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Abstract

Statistical shape analysis has been an important area of research with applications in biology, 

anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are 

rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, 

significant discrepancies exist in their outputs. In this work, we concentrate on the problem of 

finding the consistent location of deformation between two population of shapes. We propose a 

new shape analysis algorithm along with a framework to perform a quantitative evaluation of its 

performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two 

Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then 

carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied 

on real shape data sets in brain structures.
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1. Introduction

Statistical shape analysis is an actively studied topic with several proposed algorithms, see 

[32, 58, 20, 6, 1, 53, 35, 42, 41, 23, 25, 29] and references therein. They find wide 

application areas including biology [62], neuroscience [44], agriculture [9], and 

paleontology [49]. However, to the best of our knowledge, there have been few quantitative 

evaluations of these methods, and when they are evaluated significant discrepancies exist 

*Corresponding author. gaoyi@gatech.edu (Yi Gao), sylvain@bwh.harvard.edu (Sylvain Bouix). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Med Image Anal. Author manuscript; available in PMC 2017 May 01.

Published in final edited form as:
Med Image Anal. 2016 May ; 30: 72–84. doi:10.1016/j.media.2015.12.007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the state-of-the-art techniques [19]. This poses an urgent need for not only new, but 

also validated algorithms.

In this paper, we concentrate on the problem of finding local shape differences (e.g. local 

thinning) between two populations of shapes that are hypothesized to have subtle differences 

(e.g. shape differences of the hippocampus between the brain of schizophrenics and their 

normal controls). Before presenting the proposed framework, we briefly review several 

existing shape analysis methods representative of the current state of the art.

1.1. Related work

Group analysis of shapes relies primarily on two components. First, an appropriate 

representation and correspondence between shapes need to be established so that they can be 

compared. Equivalently, this step converts all the geometric objects to a common domain. 

Second, statistical tests can be performed between shapes or groups of shapes within this 

common domain, leading to the potential detection of local shape differences. A few 

different strategies have been explored to solve these two steps, which we briefly review 

below.

1.1.1. Surface parametrization based methods—In the first group of methods, the 

shapes are analyzed through an explicit surface parametrization process. Specifically, the 

original shapes are represented as functions on simple domains such as the two-sphere 2. 

Then, functional analysis techniques are employed to process the functions into various 

basis functions and the coefficients are studied. For instance, the spherical harmonics 

(SPHARM) were used in [20, 54, 49], and a weighted-SPHARM scheme is used in [7] to 

alleviate the ringing effects. Moreover, the spherical wavelets are used in [37, 36, 18]. 

Because of the requirement that the shapes are parametrized on spherical domain, often 

times a topology correction step is carried out to ensure spherical topology. After that, an 

area-preserving, distortion-minimizing spherical mapping is computed to spherically 

parametrize the surfaces. Once the surface is defined as functions on the sphere, the surface 

correspondences are established as functions defined on the sphere, and the spherical 

harmonics coefficients can be computed. As a result, statistical tests are carried out at each 

point on the surface, resulting in a p-values map defined on the sphere, illustrating the 

difference between the two groups of shapes.

1.1.2. Dense mapping based methods—In this group of methods, the correspondence 

between surfaces is constructed by a spatial mapping. In [27, 55, 56, 14], the Large 

Deformation Diffeomorphic Metric Mapping (LDDMM) scheme is used for matching 

surfaces in which the flow field is a geodesic in a Riemannian structure of diffeomorphism. 

After the correspondences have been established, the discrepancies in the corresponding 

points on the surfaces are captured using statistical analysis tools. In addition to the mapping 

defined on surfaces, the LD-DMM can also be applied to Euclidean grid and volumetric 

representation of shapes.

Under the discrete setting, shapes have been modeled as points (particles) sets where the 

particles are distributed on the surfaces. In order to create the correspondence among all the 

shapes, authors in [8, 10] adopted several methods based on manual assignment, curve 
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length based re-parametrization, and the minimization of the description length. An entropy 

based energy functional is optimized [6, 48]. The resulting particles are corresponding 

across the population.

In most analysis pipelines, establishing correspondence between shape is the central task. In 

contrast to finding the finding correspondences between surfaces, some methods register 

volumetric representations of shapes and analyze the resulting deformation fields [2, 1, 21, 

60].

1.1.3. Other analysis methods—In all of the above methods, a common approach is 

that a scalar valued map is displayed on a reference shape to indicate the location of shape 

changes. Another group of methods does not compute such scalar field. In contrast, they 

provide a single value, or a low dimensional vector to describe the shapes, or the “distances” 

among shapes. For instance, the eigenvalues of the Laplace-Beltrami operator on the 

surfaces are computed to measure the shape distances [38, 46, 29, 13]. Researchers in [45] 

use the Gromov-Hausdorff distance for non-rigid almost isometric shapes. In addition, the 

mass transport distance and the LDDMM metric have also been used [39, 40, 3]. 

