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Abstract

Diffusion Weighted Imaging (DWI) is sensitive to alterations in the diffusion of water molecules 

caused by microstructural barriers. Different microstructural compartments are characterized by 

differences in DWI signal. Diffusion tensor imaging conflates the signal from these compartments 

into a single tensor, which poorly represents multiple white matter fascicles and extra-axonal 

space. Diffusion compartment imaging (DCI) models overcome this limitation by providing 

parametric representations for the signal contribution of each compartment, thereby improving the 

fidelity of brain microstructure mapping. However, current approaches fail to identify DCI model 

parameters from conventional single-shell DWI with the desired accuracy. It has been 

demonstrated that part of this inaccuracy is due to the ill-posedness of the estimation of DCI 

model parameters from conventional single-shell acquisitions. In this paper, we propose to 

regularize the estimation problem for single-shell DWI by learning a prior distribution of DCI 

model parameters from DWI acquired at multiple b-values in an external population of subjects. 

We demonstrate that this population-informed prior enables, for the first time, accurate estimation 

of DCI models from single-shell DWI typically acquired in clinical practice. We validated our 

approach on synthetic and in vivo data of healthy subjects and patients with autism spectrum 

disorder. We applied the approach to population studies of brain microstructure in autism and 

found that introducing a population-informed prior lead to reliable detection of group differences. 

Our algorithm enables novel investigation from large existing DWI datasets in normal 

development and in disease and injury.
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1. Introduction

Diffusion tensor imaging (DTI) provides a single tensor model to describe all of the signal 

arising from the water molecules diffusing within a single voxel. In voxels with multiple 

compartments, such as arises in regions of crossing fascicles, or with alterations in extra-

axonal space, the mixing of the separate signals from these compartments into a single 

tensor fails to preserve the microstructural properties of the individual compartments. 

Furthermore, the interpretation of scalar measures from DTI, such as mean diffusivity (MD), 

fractional anisotropy (FA) may be misleading (Vos et al., 2012) when signal arising from 

multiple compartments is interpreted as if it arose from one compartment. Since 60–90% of 

voxels contain more than one fascicle at typical resolutions (Jeurissen et al., 2012), this 

limitation makes DTI inadequate in the vast majority of the white and gray matter. Various 

models have been proposed to overcome this limitation. Among them, diffusion 

compartment imaging (DCI) models such as multi-tensor models (Pasternak et al., 2009; 

Scherrer and Warfield, 2012; Tuch et al., 2002), NODDI (Zhang et al., 2012), CHARMED 

(Assaf and Basser, 2005) and DIAMOND (Scherrer et al., 2013a) seek to represent the 

contribution to the overall signal at a voxel arising from different populations of water 

molecules, and recent research has improved the tractability of their estimation (Daducci et 

al., 2015a,b). Since these models may improve the sensitivity and specificity of 

interpretation of the DWI signal, they are of great interest to characterize and compare brain 

tissue properties. However, the estimation of the parameters of these models from 

conventional data acquired at a single shell (diffusion weighting with a single non-zero b-

value (Jones, 2004)) has proven ineffective.

Recent work has suggested that part of this inaccuracy is explained by the ill-posedness of 

the estimation problem and is not solely related to imaging noise or artifacts (Kreher et al., 

2005; Scherrer and Warfield, 2010, 2012; Schultz et al., 2010; Taquet et al., 2013). Ill-

posedness occurs when several different parameter values for the object being imaged can 

equally explain the acquired measurements, even in the absence of noise. In such a situation, 

it is impossible to identify the right parameter values. One possibility to circumvent this 

problem is to restrict the class of models by fixing a priori some of the model parameters. A 
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review of these constrained models is included in (Mishra et al., 2014). In (Kreher et al., 

2005), pseudo tensors with undefined eigenvalues are estimated. This model does not allow 

measurements of diffusion properties (such as the fractional anisotropy and the mean 

diffusivity) for each fascicle, limiting its use in population studies of the brain 

microstructure. In (Tuch et al., 2002) and (Ramirez-Manzanares et al., 2007), the tensor 

eigenvalues are completely fixed a priori so that only the directions can be inferred. In 

(Anderson, 2005), the axial eigenvalue is fixed a priori, the radial eigenvalue is estimated 

from the mean signal and assumed equal for all fascicles in the voxel, and the orientation 

distribution is then estimated. In (Schultz et al., 2010), a ball-and-stick model is estimated, 

which assumes that fascicles are all identical and that there is no diffusion in directions 

orthogonal to the fascicle orientation. In (Malcolm et al., 2010) and (Zhan and Yang, 2006), 

the signal fractions are arbitrarily fixed to an equal value. Arbitrarily fixing some parameters 

leads to suboptimal models whose properties may not represent the true underlying brain 

microstructure and cannot be compared across groups in population studies.

Since the ill-posedness problem affects both the signal fractions and the tensor eigenvalues, 

unreasonable assumptions about any of those parameters necessarily impact the estimation 

of the others. Assumptions about the signal fractions are arbitrary since the location of the 

boundary between white matter fascicles, or between white and gray matter, are not known 

in advance and depend on the position of the subject in the scanner and the imaging 

resolution. As for fascicle properties, there is a large body of evidence showing that they 

differ throughout the brain (Aboitiz et al., 1992; Lamantia and Rakic, 1990) and across 

subjects due to normal development (Gao et al., 2009) and disease (Heads et al., 1991; 

Zikopoulos and Barbas, 2010). These changes in axonal diameter, density and myelination 

directly impact diffusion properties of fascicles.

Some researchers have proposed to rely on spatial priors to regularize the estimation 

problem. Spatial priors express that DCI models in adjacent voxels are not independent and 

can be an excellent choice for modeling the underlying spatial homogeneity of the brain. 

However, most currently exploited spatial priors do not address the ill-posedness of the 

estimation problem caused by insufficient b-values (as we show in Section 2.2). Pasternak et 

al. proposed a piece-wise smoothness constraint to regularize the estimation of a single-

tensor model with a free-water compartment (Pasternak et al., 2009, 2012a). In (Scherrer 

and Warfield, 2012), an anisotropic spatial prior is used to regularize a multi-tensor field. 

Importantly, we will show in Section 4.5 that relying solely on such spatial priors may 

mislead the conclusions drawn from population studies.

To regularize the estimation problem while keeping all the degrees of freedom of the model, 

Scherrer and Warfield proposed to acquire data at several b-values (Scherrer and Warfield, 

2012). Pasternak et al. demonstrated that even for a simpler model including only one 

anisotropic tensor and an isotropic tensor, inclusion of multiple non-zero b-values improves 

the accuracy of the estimation (Pasternak et al., 2012a). In (Taquet et al., 2013), we 

considered the problem of estimating a multi-tensor model from single-shell HARDI data. 

However, it remains unclear whether any of these approaches are effective. In particular, 

there is no theoretical demonstration that the particular ill-posedness identified in (Kreher et 

al., 2005; Scherrer and Warfield, 2012) and further explored in (Taquet et al., 2013) is 
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alleviated when DWI are acquired at multiple b-values. Furthermore, it is unclear whether 

the approach proposed in (Taquet et al., 2013) leads to biased estimates of DCI models and 

whether they enable the detection of true brain microstructure differences in population 

studies. More work is thus needed to establish the appropriate theory and to demonstrate the 

efficacy of any solution.

Many large diffusion imaging datasets have been acquired with a single-shell HARDI 

acquisition sequence. For instance, the Pediatric Imaging, Neurocognition, and Genetics 

Study (PING) includes diffusion images from 800 children at b = 0s/mm2 and b = 

1000s/mm2 (Fjell et al., 2012). Such datasets hold promise to better understanding the 

relation between brain microstructure and neuropsychological development. The inability to 

estimate multi-fascicle models from single b-value data, however, jeopardizes the potential 

of these data to reveal novel insight into the brain microstructure. There is therefore a strong 

need for a method to estimate DCI models from data acquired at a single non-zero b-value. 

A method to estimate a general N-tensor model can be applied to many DCI models since 

most of them include a multi-tensor of some kind (Panagiotaki et al., 2012), as, from first 

principles, individual spin packets exhibit monoexponential decay (Yablonskiy et al., 2003). 

In the DIAMOND model, the mode of each of the matrix-variate Gamma distribution is a 

tensor (Scherrer et al., 2013a). In NODDI, the model of the CSF compartment and the mode 

of the extracellular model is a multi-tensor (Zhang et al., 2012). In CHARMED, the multiple 

hindered compartments define a multi-tensor (Assaf et al., 2004).

