 

anatomical label to each image voxel without offering a parametric representation of the 

segmented structures or even guaranteeing the topology of these structures. Thus, multi-atlas 

segmentation alone cannot yield locally varying thickness measurements, automatically 

identify landmarks such as the commissures, establish correspondences on valves of 

different subjects, or ensure topological consistency of different instances of the valve. 

Fitting deformable medial models to different instances of the aortic valve imposes a 

common shape-based coordinate system on those instances that allows for shape comparison 

and straightforward extraction of clinically relevant measurements. Therefore, the advantage 

of combining medial modeling with multi-atlas segmentation is that deformable medial 

modeling facilitates landmark identification, quantitative morphometry, and statistical shape 

analysis. Our work conceptually demonstrates that deformable medial modeling is not 

limited to anatomical structures with simple shape; it is potentially applicable to a vast range 

of clinical problems that involve anatomical structures with complex geometries.

This paper is outlined as follows. Section 2 describes the concept of deformable medial 

modeling and the difference between the skeleton-first and boundary-first paradigms. It 

introduces the 3D medial geometry of the aortic valve complex and how a deformable 

model of the aortic apparatus is generated and fitted to 3DE image data. Section 3 describes 

experiments in which boundary-first cm-rep is used to segment the aortic valve complex in 

3DE images and clinically relevant measurements are derived from the deformable model. 

Section 4 presents the results of automated aortic valve segmentation in subjects with 

normal aortic valve morphology and demonstrates the method’s ability to capture aortic 

valve pathology. The paper concludes with a discussion in Section 5.

2Preliminary results of aortic valve segmentation using boundary-first deformable medial modeling are presented in Pouch et al., 
2015. The present work differs in that it includes a larger patient population, has more detailed methodological description, reports the 
accuracy of clinically relevant measurements of aortic valve geometry, and includes examples of pathological aortic valve 
morphologies.
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2. METHODS

2.1. The medial axis transform and general approaches to deformable medial modeling

The medial axis transform (MAT), whose use as a shape descriptor was pioneered by Blum 

in (1967), was originally defined in 2D as the set of connected curves formed by the centers 

of maximally inscribed disks in the object. Blum’s 2D definition of the MAT is easily 

extended to 3D, where an object’s medial axis is a scaffold, or a set of connected surfaces 

formed by the centers of maximally inscribed balls (MIBs) of the object, where a ball refers 

to the generalization of a disc to higher dimensions (i.e. a sphere and its interior). More 

formally, suppose an object is represented by the set S ⊂ ℝN with a smooth boundary 

denoted by ∂S. Then MAT(S) is a mapping between points on ∂S and points on S that are 

centers of the MIBs of S, where a MIB is defined as a ball B ⊂ S that satisfies the condition 

that there exists no other ball B′ ⊂ S such that B ⊂ B′. In other words, if S is a 3D object, 

MAT(S) can be defined by the set of parameters {m, R}, where m ∈ ℝ3 is the set of the 

centers of the MIBs of S and R ∈ ℝ+ refers to the radius of the corresponding MIBs.

There are two approaches to deformable modeling that use medial geometry as a means of 

shape representation. Illustratively compared in Fig. 3, these approaches use different 

strategies of constraining the deformable model to maintain a consistent medial geometry. 

(Note that Fig. 3 is presented in 2D for demonstrative purposes, but medial modeling 

described in this work is performed entirely in 3D.) The skeleton-first approach, which is 

exemplified by the cm-rep approach (Yushkevich et al., 2006a) as well as the m-rep/s-rep 

approaches (Pizer et al., 1999, 2013), explicitly parameterizes the medial axis of the 

deformable model and derives its boundary as a function of the medial axis. As shown in 

Fig. 3a–b, the cm-rep deformable model is defined in terms of a set of coefficients (e.g., 

spline control points) that describe a parametric skeleton manifold m and a parametric radius 

function R along that manifold. The model’s boundary (dashed black curve in Fig. 3c) is 

obtained by “inflating” the skeleton. In more precise terms, the boundary is the envelope of 

the parametric family of balls centered along m with radii R, and is given by an analytic 

expression involving the first derivatives of m and R (Yushkevich et al., 2006a). During 

model deformation, the coefficients controlling m and R are updated iteratively to allow the 

model to capture the geometry of a target shape. While this strategy has been used in various 

3D medical imaging applications (Pizer et al., 2003, Styner et al., 2003, Bouix et al., 2005, 

Yushkevich et al., 2008), the method has largely been limited to modeling anatomical 

structures with a shape simple enough to be modeled using a single manifold skeleton (e.g., 

hippocampus, heart valve leaflets). To accurately represent more complex shapes (like the 

entire aortic valve apparatus including the sinuses and cusps) the model must have a 

branching skeleton consisting of multiple manifolds that join along curves. Explicitly 

parameterizing branching medial manifolds has proven a challenge in the cm-rep framework 

due to the presence of complex geometrical constraints that must be satisfied by m and R 

along the curves where branches meet and at the endpoints of these curves.

The alternative boundary-first deformable medial modeling approach employed in this paper 

is illustrated in Fig. 3d–f. Here, the boundary of the deformable model is explicitly 

parameterized, and the model’s medial axis geometry is implicitly encoded through the 
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concept of “medial links”. Two or more points on the model’s boundary are medially linked 

if they belong to the same MIB. In Fig. 3e, the boundary points x1 and x2 are medially 

linked, and so are points y1, y2, and y3. During model deformation, the boundary is 

constrained to deform in ways that preserve the medial links between boundary points. In 

other words, the boundary is only allowed to deform in ways that keep points x1 and x2 as 

part of the same MIB (and likewise for points y1, y2, and y3), which prevents topological 

changes in the object’s medial axis. The model’s medial axis (dashed black curve, Fig. 3f) 

can be derived easily from the medial linkages. Note that for the shape shown in Fig. 3d–f, a 

boundary point can be linked to one, two, or no other boundary points based on its 

relationship to the medial axis. For example, x1 and x2 are linked since they lie on a MIB 

centered on the interior of the medial axis; y1, y2, and y3 are linked because they lie on a 

MIB centered on a branch point on the medial axis; and z1 is not linked to another boundary 

point since it lies on a MIB centered at an edge of the medial axis. Here, the edge of the 

medial axis refers to points that are on the edge of the medial curve or surface. Branch 

points occur where two or more medial curves or surfaces meet. The interior of the medial 

axis refers to points on a medial curve or surface that are not edge or branch points.

The advantage of the boundary-first approach to deformable medial modeling illustrated in 

Fig. 3d–f is that the medial linkage constraints that enforce valid medial geometry have a 

very similar formulation everywhere on the medial axis (the interior of medial surfaces, 

edge and seam curves, and their endpoints and intersections). This is in contrast to the cm-

rep methodology (Yushkevich et al., 2008), in which special equality constraints must be 

imposed on the deformable model along the edge and seam curves to ensure that inverse 

skeletonization yields a valid surface, with even more complex (and not fully understood) 

constraints needed to properly model seam endpoints and seam-seam intersections 

(Terriberry and Gerig, 2006). Hence the boundary-first paradigm accommodates deformable 

medial modeling of complex, multi-component structures. However, until now, the ability of 

the boundary-first approach to model branching structures has not been demonstrated in 

real-world medical imaging data, but only in a single toy example (Yushkevich et al., 2013).