Researchers in [33] constructed a Riemannian structure for shapes and derived a distance 

between shapes that is invariant to rigid motion, global scaling, and reparametrization. The 

medial representation has also been used to describe shapes and to provide local statistics on 

a medial model [5, 22, 50, 43, 59, 26].

For planner shapes, other types of curve reparameterization are used in order to mitigate the 

difficulty in registration and correspondence construction [30]. For the purpose of shape 

classification and identification, authors in [30] proposed a Riemannian manifold for the 

space of curves and extract the geodesics on the manifold that represent the smooth 

deformation between curves. In 3D, however, such a reparameterization approach would 

have to consider the 3D invariance as well as the choice of different surface curvatures.

Another related area is the learning of shapes. Essentially, a low dimensional space is 

constructed from a group of shapes for the purpose of capturing different modes of 

variations of the shape [8, 10, 34]. The main purpose if to build a model for the shapes and 

measure the representation capability of the model for new and possible unseen shapes in 

the same category. Though related, the purpose of these algorithms are different from the 

present study in that they do not detect the localized/regional shape different between two 

groups of shapes. On the other hand, the relationship between this area of study and the 

present one is that the shape correspondence plays important roles in both areas, and authors 

in [10] used a set of simple shapes where the landmarks are easily identifiable, and use them 

to test the shape learning capability. Three global measurements are proposed to characterize 

the representation power of the learned more. In 3D, however, no such evaluation is 

performed. Indeed, in 3D, manual marking of landmarks are not simply tedious but in fact 

not feasible when large set of testing is performed. Secondly and possibly more importantly, 

when handling the real anatomical shapes, the determination of the “ground-truth 

landmarks” are not as straightforward as in 2D synthetic shapes. Addressing those two 

problems in a coherent framework are the two main contributions of the present study.
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Moreover, in order to learn the shape model, the principal component analysis (PCA) is used 

in [8, 12, 10]. The number of variations is picked so that the cumulative energy exceeds a 

fraction of total variance. Such criteria work quite well when the shape variation contributes 

significantly in the L2 sense. On the other hand, when the shape variance is only a localized 

change, which does not have significant L2 type energy contribution, the measurement is not 

sensitive to capture such shape changes. The present paper is focusing on the localized shape 

changes. For some of the testing cases, the area that has a slight deformation only occupies 

less than 1% of total shape surface. In such a case, measured by fraction of total variation, 

such localized deformation is easy to be captured. If we set the threshold too high to capture 

those, then we will include statistically not significant variations, or those artifacts caused by 

correspondence construction.

1.2. Our contributions

Establishing correspondence between shapes lies at the core of shape analysis; unfortunately 

it is an ill-posed problem. As we briefly discussed above, various methods impose different 

constraints and/or regularizations in order to handle such a problem. In this paper we use 

Poisson’s equation to generate a point wise one-to-one mapping between shapes that is 

bijective and smoothly invertible. This property is beneficial especially for convoluted 

anatomical structures.

Perhaps more important than inventing yet another shape analysis algorithm, is designing a 

quantitative evaluation framework and validating the SPoM algorithm in a wide range of 

shape variation scenarios. Although existing shape analysis algorithms have found many 

applications, they are rarely validated with ground truth data and compared to each other in 

a standardized fashion. In [19], we have shown that large discrepancies exist among some of 

the most widely adopted shape analysis algorithms. Indeed, when faced with the task of 

detecting regions of shape differences between two groups, the methods tested rarely agreed 

on the location and extent of the differences. One limitation of [19] is that while it provides 

a qualitative evaluation framework, the quantitative evaluation is incomplete. As a result, a 

novel quantitative morphometry evaluation framework is the second contribution of the 

present study. We believe the objective and quantitative evaluation framework would 

benefit all the application areas in providing accurate and reliable results.

Following this order, first, we present a novel shape analysis method based on solving the 

Poisson equation in Section 2.1. We then design a quantitative evaluation framework 

(Section 2.2) by which the proposed and previous algorithms are quantitatively evaluated 

(Section 3).

2. Method

2.1. Shape analysis using signed Poisson map

In the proposed algorithm, we start with the shapes defined as binary volumes. Specifically, 

denote the two groups of shapes as  and  where 
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; i ∈ {A, B}, j ∈ {1, …, Ni}, and Ω ⊂ ℝ3 is a compact set. Moreover for the 

rigor of the subsequent discussions, we assume  where Ω̊ is the interior of Ω.

