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Abstract

Computer-aided diagnosis of histopathological images usually requires to examine all cells for 

accurate diagnosis. Traditional computational methods may have efficiency issues when 

performing cell-level analysis. In this paper, we propose a robust and scalable solution to enable 

such analysis in a real-time fashion. Specifically, a robust segmentation method is developed to 

delineate cells accurately using Gaussian-based hierarchical voting and repulsive balloon model. 

A large-scale image retrieval approach is also designed to examine and classify each cell of a 

testing image by comparing it with a massive database, e.g., half-million cells extracted from the 

training dataset. We evaluate this proposed framework on a challenging and important clinical use 

case, i.e., differentiation of two types of lung cancers (the adenocarcinoma and squamous 

carcinoma), using thousands of lung microscopic tissue images extracted from hundreds of 

patients. Our method has achieved promising accuracy and running time by searching among half-

million cells.
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1. Introduction

Lung cancer is one of the most common cancers in the world (Siegel et al., 2013), and its 

diagnosis is an extremely important topic for personalized lung cancer treatment. There are 

four typical histologic types of lung cancers, including adenocarcinoma, squamous 

carcinoma, small cell carcinoma, and large cell carcinoma, each of which needs a different 
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treatment Freeman, 2001). Therefore, the accurate staging of lung cancer can help clinicians 

in determining patient centered treatment, allow for reasonable prognostication, and 

facilitates comparisons between patient groups in clinical studies. Specifically, current 

investigations into early detection and adjuvant chemotherapy heavily rely on the proper 

staging of patients’ cancer type. Not only separating small cell carcinoma (SCC) from non-

small cell carcinoma (NSCC) is important, it is also strongly recommended (Travis et al., 

2011) to subtype NSCC into more specific types such as adenocarcinoma and squamous cell 

carcinoma, because 1) adenocarcinomas can be tested for epidermal growth factor receptor 

(EGFR) mutations as a predictor of response to EGFR tyrosine kinase inhibitors; 2) 

adenocarcinoma response to pemetrexed therapy is better than squamous; 3) potential life-

threatening hemorrhage might occur in patients who have squamous cell carcinoma but 

misclassified and are given bevacizumab. Bronchial biopsy is one of the most effective 

diagnosis methods to differentiate them, with the aid of Computer Aided Diagnosis (CAD) 

systems (Kayser et al., 2002; Thunnissen et al., 1992; Mijović et al., 2008). However, most 

previous methods have emphasized on the diagnosis of small cell vs. non-small cell (i.e., 

adenocarcinoma, squamous carcinoma, and large cell carcinoma) types of lung cancers. Few 

efforts have been put on the differentiation of the adenocarcinoma and squamous carcinoma, 

both of which belong to NSCC, although this task is clinically significant as their 

management protocols are different (Edwards et al., 2000).

The main challenge of this task is the need of analyzing all individual cells for accurate 

diagnosis, since the difference between the adenocarcinoma and squamous carcinoma highly 

depends on the cell-level information, such as its morphology, shape and appearance. In 

fact, there are a lot of cellular features used by pathologists to differentiate adenocarcinoma 

from squamous cell carcinoma. Currently, all of them are estimated in a subjective way 

without rigorous quantifications. These include, but not limited to: 1) Nucleoli are often 

more prominent and obvious in adenocarcinoma tumor cells than squamous cell carcinoma; 

2) The individual cell borders tend to be sharper in squamous cell carcinoma than 

Adenocarcinoma; 3) Only squamous cell carcinoma contains intercellular bridges; 4) 

adenocarcinoma has relatively lower nuclear/cytoplasmic ratios and delicate, vacuolated 

cytoplasm compared with squamous cell carcinoma. Therefore, rigorously measuring and 

analyzing each individual cell is important and can assist pathologists for accurate diagnosis. 

However, a region-of-interest (ROI) image may contain hundreds or thousands of cells. 

Analyzing each cell can be computationally inefficient using traditional methods. As a 

result, most previous methods encode the whole image as holistic features by representing 

the statistics of cell-level information (e.g., architecture features (Doyle et al., 2008) or 

frequency of local textures (Zhang et al., 2015a)), and may compress high-dimensional 

features to improve the computational efficiency. Despite the compactness and hence the 

efficiency, information loss is inevitable in such holistic representation. Therefore, 

efficiently analyzing each cell is important to investigate. In addition, all the aforementioned 

cellular features and analysis can only be measured after we complete the accurate cell-level 

segmentation.

In this paper, we design an automatic framework for the large-scale cell-level analysis of 

histopathological images, which can examine millions of cells in real-time (preliminary 
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results have been reported in (Zhang et al., 2015b)). Our solution includes two important 

modules, robust cell segmentation and large-scale cell retrieval. Specifically, segmentation 

module provides automatic and robust delineation and measurement of cells, enabling 

effective feature extraction for each cell. The large-scale image retrieval framework can 

locate similar instances among massive databases of cells, by improving the efficient 

hashing methods (Datar et al., 2004; Kulis and Grauman, 2009). Given a new image to be 

diagnosed, our system automatically segments all cells and efficiently discovers the most 

relevant cells by comparing them with the training database (e.g., millions of cells extracted 

from thousands of images). The diagnosis is decided by classifying each cell and using the 

majority logic. We conduct extensive experiments to differentiate lung cancers, i.e., 

adenocarcinoma and squamous carcinoma, using a large dataset containing thousands of 

lung microscopic tissue images acquired from hundreds of patients. Our proposed 

framework achieves 87.3% accuracy in real-time, by searching a massive database of half 

million cells extracted from this dataset.