This paper proposes a method to estimate a general N-tensor model from single-shell 

HARDI data and demonstrates its effectiveness in population studies of the brain 

microstructure. We start by considering and generalizing the ill-posedness problem proposed 

in (Kreher et al., 2005; Scherrer and Warfield, 2012) and provide, for the first time, a 

theoretical demonstration that this ill-posedness is alleviated insofar as at least two different 

non-zero b-values are used in the acquisition, regardless of the number N of tensors. To 

remove the ill-posedness in the estimation from data at a single non-zero b-value, we then 

propose to incorporate prior knowledge from data acquired in an external population of 

subjects which are imaged at multiple b-values. Section 2 describes the main contributions 

of this paper. Section 3 describes how the population-informed prior is used to estimate DCI 

models. Section 4 presents experimental results. Section 5 summarizes the main 

contributions of this paper.

2. Material

In this section, we first elucidate the ill-posedness of the estimation problem for N-fascicle 

models through a geometric argument (Section 2.1). We then demonstrate why most spatial 

priors cannot be used to resolve the ill-posedness from the estimation of the full DCI model 

(Section 2.2). Finally, we derive an expression for a population-informed prior to regularize 

the estimation problem (Section 2.3). We will denote random variables with sans-serif fonts 

(a for scalar, a for vector, and A for matrices), and constants or observations with serif fonts 

(a for scalars, a for vector and A for matrices).
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2.1. Manifolds of Equivalent Models at a Given b-Value

Multi-tensor models represent the formation of the diffusion signal S for a b-value b and a 

gradient direction g (with ||g|| = 1) by:

(1)

where Di and fi are the tensor and the signal fraction of the i-th fascicle. The goal of the 

estimation problem is to determine the values of the parameters Di and fi from a set of 

measurements S(g, b) acquired for different gradient directions g and b-values b.

Since, for any γi > 0, γie−logγi=1, all multi-fascicle models with fractions γifi and tensors 

 generate the same values of the diffusion signal at a given b-value b:

(2)

The tensors remain positive definite as long as , where  is the lowest 

eigenvalue of Di. These models are all equally compatible with the observed measurements 

of the signal S at a single b-value b. Selection of a particular model based solely on the 

measurements at that particular single b-value is therefore purely arbitrary. Since the 

eigenvectors of Di + αI are equal to those of Di, the principal directions of diffusion are not 

altered by the transformation (2). In terms of fractions and eigenvalues, the equivalence 

between models can be written:

(3)

where λi,j is the j-th eigenvalue (j = 1, 2, 3 with λi,1 ≥ λi,2 ≥ λi,3) of the i-th tensor. Varying 

all the γi under the constraint that  defines an equivalence class of multi-tensor 

models that all present with the same values of the diffusion signal at a single b-value b. All 

the multi-tensor models in this equivalence class have a different set of lowest eigenvalues 

(λi,3)i=1,…,N. Therefore each model satisfying (3) is uniquely identified by its vector (λ1,3, 

…, λN,3). In the N-dimensional space of lowest eigenvalues, the equivalence class defined 

by (3) is a manifold of dimension (N − 1) defined by the implicit equations (we let λi ≜ λi,3 

for clarity):

(4)

where { } is any fixed reference model on the manifold. This reference can be 

arbitrarily selected from the equivalence class. Without loss of generality, we therefore 

select it as the true (unknown) underlying model (Fig. 1(a)). An explicit equation of the 
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manifold can be obtained by eliminating the γ’s between Equations (4) and expressing the 

lowest eigenvalue of the N-th tensor λN as a function of the (N − 1) others:

(5)

This manifold describes the set of models that all generate the same diffusion signal at a 

single b-value b. Of course, any model on that manifold generates a diffusion signal whose 

value differs for different b-values. At b-values other than b, the signal generated by 

different models from that manifold may well be different so that these models could be 

distinguished if measurements at several b-values were available (Fig. 1(b)). In the 

formalism of manifolds, acquiring diffusion images at different b-values therefore amounts 

to defining different equivalence manifolds. Each such manifold is characterized by a single 

b-value b, which influences its shape (as defined by Equation (5)), and contains different 

models that are indistinguishable from measurements at that single b-value b. The true 

underlying model defined by  must, by definition, be at the intersection of all these 

manifolds since it is compatible with the different measurements at the different b-values 

(Fig. 1(b)). This intersection is defined by a fixed vector of λi and therefore by a fixed set of 

tensors Di and a fixed vector of fractions.

Remarkably, it can be demonstrated that, insofar as at least two non-zero b-values (b, b′ > 0, 

b ≠ b′) are used in the acquisition, the true underlying model is the only one that satisfies the 

equations of λN(λ1, …, λN−1, b) and λN(λ1, …, λN−1, b′), i.e., the two manifolds described by 

two different b-values share only one intersection (Appendix A). This unicity property 

implies that the ill-posedness problem highlighted in Equation (3) is removed as soon as at 

least two non-zero b-values are used in the acquisition, regardless of the number N of 

fascicles and the actual b-values used.

Despite the unicity of the intersection of manifolds when two or more non-zero b-values are 

used, estimating a multi-fascicle model from data at several b-values remains sensitive to 

noise (Pasternak et al., 2012a; Scherrer and Warfield, 2012). This sensitivity can be 

explained by the geometry of the manifold of equivalent models. At their intersection, 

manifolds of equivalent models obtained for different b-values intersect tangentially (see 

proof in Appendix B). In other words, at the first-order approximation, the manifolds at all 

b-values coincide locally, explaining the high sensitivity to noise encountered when 

optimizing the parameters of a multi-fascicle model (Fig. 1(b)). This is akin to the sensitivity 

of the intersection point of two almost-parallel lines in the plane: small perturbations of their 

slope can have a dramatic effect.

From the analysis of the geometry of the manifolds in the vicinity of their intersection, it can 

also be shown that the difference in curvature between the manifolds at two different b-

values (b and b′) is proportional to the difference in b-values (b−b′) (Appendix B). It appears 

that a wider range of b-values therefore leads to a larger difference between their manifolds, 

which should in turn improve the accuracy of the estimation (ignoring the potential impact 

of b on noise). Continuing with a different analogy, this is akin to having a small ball stuck 
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inside a larger ball, such that they intersect at a single point. Moving the small ball gently 

displaces the intersection point somewhat. On the other hand, if the inner ball is nearly as 

large as the outer one (almost the same b-value), then small perturbations (due to noise) can 

lead to large displacements of the contact point.

When an isotropic compartment fisoe−bDiso is explicitly included in the model, one can show 

that the above development remains valid both with an unchanged N if Diso is known 

(typically set to the diffusion of water at 37°C, that is 3 × 10−3mm2/s), and considering an (N

+1)-fascicle model if Diso is estimated from the DWI data. In summary, estimating multi-

fascicle models from single b-value data is an ill-posed problem that has an infinite number 

of equivalent solutions. However, due to the particular geometry of the manifold of these 

solutions, acquiring data at two b-values is sufficient to resolve the ambiguity due to the 

equivalence relation (4). Acquiring additional b-values reduces the sensitivity of the system 

of equations to noise.

2.2. Ill-Posedness with Spatial Priors

This section demonstrates that the use of the most common spatial priors, as described in 

(Pasternak et al., 2009, 2012a; Scherrer and Warfield, 2012), does not alleviate the ill-

posedness problem of the estimation. In their most general expression, these spatial priors 

impose a penalty on multi-fascicle models based on some discrepancy between the multi-

tensor at one voxel ℳ(x) and the multi-tensors in the neighborhood Ωx:

(6)

where d(ℳ(x′), ℳ(x)) is some discrepancy function between the multi-tensors ℳ(x) and 

ℳ(x′). The expressions for the spatial prior may vary (through the choice of f, d and/or Ωx) 

but they share the property of reaching a maximum if the local neighborhood is constant 

(i.e., if ℳ(x′) = ℳ(x), ∀x′ ∈ Ωx), since, typically, d(ℳ, ℳ) = 0, for any ℳ. For instance, 

the prior used in (Scherrer and Warfield, 2012) for a multi-fascicle model that has N tensors 

Di(x) at location x is:

(7)

where ∇ is the spatial gradient with respect to x approximated by finite differences (Jordán, 

1965), with D ≜ (D1, …, DN). The gradient ∇ is computed along the fascicle by selecting 

for each Di at x, the two tensors in Ωx most similar to Di(x). In a constant field of multi-

tensor models, all gradients are equal to zero and the prior is maximum. Therefore, two 

constant multi-tensor fields must have equal spatial priors. Given a constant multi-fascicle 

model, one can generate an infinite number of constant multi-fascicle models from (4) that 

the data alone cannot distinguish. Since the spatial prior is unable to distinguish them either, 

the ill-posedness problem persists.

Spatial priors that do not follow Equation (6) may be proposed. For instance, one may 

propagate properties of tensors from single-tensor to multi-tensor areas (Schultz, 2012b). 

Since the estimation in single-tensor areas is not ill-posed, such a prior would, in theory, 
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avoid the ill-posedness problem at the expense of strong assumptions about the homogeneity 

of diffusion properties along the fascicles. More work is needed to assess whether such 

priors would be beneficial for population studies of the brain microstructure.