Following [51, 12], we define “shape” as the quotient group of the geometric features of an 

object modulo the similarity transformation group. In particular, similarly to LDDMM and 

TBM/DBM methods, we will be focusing on detecting the localized nonlinear deformation 

of a shape, when compared to a “reference shape”. Therefore, in order to remove the 

differences among the shapes caused by their position, pose, and size differences, a joint 

registration is performed. In particular, we opt to use an alternating two-step un-biased 

registration scheme:

(1)

(2)

where F is the similarity transformation in the homogeneous representation. In the M-step, 

the mean shape χ is computed based on the current pose of all the shapes. Then in the R-

step, all the shapes are registered to the current mean shape χ by minimizing the L2 norm 

between each shape and χ. After registration, the M-step is computed again, and the R-step 

repeats. In our experiments, the convergence of such a scheme can be achieved within less 

than 5 iterations and the resulting registered shapes are denoted as  and 

 and the final mean shape is denoted as χ(x).

In order to compare different geometric objects, we propose to embed them to functions 

defined on a common domain. To that end, for each shape , j ∈ {1, …, Ni}, a 

function  is built by solving the Poisson equation:

(3)

Because of the requirement that , the image boundary 

and the Dirichlet boundary condition on ∂Ω has been included in the boundary condition in 

Equation (3). Then, another function  is constructed by solving the following 

equation with mixed Dirichlet and Neumann boundary conditions:
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(4)

where n is the outward normal direction of the image domain Ω. Numerically, the second 

order implicit scheme is used for solving both Poisson equations (3) and (4). Once solved, 

by combining them together we define the SPoM as

(5)

Poisson’s equation is an elliptic partial differential equation (PDE) that is used in a wide 

range of applications including chemical reaction, electrostatics, mechanical engineering and 

theoretical physics. For example, in electrostatics, it can describe the potential energy field 

induced by a charge density distribution [16]. The solution to this equation is a smooth 

function (at least C2). One of the reason that the second order Poisson equation is adopted, 

over the commonly used Signed Distance Map (SDM) in the level set fields, is that there are 

no singularities or crossings of its characteristics. This is an important feature for 

constructing a point-wise one-to-one correspondence between shapes without ambiguity. In 

a broader sense, it has been widely accepted that in general shapes live on a curved high 

dimensional manifold. As a consequence, when constructing the correspondence between 

two shapes, such a curved structure has to be respected. Then, depending on the different 

metric defined, different geodesic and geometric flows can be derived that morph one shape 

to the other, determining the correspondence between different shapes. Indeed, different 

metrics have been defined in various scenarios such as in [52, 24, 28, 3, 50]. In this work, 

due to the nature of the solution of the Poisson equation, it is guaranteed that such a 

trajectory is smooth and does not have crossing singularities. As a result, the trajectory 

between two shapes will remain in the Lie group of diffeomorphic deformation. Moreover, 

the computation of such a Poisson map and thus the correspondence can be solved by 

efficient numerical solver with great numerical stability, comparing to the methods that 

explicitly and iteratively compute the flow.

In Figure 1, a two-dimensional shape of the brain cortex (yellow region in the two right 

panels) is used for illustration. The top left panel shows the surface plot of the SDM and the 

top right panel shows its characteristic curves, in which many crossings/singularities can be 

observed. Since the crossings of the characteristic curves indicate ambiguity in point-wise 

correspondence, the morphological analysis thereafter is hampered. In contrast, as shown in 

the bottom row, the SPoM of the same shape is much smoother and more importantly, the 

characteristic curves do not cross [15]. As a result, this will induce a smooth bijection 

between the shapes. Indeed, the main difference lies in the utilization of second and/or 

higher order derivatives. The SDF only uses the first order information and generates the 

rough landscape which causes the non-uniqueness of the correspondence. The proposed 
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SPoM is in fact a special case of level set method using second order PDE. Such higher 

order information guarantees the smoothness and bijective property, as shown in Figure 1.

In 3D, the SPoM of the striatum (a sub-cortical structure in the left panel of Figure 2) is 

computed and its characteristic curves are traced out in 3D and are shown on the right. The 

colors on the characteristic curves render the values of the SPoM. It can be observed that 

with such a large number of curves, there is not crossing between them.

After such a shape-to-function embedding, one needs to find a common domain where the 

shape differences are going to be extracted. A natural choice would be the surface of the 

mean shape M = {x ∈ Ω̊ : χ(x) = 0.5}, i.e., the 0.5-isosurface of χ(x). Once such common 

domain is identified, a bundle  is then constructed with M being the base 

surface for each shape . Such a bundle of curves connect the corresponding points 

between the mean shape surface and each of the shape being compared. Specifically, at each 

point x, the curve  segment is defined by the differential equation as

(6)

(7)

As noted above, such a curve segment connects the point x on the mean shape to the 

corresponding point on the shape . As shown in Figure 1 and 2, since the characteristic 

curves do not cross each other, the correspondences between points are bijective [15].