The major contribution of this paper is twofold. 1) A comprehensive and real-time 

framework is designed to analyze histopathological logical images by examining all cells. 

This framework opens a new avenue for investigating large-scale databases, and is 

particularly suitable for this challenging use case. 2) In terms of technical contribution, we 

propose a carefully designed learning method that assigns probabilistic-based importance to 

different hash values or entries. This scheme alleviates several intrinsic problems of using 

traditional hashing methods for classification, and significantly improves the accuracy. 

Furthermore, we also improve the cell segmentation algorithms by handling variations in 

shape and cell size, which provide robust and accurate delineations of cells.

The rest of the paper is organized as follows. Section 2 reviews relevant work of cell 

segmentation and content-based image retrieval. Section 3 presents our framework for 

realtime cell mining. Section 4 shows the experimental results on lung microscopic tissue 

images. Concluding remarks are given in Section 5.

2. Related Work

2.1. Cell Segmentation

Various approaches of segmentation in pathological image have been investigated. In (Al-

Lahham et al., 2012), K-means clustering is used to segment out the cancer cell nuclei at 

pixel level in a transformed color space. In (Loukas et al., 2003), PCA is applied to learn a 

color space transform and the cell nuclei are segmented out by globally thresholding the 

transformed image. In (Markiewicz et al., 2008, 2009), support vector machine (SVM) 

classifiers are trained to segment background and the cells based on color or morphological 

features. Because the above approaches mainly rely on color, they do not work well when 

there exist non-negligible amount of touching cells present in the images.

Watershed transformation and its variants for splitting touching objects have been widely 

studied (Vincent and Soille, 1991). A RGB color-based segmentation followed by the 

watershed algorithm is proposed to tackle the touching cells in (Grala et al., 2009), and a 3D 

watershed algorithm incorporating gradient information and geometric distance of nuclei is 
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represented in (Lin et al., 2003). In order to handle over-segmentation, marker-controlled 

watershed are investigated in (Grau et al., 2004; Schmitt and Hasse, 2008). In particular, 

Jung et al. (Jung and Kim, 2010) developed an H-minima transform based marker-

controlled watershed algorithm for clustered nucleus segmentation on histopathological 

images, and an adaptive H-minima transform is reported in (Cheng and Rajapakse, 2009) to 

generate markers for the watershed algorithm. H-minima transform is relatively robust to 

noise, but it usually requires a careful choice of the h value. Learning based approaches are 

also exploited to detect markers for watershed algorithms. Mao et al. (Mao et al., 2006) 

applied a supervised marker detection based watershed to cell segmentation on bladder 

inverted papilloma images, where the markers are located by using a classifier with a 

combination of photometric and shape information. In (Akakin et al., 2012), an SVM 

classifier is used to automatically detect markers for the watershed algorithm. Compared 

with unsupervised learning, the supervised marker detection algorithms might provide better 

performance, but they need sophisticated feature design, which is very challenging due to 

the complex characteristics of digital pathology images.

Graph-based segmentation methods (Kolmogorov and Zabih, 2004; Boykov and Funka-Lea, 

2006) can also be used to automatically segment cells. The nodes of the graph represent 

pixels or superpixels and each edge corresponds to one pair of neighboring nodes. Image 

segmentation is achieved by partitioning the graph into several components. Lucchi et al. 

(Lucchi et al., 2010) exploited a mincut-maxflow algorithm to partition the superpixel based 

graph, Bernardis and Yu (Bernardis and Yu, 2010) segmented out individual cells based on 

the normalized cuts (Shi and Malik, 2000), and Zhang et al. (Zhang et al., 2014a) employed 

a correlation clustering method to achieve superpixel graph partition. Some other graph 

based methods can be found in (Al-Kofahi et al., 2010; Nath et al., 2006; Faustino et al., 

2009; Chen et al., 2008; Wu et al., 2012; Yu et al., 2010; Janowczyk et al., 2012; Lou et al., 

2012). Although effcient graph-based segmentation algorithm (Felzenszwalb and 

Huttenlocher, 2004) is proposed, generally graph partition methods exhibit high time cost, 

which limits their applications in real cell segmentation.

Deformable models are another popular type of cell seg mentation algorithms in biomedical 

image analysis. A multireference level set algorithm is used for nucleus segmentation in 

(Chang et al., 2012), a dynamic watershed scheme is introduced to the level set model with 

topology dependence for cell segmentation in (Yu et al., 2009), and several repulsive level 

set approaches are reported in (Yan et al., 2008; Ali et al., 2011; Ali and Madabhushi, 2012; 

Qi et al., 2012). Xu et al. (Xu et al., 2007) formulated the active contour model into a graph 

cut framework, which deforms the contour towards a global minimum within the contour 

neighborhood. In general, these methods are suitable can naturally handle topology changes, 

but they might create undesired contours with inhomogeneous regions. Therefore, the 

parametric active contour models are an alternative approach. Li et al. (Li et al., 2007) 

applied a gradient flow tracking to 3D nuclei segmentation algorithm, and Cai et al. (Cai et 

al., 2006) developed a repulsive active contour model based on gradient vector flow (GVF) 

(Xu and Prince, 1998) to segment neuronal axons. However, GVF snake requires clean edge 

maps to calculate the gradient vector flow, and this might suffer from background clutter in 

histopathological images.
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There exist other types of state-of-the-arts for automatic cell segmentation. Kong et al. 