2.2. Background on boundary-first deformable medial modeling

As described in Section 2.1, the boundary-first deformable medial modeling framework 

explicitly parameterizes an object’s boundary, and the MAT of the object’s shape is encoded 

by grouping tuples of medially linked boundary points. Constraints imposed during model 

deformation ensure that these medial links are maintained. This strategy to medial modeling 

leverages the fact that transformations of the object that preserve all medial links in the 

object also preserve the branching structure of the object’s skeleton (Yushkevich et al., 

2013, Theorem 1).

Formally, points x1 … xk ∈ ∂S are said to be medially linked if there exists a MIB B ⊂ S, 

such that x1 ∈ B, …, xk ∈ B. Let R be the radius of B. Then the center of B is given by x1 − 

RN1 = x2 − RN2 = … = xk − RNk, where N1…Nk are the unit outward normals to ∂S at x1 … 

xk. Notice from the above definition that if x1, x2, x3 are medially linked, then x1 and x2 are 

also medially linked, as are x1 and x3, etc.
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From this, the conditions for medial linkage can be easily derived. For example, two points 

x1, x2 ∈ ∂S are medially linked if and only if there exists R > 0 such that

(1)

(2)

The conditions ensure that (1) there exists a ball B with center x1 − RN1 and radius R that is 

tangent to ∂S at x1 and x2, and (2) that the ball B is contained in S. A ball satisfying these 

two conditions (bitangent and inscribed) is a MIB. A 2D diagram of medial axis geometry is 

given in Fig. 4 to conceptually illustrate these constraints. Note that although a boundary 

point can be linked to any number of other boundary points, Eqs. (1,2) and Fig. 4 illustrate a 

particular example of a boundary point x1 that is medially linked to only one other boundary 

point x2. Also note that the constraints in (1, 2) apply the same way in 2D and 3D.

In Section 2.2.1, the problem of fitting a medially constrained template to a target object is 

first formulated in the continuous case. Then in Section 2.2.2, the continuous problem is 

discretized and solved numerically.

2.2.1. Continuous formulation of boundary-first deformable medial modeling
—Suppose an object S is a template whose MAT has the desired branching structure, and T 

is a target object (Fig. 5a–b). The goal is to deform S, making it as similar as possible to T, 

while maintaining the branching structure of MAT(S) during template deformation. Let U be 

a parametric domain such as the unit sphere, and x : U → ∂S be a smooth bijective map that 

provides a global parameterization of ∂S. Let  ⊂ U × U be the set of all parameter value 

pairs (u, v), such that u ≠ v and x(u) and x(v) are medially linked in S. Let D be the set of 

diffeomorphic transformations of ℝ3. For any Φ ∈ D, let SΦ = {x ∈ ℝ3: Φ−1(x) ∈ S}, let 

xΦ(u) = Φ(x(u)), and let NΦ(u) be the unit outward normal vector to ∂SΦ at xΦ(u). Let μ be 

some measure of dissimilarity between two objects in ℝ3 (e.g., mean closest-point distance), 

and let ρ be some measure of irregularity of a transformation. Suppose the irregularity 

measure ρ is weighted by a scalar value λ. The continuous medially-constrained deformable 

modeling problem seeks to find a transformation Φ* ∈ D that satisfies

(3)

subject to the following two conditions:

(4)

(5)

where R(u, v) is a bounded continuous positive real-valued function on . The constraints 

(4,5) guarantee that xΦ(u) and xΦ(v) are medially linked, and hence that Φ preserves the 

branching structure of MAT(S) under deformation, as shown in Fig. 5c–d. Conversely, any Φ 
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∈ D that preserves the branching structure of MAT(S) under deformation must satisfy (4,5). 

Since transformations that preserve MAT branching do exist, the minimization problem 

above is not in theory over-constrained and solutions can be found. In practice, however, the 

problem must be discretized and simplified to find solutions.

2.2.2. Discrete formulation of boundary-first deformable medial modeling—In 

the discrete implementation, the boundary of the deformable template is represented by a 

triangular mesh, i.e., a piecewise linear surface with triangular elements. This mesh is an 

approximation of a continuous boundary surface, and medial linkage constraints (4,5) are 

imposed on tuples of mesh vertices. Let Nb be the number of vertices in the mesh describing 

the boundary of the deforming template, and let xi denote the position of each vertex i ∈ [1, 

Nb]. Medial links between vertices are encoded by assigning each vertex i a medial link 

index Mi ∈ . Any boundary mesh vertices that have the same medial link index are 

considered medially linked, meaning that they are members of the same MIB. For the 

deformable template of the aortic valve apparatus, most boundary vertices are linked to one 

other vertex, indicating that they belong to a MIB centered somewhere on the interior of the 

medial axis. Some vertices are not linked to any others since they belong to only one MIB 

centered along a medial edge. Some vertices are linked to two other vertices since they 

belong to a MIB centered on a seam curve of the medial axis.

Once a mesh conforming to the above requirements is created, the problem of deforming it 

to target object T is formulated as a quadratically constrained quadratic programming 

(QCQP) numerical optimization problem. In its most general form, this optimization 

problem is given as:

(6)

where f is the objective function being minimized, ξ is a vector of variables, and gc are the 

constraint functions with bounds αc and βc. In this problem, there are Nv variables and Nc 

constraints. The objective function f and the constraint functions gc are formulated as 

quadratic functions. Using quadratic functions simplifies and speeds up optimization, 

although it does not make the problem convex, and hence iterative techniques must be used, 

and no guarantees regarding finding a global, rather than local minimum, can be made. 

However, this is also the case for other gradient-based deformable modeling methods 

including m-rep and cm-rep.

In the subsections below, we specify how the objective function and the constraint functions 

in (6) are formulated so as to encode the problem of fitting a deformable medial model 

parameterized by ξ to the target object T. In short, we formulate the objective function as 

f(ξ; T) = μ(ξ; T) + λ ρ(ξ), where μ is a term measuring dissimilarity between the deformable 

model and the target object, and ρ is a regularization prior term with weight λ. The 

dissimilarity, μ, is based on the iterative closest point (ICP) algorithm (Besl and McKay, 

1992), which lends itself easily to the quadratic form. The regularization penalty ρ is used to 

impose smoothness on the deformable model mesh and is formulated as the residual 

between the deforming template mesh and the best approximation of this mesh by a smooth 

triangular spline. The constraints specified by gc include the discrete equivalents of the 
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equalities and inequalities given in (4,5) that preserve medial linkages, as well as mesh 

quality constraints. The vector of variables ξ includes the coordinates xi of the boundarty 

vertices in the deformable model mesh, as well as a large number of additional “helper” 

variables introduced in order to give all the constraints gc a quadratic form. The terms 

forming the objective function, regularization prior, and the constraints are described in 

Sections 2.2.2.1 – 2.2.2.4, and a more detailed description of the optimization variables and 

constraints are given in Appendices A1 and A2, respectively. A common thread in the 

definitions of the terms composing functions f and gc is the use of additional helper variables 

that keep f and gc quadratic and as sparse as possible.