The bundles having been computed, the “Poisson-distance”, , is computed by 

integrating along such curves segments as

(8)

(9)

Numerically, the fourth-order Runge-Kutta method is used for computing the integration. 

Starting from the point q̃, the numerical integration traces out the gradient flow of the 

Poisson field  and obtains the Poisson-distance . At this point, all the shapes have 

been converted to scalar functions defined on the same domain M, which enables subsequent 

statistical analysis.

In the scenario of comparing two populations of shapes group A and group B, we can extract 

for each point m on M, two groups of numbers  and 

. The sign of  indicates the direction of deviation 

of  at this point relative to the mean shape (positive means it is locally inside the mean 
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shape and negative means outside). The absolute value of  represents the magnitude of 

the deviation. The permutation test is then used to test the null hypothesis that the means of 

the groups A (m) and B (m) are the same at each point m. The resulting p-values gives us a 

p-value map defined on the mean shape surface, which is further refined by correcting the 

multiple comparison effect using the false discovery rate algorithm [4].

2.2. Quantitative evaluation framework

Quantitative evaluation of algorithm performance should be a de facto component of any 

image analysis endeavour. Unfortunately, the field of statistical shape analysis, especially 

the method that aims at detecting the localized significant deformed regions, is lacking 

thorough evaluation. Part of the problem is due to the lack of a reference standard. In 

addition, most methods represent their results as a p-value map displayed on a template 

shape (often a median/mean shape). Unfortunately, different algorithms produce different 

template shapes, as shown in Figure 3. The three shapes of caudate nucleus are the template 

(average) shapes generated by three different shape analysis methods from the same two sets 

of shapes. The red regions on them are respectively the detected region by three algorithms. 

As a result, the difficulty here is to compare two functions defined on different (though 

similar) domains.

Our method is inspired by a common image segmentation evaluation procedure, which 

measures the amount of overlap between a method’s output and a gold standard using the 

Dice coefficient [11]. Unfortunately, as illustrated in Figure 3, different shape analysis 

algorithms output their results as significant regions defined on different 3D surfaces, or 

even on 3D point set without topological information. The difficulty therefore lies in how to 

compare the “overlapping” between two regions on two different surfaces (or even point 

set). Towards addressing this issue, our contribution is a procedure to connect the outputs of 

different shape analysis methods into a common domain where an overlap measure of p-

value maps can be computed.

The first problem, creating a gold standard, can be solved using synthetic shapes with 

known deformations as outlined in [17, 19]. In short, an arbitrary number of shapes are 

generated, using a manifold learning procedure based on manually traced structures. A joint 

labeling of the resulting shapes into consistently located sub-regions allows us to apply a 

known smooth deformation to a specific location in all shapes. The final output is a set of 

structures with an abnormality of known magnitude and location.

In order to solve the second issue, essentially, one needs to have the point-wise 

correspondence between average shapes. Then, the characteristic functions defined on them 

can be linked together and be compared. Contrasting to the original shape analysis task 

where the shape correspondences are constructed and then the shapes compared, here the 

functions defined on the shapes also have to be pulled back and compared. Indeed, this is 

another shape analysis problem. Consequently, one needs to evaluate an un-evaluated shape 

analysis algorithm with another one, and this brings the situation into a chicken-egg cycle.

To solve such a problem, the key observation lies in the fact that the mean shapes (and the 

functions defined on them) generated by different algorithms are derived from the same set 

Gao and Bouix Page 8

Med Image Anal. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of synthesized shapes, where the notion of deformations are available. Based on this, we 

leverage the consistency of the labeling of the deformed region across the entire population 

of shapes and pass the label of the deformed region onto the mean shape. The ground truth 

location of the deformed region on the template shape is therefore known and can be 

compared with the region outlined as statistically significant by the algorithm.

In order to facilitate the following discussion, we briefly review the basic steps of shape and 

deformation generation in [17, 19]. First, a set of training shapes, represented as binary 

images Ti : Ω → {0, 1}; i = 1, …, NT, are given. We assume these shapes have been aligned 

so that the differences in the rigid transformation and isotropic scaling have been removed. 

Second, a local linear embedding based manifold learning algorithm is adopted to model the 

shape manifold Ti’s reside in [47]. The manifold can then be sampled and an arbitrary 

number of new shapes can be generated. We denote them as Ui : Ω → [0, 1]; i ∈ ℕ and 

correspondingly Si ≔ {x ∈ Ω : Ui(x) = 0.5} is the surface representation of the i-th shape.