(Kong et al., 2011) first separated cellular regions from the background with a supervised 

pixel-wise classification, and then split touching cells based concave point and radial 

symmetry. Ozolek et al. (Ozolek et al., 2014) built a statistic model with a set of training 

nuclei and thereafter performed template matching to segment out individual nuclei. This 

method can handle touching cases by selecting the best matched model parameters. Another 

learning based nucleus segmentation is presented in (Kårsnäs et al., 2011), where intensity 

and label dictionaries are constructed to separate the foreground from the background and 

then touching nuclei are split by combining region merging with a marker-controlled 

watershed. Probabilistic models have also attracted research interests. Park et al. (Park et al., 

2013) exploited a Gaussian mixture model based on B-splines to achieve cell segmentation, 

and a generic segmentation framework for pathologic images that employs an EM algorithm 

with Markov prior is reported in (Monaco et al., 2012). The learning based methods usually 

require a large number of training data and assume that the training data are sufficient to 

capture the variations on new testing samples, and the probabilistic models need to be 

carefully selected such that the used generative models are strong enough to model testing 

data.

2.2. Content-Based Image Retrieval

Content-Based Image Retrieval (CBIR) is an effective approach in analyzing medical 

images. It supports doctors for making clinical decisions by retrieving and visualizing 

relevant medical images with diagnosis information. To this end, many systems and 

methods have been developed. For examples, Comaniciu et al. (Comaniciu et al., 1999) 

designed a CBIR system to support decision making in clinical pathology. In this system, 

fast color segmenter is used to extract cell features including shape, area, and texture of the 

nucleus. Its performance was compared with that of a human expert on a database 

containing 261 digitized specimens. The experimental results demon strated that this system 

could be used to assist pathologists to improve the analysis. Dy et al. (Dy et al., 2003) 

described a new hierarchical approach of CBIR based on multiple feature sets and a two-

step approach. The query image is classified into different classes with best discriminative 

features between the classes, and similar images are searched in the predicted class with the 

features customized to distinguish subclasses. El-Naqa et al. (El-Naqa et al., 2004) proposed 

a hierarchical learning approach consisting of a cascade of a binary classifier and a 

regression module to optimize retrieval effectiveness and efficiency. Greenspan et al. 

(Greenspan and Pinhas, 2007) proposed a CBIR system that consists of a continuous and 

probabilistic image-representation scheme. It uses Gaussian mixture models (GMM) and 

information-theoretic image matching via the Kullback-Leibler (KL) measure to match and 

categorize X-ray images by body regions. Song et al. (Song et al., 2011) designed a 

hierarchical spatial matching-based image retrieval method using spatial pyramid matching 

to extract and represent the spatial context of pathological tissues effectively. Recently, 

Foran et al. (Foran et al., 2011) designed a CBIR system named ImageMiner for 

comparative analysis of tissue microar-rays by harnessing the benefits of high-performance 

computing and grid technology.
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One of the main limitations of these systems is the scalability. To analyze large-scale 

datasets, one needs to design efficient CBIR methods. With the goal of comparing CBIR 

methods on a larger scale, ImageCLEF and VISCERAL provide benchmarks for medical 

image retrieval tasks (Müller et al., 2005; Langs et al., 2013; Hanbury et al., 2013). In our 

use case, it is necessary to retrieve among half-million instances in realtime to conduct cell-

level analysis in histopathological images. To this end, hashing-based methods have been 

investigated, which enable fast approximated nearest neighbors (ANN) search to deal with 

the scalability issue. For examples, the locality sensitive hashing (LSH) (Andoni and Indyk, 

2006) uses random projections to map data to binary codes, resulting in highly compact 

binary codes and enabling efficient comparison within a large database using the Hamming 

distance. Anchor Graph Hashing (AGH) (Liu et al., 2011) has been proposed to use 

neighborhood graphs which reveal the underlying manifold of features, leading to a high 

search accuracy. (Shen et al., 2013) also proposed to leverage manifold information for 

inductive hashing. Recent work has focused on data-driven hash functions, such as the semi-

supervised hashing (SSH) (Wang et al., 2012) incorporating the pairwise semantic similarity 

and dissimilarity constraints from labeled data. Particularly, supervised hashing methods 

(Liu et al., 2012; Shen et al., 2015) have also been proposed to leverage annotations into 

hash function learning. These hashing methods have been employed to solve the 

dimensionality problem in medical image analysis (Zhang et al., 2015a, 2014b). 

Specifically, high dimensional features are compressed into 48 bits that are exhaustively 

compared among thousands of images. However, such high dimensional features only 

approximately represent cell-level information. It is desired to analyze all cells in our use 

case, while traditional hashing methods fail to provide accurate results as shown in our 

experiments.

3. Methodology

3.1. Overview

Fig. 1 shows the overview of our proposed framework, which includes offline learning and 

online classification. During offline learning, our system automatically detects and segments 

all cells from thousands of images, resulting in half million of cell images. Regarding cell 

detection and segmentation, we propose to improve the single-pass voting (SPV) scheme (Qi 

et al., 2012; Xing et al., 2014). Our improvement focuses on handling variations in shape 

and cell size. After that, texture and appearance features are extracted from these cell images 

and are compressed as binary codes, i.e., tens of bits. These compressed features are stored 

in hash table for constant-time access even among millions of images.

During online classification, our system segments all cells from a testing image, and same 

types of features are extracted accordingly and compressed using hashing methods. Then, 

we perform large-scale cell image retrieval for each segmented cell to classify its category. 

Finally, the classification result of the testing image is decided by the majority logic, i.e., 

voting from all cells’ classification. Using this scheme, our system can maximally utilize the 

cell-level information without sacrificing the computational efficiency, owing to the large-

scale retrieval via hashing methods. We also design a content-aware weighting scheme to 

improve the accuracy of traditional hashing methods, based on the observations and priors in 
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histopathological image analysis. In the following sections, we introduce the details of 

robust cell segmentation, large-scale cell image retrieval, and weighting techniques.