Section 2.2.2.1. Similarity to Target Shape: The similarity term in the objective function f 

is based on the ICP algorithm. At the beginning of optimization, each vertex on the template 

mesh is matched to the closest vertex on the target mesh, i.e., the triangular mesh 

representing the boundary of the target object. In our experiments, the target mesh is 

obtained by contour extraction from a multi-label segmentation of the target object, and has 

inter-vertex spacing on the order of the voxel size. Conversely, a regularly sampled subset of 

vertices in the target mesh is matched to the closest points (not necessarily vertices) on the 

template mesh. Note that the slightly asymmetric way in which the template and target 

points are matched is due to the difference in the sizes (number of vertices and average 

triangle size) of the two meshes.

The ICP objective term is equal to the sum of squared distances between all the pairs of 

matched points. Specifically, for each vertex xi on the model boundary, let yi be the target 

mesh vertex that is closest to xi at the start of the optimization. Likewise, for a target mesh 

vertex zj, let  be the closest point on the template mesh, inside the triangle {xij,1, xij,2, xij,3} 

and with barycentric coordinates wj,1, wj,2, wj,3. The objective function is formulated as 

follows:

(7)

where Ns is the number of regularly sampled points on the target object. As in the original 

ICP algorithm, the matching and optimization are alternated for several iterations until 

convergence.

Section 2.2.2.2. Regularization: The regularization penalty ρ(ξ) is formulated as the 

residual between the boundary of the deformable model and the best approximation of the 

boundary by a smooth triangular spline. Such a term propels the model to be as smooth as 

possible while still allowing it to satisfy the necessary medial linkage constraints. The 

specific implementation uses Loop subdivision surfaces (Loop, 1987), a kind of a spline 

with triangular elements. During the initial template generation process, discussed in Section 

2.3.2 below, the template mesh is generated by applying Loop subdivision to a coarse mesh.

Specifically, let X̂ be a Nq × 3 matrix of the vertices in the coarse template mesh. Then the 

Nb × 3 matrix of the vertices in the smooth subdivided mesh can be expressed as WX̂, where 

W is an Nb × Nq sparse matrix of coefficients from the subdivision scheme, which only 
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depends on the structure of the coarse mesh, and remains fixed during model deformation. 

As the model deforms, the regularization penalty ρ is defined as the residual distance 

between the vertices on the model’s boundary and their best approximation by a mesh 

subdivided from X̂:

(8)

where X is a Nb × 3 matrix of the vertices in the deforming model. The residual distance 

above could be computed for a given X using the method of least squares, leading to the 

expression ρ(ξ) = XtW(WtW)−1WtX. In our implementation, the vertices X̂ of the coarse 

mesh are instead included in the variable vector ξ as additional optimization variables. This 

results in ρ(ξ) having the form ||X − WX̂||2, where W is sparse. Overall, including X̂ as 

additional optimization variables leads to a simpler optimization problem, albeit with a 

slightly larger number of unknowns.

Section 2.2.2.3. Medial Linkage Constraints: Medial linkage constraints are used to 

ensure that any two vertices (i, j) for which Mi = Mj satisfy discrete versions of the 

conditions of medial linkage (4) and (5). Let k = Mi = Mj. The first condition (4) has the 

form xi − RkNi = xj − RkNj, where Rk is included as an additional variable in the 

optimization (analogous to R in the continuous case), and Ni is the approximation of the unit 

normal vector to the boundary at xi. The computation of Ni requires taking a square root, 

which would make the constraint non-quadratic. Instead of computing Ni directly, it is 

treated as an additional helper variable in the optimization, and additional quadratic 

constraints are imposed to make Ni orthogonal to ∂S and unit length, as described in 

Appendix A2.

Note that constraints on Rk for vertices that are not medially linked to any other vertex have 

not yet been defined. In the continuous case, such points need not be dealt with, since MIBs 

that have a single point of tangency with the boundary are limit cases of MIBs with double 

tangency (Giblin and Kimia, 2004). In the discrete case, these vertices need to be dealt with 

explicitly. The radius of a singly tangent MIB is the reciprocal of the larger principal 

curvature of the boundary at the point of tangency. This leads to the constraint , 

where  is the approximation of the larger principal curvature at xi. The approximation of 

 is not quadratic in xi, but, similar to the normal vector, additional variables and 

constraints are introduced to the optimization problem to keep all constraints quadratic, as 

described in Appendix A1–2. The added variables are the elements of the first fundamental 

form, the elements of the shape operator, and the principal curvatures.

The medial linkage condition that mirrors (5) has the form  for 

all pairs of vertices i and j. These constraints are quadratic in the variables xi, Ni, and R. 

However, there are  constraints, which does not scale well for larger meshes. 

Fortunately, in practice, it often suffices to relax this constraint just to the vertices j that are 

in the one-ring neighborhood of i. Analogous relaxation of a global non self-intersection 
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condition is used in continuous m-reps (i.e., positive medial-boundary Jacobian condition) 

(Pouch et al., 2012).

Section 2.2.2.4. Mesh quality constraints: For the approximations of the unit normal and 

principal curvature on a triangular mesh to be accurate, the triangular elements must not be 

degenerate. Therefore, additional constraints are introduced on the minimal angle of each 

boundary triangle, and on the minimum dihedral angle between adjacent triangles. As 

before, additional helper variables are added into the optimization problem, such as the area 

of each triangle, the unit normal to each triangle, and the length of each edge, and these 

variables are related to one another and the vertex coordinates using quadratic constraints 

(Appendices A1 – A2).

Section 2.2.2.5. Numerical Solution: The optimization problem for deformable modeling 

with preservation of medial links involves a large number of variables (xi, Ni, RMi, , and 

several others) and a large number of constraints. However, the constraints and the objective 

function are quadratic in the variables, i.e., have the form  and 

, where the matrices A0 and Ac are sparse. Although these matrices are not 

positive definite, and thus the problem is non-convex and a global solution cannot be 

guaranteed, the optimization problem can be solved efficiently using interior point methods. 

Our implementation uses the IPOPT method (Wächter et al., 2006), and the MA97 routine in 

the HSL library (http://www.hsl.rl.ac.uk/) to solve sparse linear systems.