After that, a deformation can be induced at a location and magnitude that are consistent 

across all shapes. Intuitively, bumps/dimples with similar location, extent and magnitude are 

added to all the shapes. To that end, a joint clustering algorithm decomposes all the shapes 

(Si’s) into the same number of labeled patches where the patch with the same label occupies 

similar region on different shapes. Formally, each shape Si has a label map Li : Si → {1, …, 

NL} defined on it. NL is the total number of regions and effectively controls the scale of 

synthesized deformation. Larger NL corresponds to smaller area for each labeled region and 

smaller NL means each region is relatively large. Using such a parameter we are able to 

evaluate the shape analysis algorithms’ performance on the deformations at multi-scales.

Among the labels, one ld is picked (by the user) and the region having that label, ϒi ⊂ Si, 

will later be deformed by a user given vector γ which governs the direction and magnitude 

of the deformation. Since this region ϒi has a known label ld and occupies similar locations 

on each Ui, it is tempting to consider comparing the final significant region (defined as p-

value being smaller than pc), to this region ϒi, and use the overlapping ratio as a 

measurement of shape analysis performance. However, it is noticed that ϒi is only a subset 

of the actual deformed region. The reason is explained below.

If all and only the points in ϒi move with the same constant vector γ, a sharp step will 

appear at the region’s boundary, between fully moved points and their static neighbors. In 

order to avoid such a situation and make the deformation smooth and realistic, the 

deformation is modulated by a smoothing field. Specifically, a spatial weighting function 

ωi : ℝ3 → ℝ3 is constructed as

(10)

After that, the ωi-modulated deformation field defined as γωi(x) is applied to the surfaces Si. 

The function ωi has a unit response in the region ϒi. Outside it, depending on the parameter 

σ, ωi gradually vanishes. (Theoretically, the Gaussian function has unbounded support. 

However, practically, it quickly drops below certain small threshold ε such as 10−6.)
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Such a smoothing inevitably spreads the deformation into regions surrounding ϒi. In fact, 

the region ϒ̃i defined as ϒ̃
i ≔ {x : ω(x) ≥ ε} is the final region that got deformed and 

apparently, ϒi ⊂ ϒ̃
i. A binary function bi : Si → {0, 1} is defined as the characteristic 

function of ϒi. This provides the ground truth for the deformed region on each shape.

Such information (ϒi and bi) can be passed through the statistical shape analysis algorithms. 

Specifically, when the mean shape is generated, the bi map will be inherited onto the mean 

shape. Formally, this can be achieved using a distance modulated voting scheme. For a point 

x on the mean shape M, define the map b : M → {0, 1} as

(11)

(12)

(13)

(14)

The Euclidean distance in Equation (11) can be replaced by other more sophisticated 

distance such as the Poisson distance as in Equation (8). However, due to the fact that 

different mean shapes have smaller variances than different individual shapes, the Euclidean 

distance is found sufficient for such a purpose. This is also consistent with the comparison 

between SDM and SPoM in the experiment Section 3.

This map b indicates the location of the induced deformation on the mean shape compared 

to the p-value map computed by the shape analysis algorithm. Similarly to the Dice 

coefficient, we evaluate the the Dice-coefficient-on-surface, DCS:

(15)

where

(16)

(17)

This DCs is the final quantity that can be used to compare the performance of different shape 

analysis algorithms.

2.2.1. On the retrospective evaluation—As can be observed, this evaluation method 

requires the ability to project the labeling of each input shape into the template space. It is 

usually not an issue when evaluating one’s method, but is more difficult for retrospective 
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evaluation of different methods where the internals of each algorithm is not necessarily 

available and all that is given is a template shape and a p-value map.

On the other hand, given the rich resources available of various shape analysis algorithms, it 

is desirable to be able to evaluate them for the purposes of, e.g., uncertainty estimation 

and/or serving as another opinion. To that end, facing the difficulty that it is not 

straightforward to modify the their source codes to add the component of passing the label 

as discussed above, one possibility is to use certain algorithm that has been quantitatively 

evaluated as above, and use its result to evaluate a retrospective algorithm/ software. Indeed, 

once a certain shape analysis algorithm has been evaluated in such a way and achieved the 

desired accuracy, one can revive the “chicken-egg cycle” and evaluate other algorithms 

using the validated one.

Mathematically, we assume that two different shape analysis algorithms provide two 

average shapes Mi, Mj ⊂ Ω, respectively. On them, the detected group-wise different regions 

are depicted as functions pi : Mi → [0, 1] where the region on Mi with pi < pc = 0.05 

indicates that this region is statistically different between the two shape groups.

Following the above discussion, we assume that the algorithm-i has been validated and we 

have certain confidence in its results. However, editing algorithm-j’s source code to enable 

the quantitative evaluation is not straightforward. As a result, the purpose of the 

retrospective evaluation is to use algorithm-i to evaluate another algorithm-j. To that end, 

the key component is to establish the correspondence between Mi and Mj, denoted as a 

mapping .

In order to compute , one can use, for example, the scheme in Section 2.1 to build a 

Poisson map from Mi and following the characteristics of the field to map to Mj. 