3.2. Robust Cell Segmentation

Accurately delineating cells is critical to the cell-level analysis of histopathological images. 

It includes cell detection and segmentation. Our detection algorithm is an improved version 

of single-pass voting (SPV) proposed by Qi et al. (Qi et al., 2012). The improvement 

focuses on handling variations in shape and cell size. The newly introduced 1) region-based 

hierarchical voting in a distance transform map handles the shape variation, and 2) Gaussian 

pyramid based voting suppresses the effect of the scale variation. For an image, a Gaussian 

pyramid is created. At layer l, an SPV is applied with the distance transform being weighted 

by a Gaussian kernel. Unlike SPV within which each pixel in the voting area receives 

uniform vote, this weighted voting enables the pixels that locate more inside the cell to 

receive more votes. Therefore, this mechanism encourages higher voting scores in the 

central region of the cells. The final vote value is calculated by summing up all the layers:

(1)

where S denotes the set of all voting pixels, Al(m, n) denotes the voting area of pixel (m, n) 

at layer l and it is defined by a radial range (rmin, rmax) and angular range Δ (Qi et al., 2012). 

I[·] is an indicator function, and Cl(x, y) represents the distance trans-formation map at layer 

l. In our experiment, we use Euclidean distance. The g(m, n, μx, μy, σ) is an isotropic 

Gaussian kernel for pixel (m, n) with mean (μx, μy) = (m+(rmax+rmin)cosθ/2, n+(rmax + 

rmin)sinθ/2) and scalar σ, where θ represents the angle of the gradient direction with respect 

to the x axis.

Our segmentation method is based on the active contour (Cohen, 1991) with a newly 

introduced repulsive term. The repulsive term is used to prevent the evolving contours from 

crossing and merging with each other. Based on the detection result, a circle is associated 

with each detected cell as initial contour. The i-th contour vi(s) deforms until it achieves a 

balance between internal force Fint(vi) and external force Fext(vi) with

(2)

(3)

(4)

where s indexes the points on the contour, and (s) and  (s), with their weights α and β, 

are the second and fourth derivative of vi(s), respectively. ni(s) with its weight γ denotes the 

internal pressure force and ∇Eext(vi(s)) denotes the edges in the image (∇Eext(vi(s))) = 

−∇∥T[x(s), y(s)]∥2, T[x(s), y(s)] represents the image). The last term in (4) represents the 
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repulsive force. N is the number of the cells, and dij denotes the Euclidean distance between 

the points of different contours. λand ω are the weights controlling the edge driven force and 

repulsive force, respectively. Given initial contours, the contours iteratively deform towards 

cell boundaries and the cell segmentation is achieved when Eq. 2 is satisfied or the 

maximum number of iteration is reached.

This method can robustly detect and segment cells from histopathological images, which are 

used for the cell-level analysis in the next stage. The active contour in Eqs. 2-4 is a 

parametric model with explicit contour representation, which is different from the level set 

algorithms (Yan et al., 2008; Ali and Madabhushi, 2012; Qi et al., 2012), which implicitly 

represent contours. Therefore, given initial contours (based on detection results), our model 

can take advantage of known topology constraint such that it can prevent contours from 

splitting or merging; on the other hand, the level set method (Qi et al., 2012) as well as the 

graph cut based active contour (Xu et al., 2007) allow topology changes such that it might 

generate undesired small holes inside or outside cells due to intensity heterogeneity, as 

shown in the experimental section. In addition, our model uses a contour-based repulsive 

force instead of a region-based term, which is used in (Qi et al., 2012). The  in the 

repulsive term demonstrates that the closer the j-th contour moves to the i-th contour, the 

more repulsion each contour receives. In this case, the model can effectively handle 

touching cells by preventing contours from crossing each other.

3.3. Classification via Large-Scale Cell Image Retrieval

Once all cells are segmented from a testing image, our system conducts cell-level 

classification by exhaustively comparing each cell with all cells in the training database, 

using hashing-based large-scale image retrieval and majority voting. Hashing has been 

widely used to compress (high-dimensional) features into binary codes with merely tens of 

bits (Datar et al., 2004). Therefore, such short binary features allow mapping into a hash 

table for constant-time retrieval. To improve the accuracy of previous hashing methods, the 

kernelized scheme (Kulis and Grauman, 2009) is incorporated to handle practical data that is 

mostly linearly inseparable, which is a common phenomenon of medical images:

(5)

where n is the number of training samples, h is the kernelized hashing method mapping a 

kernel function f(x) with kernel κ to 0 or 1 by taking its sign value, x1, x2, x3, ..., xm are the 

m random samples selected from the data and aj is the coefficient determining hash 

functions. The resulting binary codes can be used for indexing and differentiating different 

categories. Although kernelized scheme well solves the linear inseparability problem of 

features, it is still not able to provide accurate retrieval or classification, due to the high 

intra-class variation of histopatho-logical images. Therefore, supervised information (Liu et 

al., 2012) is also leveraged to design discriminative hash functions that are particularly 

suitable for analyzing histopathological images:
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(6)

where r is the number hash bits, S is a matrix encoding the supervised information (e.g., 1 

for same category and −1 for different categories) and A is the model parameter to compute 

hashing code, and  is the matrix form of the kernel 

function, in which  is a kernelized vectorial map . 