2.3. Posterior Predictive Distribution of the Parameters

While all models of (4) are equally compatible with the observed DWI at a given b-value, 

they are not all equally likely from a biological point of view. This knowledge can be 

learned from available observations of multi-fascicle models at multiple non-zero b-values 

in other subjects. Since these subjects are imaged at multiple non-zero b-values, their multi-

fascicle models are not affected by this ill-posedness problem and they are therefore reliable 

observations of the anatomy.

For a fascicle i at a specific voxel, we denote by  the observations of its i-

th fraction and by  the observations of its i-th tensor in m other subjects. 

Notice that the number of observations for the fraction is always equal to the number m of 

subjects while the number of observed tensors is mi ≤ m since a compartment with a null 

fraction has undetermined tensor. We let ℱ = (ℱ1, …, ℱN) and  = ( 1, …, N) for the 

observations of all fractions and all tensors in one voxel. These observations can be 

incorporated into the estimation of a multi-fascicle model in a new subject, as a prior over 

the parameters (fi, Di) (Fig. 1(c)). This section derives an expression for the prior probability 

p(f, D|ℱ, ) for the fractions and tensors in one voxel given the observations at the same 

voxel in other subjects. We assume that the fascicle properties are independent of partial 

voluming and that the properties of one fascicle are independent of those of another (these 

assumptions are experimentally tested in Section 4.1). The prior can therefore be expressed 

as:

(8)

We employ the following strategy to derive an expression for this prior. First, we express a 

likelihood over the model parameters f, Di, whose expression depends on unknown 

parameters, α and θi. Second, we express non-informative hyperpriors over these unknown 

parameters. Finally, we derive, from the resulting hierarchical model, an expression for the 

posterior predictive distribution over new observations given past observations. This 

posterior predictive distribution is the population-informed prior.

The fractions are not independent since they sum to 1. However, we assume that any 

fraction fi is independent of the relative proportions of others fj/(1 − fi). This neutral vector 

assumption naturally leads to the Dirichlet distribution for the likelihood:

(9)

where 𝟙f∈  equals one if and only if f ∈  and zero otherwise. Calculus of diffusion tensor 

data is typically performed in the log-Euclidean domain since it resembles the Euclidean 
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space and avoids nonsensical negative eigenvalues (Arsigny et al., 2006). The prior 

knowledge about Di can be described as a multivariate Gaussian distribution over their 

logarithm (Arsigny et al., 2006; Schwartzman et al., 2008):

(10)

In this notation, Li is vectorized as (diag(Li), . In general, Σi has 21 free 

parameters, which may overfit the usually small training dataset. For DTI, Schwartzman et 

al. suggested in (Schwartzman et al., 2008) to constrain Σi to be orthogonally invariant, 

imposing the following structure that depends only on σi and τi:

Orthogonal invariance implies that a deviation Δi from the mean Mi is as likely to occur as 

its rotated versions QΔiQT for any orthogonal matrix Q. This yields a closed-form solution 

for the maximum likelihood (ML) estimator (Schwartzman et al., 2008):

(11)

(12)

where  and 〈A, B〉t=Tr(AB)−t Tr(A)Tr(B). The ML estimator may be 

unreliable for compartments with only a few observations. This uncertainty is accounted for 

by replacing point estimates of θ by posterior distributions and integrating over all possible 

θ. This yields the posterior predictive distribution which encodes all the knowledge about 

new observations that we learn from previous observations. Its derivation requires the 

definition of hyperpriors over θ and has closed-form if we select conjugate hyperpriors. Mi 

~  (M0, Λ0) is a conjugate hyperprior for the tensor part of (8) assuming a deterministic 

Σi=Σ̂
i. We set Λ0=B(1, 0) and M0=log Diso to keep it weakly informative (this hyperprior 

merely encodes the order of magnitude of diffusivity at 37°C). The posterior predictive 

distribution over the tensors becomes:

(13)

(14)
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(15)

For the parameters αi, a conjugate hyperprior is the Dirichlet distribution. We set all its 

parameters to 1, making it uniform over the simplex . The resulting posterior predictive 

distribution is a Dirichlet with parameters . The complete posterior predictive 

distribution is represented as a graphical model in Fig. 2 and its expression is (with Cℱ,

constant):

(16)

This prior pertains to a single voxel. The population-informed prior for the entire multi-

fascicle model is obtained by multiplying this prior for all location x. Dependence between 

adjacent voxels can be accounted for by a separate spatial prior. This population-informed 

prior encodes our a priori knowledge of the brain microstructure at every location. In the 

next section (Section 2.4), we will see how this prior is incorporated in a maximum a 

posteriori estimate of the model parameters.

2.4. Maximum A Posteriori Estimation of the Model Parameters

The population-informed prior is incorporated in the estimation as a prior over the model 

parameters. The maximum a posteriori (MAP) estimate of the parameters is:

We use the spatial prior pspatial(f, D) defined in (Scherrer and Warfield, 2012) and recalled 

in (7). The likelihood density is over measurements y = (y1, …, yK), that is the set of K 

DWI. The expression of the likelihood density depends on the noise model. This noise 

model pertains to data acquired at a single b-value. This b-value is typically low so that we 

assume Gaussian noise with variance  (Gudbjartsson and Patz, 1995) (other models 

can be incorporated in the same way in the estimation):

where Sk is the modeled signal obtained with (1) for volume fractions f(x) and tensors D(x), 

given the b-value and the gradient orientation of the measured yk.

The MAP estimate at each voxel amounts to solving the following optimization:

Taquet et al. Page 10

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(17)

The first two lines are the population-informed prior, the third line is the spatial prior and the 

fourth line is the likelihood. The population-informed prior is learned in closed form and 

therefore does not introduce additional parameters. The estimation of the optimal values for 

 and  is investigated in the next section. As in (Scherrer and Warfield, 2012), 

Equation (17) is maximized using the BOBYQA algorithm (Powell, 2009) that allows the 

introduction of constraints. The values of all BOBYQA parameters are set to those of 

(Scherrer and Warfield, 2012). To select the number N of fascicles, we use an F-test with a 

threshold t=25 as in (Scherrer and Warfield, 2012) due to its widespread use (Alexander et 

al., 2002; Kreher et al., 2005; Scherrer and Warfield, 2012) to isolate the impact of the 

population-informed prior when comparing the results with those of earlier methods. Recent 

developments have, however, enabled more reliable selection of the number of fascicles 

(Scherrer et al., 2013b; Schultz, 2012a) and can be used with the proposed estimation.

2.5. Estimation Bias and Detectability of Group Differences

The introduction of an informed prior in the estimation implies that estimated models will be 

closer to the mean of the population than they would be if the estimation problem was well-

posed and if no prior was used. This is the shrinkage towards the mean effect that is 

common to any parameter estimation expressed as a maximum a posteriori. In this section, 

we investigate, theoretically, the impact of this effect on the bias of the estimates and on 

their capability to detect group differences. In Section 4.2, we present empirical evidence 

demonstrating the main conclusions of this section.

The use of a population-informed prior assumes that the population is well represented in 

the samples used to build the prior. If a sufficient coverage of the population is used to 

generate the prior, then the use of the prior does not bias further estimates in the same 

population. In other words, estimates of multi-fascicle models from new control subjects are 

closer to the mean of the prior population but the average estimated model in new control 

subjects corresponds to the average model in the prior population which is asymptotically 

the true average of the control population. In contrast, maximum likelihood estimates (MLE) 

are ill-posed and their average corresponds to the average model of a manifold of equivalent 

models. This average model may substantially differ from the true average control subject, 

resulting in higher biases in the estimates (Fig. 3).

When the population-informed prior is used to estimate multi-tensor models of patients in 

voxels with a group difference, the estimation is biased because the average patient model is 
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brought closer to the average control model. Importantly, for population studies, the prior 

ought to be built from control subjects only. Otherwise, blindness in the experimental design 

is lost and the reported p-values may not be valid. With a population-informed prior based 

upon control subjects only, the resulting inference of group differences is more conservative 

and no additional false positives are expected. To appraise the extent of this bias, let us 

consider virtual DWI from an average patient in a single voxel. To identify the contribution 

of the prior in the estimation error, let us consider that measurements are noise-free. In this 

scenario, all models on the equivalence manifold have equal likelihood and all models 

outside of the manifold have zero likelihood. The MAP is therefore the model from the 

equivalence manifold that maximizes the population-informed prior. From the MAP 

expression (17) and from the implicit equation of the equivalence manifold (4), this optimal 

model is characterized by an optimal vector γopt given by:

(18)

under the constraint

Optimizing the terms in  tends to bring the fractions of the estimated model  close to 

the average fractions in the prior population  whereas optimizing the term in 

tends to bring the i-th log-tensor close to the average log-tensor in the prior population M̃
i. 