Specifically, one can solve the equations:

(18)

and

(19)

and finally let

(20)
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Once the SPoM of Mi is build, the correspondence between Mi and Mj can be constructed. 

Specifically, for any point u on Mj, the corresponding point  is computed by 

tracing the negative gradient field of  as

(21)

(22)

(23)

Having  been constructed, the p-value map on Mj, pj can be pulled back onto Mi as 

. Since now the maps pi and p̃j are defined on the same surface Mi, 

the significant regions dictated by them can now be compared. Formally, denote the 

significant regions as Ri ≔ {x ∈ Mi : pi(x) < 0.05} and Rj ≔ {x ∈ Mi : p̃j(x) < 0.05}, and 

their overlapping can be computed similar to the regular Dice-coefficient as

(24)

Such a quantity  can be regarded as a performance measurement of algorithm-j relative to 

the algorithm-i.

While such a evaluation process provide insight on the relative-performance among different 

shape analysis algorithms, there are some aspects that we would like to address: First, 

evidently, the key step is the construction of the correspondence . Above the scheme in 

Section 2.1 is used to build a Poisson map from Mi and the correspondence with Mj is 

constructed. Another simpler approach can adopt the closest distance as the criteria. That is, 

 where y is the closest point on Mj to x ∈ Mi. Apparently, there are numerous 

choice for building such a  and this leaves the arbitrariness for the system. Second, for 

new algorithm, the prospective evaluation scheme detailed in Section 2.2 directly compares 

the algorithm outputs with the “ground truth” generated from the shape synthesis step and 

therefore seems a more straightforward metric. As a result, in the experiment section below, 

such a “black box” approach is not used.

3. Experiments and Results

In this section, we first demonstrate the pipeline of the proposed shape analysis method and 

the evaluation framework in two groups of synthetic shapes (Sections 3.1 and 3.2). Then, the 

robustness and accuracy of the proposed SPoM based method are statistically tested against 

different underlying landscapes such as scales, locations, and curvatures (Sections 3.3 and 

3.4). After thorough evaluations on the synthetic data sets with ground truth, the method is 
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applied on real shape data sets in the static and longitudinal evolution of the schizophrenia 

patients (Sections 3.5 and 3.6).

3.1. Synthetic Caudate nucleus

In this experiment, the shape synthesizing algorithm in [19] is adopted and a total of 100 

caudate shapes are generated. At the caudate head region, we generate a hypertrophy 

towards the ventral (downward direction in this figure) direction similar to that in [19]. 

Figure 4 shows six synthetic caudate shapes with their respective deformed versions. One 

can observe that the synthetic shapes all have realistic but different shapes. The 

deformations are subtle and challenging to be captured even by eye. Moreover, although 

their shapes differ, the deformed regions all occupy similar locations on the body.

The consistency in deformation locations are guaranteed by the joint clustering, which 

effectively associates a label with each point on the shape. Then, one label, in this case the 

green region at the caudate head (arrow pointed) in Figure 5(A), is chosen to deform 

towards the ventral direction (downward direction in this figure). This green region 

corresponds to the ϒi on this shape. However, in order to keep the deformation smooth and 

realistic, the actual deformation region is shown as the highlighted region in Figure 5(B), 

which corresponds to the ϒ̃i. Such a region will then be compared with the significant 

region detected by the shape analysis algorithm by computing the Dice-coefficient-on-

surface DCS.

The proposed SPoM shape analysis method detects the statistically significant regions as 

shown in Figure 7(B). Comparing to the ground truth region in Figure 7(A) (same as 5(B) 

putting here for easy comparison), The matching between the two can be visually observed. 

As comparison, the same tests are also performed on three other methods: the point 

distribution method based on spherical harmonics (SPHARM-PDM) [20, 54, 49], the 

entropy based particle correspondence method (ShapeWorks) [6, 48], and a variant of the 

Tensor Based Morphometry (TBM) [2, 1, 21, 60, 19]. The results are shown in Figure 6, 

visual inspection is able to determine the accuracy of the proposed algorithm.

In addition to the visual assessment, the Dice-coefficient-on-surface DCS = 0.92.

3.2. Synthetic Striatum

Similar to [19], 100 striatum shapes are generated. Among them, a region of deformation on 

the medial side of the left putamen is generated, which is highlighted in Figure 8(A). 

Applying the proposed SPoM algorithm on this synthetic data set we obtain the resulting 

FDR corrected p-value map displayed on the mean shape shown in Figure 8(B). The non-

gray region are determined as the significantly different between the two groups. As can be 

seen, the detected regions correspond well with the deformation region synthesized. In this 

case, the Dice-coefficient-on-surface DCS = 0.85.