2.3. Deformable medial modeling of the aortic valve apparatus

2.3.1. Aortic valve model definitions—The aortic valve apparatus is an example of an 

anatomic structure with a branching medial scaffold, meaning that the medial scaffold 

consists of several surfaces that meet at curves, referred to as seams. As illustrated in Fig. 1, 

delineation of the aortic valve in this work extends from the LVO to the STJ and includes 

the bulbous aortic sinuses and three cusps (left, right, and non-coronary). The aortic root is 

modeled as a tubular shape to which three fin-like surfaces (the aortic cusps) are attached. 

The semilunar attachments of the cusps are seams in the medial scaffold. Free edges occur at 

the level of the LVO and STJ, as well as at the cusps’ free margins.

Fig. 6 illustrates the 3D medial geometry of the aortic valve apparatus with the medial 

scaffold shown as a triangulated surface visible through a translucent gray boundary. The 

three aortic cusps are displayed in blue and the medial seams (the cusp attachment sites) are 

shown as red curves. The figure illustrates that a MIB centered at the edge of the medial axis 

(along the STJ, for example) is tangent to the boundary at a single point. A MIB centered on 

the interior of the medial axis has two points of tangency with the boundary, and a MIB 

centered along a seam curve has three points of tangency. In the case of the aortic valve 

apparatus, boundary points may be medially linked to one, two, or no other boundary points.

2.3.2. Template generation for deformable medial modeling—Deformable 

modeling requires a pre-defined model, or template, of the anatomic structure that is 

deformed to new instances of that structure in target images. Template generation need only 

be performed once; thereafter, the same template can be used to capture the geometry of 
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new instances of that structure with the same medial axis branching configuration. In this 

work, a triangulated mesh discretely represents the continuous boundary of the aortic root 

and cusps. As described in Section 2.2.2, medial links are encoded on the mesh by assigning 

each vertex i a medial link index Mi ∈ . Any mesh vertices that share the same medial link 

index are considered medially linked, meaning that they are constrained to always belong to 

the same MIB. In addition to establishing these medial linkages, the mesh template is 

constructed such that each triangle on the mesh is linked to exactly one other triangle. If 

vertices (i, j, k) form a triangle, then there exists exactly one other triangle (i′, j′, k′) such that 

Mi = Mi′, Mj = Mj′, Mk = Mk′.

The process of generating a boundary mesh of the aortic valve apparatus is illustrated in Fig. 

7. It employs a user interactive tool that enables a user to first create a triangulated mesh of 

the aortic valve skeleton, from which a boundary mesh is then computed. The first step in 

this process is to obtain a manual segmentation of the valve apparatus (Fig. 7a) and compute 

the 3D Voronoi skeleton of that segmentation (Fig. 7b). Then the user selects points on the 

skeleton and tags the points as belonging to the edge, interior, or seam of the skeleton (Fig. 

7c). The user triangulates these points (Fig. 7d) and associates an anatomical label to each 

triangle indicating whether the triangle belongs to one of the three aortic cusps, a sinus 

segment, or the left ventricular outflow segment (Fig. 7e). The result is a coarse mesh 

representation of the aortic valve’s 3D medial scaffold. To obtain a boundary representation 

from the skeleton, a duplicate of the medial mesh is created and the two copies of the mesh 

are “inflated” to give the aortic root walls and cusps finite thickness [Yushkevich et al., 

2013]. The inflated surface is shown in translucent gray superimposed on the skeleton in 

Fig. 7f. Medial link indexes are assigned to the boundary vertices based on the their 

relationship to the medial scaffold. For example, if two boundary nodes are inflated from the 

same node on the medial mesh, then those boundary nodes are assigned the same medial 

index. The coarse boundary mesh (Fig. 7g) is then subdivided using the Loop scheme (1987) 

to obtain a smooth model of the aortic valve apparatus as shown in Fig. 7h.

3. EXPERIMENTS

3.1. Image dataset

Transesophageal 3DE images of the aortic valve were acquired from 23 human subjects with 

normal aortic valve structure and function. One of these 23 datasets was randomly selected 

to create the deformable template described in Section 2.3.2, and the other 22 datasets were 

used in a leave-one-out cross-validation experiment to evaluate the image analysis pipeline. 

In addition to these normal datasets, a 3DE dataset was acquired from a single subject with 

one of the following diseases: Marfan syndrome, moderate aortic stenosis, and congenital 

bicuspid aortic valve disease. The goal of acquiring the disease datasets was to demonstrate 

that the pipeline can capture a range of pathological aortic valve morphologies. The images 

were acquired with the iE33 platform (Philips Medical Systems, Andover, MA) using a 2 to 

7 MHz matrix-array transducer. For each subject, a 3DE image of the open aortic valve at 

mid systole was selected for analysis. The images were exported in Cartesian format with an 

approximate size of 224 × 208 × 208 voxels with nearly isotropic resolution of 0.4 to 0.8 

mm.
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3.2. Manual segmentation

Manual segmentations of the 23 3DE images of the normal aortic valve were completed. 

One randomly-selected segmentation was used to guide manual generation of the 

deformable template (Section 2.3.2) and the other 22 manual segmentations served as 

reference data and gold standards for the automated segmentation process (Section 3.3). 

Manual labeling of the 3DE images was accomplished with ITK-SNAP (Yushkevich et al., 

2006b), an open-source software package for interactive medical image segmentation. A 

total of 5 labels were used, including one label for each of the three aortic cusps, a single 

label for the aortic sinuses, and a label for the left ventricular segment extending from the 

LVO to the cusp attachment sites. These anatomical labels are the same as those shown on 

the template mesh in Fig. 7.

3.3. Automated aortic valve segmentation

3DE segmentation with deformable medial modeling was performed in multiple steps: 

manual identification of five landmarks on the aortic valve apparatus, automatic 

segmentation of the aortic valve apparatus with multi-atlas joint label fusion, and boundary-

first deformable medial modeling of the aortic valve in the 3DE image.

To guide model fitting to a target 3DE image, a preliminary segmentation of the aortic root 

was obtained by multi-atlas joint label fusion. Briefly, a collection of atlases (3DE images 

and labels for the aortic valve components) was registered to a target image, first with a 

landmark-guided affine transformation and then diffeomorphic deformable registration 

(Avants et al., 2008). The manually identified landmarks used for registration initialization 

included the three commissures of the aortic valve and points in the center of the outflow 

tract at the levels of the LVO and the STJ. The candidate segmentations generated by each 

atlas were fused to create a consensus segmentation using the weighted voting method 

detailed in (Wang et al., 2013). The fitting of a medially constrained parametric boundary 

model to the consensus segmentation was implemented as an ICP surface matching problem, 

as described in Section 2.2.2.1. Since ICP is sensitive to initialization, deformable 

registration between the template in Fig. 7 and the multi-atlas segmentation of the target 

image was performed to initialize the template prior to ICP surface matching. The ICP 

algorithm was implemented such that boundary points on the template mesh with a given 

anatomical label were matched to points on the target surface with the same anatomical 

label.