Group differences typically affect specific properties of the microstructure (e.g., the radial 

diffusivity of one fascicle). In terms of unaffected properties, both the population-informed 

prior and the likelihood are simultaneously maximized at the true underlying model since 

the average patient has, by definition, the same values of unaffected properties as the 

average control subject. Importantly, because the number of degrees of freedom (N − 1) is 

smaller than the number of parameters of the model (7N − 1), reducing the bias in unaffected 

properties also decreases the bias in the estimation of affected properties. The terms in (18) 

that relate to unaffected properties therefore drive the model towards the true model. The 

bias in the estimation thus comes exclusively from the terms in (18) that pertain to affected 

properties and is mitigated by the other terms. Furthermore, even within the terms that 

contain affected properties (e.g., the term in  whose principal eigenvalue presents with a 

group difference), the bias is mitigated by the other properties of the same term that are not 

affected (e.g., the second and third eigenvalues of ). To illustrate the mitigation of the 

estimation bias by unaffected model parameters, the different factors of the population-

informed prior are depicted in Fig. 4 for a two-tensor model whose principal eigenvalue of 

the first tensor is significantly decreased in patients. As expected, the terms related to D2 and 

to the fractions are maximized at the true underlying model, whereas the term in D1 is offset 

due to the presence of a group difference.
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3. Methods

In this section, we specify how the population-informed prior is constructed and we provide 

details about the experimental setup used to validate our method.

3.1. Construction and Evaluation of the Population-Informed Prior

The population-informed prior is built from data acquired in completely different subjects at 

several b-values. These data are used to compute multi-fascicle models for each subject. 

These multi-fascicle models are then registered to a multi-fascicle atlas, using the method 

described in (Taquet et al., 2012b). In applying the transformation to the multi-fascicle 

models, the reorientation of tensors is performed using the finite-strain rationale first 

proposed in (Alexander et al., 1999, 2001; Ruiz-Alzola et al., 2000) adapted to multi-tensor 

models (Taquet et al., 2014a). Following alignment, tensors from all subjects at each voxel 

are clustered in N compartments by minimizing the cumulative relative differential entropy 

as described in (Taquet et al., 2012a). The number N of compartments is set to the maximum 

number of tensors observed among subjects at that location. Each cluster represents the sets 

ℱi and i of available observations for the i-th fascicle and the prior is built following the 

procedure described in Section 2.3.

To evaluate the prior at a given voxel x for a given candidate model (f(x), D(x)), we need 

the prior to be aligned to the subject whose multi-fascicle model is being estimated. We also 

need to identify which fascicle of the prior corresponds to what fascicle of the model being 

estimated. Alignment of the prior is performed by first estimating a constrained multi-

fascicle model without the population-informed prior and by performing multi-fascicle 

registration (Taquet et al., 2012b) between this first estimate and the multi-fascicle atlas. 

The constrained model is a fixed response model whose description is provided in Section 

4.4. Associations between the fascicles of the model and the fascicles of the prior is 

achieved by computing the prior for all possible associations of fascicles and recording the 

maximum value obtained.

3.2. Comparison Metrics

A multi-fascicle model (f, D) is compared to a ground truth (f̃, D̃), with the following six 

metrics at every voxel (e1,i is the principal eigenvector of Di with unit norm):

(19)

(20)

(21)
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(22)

(23)

(24)

3.3. Validation with a Synthetic Phantom and In Vivo Data

To validate the methods, experiments are performed with a synthetic phantom and in vivo 

data in both healthy subjects and children with autism. The synthetic phantom consists of a 

16 × 16 × 16 multi-fascicle model containing an isotropic compartment and 1, 2 or 3 tensors 

with various properties (Fig. 7, see caption for parameter details). The non attenuated signal 

S0 is set to 400. This phantom enables the generation of synthetic DWI at different noise 

levels with different gradient directions and b-values.

In vivo DWI were acquired on a Siemens 3T Trio scanner with a 32 channel head coil using 

the CUSP-45 gradient sequence (Scherrer and Warfield, 2012). This sequence includes 30 

diffusion-encoding gradients on a shell at b = 1000 s/mm2 and 15 extra gradients in the 

enclosing cube of constant echo time with b-values up to 3000 s/mm2. Eddy current 

distortion was minimized using a twice-refocused spin echo sequence (Reese et al., 2003). 

Other acquisition parameters were set to FOV= 220mm, matrix= 128×128, number of 

slices=68, resolution = 1.7×1.7×2mm3. Data acquisition was conducted using a protocol 

approved by the Institutional Review Board (IRB). Images were acquired for 31 healthy 

controls and 10 children diagnosed with a syndromic form of autism spectrum disorder 

(ASD) related to Tuberous Sclerosis Complex. No significant difference in age and gender 

were observed between the groups. A total of 13 healthy controls were used to construct the 

population-informed prior and the remaining 18 healthy controls as well as the children with 

ASD were used to test the performance of the estimation method. The computational time 

for the estimation of the DCI model with the prior on an 8 Core 3Ghz Intel Xeon machine 

running on Linux was approximately 100min, which is mostly driven by the registration of 

the prior to the subject (approximately 30min) and the estimation with the aligned prior 

(approximately 70min).

4. Results

In this section, we validate the proposed method to estimate multi-fascicle models from 

single non-zero b-value data. We first investigate the validity of the major assumption of our 

model. We then conduct a set of experiments on synthetic single-voxel data to assess the 

bias of the population-informed prior. We then carry out a set of experiments on the 

synthetic phantom where the true model is known by construction. We subsequently conduct 

experiments on in vivo data of both healthy controls and children with autism. We show that 
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the proposed approach performs significantly better than estimations without prior or with a 

spatial prior only. Finally, we show that the use of a population-informed prior enables 

reliable detections of group differences in the white matter microstructure.

4.1. Testing the independence between fractions and tensors

Our model assumes that the fractions f and the tensors D are independent variables at every 

location. The intuition behind this assumption is that the volumetric fractions and the 

properties of the tensors represent two independent properties of the microstructure (Taquet 

et al., 2014b). To test the validity of this hypothesis, we sampled the aligned images of all 

healthy controls at 520 locations (on a regular grid) and, at each location, we recorded the 

values of fractions and eigenvalues of all tensors for all subjects. For every location, we then 

tested the independence between a fraction and an eigenvalue by computing the distance 

correlation between the two (Székely et al., 2007). The process was repeated for every 

possible pair (fraction, eigenvalue). Ideally, the distance correlation would be null for 

independent variables but non-null values occur due to chance. To test whether chance could 

account for the distance correlations observed in our data, we estimated, at every location, 

the null distribution of the distance correlation by randomly permuting 1000 times the 

identification of the subjects and computing the distance correlation for each permuted 

dataset. This process enables estimating the p-value for the null hypothesis that the two 

variables are independent by permutation testing.

For every pair of variables, a minimum of 80% and an average of 87% of the locations had a 

distance correlation whose value could be explained by chance (p > 0.05) and hence whose 

independence could not be rejected. This result implies that, for the vast majority of voxels, 

independence between fractions and fascicle properties cannot be rejected. The remaining 

13% of locations can be explained by two phenomena. First, as with any statistical test, the 

threshold at p < 0.05 means that the hypothesis will be rejected at 5% of locations due to 

chance. Second, we hypothesize that the remaining 8% of locations at which independence 

is statistically rejected present with registration or estimation errors since such errors affect 

all properties of the multi-tensor model simultaneously so that dependence between 

variables may appear. This small rate of locations with rejected independence does not 

warrant incorporating dependence in the generative model.

4.2. Bias Assessment and Detection of Synthetic Group Differences

In this section, we investigate the impact of the population-informed prior on the bias of 

estimations and on the detection of group differences. Thirteen different configurations of 

group differences were simulated by altering the microstructure properties of a two-fascicle 

control template according to the differences specified in Table 1 (illustrated in Fig. 6(a)). 

For each configuration, 1000 control templates and 1000 patient templates were generated. 

Control templates were generated by randomly drawing the principal eigenvectors uniformly 

on a sphere, the relative direction of the second eigenvector uniformly on a circle, the axial 

diffusivities from a normal distribution centered at 3.5×10−3 mm2/s with a standard 

deviation of 0.5×10−3 mm2/s and the radial diffusivities from a uniform distribution between 

0.3 × 10−3 mm2/s and λ1 − 0.9 × 10−3 mm2/s where λ1 is the randomly drawn axial 

diffusivity. For each of the 13000 pairs of template, 20 control subjects were simulated to 
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build the prior, 20 other control subjects were generated to be compared to patients and 20 

patients were simulated. Intra-group variability was simulated by adding independent 

Gaussian noise to the eigenvalues of the template (standard deviation: 0.1×10−3 mm2/s), 

adding independent Gaussian noise to the components of the eigenvectors (standard 

deviation: 0.05) and re-normalizing them, and adding Gaussian noise to the fraction 

(standard deviation: 0.05).