The optimization of Q is based on Spectral Relaxation (Weiss et al., 2008) for 

convexification, which is used as a warm start, and Sigmoid Smoothing for applying 

standard gradient descent technique, which is used for accurate hashing.

Indexing these compressed features in a hash table, our method can perform image retrieval 

in constant-time among millions of cells without significantly sacrificing the accuracy. The 

category of each cell can be decided straightforwardly with the majority logic of retrieved 

cells, and the whole image is hence classified by accumulating results of its all cells.

3.4. Hashing with Content-Aware Weighting

Theoretically, using hashing methods by indexing in a hash table enables constant-time 

searching, no matter how many training samples are used. However, it also requires that the 

length of the binary code is sufficiently short, to store in physical memory for fast access. 

Given limited number of hash bits, an inevitable limitation is that a large number of images 

may be mapped into the same hash value. In other words, it may result in an unordered set 

for the same hash value, where exact or near-exact matches may be obscured within a large-

scale database due to noisy features, similar instances, or erroneous segmentations. This is 

particularly true for histopathological image analysis, since the differences of cells are very 

subtle, and accurate segmentation for all cells is challenging. Consequently, the accuracy of 

cell classification is adversely affected when choosing the majority of cells mapped into a 

hash value, and the accuracy of whole image classification is also reduced. Fig. 2 illustrates 

this inherent limitation of hashing methods in analyzing histopathological images. Half 

million of cells are mapped into 12 bits, which mean 212 = 4096 hash values. The entries 

(i.e., hash values) in each hash table are illustrated according to the distribution of cells 

mapped into them, such as the ratio between two categories (i.e., adenocarcinoma and 

squamous carcinoma) and the number of cells mapped into that entry. Ideally, each hash 

value should be discriminative enough, i.e., the number of one type should dominate the 

other. However, many of them actually contains similar amount of both types of cells, i.e., 

around 0.5 ratio. In other words, the indecisive hash values are usually around the 0.5 ratio, 

indicating equal opportunity for either category. Classification based on such hash value is 

likely inaccurate. The small circles in Fig. 2 are also not reliable, since only few cells are 

mapped there, which can be easily affected by the image noise or erroneous segmentation. A 

potential solution is to identify reliable hash values and omit indecisive one, by heuristically 

select or prune them via feature selection. However, this may involve tuning parameters and 

lack the consistent measures. Furthermore, there is no guarantee that the hash values from 

feature selection algorithms are sufficiently discriminative for classification.
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Therefore, we introduce a probabilistic-based formulation to solve these problems in a 

principled way, i.e., design a content-aware weighting scheme to re-weight the importance 

of hash values. Specifically, we aim to assign probability scores to each hash value, based 

on its ability to differentiate different categories. Such “soft assignment” upon hash values 

can significantly boost the classification accuracy using hashing-based retrieval. In our 

framework, kernelized and supervised hashing (KSH) (Liu et al., 2012) is employed as the 

baseline method to generate initial hash values, because of its efficacy and success in 

histopathological image analysis (Zhang et al., 2015a). The content-aware weighting scheme 

can significantly enhance the differentiation ability of hash values generated by this 

baseline. Intuitively, since cells in certain hash values are not accurate for classification, 

their weights should be diminished during the process. On the other hand, discriminative 

hash values should be emphasized, e.g., circles nearby 1 or 0 ratios. In addition, small sizes 

of circles are not preferred and their weights should be reduced, as they can be easily 

affected by many factors such as unusual staining color, inaccurate segmentation results and 

image noise in our use case. Therefore, we designed two metrics to emphasize 

discriminative hash entries, with generalized notations for multi-class classification:

• Support: Given a specific hash value H, the number of cells mapped into H should 

be considered. This indicates that such amount of cells are used for the 

classification of this hash value, each with contribution 1, while all remaining cells 

are irrelevant, i.e., contribution 0. Therefore, we name this metric as “support”, 

which is conventionally referred to the set of numbers having non-zero values. 

Denote SH = {cell : h(cell) = H} as the set of cells mapping into a specific hash 

value H, where h(cell) is the hash value of the cell. The support WH of the hash 

value H is defined as:

(7)

where |S| is the number of element in set S and r is the number of hash bits, 

representing 2r hash values.

• Certainty: Instead of assigning a certain category label to each hash value, we 

should consider the confidence of such categorization and assign a probabilistic 

label to each hash value. Therefore, this “certainty” term defines the probability of 

a cell belonging to the ith category when its hash value is H:

(8)

where l(cell) is the label of a cell image and Li means the ith label or category.

We combine these two weights to advocate the importance of highly discriminative hash 

values with sufficient support. Specifically, during the training process, WH and P(Li|H) can 

be computed for all hash values. The category of a whole testing image is decided by:
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(9)

where Hcell is the hash value of the cell belonging to the query (testing) image.

This content-aware weighting scheme effectively solves the issues of using hashing-based 

retrieval methods for classification. The importance of each cell is decided case-specifically, 

and accumulating the results of all cells provide accurate classification for the whole image. 

In addition, this framework is able to accommodate new samples efficiently. The updating 

scheme can be achieved by storing not only the weights but also the number of cells in each 

category. Given new samples, we can update the cell number in their mapped hash entries, 

re-calculate and update the weights based on such information. Regarding the computational 

complexity, the overhead during the testing stage lies in the weighted combination, which is 

negligible as demonstrated in the experiments. Therefore, this process is computationally 

efficient, same as traditional hashing methods. Fig. 3 summarizes the classification 

procedure using weighted hashing. The whole framework includes cell segmentation, 

hashing, and retrieval. The probability scores are assigned to each hash entry, and they are 

aggregated within the whole image for the final classification. Benefited from this thorough 

analysis of each individual cell, this framework can achieve promising accuracy without 

sacrificing the efficiency.