3.3 Analysis of the segmentation results

3.3.1. Evaluation of automated segmentation and deformable medial modeling
—The 22 3DE images of the normal aortic valve that were not used for deformable template 

generation were automatically segmented in a leave-one-out cross-validation experiment. 

Each of the 22 3DE images was treated as a target image for segmentation, and the other 21 

images and their manual segmentations were used as reference atlases for multi-atlas label 

fusion. The deformable medial model was fitted to the segmentation of the target image 

obtained by multi-atlas label fusion and compared to the manual segmentation of the target 

image. In addition, to evaluate the relative contributions of each step of the segmentation 

process, the manual segmentation of the target image was also compared to the mutli-atlas 
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segmentation without model fitting and to the result of fitting a deformable medial model 

directly to the manual segmentation. The metric used to compare these segmentations was 

the symmetric mean boundary error (MBE). Given two meshed shapes P and Q, the MBE is 

defined as follows:

(9)

where d(P, Q) is the distance from P to Q and d(Q, P) is the distance from Q to P. The 

distance between two meshes is given by

(10)

where x is a point on mesh P, y is a point on mesh Q, and AP is the surface area of mesh P.

3.3.2. Comparison of morphological measurements derived from manual and 
automated segmentation—The morphological measurements listed below were 

automatically computed from the deformable model fitted to the results of multi-atlas 

segmentation. 3D contours of the STJ, aortic annulus (basal leaflet attachments), the cusp 

tips, and the LVO were automatically identified on the deformable model. Points on the STJ 

were identified as boundary nodes associated with the medial edge of the sinus segment, and 

points on the LVO were identified as boundary nodes associated with the medial edge of the 

left ventricular outflow segment. The seams of the medial mesh demarcated the crown-

shaped aortic annulus, and the free edges of the cusps were identified as the cusp tips. Each 

aortic valve model was centered at the origin of the Cartesian coordinate system and rotated 

to maximize the sum of areas enclosed by projections of the STJ, the leaflet tips, and the 

LVO onto the x-y plane. For comparison, the same measurements computed from the 

automated segmentation (i.e., the template fitted to the results of multi-atlas label fusion) 

were also computed from the deformable model fitted directly to the manual segmentation.

• Mean STJ diameter (STJD): mean diameter of the STJ contour projected onto the 

x-y plane

• STJ area (STJA): area enclosed by the projection of the STJ contour onto the x-y 

plane

• Mean aortic sinus diameter (ASD): mean diameter of the contour that encloses the 

projection of the aortic sinuses onto the x-y plane

• Aortic sinus area (ASA): area enclosed by the projection of the aortic sinuses onto 

the x-y plane

• Valve orifice area (VOA): area enclosed by the projection of the cusp tips onto the 

x-y plane

• Mean aortic annulus diameter (AAD): mean diameter of the projection of the 

contour defining the cusp attachments onto the x-y plane
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• Aortic annulus area (AAA): area enclosed by the projection of the leaflet basal 

attachments onto the x-y plane

• Surface area of each aortic cusp (SALC, SANC, SARC): mean of the aortic and 

ventricular surface areas of each cusp

• Mean leaflet thickness (TLC, TNC, TRC): mean thickness of each cusp, defined as 

the average distance between boundary nodes with the same medial index

3.3.3. Segmentation and deformable medial modeling of pathological aortic 
valve morphology—To demonstrate that boundary-first deformable medial modeling can 

capture diseased aortic valve morphologies in addition to normal aortic valve geometry, 

multi-atlas segmentation and model fitting were performed on image data acquired from a 

subject with Marfan syndrome and a subject with moderate aortic stenosis. Multi-atlas 

segmentation was performed using 22 normal 3DE aortic valve atlases as references. In 

addition to capturing these two disease states, the boundary-first deformable medial 

modeling method was tested on an example of a bicuspid aortic valve, a congenital 

abnormality in which the aortic valve has two leaflets rather than three. In this particular 

subject, the left and right coronary cusps were fused into a single cusp. Since bicuspid 

atlases were not available for automated bicuspid valve segmentation, a template of a 

bicuspid valve was generated from and fitted to a manual segmentation to demonstrate the 

potential extension of boundary-first medial modeling to bicuspid aortic valve morphometry. 

The same clinically relevant measurements described above were computed from the fitted 

deformable model of each disease case.

4. Results

The template mesh fitted to the multi-atlas segmentations had 476 vertices and 952 triangles. 

The corresponding constrained optimization problem had 12296 variables (88% of the 

variables were helper variables used to make the problem quadratic), 11308 equality 

constraints and 4320 inequality constraints. The Jacobian of the constraints was 99.94% 

sparse, and the Hessian of the Lagrangian was 99.93% sparse. Constrained optimization was 

successful in all subjects, converging to a local minimum of f and satisfying all the 

constraints within the tolerance of 10−8. Each ICP iteration required on the order of 50 

optimization steps to converge, taking an average of 1.5 minutes on a single 2.4GHz Intel 

CPU core. The number of ICP iterations was fixed at 10 for each subject. The bulk of the 

computation time was devoted to solving sparse linear problems involving the Lagrangian 

and Jacobian matrices.

A representative result of segmentation with boundary-first deformable medial modeling is 

presented in Fig. 8. The deformable medial model (fitted to the result of multi-atlas 

segmentation), the multi-atlas segmentation, and manual segmentation are displayed in two 

different orientations. The fitted model is shown superimposed on the grayscale 3DE image.

The mean boundary errors between the automated and manual segmentations are presented 

in Table 1. The first row measures the accuracy of the combined multi-atlas segmentation 

and deformable medial modeling relative to expert manual segmentation, and thus is the 
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primary performance metric for our method. The second row gives the accuracy for multi-

atlas segmentation without deformable medial modeling. The fact that these two measures 

are so similar indicates that the benefits of medial modeling (parametric representation, 

thickness mapping, etc.) can be leveraged without incurring additional costs in accuracy. 

Rows 3 and 4 measure the residual error for deformable medial modeling, i.e. the difference 

between the medial model and the target object to which it is fitted. Row 3 reports this for 

models fitted to manual segmentations and row 4 for models fitted to automatic multi-atlas 

segmentations. These differences are due to the fact that the mathematical skeleton of the 

segmentations is actually very complex (with hundreds or thousands of small branches) and 

the approximation with a three-branch medial model necessarily results in some small 

residual errors. Row 5 reports the mean boundary error between the deformable models 

fitted to the manual and multi-atlas segmentations. The 95th percentile boundary error is the 

maximum distance between 95% of the points on the model and manual segmentation.

Clinically relevant measurements of normal tricuspid aortic valve morphology are presented 

in Table 2. Similar to our earlier work evaluating clinical measurements derived from mitral 

valve segmentations (Pouch et al., 2012), the measurements we compare are those that were 

computed from the deformable model fitted to the results of multi-atlas segmentation 

(second column) and from the deformable model fitted directly to the manual segmentation 

(third column). We compare model-derived measurements (rather than measurements 

derived directly from the manual and multi-atlas segmentations themselves) since these 

measurements cannot be extracted from the manual and multi-atlas segmentations alone. 