Those simulated subjects correspond to the ground truth. Estimations of these models at a 

single b-value (we let b = 1000 s/mm2) were simulated first by randomly selecting a model 

from the corresponding equivalence manifold, while enforcing the constraint of positive 

eigenvalues (estimation without prior) and then by optimizing the value of the prior 

(estimation with prior). The estimation errors are depicted in Figure 5. Since the equivalence 

manifold induces the same errors to all three eigenvalues of a same tensor (regardless of the 

use of a prior), these are represented as λ1 (for tensor 1) and λ2 (for tensor 2). As expected 

from theoretical consideration in Section 2.5, estimations in control subjects (configuration 

➀) are unbiased with the prior and biased when the prior is not used. When group 

differences are present, the bias of the estimations with the prior is non-zero but remains 

smaller than the bias resulting from estimations without prior (for all properties and all 

configurations of group differences). When the prior is not used, the mean bias observed 

across all 13 configurations of group differences for the estimation of fractions is 0.22 and 

for the estimation of eigenvalues is 6.3 × 10−4 mm2/s. In contrast, the mean bias with our 

approach is 0.016 for fractions and 6.1×10−5 mm2/s for eigenvalues. The inclusion of the 

prior thus reduces the estimation bias by an order of magnitude for all properties.

Using the estimated models in the 13000 simulated populations, group comparisons were 

performed with two-sample t-tests. Significance thresholds at 10−4 were then applied to the 

p-values to detect group differences (the choice of the threshold is motivated by the actual 

thresholds typically applied to each voxel of an image when FDR correction is applied). As 

expected, no additional false positives are observed when the prior is used in the estimation 

under the null hypothesis (configuration ➀). The vast majority of true group differences are 

detected when the prior is used whereas most group differences vanish by Type II error 

when no prior is included in the estimation (Fig. 6(b)). For estimation with the prior, 

increased number of properties affected by group differences increase estimation bias, 

thereby making inference of group differences more conservative (configurations ⑪ – ⑬) 

as illustrated in Figure 6(c). This results in slightly decreased detection rates (e.g., 

differences in λ2,3 under configuration ⑬ are detected 75% of the times). In these 

configurations, however, the number of properties affected by group differences increases 

the likelihood of one property being detected as abnormal and therefore our ability to 

consider that the microstructure in the voxel is abnormal. This likelihood is estimated by 

counting the number of times any property from the voxel is detected as different. With the 

prior, this rate is equal to 100% for configurations ➂ to ⑬, to 93% for configuration ➁ and 

to 0% for configuration ➀.
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4.3. Synthetic Phantom Experiment

In this experiment, we evaluated the impact of noise, group differences, and registration 

error on the models estimated with and without the population-informed prior. We 

constructed the prior from 20 sets of 95 DWI (5 at b =0 s/mm2, 30 at b =1000 s/mm2, 30 at b 

=2000 s/mm2, and 30 at b =3000 s/mm2) simulated by the synthetic phantom under a Rician 

noise with squared scale σ2 = 80. This prior was then used to estimate multi-fascicle models 

from 30 DWI simulated at a single non-zero b-value (b =1000 s/mm2) and 5 DWI at b =0 

s/mm2. The estimation was performed in three different scenarios: (i) under the influence of 

different levels of Rician noise, (ii) under the simulation of group differences and (iii) under 

the simulation of registration errors. Each estimation was repeated 20 times, each time with 

35 DWI simulated to test the performance of the estimation. In these experiments, no spatial 

prior was used (i.e., σs → ∞ in (17)). The parameter  in Experiments (ii) and (iii) was 

set to 80. Summary statistics for the comparison metrics are reported in Table 2.

Influence of noise—The influence of noise level was assessed by simulating Rician noise 

of squared scale varying from 40 to 120 by steps of 20. As depicted in Fig. 8, the 

population-informed prior significantly improves the accuracy of the estimation for the six 

comparison metrics (one-tail paired t-test: p < 10−10). The difference is less pronounced for 

ΔDir, since directions are not affected by the ill-posedness problem, as predicted by Equation 

(2).

Impact of group differences—Estimating multi-fascicle models from patients’ data 

implies that the prior (built in healthy controls) may be offset in terms of fascicle properties. 

To simulate the impact of these group differences, we offset the FA of the tensors in the 

phantom by −10% to +10%, compared to the population-informer prior, with steps of 2.5%. 

The datasets of DWI used for testing were simulated from these offset phantoms while the 

population-informed prior was left unchanged. The results, depicted in Fig. 8, show that the 

population-informed prior significantly improves the accuracy of the estimation for the six 

metrics (one-tail paired t-test: p < 10−5 for ΔDir and p < 10−10 for the other metrics). As for 

the previous experiment, the improvement in ΔDir is less pronounced than improvements in 

other metrics.

Impact of registration errors—The prior needs to be registered to the subject whose 

multi-fascicle model is to be estimated. To simulate the impact of registration errors on the 

estimated multi-fascicle model, we applied random deformations to the prior. The three 

components of the deformation at each voxel were sampled from an uniform distribution 

between 0 and a = 0, 0.5, 1, 1.5, and 2 voxels which spans beyond the typical accuracy 

obtained with the multi-tensor registration used for the in-vivo experiment (Taquet et al., 

2012b, 2014a). The results, depicted in Fig. 8, show that the population-informed prior 

significantly improves the accuracy of the estimation for the five metrics other than ΔDir 

(one-tail paired t-test: p < 10−5). For ΔDir, a small decrease in accuracy is observed because 

estimates without prior are not affected by registration errors. The angular magnitude of this 

decrease, however, is 0.048°, which is negligible in practice.
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These experiments demonstrate that the population-informed prior significantly improves 

the estimation of multi-fascicle models, even when registration errors and group differences 

occur. In Section 4.4, we will see that the same is true for in vivo data.

4.4. In Vivo Data Experiment

For in vivo data, there is no absolute reference standard. However, the CUSP acquisition 

sequence allows us to estimate the multi-fascicle model from the full set of DWI (5 DWI at 

b = 0 s/mm2, 30 DWI on a shell at b = 1000 s/mm2 and 15 DWI on the enclosing cube with 

b-values up to 3000 s/mm2) and from the subset of those DWI at a single non-zero b-value 

(5 DWI at b = 0 s/mm2, 30 DWI on a shell at b = 1000 s/mm2). The multi-fascicle models 

estimated with the full sets of DWI are not affected by this ill-posedness problem. We 

consider them as reference standards for the experiments and we compare estimations from 

the restricted sets to it. In this section, we optimize the parameters for the estimation and we 

compare our approach with the results obtained with (i) no prior, (ii) a spatial prior only, (iii) 

a fixed response function as proposed in the literature (Tuch et al., 2002) and (iv) by simply 

using the population mode without leveraging data (this dummy estimator is used to 

demonstrate how the proposed approach harnesses both prior information and likelihood 

from data). A summary of the performance of all methods is depicted at the end of this 

section, in Fig. 10.

Optimization of the weight ratio—Two parameters need to be fixed for the estimation 

of the maximum a posteriori in (17): the weight associated with the likelihood, , 

and the weight associated with the spatial prior, . When no population-informed prior 

is used, only the ratio of these weights, , needs to be fixed. The ground truths 

(based on the full sets of DWI) were estimated using a ratio  as we observed 

that it yields smooth multi-fascicle models while preserving important structures of the 

white matter.

We first estimated multi-fascicle models from single b-value data using a spatial prior only, 

removing the first term of (17). Because of the ill-posedness problem, the optimal weight 

ratio ( ) may differ from that used to build the ground truth. We therefore estimated 

multi-fascicle models with weight ratios of , 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4. The 

evolutions of the six similarity metrics with the weight ratio are depicted in Fig. 9. These 

results show that the best overall results are obtained for a weight ratio of 0.6, which is 

optimal for ΔMD and Δiso and close to optimal for ΔDir, and Fro. For a weight ratios above 

0.6, the spatial prior is overweighted resulting in too large a spatial regularization.

Comparison between the population-informed prior and a spatial prior—As 

explained in Section 2.2, spatial priors alone do not resolve the ill-posedness problem in the 

estimation of multi-fascicle models from single b-value data. In this experiment, we 

explored whether the population-informed prior increases the accuracy of the estimation. 

We kept  to its optimal value of 0.6 and we estimated multi-fascicle models for 

, 3.7, 4.5, 5.75, 7.83, 12, 24.5, 32.83, 49.5 and 99.5. These values stem from our 

implementation which consists in fixing the trade-off between the population-informed prior 
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(assigning it a weight w) and the likelihood (assigning it a weight (1 − w)) with linearly 

increasing w (0, 0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 0.985, 0.99, 0.995). When , the 

population-informed prior is mute and the estimation corresponds to the estimation with the 

spatial prior only (dashed lines in Fig. 9).