The results of other widely used algorithms are shown in Figure 11 of [19]. It is apparent 

that many results are quite off the ground truth. This poses rather serious risk on the fields 

utilizing the statistical morphometry techniques. On the other hand, it demonstrates again 
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the necessity and importance of providing a new shape analysis algorithm with careful and 

quantitative evaluation.

After these two experiments that demonstrate the proposed pipeline and qualitatively 

compare with those in [19], we systematically and quantitatively evaluate the proposed 

method in the following sections.

3.3. Location experiments on synthetic Striatum

If the deformation is located at the sharp tip of the structure, would the underlying landscape 

affect the difficulty and accuracy of detecting it? In this experiment, the location of the 

deformation is varied after which the proposed algorithm is applied on. The resulting DCs 

values are recorded and analyzed against the underlying shape landscape.

To this end, 100 different regions are selected and deformed on the testing shapes. The 

striatum is chosen as the “base” testing shape due to the fact that it has rich geometric 

features such as both positive and negative curvature regions. Six of the results are shown in 

Figure 9. As can be visually observed, when the deformation is at the tail of the caudate, the 

detection accuracy as measured by the DCS, is the lowest. The DCS of all the 100 tests are 

computed and their mean is 0.83 with standard deviation of 0.07.

As comparison, the same tests are also performed on two other methods. The first method is 

a variant of the Tensor Based Morphometry (TBM) [2, 1, 21, 60, 19] which achieves the 

overall best performance in [19]. The performance of TBM is shown in Table 2.

Under single sided t-test, the proposed algorithm performs significantly better than TBM. 

Furthermore, in order to demonstrate the benefit of using the SPoM instead of other 

correspondence such as the signed distance map (SDM), the proposed method is modified 

by replacing SPoM by SDM while keeping everything else the same. The results of the tests 

are shown in Table 3. The proposed algorithm is significantly better under single sided t-test 

with p-value threshold at 0.01.

It is observed that the Dice coefficients are lower in the tip regions on the shape. In order to 

quantitatively investigate such effect of the underlying landscape on the DCS, the mean 

curvature κ of the surface is computed at each point x. Then, the average absolute mean 

curvature κ̄ is computed under the ground truth region. That is,

(25)

The κ̄ of the ground truth region in each of the 100 tests is computed and plotted against the 

resulting DCS and the results are shown in Table 1 and Figure 10.

From the figure and the regression analysis one can observe that as a general trend the DCS 

value decrease as curvature goes up. The p-value is 0.021.
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3.4. Scale experiments on synthetic Striatum

Another factor that may affect the shape analysis is the scale of the deformation. In order to 

test the influence of the deformation scale on the resulting accuracy, the deformation is 

induced at the similar location. The lateral side of putamen, as highlighted in Figure 11, is 

picked due to the fact that it has relative flat landscape. As a result, the underlying curvature 

distribution of deformation at different scale does not vary much.

Six examples are shown in Figure 11. In addition, all the statistics as well as the linear 

regression are given in Table 4 and Figure 12. From the figure and regression analysis one 

can observe that as a general trend the DCS value is robust with respect to the area of the 

deformation.

Similar to the previous section, the scale test is also performed on the TBM and SDM; their 

respective results are shown in Table 5 and 6.

It is interesting to observe that when the deformation occurs at such a relatively flat region, 

the capability and accuracy of detecting it is similar (not significantly different) between 

SPoM and SDM. This is consistent with the property of the characteristic curves of SPoM 

and SDM.

3.5. Striatum in schizophrenia vs healthy control

After the SPoM algorithm has been quantitatively evaluated on the synthetic data sets and 

gained good performance, in this experiment, the algorithm is applied on two sets of real 

subjects’ striatum shapes. Specifically, 27 schizophrenia patients and 27 matched healthy 

subjects were scanned. Their striatum shapes were extracted manually by experts in the 

Brigham and Women’s hospital, Harvard Medical School. The two groups of shapes are 

analyzed using the proposed SPoM algorithm. The colored regions in Figure 13 indicate the 

significantly different areas between the healthy and schizophrenia group on the left 

striatum, viewed from different directions. In a similar fashion, the colored regions in Figure 

14 indicate the significantly different areas between the two groups on the right striatum. 

Unfortunately, such significant regions did not pass the FDR correction: after FDR 

correction, no significant region is detected.

3.6. Amygdala hippocampus complex in schizophrenia vs healthy control

In this experiment, the SPoM algorithm is applied on two sets of longitudinal patient data. 

Specifically, 19 schizophrenia patients were scanned twice separated by one year. In the 

control group, 20 matched healthy subjects were scanned twice with the same interval. Their 

Amygdala-hippocampus-complex (AHC) shapes were extracted manually by experts in the 

Brigham and Women’s hospital, Harvard Medical School. The AHC shapes are analyzed 

using the proposed algorithm. In the top row of Figure 15 and Figure 16, the colorful regions 

indicate the significantly different areas between the healthy and schizophrenia group at 

time 1. In the bottom row, similar results are shown for time 2. As can be seen, the areas of 

difference are consistent with slight migration. This may provide insight on the longitudinal 

evolution of the disease. However, such significant regions again did not pass the FDR 

correction: after FDR correction, no significant region is detected.