Without model fitting, the manual and multi-atlas segmentations consist only of voxel labels 

rather than landmarks.

The segmentation results for the tricuspid aortic valves with Marfan disease and aortic 

stenosis are shown in the two left columns of Fig. 9. A model of the bicuspid aortic valve 

fitted directly to a manual 3DE segmentation is displayed in the right column of Fig. 9. 

Similar to normal aortic valve morphometry presented in Table 2, morphological 

measurements of the diseased aortic valves were computed and are presented in Table 3. 

The (++) and (−−) symbols indicate that the measurement is greater than or less than the mean 

normal measurement by at least two standard deviations.

5. Discussion

The aortic valve apparatus is a geometrically complex anatomical structure that is 

challenging to segment in 3DE images, especially when the segmentation goal is to 

represent the valve volumetrically. This study demonstrates that a medially constrained 

boundary-first deformable medial modeling paradigm effectively accomplishes this task. A 

benefit of this paradigm is that it represents a structure with a branching medial topology not 

in an ad hoc manner, but in a way that adheres to Blum’s original definition of the medial 

axis (1967). By preserving the branching configuration of the medial axis during model 

deformation, the method produces detailed patient-specific anatomical shape representations 

that have inter-subject point correspondences and can be statistically compared and 

morphometrically analyzed in a straightforward manner. In a broader context, the method 

extends the utility of medial modeling for medical image and statistical shape analysis since 
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many anatomical structures have complicated geometries that cannot be represented in terms 

of non-branching morphological skeletons.

As a first step towards assessing the ability of boundary-first deformable medial modeling to 

capture varying geometries of the normal aortic valve, the template generated in Fig. 7 was 

fitted directly to 22 manual segmentations (excluding the manual segmentation from which 

the template was generated) and the symmetric MBE was computed. The result (0.23 ± 0.08 

mm) demonstrates that the medial model can accurately represent normal variations in shape 

of the entire aortic valve apparatus. To assess the quality of automated segmentation with 

deformable medial modeling, the MBE between the manual segmentations and the medial 

models fitted to the results of multi-atlas segmentation was computed (0.41 ± 0.10 mm) and 

was on the order of one voxel. The similarity between the automated and manual 

segmentation and the ability of the automatically generated model to capture valve 

morphology in the 3DE grayscale image can be qualitatively appreciated in Fig. 8. The 

MBE between the manual and multi-atlas segmentations without model fitting (0.32 ± 0.13 

mm) was similar to the result obtained with model fitting, suggesting that improvements in 

multi-atlas segmentation could enhance the accuracy of model fitting. The manual versus 

automatic segmentation comparison in this study is on par with one of few studies on 

automatic aortic valve segmentation in 3DE images, wherein Ionasec et al. report an MBE 

of 1.54 ± 1.17 mm (2010). Notably, our work is the first to achieve volumetric segmentation 

of the valve with a high level of accuracy (MBE on the order of one voxel). The importance 

of representing the aortic valve apparatus as a structure with locally varying thickness is that 

thickness is a meaningful tissue parameter in biomechanical analysis and simulation of the 

valve. It can also be a marker of valve pathology, such as calcification or thinning of the 

aortic valve components.

The results of this study highlight the benefits of combining multi-atlas segmentation with 

deformable medial modeling, techniques that have been applied to a range of image analysis 

applications. While multi-atlas segmentation assigns labels to voxels in the 3D image data, 

deformable medial modeling takes the next step of identifying landmarks and facilitating 

statistical comparison of skeleton-derived shape features such as thickness. For this reason, 

it is not possible to reliably extract the morphological measurements presented in Tables 2 

and 3 from the multi-atlas segmentation alone. Moreover, no global shape constraints are 

used to guarantee the topology of the multi-atlas segmentation, which is another advantage 

of integrating multi-atlas segmentation with a deformable modeling scheme that ensures a 

consistent medial axis branching configuration on image-derived models of the aortic valve 

apparatus. While other 3D model fitting techniques in the literature, such as topology-

preserving level sets (Han et al., 2003, Hsu et al., 2008, Ségonne, 2008), also impose 

topology constraints on image segmentation results, the constraints do not prescribe an 

immutable medial axis branching configuration on the segmentation, which would make it 

difficult to compare skeleton-derived features of valves of different subjects. In terms of 

image segmentation methods that use volumetric models that preserve medial axis topology, 

deformable modeling with the finite element method (FEM) (Bro-Nielsen et al., 1996, Park 

et al., 1996, Pham et al., 2001) are similar to the work presented here. To the best of our 
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knowledge, however, FEM-based methods have not explicitly described the extraction of 

skeleton-derived shape features.

While the symmetric MBE metric is a useful way of evaluating the accuracy of shape 

representation and segmentation accuracy, it is also important to assess the similarity in 

clinical measurements derived from manual and automated valve segmentations. Since the 

deformable medial model captured the shape of the manual and multi-atlas segmentations 

with minimal error (MBE of 0.23 ± 0.08 mm and 0.22 ± 0.04 mm, respectively) and the 

clinical measurements could not be computed directly from the manual and multi-atlas 

segmentations themselves, the “manual” and “automated” measurements in Table 2 were 

derived from deformable medial models fitted directly to the manual and multi-atlas 

segmentation results. The comparison of these measurements in Table 2 demonstrates good 

to excellent correlation with minimal bias between measurements derived from the 

automated and manual segmentations.

Segmentation with boundary-first deformable medial modeling is not only able to represent 

normal tricuspid aortic valve geometry; this work demonstrates that the method can 

delineate pathological valve morphologies, even with the use of “normal” reference atlases 

for multi-atlas label fusion. Pathological features, such as thickening of the right coronary 

cusp and sinus segments in the stenotic aortic valve (Fig. 9, first column) and marked 

enlargement of the aortic valve and thinning of the non-coronary cusp in the patient with 

Marfan disease (Fig. 9, second column) are patient-specific abnormalities that are both 

qualitatively and quantitatively captured with 3DE image analysis. The morphological 

measurements presented in Table 3 indicate that pathological variations in valve 

morphology (greater than or less than two standard deviations from controls) can be 

quantitatively identified. Although reference atlases for bicuspid aortic valves are not 

currently available, the ability of the presented method to model and quantitatively analyze 

bicuspid aortic valve morphology is shown. The bicuspid aortic valve is an example of a 

pathology that requires a different atlas set and deformable template than normal and 

diseased tricuspid aortic valves since bicuspid valves have a different topology and medial 

axis branching configuration than tricuspid aortic valves.

Limitations of the current work include segmentation of the aortic valve at a single phase in 

the cardiac cycle (rather than at multiple time points in the real-time 3DE series) and the 

requirement for manual initialization of multi-atlas label fusion. These limitations will be the 

focus of future research, but do not diminish the importance of the methodology and results 

presented in this work. Segmentation at multiple time points in the cardiac cycle would 

require one-time generation of reference atlases of the aortic valve in the diastolic phase. 