Results in Fig. 9 demonstrate that the population-informed prior improves the accuracy of 

the estimation for all metrics except for ΔDir. Optimal performances occur for 

(corresponding to a trade-off w = 0.99). Importantly, the performances improve 

monotonically and smoothly with σnoise so that slightly suboptimal estimates of the noise 

level will not dramatically affect the results. For , the improvement in the group 

of healthy controls ranges from 7.8% for Fro to 28.8% for Δiso. One-tail paired t-tests 

indicate that these improvements are significant (p < 0.005 for all five metrics). Importantly, 

similar results were obtained for the estimation of multi-fascicle models in patients with 

autism (Fig. 10). Improvements were observed for all five non-directional metrics with 

improvements ranging from 3.2% for ΔFA to 18.2% for Δiso. One-tail paired t-tests indicate 

that these improvements are significant (p < 0.005 for all metrics except p = 0.05 for ΔF).

To better appraise the improvement brought by the population-informed prior, Fig. 11 

depicts the spatial distribution of the improvement in estimation error (as measured by ΔF). 

While the improvement is widespread, the patterns show that it is more important in areas 

with crossing fascicles than in areas with a single fascicle (in those areas, estimating the 

model with single b-value data is not ill-posed). Importantly, even in areas with low 

diffusion contrast, the estimation remains better with a population-informed prior, owing to 

the reliable registration accuracies in those areas where the registration is driven by 

reproducible patterns of isotropic diffusion (Taquet et al., 2014a).

The slight increase in ΔDir observed with the population-informed prior corresponds to an 

angular difference of 0.4°, which is negligible in most practical applications. The equivalent 

accuracies in ΔDir is explained by Equation (2) which implies that directions are not affected 

by the ill-posedness problem. Figure 13(d–e) illustrate the difference in directions between 

estimations with and without the population-informed prior.

Consistently for both synthetic data and in vivo data in healthy controls and patients with 

autism, the isotropic fraction is the metric most beneficial of the introduction of the 

population-informed prior. The reason for this dramatic improvement can be understood 

from Equation (4). Equation (4) implies that models with large γi have the i-th fascicle close 

to an isotropic tensor (due to the offset of all eigenvalues by log(γi)/b) and a signal fraction 

(γifi). Due to noise, those fascicles may be associated with an isotropic compartment, 

thereby increasing the isotropic fraction. Conversely, a multi-fascicle model that has a large 

isotropic fraction may be misinterpreted as one with a small isotropic fraction and a tensor 

with a low fractional anisotropy. The choice between the two models is arbitrary. The spatial 

prior only imposes that a consistent choice be made between adjacent voxels, and will lead 

to globally biased isotropic fractions if the wrong model is picked. This phenomenon is 

observed in Fig. 12(a), where, in the first row, a negative bias is observed throughout the 

map of isotropic fraction, and, in the second row, a positive bias is observed. The same 
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phenomenon is observed, to a lesser extent, for maps of the maximum FA from all tensors 

(Fig. 12(b)) and of the maximum radial diffusivity from all tensors (Fig. 12(c)). These global 

biases may mislead population studies as will be demonstrated in the next section.

Comparison with a fixed response function—One way to remove the ill-posedness 

problem is to fix a priori the tensor eigenvalues and to focus on optimizing the directions 

(Anderson, 2005; Tuch et al., 2002). While such a strategy does not aim to accurately 

estimate eigenvalues, it may lead to lower errors in orientation by further constraining the 

optimization problem. We assessed this strategy by estimating, for each subject individually, 

a typical response function, i.e., a tensor that represents the typical fascicle within the 

individual’s brain. This response was estimated in a similar fashion as (Tournier et al., 

2007). First, we selected the 300 voxels with the highest FA. We assumed that a single 

fascicle was present in these voxels. A tensor was then estimated in each of these voxels and 

we computed its principal eigenvector. This eigenvector was used to re-orient the fascicle 

with the z-axis. The rotation was then applied to all DWI voxels and the corresponding 

gradients were reoriented accordingly. Finally, the typical response tensor was estimated 

from all 300 voxels of all the reoriented DWI. This response function was plugged into the 

maximum a posteriori estimate as a hard constraint on the tensor eigenvalues. Results in Fig. 

10 demonstrate that such a fixed response strategy does not reduce the error made on 

orientation while the estimated FA is on average significantly worse than that estimated with 

our population-informed prior. These results demonstrate that the assumption that all 

fascicles within the brain can be represented by the same response function is not respected 

in in vivo experiments.

Assessment of the shrinkage towards the population mean—Bayesian parameter 

estimation leads to models that are closer to the mean of the population than they would be 

without a prior. One could be concerned that this shrinkage, if too severe, would jeopardize 

the usefulness of the models for population studies. To assess the extent of the shrinkage 

induced by the population-informed prior, we compared the models estimated with our 

method with the mode of the population-informed prior. If the shrinkage is large, the models 

would be very close to this mode. Results in Fig. 10 show that the estimation accuracies of 

the population mode are significantly worse than those obtained with the proposed 

population-informed prior. The departure of our results from those obtained with the 

population mode shows that the Bayesian inference operates in a regime that trades off 

information from both the prior and the likelihood. Remarkably, our estimation performs as 

well as the spatial prior estimate in terms of ΔDir despite the poor results obtained by the 

population mode. This suggests that our maximum a posteriori expression correctly 

integrates information from the likelihood, the spatial prior and the population-informed 

prior. In particular, if the population-informed prior indicates a large dispersion in fascicle 

orientations in one voxel, the corresponding variance σ̃i will be large and more weight will 

be put on the spatial prior and the likelihood.

4.5. Application to Population Studies

Multi-fascicle models enable population studies of various properties of the brain 

microstructure. In this section, we propose two population studies of the brain 
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microstructure comparing patients with autism spectrum disorders to typically developing 

controls. The increased accuracy brought by the population-informed prior translates —as 

we will see— into a more reliable inference of group differences. All results presented in 

this section were based on  and .

Isotropic diffusion analysis in the white matter—Isotropic diffusion analysis 

(Taquet et al., 2013) allows whole-brain inspection of differences in isotropic fraction fiso. 

Excessive fiso relates to the presence of neuroinflammation and edema among others 

(Pasternak et al., 2012b; Wang et al., 2011). We performed isotropic diffusion analysis to 

compare the group of patients with ASD to the group of typically developing controls. The 

statistics of interest was the t-statistics transformed with threshold-free cluster enhancement 

(Smith and Nichols, 2009). This statistics is more sensitive to group differences occurring in 

clusters of neighboring voxels, without relying on the (typically arbitrary) choice of a 

threshold. The p-values were corrected for family-wise error rate using exact tests with 5000 

permutations.

Widespread regions of significantly higher isotropic fraction were observed in patients with 

autism, as compared to controls (see the maps of corrected p-values thresholded at p < 0.05 

depicted in Fig. 14). These regions correspond to the arcuate fasciculi, the corpus callosum 

and cortico-spinal tracts. These widespread differences are consistent with finding of 

widespread white matter abnormalities (Ridler et al., 2001) and widespread disconnection 

(Peters et al., 2013b) in patients with tuberous sclerosis complex as well as recent findings 

of impaired language pathways (Lewis et al., 2013) and loss of corpus callosum integrity 

(Peters et al., 2012) in children with syndromic autism. However, those recent results were 

based on single-tensor DTI analysis which conflates differences in fascicle properties (such 

as the FA) and differences in isotropic fraction. DTI studies therefore cannot separate axon/

myelin injury from increased cellularity associated with neuroinflammation (Peters et al., 

2013a; Wang et al., 2011). Our findings of increased isotropic fraction in children with 

autism suggest that previous findings of impaired white matter in children with syndromic 

autism may be in part due to increased cellularity or edema that may point to a 

neuroinflammatory process in those regions, as suggested by post-mortem studies of autism 

(Vargas et al., 2005).

Remarkably, the differences found with the population-informed prior match the differences 

found with the ground truth models. By contrast, no significant differences were detected 

with the spatial prior, probably owing to the arbitrariness of the choice of a model from the 

manifold of equivalent models as explained in the previous section and depicted in Fig. 12. 

Changes in signal fractions across the manifold of equivalent models are compensated by 

changes in fascicle properties. Group difference in signal fraction may therefore be 

incorrectly interpreted as differences in fascicle properties. In the next experiment, we will 

see that this misleading effect occurs in our population when spatial priors are being used 

alone.