4. Experiments

4.1. Data Description

In this section, we conduct extensive experiments to evaluate our weighted hashing with 

multiple features for cell-level analysis. Our dataset is collected from the Cancer Genome 

Atlas (TCGA) National Cancer Institute (2013), including 57 adenocarcinoma and 55 

squamous carcinoma. 10 patches with 1712×952 resolution, i.e., region-of-interests (ROIs), 

are cropped from each whole slide scanned pathology specimens, by consulting with 

certified pathologists. Generally, the ROIs mainly consist of cancer cells. The lymphocytes 

regions which have different visual patterns than the representative tumor regions are 

avoided. All the data have been prepared and labeled based on the independent confirmation 

of the pathologists. In each image, our algorithm detects and segments around 430 cells. In 

total, 484,136 cells are used to evaluate the segmentation accuracy (195,467 

adenocarcinoma cells and 288,669 squamous carcinoma cells). We evaluate the efficacy of 

our proposed framework in terms of the classification accuracy and computational 

efficiency. The evaluations are conducted on a 3.40GHz CPU with 4 cores and 16G RAM, 

in MATLAB and C++ implementation. We empirically set the parameters for cell detection 

and segmentation algorithms as: σ = 2, δ = 30, rmin = d/8, rmax = 7d/8 (d is the estimated 

average diameter of all cells in the image) and α = 4.2,β = 0, γ = 0.7, λ = 1.5, ω = 0.5, 

respectively.

4.2. Evaluation of Cell Segmentation

We demonstrate the performance of the cell detection by comparing it with single-pass 

voting (SPV) and phase-coded Hough transform (PCHT) (Xie and Ji, 2002). We compute 
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the mean, variance and minimum of the deviation of the detected seeds with respect to their 

ground truth seeds. Note that only the detected seeds within a 8-pixel circle of its ground 

truth seed are considered. To evaluate the performance more comprehensively, we define a 

set of metrics including missing rate (MR), over-detection rate (OR), precision, recall and F1 

score. A positive detection is asserted if a detected seed locates within the 8-pixel circle 

around a ground truth seed, a miss is asserted, otherwise. Over detection is considered as 

more than one seed are detected in the 12-pixel circle of a ground truth seed. OR is the ratio 

of the number of such cases over the number of the ground truth seeds. Precision (Prec), 

recall (Rec) and F1 score are defined as follows: ,  and 

, where TP, FP, and FN represent true positive, false positive and false 

negative, respectively. Note that in our experiment, false positive is defined as the case that 

a seed is detected out of the 8-pixel circle of a ground truth seed yet within its 12-pixel 

circle. The performance measurements are shown in Table 1.

The performance of the segmentation algorithm is evaluated through comparing our method 

with four existing methods (mean shift (MS), isoperimetric (ISO) (Grady and Schwartz, 

2006), graph-cut and coloring (GCC) (Al-Kofahi et al., 2010), and repulsive level set (RLS) 

(Qi et al., 2012)), both qualitatively and quantitatively. The segmentation results of a 

randomly selected patch are shown in Fig. 4. In our quantitative analysis, we define 

precision  and recall  where seg represents the segmentation result and 

gt represents the ground truth. We show the mean, variance and 80 % in Table 2. MS and 

ISO are general segmentation algorithms which need further postprocessing to achieve 

satisfied performance, and GCC suffers from over-segmentation. RLS generates undesired 

small holes inside or outside cells due to topology changes, while the proposed approach 

address this problem by taking advantage of known topology such that it produces the best 

segmentation results.

4.3. Evaluation of Image Classification

In our framework, the image classification (i.e., differentiation of adenocarcinoma and 

squamous carcinoma) is conducted by examining all cells using hashing-based large-scale 

image retrieval with content-aware weighting. We compare our hashing-based classification 

scheme with several effective classifiers employed for histopathological image analysis. 

Following the convention, k-nearest neighbor (kNN) method is used as the baseline of 

analyzing histopathological images (Tabesh et al., 2007), owing to its simplicity and 

efficacy. Dimensionality reduction methods such as principal component analysis (PCA) are 

effective approaches to improve the computational efficiency and have been employed to 

analyze histopathological images using high-dimensional features (Sertel et al., 2009). 

Support Vector Machine (SVM) is a supervised classification method and widely used in 

grading systems for breast and prostate cancer diagnosis (Doyle et al., 2008). We also 

compare with the traditional kernelized and supervised hashing (KSH) (Liu et al., 2012). For 

fair comparison, same features are used for all compared methods, and their parameters and 

kernel selections are optimized by cross-validation. Specifically, we use an RBF kernel with 

optimized gamma value for SVM, and k=9 for kNN. Regarding dimensionality reduction, 

PCA compresses the original features (i.e., 144 dimensional texture feature base on 
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Histogram of Oriented Gradients (Dalal and Triggs, 2005)) into 12 floats, and our hashing 

method generates 12 bits from each original feature.

To conduct the comparison, we randomly select 20% patients as testing data (around 230 

images, or 96, 000 cells), and use the images from remaining patients as training. This 

procedure is repeated for 30 times to obtain the mean and standard deviation. Table 3 shows 

the quantitative results of the classification accuracy. Despite the efficacy of kNN in many 

applications, it fails to produce reasonable results in this challenging problem, due to the 

large variance of cell images, noise in such large-scale database and unbalanced number of 

two classes. PCA reduces the feature dimensions, which could be redundancy information or 

noise. The classification accuracy is significantly improved, while still only around 70%. 