Since multi-atlas segmentation and deformable medial modeling have effectively captured 

mitral valve morphology in 3DE images acquired at multiple phases in the cardiac cycle 

(Pouch et al., 2014), it is reasonably expected that the methods presented here will likewise 

be applicable to segmentation of the aortic valve in a complete real-time 3DE image series. 

The efficacy of feature-based automatic landmark detection techniques, such as the scale-

invariant feature transform (Lowe, 2004), potentiates a future automatic landmark-based 

initialization of multi-atlas segmentation. A third limitation of this study is the possibility of 

shape approximation bias introduced by the construction of the deformable medial template 
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from a single subject’s dataset. We estimated this bias by computing how accurately the 

template captured the shape of the manual segmentation from which it was generated. The 

mean boundary error was 0.22 mm, which is very close to the mean boundary error of the 

template fitted directly to all the other manual segmentations (Table 1, third row). This 

result suggests minimal shape approximation bias since the template did not capture its 

manual segmentation dramatically better than the other 22 segmentations. Nevertheless, 

future work could employ a strategy for unbiased template estimation. One way to 

accomplish this is to fit a biased template to all subjects, compute an average and use the 

result as the new template. This process could be performed iteratively.

Several previous studies of 3D aortic valve morphology involve planimetric measurements 

derived from multidetector computed tomography (MDCT) image data (Akhtar et al., 2009, 

Messika-Zeitoun et al., 2010). While there are a number of benefits to MDCT imaging, such 

as easy identification of the coronary ostia, 3DE has a higher temporal resolution and does 

not require the administration of contrast agents or ionizing radiation. For this reason, 

model-based analysis of 3DE images can provide complementary information to MDCT 

planimetry that facilitates enhanced aortic valve diagnostics, interactive visualization and 

quantitative assessment of patient-specific aortic valve morphologies, and the development 

of novel devices and approaches to surgical treatment for aortic valve disease.
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APPENDIX

Appendix 1. Variables in the deformable modeling optimization problem

The variables that are optimized in the model fitting objective function (Eq. 6) are given by

These variables include the medially linked boundary vertices x that define the deformable 

model, as well as a number of additional helper variables that are introduced to ensure that 

the optimization constraints are quadratic. Each variable is defined in Table A1.I.
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Table A1.I

Variables in the deformable modeling optimization problem and their descriptions.

Variable Description

xi
coordinates of the boundary vertex i ∈ [1, Nb], where Nb is the total number of vertices on 
the boundary mesh

mi
position of the medial vertex i ∈ [1, Nm], where Nm is the total number of vertices on the 
medial mesh

Ri
radius of the maximally inscribed ball centered at the medial vertex i ∈ [1, Nm], i.e. the 
distance from medial vertex i to the boundary

Ni normal vector to the boundary mesh at vertex i ∈ [1, Nb]

pair of non-parallel vectors in the tangent plane to the boundary mesh at xi

partial derivatives of the boundary normal at xi at with respect to 

FF1i first fundamental form defined at boundary vertex i, which is one of Ne edge vertices on 
the medial mesh

SOi shape operator defined at boundary vertex i, which is one of Ne edge vertices on the medial 
mesh

larger principal curvature of the boundary patch associated with medial vertex i that is one 
of Ne edge vertices on the medial mesh

TAi area of the boundary triangle i ∈ [1, Nt], where Nt is the total number of boundary triangles

normal vector to the boundary triangle i ∈ [1, Nt]

edge length between vertices q and r on the boundary triangle i ∈ [1, Nt]

x̂j

coordinates of the vertex j ∈ [1, Nq] of a “parent” mesh from which the vertex coordinates 
xi were obtained via subdivision, where Nq is the total number of vertices on the coarse 
parent mesh

cosecant of , which is one of three angles of boundary triangle i, where p = {0,1,2} is 
the index of the triangle angle

Appendix 2. Constraints in the deformable modeling optimization problem

The equality and inequality constraints in the deformable modeling optimization problem 

include the medial linkage constraints described in Eqs. 4 – 5, as well as constraints that 

define relationships between helper variables, which are introduced to ensure that all 

constraints are quadratic. The constraints are divided into to four categories: constraints used 

to obtain differential geometric properties of the boundary (the tangent plane, boundary 

normals, and curvature), medial linkage constraints, constraints on the radius function at 

medial edges, and mesh quality constraints. Each set of constraints is described below.

Constraints used to obtain differential geometric properties of the model 

boundary

The tangent plane is defined at each boundary vertex i by a pair of non-parallel vectors 

and  that are approximately tangent to the model’s surface at the vertex i. Loop (1987) 
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proposed to approximate such tangent vectors at a vertex on a triangular mesh as a weighted 

sum of the neighboring vertices. Here, Loop’s tangent vector formula is given by a set of 

equality constraints:

A2.1

Ki is the valence of boundary vertex i, jk is the k-th neighbor of boundary vertex i, and d ∈ 

{1,2}.

The unit boundary normals Ni are defined by imposing three constraints that ensure that the 

normal is orthogonal to the tangent plane at i and that the length of Ni is unity.

A2.2

where  denotes the transpose of the normal vector Ni.

The partial derivatives of the normal vectors with respect to directions  on the tangent 

plane are constrained based on the Loop (1987) formulas, similar to A2.1:

A2.3

The first fundamental form and shape operator are given by the following equality 

constraints, which are defined at boundary vertices i associated with edges of the medial 

mesh:

A2.4

A2.5

The boundary curvature is then written in terms of the shape operator:

A2.6

A2.7

Eq. A2.6 is obtained by substituting for κ2 in the equations that define the mean and 

Gaussian curvatures in terms of principal curvatures: trace(SO) = κ1 + κ2 and det(SO) = κ1 · 

κ2. Eq. A2.7 ensures that κ1 is the larger of the two principal curvatures κ1 and κ2.
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Medial linkage constraints

During model deformation, these constraints maintain medial linkages of boundary vertices, 

which ensure that the branching configuration and topology of the medial axis does not 

change during model fitting. The constraints are equivalent to Eq. 4 – 5 but in practice 

include the medial vertex mMi as a variable:

A2.8

A2.9

Here, Mi ∈ [1, Nm] is the index of the medial vertex associated with the boundary vertex i ∈ 

[1, Nb], and jk is the k-th neighbor of vertex i. The radius is constrained as follows:

A2.10

Here, Rmin = 0.01 mm is chosen to be a reasonable lower limit for the radius function.

Constraints on the radius at medial edges

The radius R along the edges of the medial mesh is defined in terms of the larger principal 

curvature of the boundary mesh, κ1:

A2.11

Since A2.11 applies only to medial edges, the constraints that are used to define boundary 

curvature (Eqs. A2.4 – A2.7) need not be computed at all boundary mesh vertices, but only 

at boundary vertices i that are associated with edges of the medial mesh.