Fascicle-based spatial statistics of the dorsal language circuit—Fascicle-based 

spatial statistics (FBSS) was proposed in (Taquet et al., 2012b) to analyze white matter 

properties along individual fascicles in the presence of crossing fascicles. FBSS proceeds in 

Taquet et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



four steps. First, all multi-fascicle models are registered to a multi-fascicle atlas. Second, 

tractography is performed on the atlas and specific fascicles are selected. Third, properties of 

the fascicles are extracted from each subject by selecting at every point the tensor most 

aligned with the fascicle. Fourth, statistical analysis is performed on the fascicle properties 

by computing t-tests at every point of the fascicle and by performing permutation tests on 

the threshold-free cluster enhanced t-statistics, similar to (Smith et al., 2006), to control for 

multiple comparisons.

We performed FBSS for the FA of the dorsal language circuit (Fig. 15). This set of 

pathways involved in language is organized around three main fascicles (Lewis et al., 2013): 

the posterior, anterior and long fascicles. These fascicles are thought to connect Broca’s area 

in the frontal lobe, Wernicke’s area in the temporal lobe, and Geschwind’s territory in the 

parietal lobe. FBSS was performed on these three fascicles individually. Along the posterior 

fascicle, a significantly lower FA was observed in two clusters (p < 0.05 after correction, 

Fig. 16). Similar findings were obtained by using the models estimated with the population-

informed prior and the spatial prior alone. Along the anterior fascicle, no significant 

difference was observed (Fig. 16). Estimations with the population-informed prior only 

found a small cluster of false positive difference covering 1.4% of the fascicle. With the 

spatial prior, three large clusters of false positive differences were observed, covering 39.4% 

of the fascicle. This high prevalence of false discoveries with the spatial prior can be 

explained by its inability to detect the significant differences in isotropic fractions. These 

differences are incorrectly reflected on the FA of the fascicle. A similar effect is observed 

for the long fascicle. A cluster of significantly lower FA is observed using the ground truth 

models. This cluster was not detected by the population-informed prior and only partially 

detected (30% overlap) by the spatial prior. This partial overlap, however, comes with a high 

rate of false discoveries (38.9%).

5. Discussion and Conclusion

Multi-fascicle models cannot be estimated from conventional single-shell HARDI data alone 

because a manifold of different models are equally compatible with the measurable diffusion 

signals, making them indistinguishable. Estimation with the most common spatial priors 

arbitrarily selects a model from the manifold of equivalent models and thereby conflates 

differences in fascicle properties and differences in signal fractions. This conflation misleads 

conclusions of population studies in a similar way as single tensor DTI does. With single b-

value data, these spatial priors alone therefore fail to harness the novel insight provided by 

multi-fascicle models.

We showed that, when data at two non-zero b-values are acquired, the ill-posedness encoded 

by Equation (3) disappears because the intersection of the manifolds of equivalent solutions 

at two b-values is unique. Importantly, there might be other sources of ill-posedness not 

accounted for by Equation (3) which two non-zero b-values would not solve. In the typical 

case of a single isotropic tensors and multiple anisotropic ten-sors (such as those exploited 

in this paper), no such other source could be found in the literature. In the particular case of 

multiple isotropic tensors, however, the model of Equation (1) is no more dependent of the 

gradient orientation g (so that S(g, b) ≡ S(b)) and estimating its parameters boils down to 
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estimating a weighted sum of exponentials. In that degenerate case, it is known since (Prony, 

1795) that two non-zero b-values is not sufficient to estimate the parameters of the 

exponentials. Andersson et al. demonstrated that a sufficient condition for the fitting of a 

sum of exponentials is that the rank of the Hankel matrix generated by the observations S(b) 

is equal to the number N of components in the model (Andersson et al., 2014). The reason 

why two non-zero b-values are not sufficient in this case can be understood from the fact 

that the expression for two models (D,f) and (D*,f*) to be equivalent:

becomes, for isotropic tensors,

and only imposes a single non-linear constraint while, in the general case, the constraint 

must hold true for any gradient orientation g.

We showed that the introduction of a population-informed prior generates more accurate 

multi-fascicle models by removing the ill-posedness problem from the estimation. This is 

achieved by learning a prior distribution over model parameters from a population of 

subjects scanned at multiple b-values. This prior is estimated in the space of an atlas and is 

then registered to the subject. Accurate registration is therefore required to achieve accurate 

estimation. In this paper, we leveraged the full multi-tensor information to drive the 

registration which provides the best accuracy.

Throughout the paper, we have targeted the estimation of a true multi-fascicle model. Such a 

true model must be understood as the optimal representation of the brain microstructure at 

the probed diffusion length scale for the data at hand. It may be that other multi-fascicle 

models (with other values for the parameters) may better represent the microstructure for 

other length scales, as it is the case for single tensor models (Yoshiura et al., 2001). Caution 

must therefore be taken in achieving the additional b-values required to remove the ill-

posedness in the estimation when learning the prior: the additional b-value must be achieved 

by manipulating the gradient strengths without altering the diffusion times or the 

consequences of changing the diffusion times, in terms of length scales probed and the 

microstructure of interest, must be negligible. In this paper, we have opted for the former 

through a CUSP acquisition protocol (Scherrer and Warfield, 2012).

Achieving reliable estimations of Diffusion Compartment Imaging models from single-shell 

HARDI data leads, in turn, to more reliable inferences in population studies, distinguishing 

differences in isotropic fractions from differences in fascicle properties. The population-

informed prior therefore enables novel investigations of properties extracted from DCI 
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models with single-shell diffusion data. This method thus opens new opportunities for 

population studies with the large number of available clinical diffusion images.
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Appendix A. Unicity of the intersection of two manifolds

In this section, we demonstrate that the equations of two manifolds for two different b-

values (b and b′ with b′ > b > 0) have one and only one intersection regardless of the values 

b and b′ and regardless of the number N of tensors. The equation of the manifold is (5) :

For the sake of notations, we let  and Δ̃ = [Δ1, …, ΔN−1], so that Δ̃ = 0 

corresponds to the true underlying model. For all values of b,  and 

hence does not depend on b. This encodes the fact that all manifolds intersect at the true 

model. We now show that this is the only point that any two manifolds have in common. 

The principal idea to demonstrate the unicity of the intersection of the manifolds lies in the 

following proposition.

Proposition 1

The manifolds at two different b-values do not intersect at Δ̃ if the partial derivative of λN 

(Δ̃, b) with respect to b is strictly negative for all b > 0.

Proof

This follows from the definition of strictly decreasing functions. If f(x) is strictly decreasing, 

then f(x1) > f(x2) if x1 < x2 and f(x1) < f(x2) if x1 > x2. If  for a given Δ̃ and for all 

b > 0, then λN(Δ̃, b) as a function of b is a strictly decreasing function and therefore cannot 

take on the same value for two different b-values.

From this proposition, it suffices to demonstrate that the derivative of λN(Δ̃, b) with respect 

to b is strictly negative for any Δ̃ ≠ 0. This derivative is given by:
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(A.1)

where

(A.2)

For all positive w, it holds that

Multiplying (A.1) by −wb2 on both sides and combining with the first inequality yields:

(A.3)

From (A.2) and since , we have:

Substituting this expression into (A.3), it follows that

(A.4)

(A.5)

where h(x) ≜ 1 + ex(x −1). Finally, we can prove that the right-hand side of this inequality is 

strictly greater than zero for Δ ̃ ≠ 0 based on the following proposition.

Proposition 2

The function h(x) = 1 + ex(x − 1) is strictly positive for x ≠ 0 and equal to zero for x = 0.

Proof

We have h(0) = 1 + e0(−1) = 0 which proves the second part of the proposition. The 

derivative of h(x) is h′ (x) = xex which is strictly negative for x < 0 and strictly positive for x 
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> 0. The function h(x) is thus strictly decreasing for x < 0 and strictly increasing for x > 0 

and therefore h(x) > h(0) = 0 for all x, which proves the first part of the proposition.

Since the weighted sum of strictly positive functions with strictly positive weights is strictly 

positive, it follows from (A.4) that  for Δ̃ ≠ 0 and therefore, for Δ̃ ≠ 0:

which, from the first proposition, implies that two manifolds at two different b-values do not 

intersect for Δ̃ ≠ 0.

Appendix B. Geometry of the manifolds around the true underlying model

In this section, we analyze the geometry of the manifolds at the first and second order in the 

vicinity of the true underlying model. At the first order, the manifold is characterized by its 

tangent hyperplane or, equivalently, by its normal vector. This normal vector is: 

. Its k-th component is:

At the true underlying model, the normal vector is:

(B.1)

This normal vector (hence the tangent hyperplane) does not depend on b at the point of 

interest. This finding explains why manifolds coincide locally and why the estimation of 

multi-fascicle models is sensitive to noise.