SVM incorporates supervised information, i.e., labels of adenocarcinoma and squamous 

carcinoma. Not surprisingly, it largely outperforms unsupervised methods, with an accuracy 

of 81.6%. KSH has the same merit of using supervised information, and hence achieves 

comparable accuracy as SVM. Our proposed hashing method not only utilizes kernels and 

supervision, but also is equipped with the content-award weighting scheme to solve the 

inherent problems of hashing methods. Therefore, it outperforms all other methods, with an 

accuracy of 87.3%. In addition, the standard deviation of our algorithm is also relatively 

small, indicating the stableness of our algorithm. Table 3 also shows the individual accuracy 

of adenocarcinoma and squamous carcinoma. Besides the superior accuracy, our method 

also achieves the most balanced results for both cases, which is important to this clinical 

problem as both cases should be recognized and sacrificing the accuracy of one case is not 

acceptable.

Table 3 also compares the computational efficiency of these methods, i.e., the testing time 

for classification. Our hashing method compresses each feature into merely 12 bits, resulting 

in a hash table with 4096 values, which allow instant access to images mapped into any hash 

value. Therefore, KSH and our method is real-time, i.e., around 1-2 seconds. Our method 

uses content-aware weighting and is slightly slower than KSH, due to a small overhead for 

computing the weighted average. Such computational overhead (i.e., 0.4s) is negligible in 

practice. Other methods are all significantly slower, ranging from 46 to 2600 seconds. This 

is the main factor preventing previous methods from being used for cell-level analysis. Note 

that the detection and segmentation takes around tens of seconds for each image, and feature 

extraction takes half second, both of which are the same for all compared methods. The 

overall speed is quite efficient for practical use.

4.4. Discussions

In this section, we discuss the parameters, implementation issues and some limitations of our 

system, and their potential solutions. Fig. 5 shows several failure cases of our cell 

segmentation algorithm. The first two cases have under-segmentation problem. This issue is 

caused by the following reasons: 1) weak boundaries of cell images, 2) and the significantly 

strong edges within the cells that can mislead the evolution process of the active contours. 

Note that although our algorithm fails to accurately delineate the cell boundaries, the results 

still implicitly preserve structure of the cell images. A possible improvement is to 

incorporate the output of a learning based edge detector into Eq. 4. The other two cases in 
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Fig. 5 fail to detect several cells. This is possibly caused by the largely overlapped cells 

and/or high similarity with the background, which may introduce uncertainty for cell 

detection. Note that these are challenging cases to segment. For those densely clustered cells 

with missing cell boundaries, the cell detection and segmentation algorithms may fail in 

some cases. Particularly, the current model can effectively handle touching cells, but not 

largely occluded or overlapped cells. One potential solution to tackle the occlusion is to 

incorporate shape prior modeling. In fact, our segmentation framework can accurately 

segment the majority of images, demonstrated in Table 2.

Since the image classification relies on the features extracted from the segmented cells, 

inaccurate segmentation may adversely affect the classification accuracy. Nonetheless, our 

system still generates accurate classification results, because of two reasons: 1) Most 

segmented cells are correct, which is reflected by the high precision and recall. 2) More 

importantly, the weighting scheme reduces the importance of unreliable features, most of 

which are extracted from inaccurate segmentations. Particularly, this weighting scheme 

ensures the robustness of the classification module, making it less sensitive to the 

segmentation precision. Therefore, our content-aware hashing method not only benefits the 

classification accuracy, but also is compatible with the paradigm of cell-level analysis, given 

the fact that most existing cell segmentation methods are still not perfect.

Our hashing-based classification has few parameters that are easy to choose and not 

sensitive. This is critical to an automatic framework for histopathological image analysis, 

since tuning sensitive parameters is infeasible when conducting this large-scale and cell-

level analysis. Particularly, our hashing-based classification only has one parameter, i.e., the 

number of hash bits. In our experiments, we have used 12 bits for classification, indicating 

4096 hash values. Theoretically, using one bit is already sufficient for binary classification 

purpose, i.e., diffrentiation of two types of cells. However, as shown in Fig. 2, some hash 

values may not be reliable and have to be pruned, due to image noise and several inaccurate 

segmentations. Therefore, it is necessary to use many hash values, which also enable multi-

label classification. On the other hand, it is also desired to have enough samples mapped into 

each hash value, so the support weight  can be effective and benefit the classification 

accuracy. Therefore, the number of hash bits should not be very large either. In fact, using 

20 hash bits can result in one million different hash values, sufficiently representing half 

million cells in our dataset. In addition, using a large number of hash bits (e.g., 64 bits) may 

reduce the computational and memory efficiency, since the hash table is no longer an option 

owing to the memory constraint. Therefore, we have chosen 12 bits for this task, mapping 

half million cells to 4096 hash values and hence ensuring sound accuracy of classification 

without sacrificing the computational and memory efficiency. This is also demonstrated by 

our experiments shown in Fig. 6. Note that our model is able to generate accurate results 

within a certain range of parameter values, i.e., not that sensitive to parameters, making it 

suitable for the large-scale analysis. Furthermore, Fig. 6 also shows that our content-aware 

weighting scheme consistently improves the hashing method for classification accuracy, 

when using different number of hash bits.