Mesh quality constraints

The first mesh quality constraint (Eq. A2.17) prevents triangle irregularity by specifying a 

minimum value for the three angles of each boundary triangle. First, the triangle area and 

triangle normal are defined by the following equality constraints:

A2.12

A2.13

Eq. A2.12 arises from  and , where {x1, x2, x3} 

are vertices of the boundary triangle i. Next, the edge length of each boundary triangle is 

defined and constrained to be positive:
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A2.14

A2.15

Here, xq and xr are vertices on boundary triangle i. Finally, the constraint on each boundary 

triangle angle is specified:

A2.16

A2.17

Eq. A2.16 defines the angle  in terms of the area and lengths of two edges of the boundary 

triangle i. The three triangle vertices are denoted by p = {0,1,2}, and ηp⊕1 is the index of the 

boundary node that corresponds to the triangle vertex indexed as 3 mod (p + 1). In Eq. 

A2.17,  is constrained to be larger than λ = csc(12°) to minimize triangle irregularity 

on the boundary mesh.

The second mesh quality constraint enforces a minimum dihedral angle between boundary 

mesh triangles that share an edge:

A2.18

 and  are the normals of adjacent boundary triangles that share the edge between 

vertices xq and xr. In this application ρb = cos(26°) = −0.9 and ρi = cos(60°) = 0.5, meaning 

that the angle between triangles that share a boundary edge is greater than 26° and the angle 

between triangles that share a non-boundary edge is greater than 60°.
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Highlights

• “Boundary-first” deformable modeling with medial axis representation is 

described.

• This paradigm enables segmentation of structures with branching medial 

geometries.

• The aortic valve apparatus is segmented in 3D echocardiographic images.

• Segmentation with deformable medial modeling is compared to manual 

analysis.

• Deformable medial modeling of both normal and pathological aortic valves is 

shown.
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Figure 1. 
(a) Medial scaffold of the aortic root without cusps viewed from three different perspectives. 

(b) Medial scaffold of the complete aortic valve complex, where the attachment sites of the 

cusps are seam curves in the medial scaffold. (c) Boundary representation of the aortic valve 

complex. (STJ = sinotubular junction, LVO = left ventricular outlet)
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Figure 2. 
Schematic of segmentation and deformable medial modeling of the aortic valve apparatus.
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Figure 3. 
(a–c) Skeleton-first approach and (d–f) boundary-first approach to deformable medial 

modeling.
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Figure 4. 
Medial axis geometry shown in 2D for illustrative purposes. The dashed black curves 

demarcate the object boundary, the red curve is the object’s medial axis, and the blue circle 

is a maximally inscribed disk centered at m with radius R. The disk is tangent to the 

boundary at x1 and x2. N1 and N2 are the outward normal vectors to the boundary at x1 and 

x2, and y is a point on the object’s boundary.
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Figure 5. 
(a) Template of an object’s boundary, (b) target shape, (c) template overlaid on the target 

shape with medial axis notation, (d) template deformed to the target shape.
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Figure 6. 
3D medial geometry of the aortic valve apparatus, illustrating that maximally inscribed balls 

centered on the edges, interior, and seams of the medial axis have one, two, or three points 

of tangency with the boundary, respectively.
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Figure 7. 
The boundary template generation process illustrated from three viewpoints: a side view 

(left column), aortic view (center column), and ventricular view (right column). (a) Manual 

segmentation of the aortic valve apparatus. (b) Voronoi skeleton of the manual 

segmentation. (c) User-selected points on the skeleton. Edge, internal, and branch nodes are 

shown in red, black, and yellow, respectively. (d) Manual triangulation of the selected 

points. (e) Triangulated skeleton showing anatomical labels in color: left coronary cusp 

(blue), non-coronary cusp (purple), right coronary cusp (pink), sinuses (green), ventricular 

outflow segment (gray). (f) Inflated boundary shown in translucent gray superimposed on 

the triangulated skeleton mesh. (g) Coarse boundary mesh with anatomical labels shown in 

color. (h) Loop subdivided boundary mesh with the anatomical labels shown in color.
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Figure 8. 
(a) A fitted deformable model (top), multi-atlas segmentation (middle), and corresponding 

manual segmentation (bottom). (b) Grayscale 3DE image from which the model was 

generated. (c) Deformable model superimposed on the 3DE image. (d–f) Same as (a–c), but 

visualized from an aortic perspective.
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Figure 9. 
Deformable medial models of diseased aortic valves. (NC = non-coronary cusp, LC = left 

coronary cusp, RC = right coronary cusp)

Pouch et al. Page 36

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pouch et al. Page 37

Table 1

Accuracy of image segmentation with deformable medial modeling based on the symmetric mean boundary 

error metric.

mesh comparison mean boundary error 
(mm)

mean 95th percentile 
boundary error (mm)mesh 1 mesh 2

deformable model fitted to multi-atlas 
segmentation manual segmentation 0.41 ± 0.10 0.89 ± 0.28

multi-atlas segmentation (no model fitting) manual segmentation 0.32 ± 0.13 1.01 ± 0.62

deformable model fitted directly to manual 
segmentation manual segmentation 0.23 ± 0.08 0.50 ± 0.08

deformable model fitted to multi-atlas 
segmentation multi-atlas segmentation 0.22 ± 0.04 0.52 ± 0.07

deformable model fitted to multi-atlas 
segmentation

deformable model fitted to manual 
segmentation 0.36 ± 0.13 0.87 ± 0.26
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Table 3

Measurements derived from the deformable medial models of pathological aortic valves.

Measurement Marfan syndrome Aortic stenosis Bicuspid valve

STJD 37.4 mm (++) 21.8 mm (−−) 34.6 mm (++)

STJA 10.86 cm2 (++) 3.68 cm2 9.41 cm2 (++)

ASD 52.5 mm (++) 32.4 mm 39.1 mm

ASA 21.46 cm 2 (++) 8.14 cm2 11.92 cm2

VOA 6.96 cm2 (++) 1.50 cm2 (−−) 4.81 cm2

AAD 35.8 mm (++) 21.8 mm 29.9 mm (++)

AAA 9.41 cm2 (++) 3.75 cm2 6.76 cm2

LVOD 33.3 mm (++) 21.4 mm 28.0 mm (++)

LVOA 8.43 cm2 (++) 3.59 cm2 5.98 cm2

SALC 4.34 cm2 (++) 1.67 cm2 —

SANC 3.82 cm2 (++) 1.28 cm2 (−−) 4.05 cm2 (++)

SARC 5.61 cm2 (++) 1.77 cm2 (−−) —

TLC 2.0 mm 1.2 mm (−−) —

TNC 1.3 mm (−−) 1.5 mm 1.9 mm

TRC 1.9 mm 2.4 mm (++) —

TSV 2.6 mm 2.9 mm (++) 2.6 mm
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