At the second-order approximation, the manifold is characterized by the Hessian matrix of 

λN(λ1, …, λN−1):

where . The difference between the Hessian matrices at the intersection 

point for two different b-values, b and b′ > b, is positive definite since, for all s ≠ 0, we have

(B.2)
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This equation indicates that manifolds with large b-values are strictly more curved than 

manifolds with small b-values, in all directions. The difference in curvature is larger if the 

difference in b-value is larger. This in turn translates into lower sensitivity of the intersection 

point (the targeted model) to small perturbations of the manifolds.
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Highlights

• We analyze the geometry of diffusion compartment imaging (DCI) estimation 

problem.

• Estimating DCI models from single b-value data is an ill-posed problem.

• Spatial priors fail to regularize the estimation from single b-value data.

• We derive a population-informed prior that regularizes the estimation problem.

• Our approach enables reliable estimations of DCI models from single b-value 

data.
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Figure 1. 
Illustration of intersection of diffusion signal arising from different model parameters. (a) 

An infinite number of models with very different parameters present with the same values of 

the diffusion signal decay at a single specified b-value, forming a manifold of equivalent 

models at that b-value. There is only one unique model, (illustrated by the red dot), at which 

each of the manifolds formed at different b-values intersect tangentially. (b) Illustration of 

the diffusion MRI signal for five models selected from (a) in a gradient direction orthogonal 

to the red tensor. In each case, the signal depends on the b-value as given by Equation (1). 

Models 1, 2 and 5 generate the same diffusion signal at b = 650 s/mm2 and thus cannot be 

distinguished from a single-shell acquisition of only b = 650 DWI (irrespective of the 

number of gradient directions acquired). Models 3, 4 and 5 generate the same diffusion 

signal at b = 3000 s/mm2, thus cannot be distinguished from a single-shell acquisition of 

only b = 3000 DWI. Only Model 5 is compatible with observations at the two shells of b = 

650 and b = 3000. In principle, an acquisition of two shells would allow determination that 

the parameters of Model 5 uniquely explains the observed imaging data. (c) For an N-

fascicle model (here N=3), the manifolds of equivalent models are (N−1)-dimensional 

hypersurfaces which share the same tangent hyperplane at their intersection making the 

estimation problem very sensitive to noise. (d) The population-informed prior (here 

restricted to the manifold) assigns different probabilities to otherwise equivalent models.
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Figure 2. 
Graphical model of the posterior predictive distribution model that serves as a prior for new 

observations. Circles indicate random variables, shaded circles indicate observed variables, 

and boxes indicate parameters. The graphical model is repeated for all V voxels.
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Figure 3. 
Maximum a posteriori (MAP) estimates with the population-informed prior are unbiased 

insofar as the targeted population is well represented in the prior population. On the other 

hand, maximum likelihood estimates (MLE) arbitrarily pick a model from the manifold so 

that the average estimate lies at the center of the manifold leading to a high bias if the true 

population average lies away from the center of the manifold.
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Figure 4. 
Relative contribution of each factor of the prior in Equation (18) for the estimation of a two-

tensor model in patients presenting with decreased axial diffusivity in the first fascicle. The 

prior on fractions and on D2 are centered on the true model since no group difference is 

present for those properties. The prior on D1 is offset because of the group difference in λ1,1. 

This offset, however, is mitigated by the absence of differences in the other eigenvalues of 

D1. Multiplying all contributions to the prior thus leads to a MAP estimate that is close to 

the true model.
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Figure 5. 
Error distributions for the estimation with the population-informed prior and without prior 

for 20000 synthetic two-fascicle templates under 13 configurations of group differences 

summarized in Table 1 and illustrated in Fig. 6(a). Both estimation bias and variance are 

significantly smaller when the population-informed prior is used. Vertical dashed lines 

indicate zero errors. Axes span from −1 to +1 for f and from −3 × 10−3 mm2/s to +3 × 10−3 

mm2/s for λ1 and λ2.
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Figure 6. 
Results of the experiments on 13000 simulated population studies of 20 control vs. 20 

patients in 13 configurations of group differences. (a) Illustration of the synthetic group 

differences introduced (fractions are encoded as transparency of the tensor), as described in 

Table 1. (b) The detection rate when the population-informed prior is used is close to that of 

the ground truth. In particular, no additional false positive is observed under the null 

hypothesis (Configuration 1). The false negative rate slightly increases as the number of 

properties affected by group differences increases (Configurations ⑪–⑬). However, in 

those cases, the voxel as a whole can still reliably be detected as affected (leftmost column). 

(c) Illustration of the shrinkage towards the mean effect observed with the population-

informed prior and the large variance observed when no prior are used, for two different 

configurations.
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Figure 7. 
(Left) The synthetic phantom used to conduct the experiment includes areas with zero 

(isotropic diffusion only), one, two and three fascicles. The blue, green and yellow tensors 

have axial diffusivity of 1.55× 10−3 mm2/s and radial diffusivity of 2.73× 10−4 mm2/s. The 

red tensors have axial diffusivity of 1.77 × 10−3 mm2/s and radial diffusivity of 1.64 × 10−4 

mm2/s. The fraction of isotropic diffusion fiso is equal to 0.15 throughout the image except 

in areas with no tensor where it is equal to 1. Fractions of anisotropic diffusion are equally 

split into the different tensors present.(Right) The better accuracy mostly affects the 

diffusion properties of tensors and not their directions, as predicted by Equation (2).
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Figure 8. 
Evolution of the six comparison metrics under the influence of noise, group differences and 

registration error for the estimation of the synthetic phantom. Significantly better results 

were obtained by utilizing the population-informed prior. The directions are not affected by 

the absence of a population-informed prior, as predicted by Equation (2).
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Figure 9. 
(Left) Evolution of the six comparison metrics when only a spatial prior is used, for different 

weight ratios . (Right) Evolution of the six comparison metrics when both a spatial 

prior and the population-informed prior are used, for different values of the noise level 

with . The use of a population-informed prior significantly improves the 

estimation accuracy for all five non-directional metrics. The evolution is smooth and 

monotonic with respect to  so that moderate errors in the estimation of  do not 

have a large impact on the result.
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Figure 10. 
Accuracies of the estimation of a multi-fascicle model from single-shell HARDI data with 

the five methods under comparison: (1) estimation without prior, (2) estimation with a fixed 

response (fixed eigenvalues), (3) estimation by setting all parameters to the mode of the 

population, (4) estimation with a spatial prior only and (5) estimation with a population-

informed prior. Results with the population-informed prior have overall better performances 

than all other methods.
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Figure 11. 

Difference in  between the estimation without the prior and with the population-informed 

prior. Values larger than zero indicate voxels where the population-informed prior improves 

the estimation. As indicated by the arrows, the improvement is more important in areas with 

crossing fascicles. In areas without crossing fascicles, the estimation without prior is not ill-

posed and results in similar accuracies as the estimation with a population-informed prior.
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Figure 12. 
Maps of estimation errors in (a) isotropic fraction, (b) maximum FA, (c) maximum radial 

diffusivity, for different estimation methods. The spatial prior leads to maps that are visually 

plausible but affected by a global bias (e.g., bias in isotropic fraction is negative for Subject 

1 and positive for Subject 2). This bias is due to the arbitrary choice of a model and the 

propagation of this choice through neighboring voxels. By contrast, the population-informed 

prior reduces the estimation bias as already observed in synthetic examples. Scatter plots 

next to every image depicts the joint distribution of the corresponding property in the ground 

truth (x-axis) and in the estimation (y-axis) highlighting the bias observed in estimations 

with a spatial prior.
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Figure 13. 
In terms of direction, the spatial prior and the population-informed prior perform equally 

well. (a) Coronal slice of a subject’s color FA highlighting the centrum semiovale. (b) 

Directions estimated with the DWI at multiple b-values. Directions estimated with DWI at a 

single b-value (c) without prior, (d) with a spatial prior only, (e) with both spatial and 

population-informed priors.
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Figure 14. 
Maps of the p-values of isotropic diffusion analysis, thresholded at p < 0.05 after correction 

for family-wise error rate. The population-informed prior leads to inference of group 

differences that are remarkably close to those obtained with the data at several b-values 

(CUSP). A spatial prior alone fails to detect any difference due to biases in estimations of 

the isotropic fraction.
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Figure 15. 
The dorsal language circuit is composed of white matter fascicles thought to connect 

Broca’s area in the frontal lobe, Wernicke’s area in the temporal lobe, and Geschwind’s 

territory in the parietal lobe.
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Figure 16. 
Results of fascicle-based spatial statistics showing the mean FA (dark line) and its 

confidence intervals (colored shadowed curves) along the three main fascicles of the dorsal 

language circuit. Segments of significant differences are depicted as grey rectangles. 

Estimations with a population-informed prior detect most differences observed with the 

ground truth and does not lead to excessive false discovery rates. By contrast, estimations 

with a spatial prior generate false positives at a high rate, covering the anterior fascicle and 

the long fascicle by over 35%.
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