Currently, we have validated our framework on around one thousand images with half 

million cells. We expect to apply it on much larger databases (e.g., hundreds of millions 
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cells) or whole slide images in the future. In this case, parallel computing may be necessary 

to ensure the computational efficiency. Our framework for cell-level analysis can be 

straightforwardly parallelled. For example, the whole slide image can be divided as multiple 

patches, and each patch can be processed by one node of the cluster for cell segmentation 

and classification independently. Note that if holistic features are used, e.g., architecture 

features, such parallel computing can only be applied on the cell detection and segmentation, 

but not the feature extraction, which needs to analyze the whole image simultaneously. In 

general, the computational efficiency of our framework is very promising and has the 

potential to handle large-scale databases.

5. Conclusions

In this paper, we proposed a robust and efficient framework to analyze histopathological 

images at cell-level. This is achieved by segmenting all cells and discovering the most 

relevant instances for each cell among a massive database. The main contribution of this 

proposed framework is to enable real-time and cell-level analysis of histopathological 

images, benefited from our weighted hashing-based classification. This weighting scheme 

alleviates the intrinsic problems of traditional hashing methods. It significantly improves the 

diagnosis accuracy of a challenging clinical problem, i.e., differentiating two types of lung 

cancers as the adenocarcinoma and squamous carcinoma using histopathological images. 

We envision that it can provide usable tools to assist clinicians’ diagnoses of cellular images 

and support efficient data management. In the future, we plan to investigate various types of 

features, such as geometry features and cell shapes, and fuse them in the supervised hashing 

framework to boost the accuracy. Although this weighting scheme is specifically designed 

for cell-level analysis of histopathological images, resulting in promising performance in 

this challenging application, it may also benefit the classification accuracy of other 

applications such as natural image categorization. We plan to investigate this in the future as 

well.
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Highlights

• A comprehensive and real-time framework is designed to perform cell-level 

analysis for histopathological images, by leveraging the robust cell segmentation 

and hashing-based large-scale image retrieval.

• For large-scale image retrieval, we propose a content-aware hashing method that 

adaptively decides the importance of each hash value. This scheme alleviates 

several intrinsic problems of traditional hashing methods, and significantly 

improves the classification accuracy.

• We also improve the cell segmentation algorithms by handling variations in 

shape and cell size, to provide robust and accurate delineations of cells.

• Our framework will potentially provide useable tools to assist clinicians’ 

diagnoses and support efficient medical image data management.
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Figure 1. 
Overview of our proposed framework, based on robust cell segmentation and large-scale cell 

image retrieval. The top row is the online classification, and the bottom row is the offline 

learning. Yellow boundaries mean squamous carcinoma, green means adenocarcinoma, and 

blue means unknown types to be classified.
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Figure 2. 
Illustration of the cell distribution in a hash table. X-axis means the hash value using 12 bits, 

ranging from 0 to 4095, and y-axis means the ratio between two types of cells, ranging from 

0 to 1. Each circle means a set of cells mapped to the hash value located in the centroid, its 

size means the number of cells, and the color map visualizes the ratio of two types of cells, 

same as the y-axis values.
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Figure 3. 
Workflow of the weighted hashing-based classification. Starting from an unknown image to 

be categorized, each segmented cell is classified by searching the most similar instances. 

Their results are combined via the content-aware weighting scheme, predicting the 

categorization for the whole image.
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Figure 4. 
Segmentation results of different methods on a randomly picked patch. From left to right: 

original image, MS, ISO, and GCC, and Level Set, and ours.
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Figure 5. 
Some failure cases of our cell segmentation algorithms, including under-segmentation and 

misdetection.
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Figure 6. 
Classification accuracy of our content-aware hashing and KSH (Liu et al., 2012), using 

different number of hashing bits (2 to 20).
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Table 1

Comparative Performance Evaluation of the Detection Accuracy. SPV stands for single-pass voting, and 

PCHT stands for phase-coded Hough transform. MR stands for the missing rate, and OR stands for the over-

detection rate.

Mean Variance Min MR OR

PCHT 3.7 3.92 0.16 0.46 0.11

SPV 2.9 3.01 0.28 0.21 0.06

Ours 2.7 2.8 0.13 0.16 0.08

FP TP Prec Rec F 1

PCHT 0 0.53 0.995 0.53 0.69

SPV 0.002 0.78 0.996 0.74 0.84

Ours 0.002 0.83 0.997 0.84 0.90
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Table 2

Comparative performance evaluation of the segmentation accuracy for mean shift (MS), ISO (Grady and 

Schwartz, 2006), GCC (Al-Kofahi et al., 2010) and RLS (Qi et al., 2012). PM and RM represent precision 

mean and recall mean. PV and RV denote variances of precision and recall. P80% and R80% denote the sorted 

highest precision and recall, respectively.

PM PV P80% RM RV R80%

MS 0.73 0.08 0.92 0.79 0.03 0.89

ISO 0.72 0.09 0.96 0.81 0.02 0.92

GCC 0.80 0.05 0.95 0.77 0.02 0.89

RLS 0.84 0.02 0.96 0.85 0.01 0.92

Ours 0.87 0.01 0.95 0.95 0.01 0.96
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Table 3

Quantitative comparisons of the classification accuracy (the mean value and standard deviation) and running 

time. Compared methods include kNN (Tabesh et al., 2007), PCA (Sertel et al., 2009), SVM (Doyle et al., 

2008), KSH (Liu et al., 2012) and ours.

Adeno Squam Average Time(s)

kNN 0.309 ± 0.058 0.710 ± 0.072 0.514 2605.80

PCA 0.458 ± 0.084 0.954 ± 0.057 0.711 460.20

SVM 0.929 ± 0.085 0.704 ± 0.092 0.816 46.82

KSH 0.861 ± 0.076 0.763 ± 0.084 0.812 1.22

Ours 0.887 ± 0.069 0.854 ± 0.062 0.873 1.68
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