Gao and Bouix Page 15

Med Image Anal. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Conclusion and Future Research Directions

The contribution of this study is twofold. First, we proposed a new statistical shape analysis/

morphometry technique based on the Signed Poisson Map. In addition, a quantitatively 

evaluation framework is proposed to systematically evaluate the proposed algorithm. Future 

studies would benefit from such a framework in providing more robust and quantitatively 

evaluated techniques.

The proposed algorithm also has certain limitations in discriminating very thin structures, 

such as the thin tail of the caudate. This is partially due to the input data which has a rather 

coarse resolution (1mm3), but from the construction of the mean shape which smoothes out 

some of the finer shape details. Group based atlas construction methods, such as [57], would 

be very useful in constructing sharper mean shapes.

Moreover, the proposed algorithm analyzes the entire shape in a uniform fashion. However, 

weighting functions could be added to highlight the importance of certain area on the shape 

[31, 61], which may provide more biologically meaningful results.

The analysis results on the schizophrenia patients with the healthy subjects, did not detect 

statistically significant difference between the two groups after correcting the multiple 

comparison effect. This, however, is not consistent with some of the previous studies. 

Equipped with the quantitative evaluation technique, future research will study these cases 

to identify the reason for such inconsistencies.
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Highlights

• The contribution of this study is two folds. First, we proposed a new statistical 

shape analysis/morphometry technique based on the Signed Poisson Map 

(SPoM). In addition, a quantitatively evaluation framework is proposed to 

systematically evaluate the proposed algorithm.

• To the best of our knowledge, this is the first quantitative morphometry 

evaluation framework and the proposed SPoM method is the first shape analysis 

method that has been systematically and quantitatively validated and evaluated.

• We believe the objective and quantitative evaluation framework would benefit 

later development of new statistical shape analysis algorithms as we as the 

application areas in providing accurate and reliable results.
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Figure 1. 
The SDM (top row) and the SPoM (bottom row) of the same 2D shape.
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Figure 2. 
The 3D striatum shape (left) and the characteristic curves of its SPoM. The colors on the 

curves indicate the SPoM values.
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Figure 3. 
Different shape analysis algorithms gives different surface/domain on which the group-wise 

significantly different regions are shown in red. How to compare regions on different 

domains is one difficulty for evaluating shape analysis algorithms
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Figure 4. 
Example of benchmark caudate shapes with known deformation. Top row: examples of the 

synthetic left caudates. Bottom row: Corresponding deformed caudate shapes. Arrow at the 

bottom-left corner points to the region of synthetic hypertrophy at the caudate head. Dots in 

the top-right corner indicate the shapes that are used for morphometry study. That is, only 

one in the corresponding shape pairs is used.
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Figure 5. 
The caudate depicts; (A). The regions generated by the clustering. The green region at the 

bottom side of the caudate head (arrow pointed) is the region picked to be deformed. (B). 

The highlighted region shows the actual deformed region ϒ̃
i. This is significantly larger than 

the green region in (A) due to the procedure in order to keep the deformation smooth and 

realistic.
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Figure 6. 
Results of several state-of-the-art methods on the caudate. The P-value maps are rendered on 

the mean shapes computed by different algorithms. P-values greater than 0.05 are shown in 

gray.
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Figure 7. 
(A) The ground truth deformed region is shown in yellow. (Same as Figure 5(B) putting 

here for easy comparison.) (B) The detected significant different region (p-value less than 

5%) between the two groups. The matching between the two can be visually observed. Dice 

is 0.92.
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Figure 8. 
Result on striatum shapes. (A) The ground truth deformed region is shown in yellow. (B) 

The detected significant different region (p-value less than 5%) between the two groups. 

Dice is 0.85.
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Figure 9. 
Each of the six columns contains the ground truth deformation region at top and the detected 

deformation region. The DCS’s are, from left to right, 0.77, 0.72, 0.85, 0.70, 0.85, 0.88.
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Figure 10. 
The DCS values plotted with respect to average absolute mean curvature in the deformed 

region. The DCS value decrease as curvature goes up. The p-value is 0.021.
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Figure 11. 
Each of the six columns contains the ground truth deformation region at top and the detected 

deformation region. The DCS’s are, from left to right, 0.85, 0.86, 0.87, 0.84, 0.82, 0.83
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Figure 12. 
The DCS values plotted with respect to area of the deformed region. The DCS value is not 

statistically significantly correlated with the area. The p-value is 0.51.
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Figure 13. 
The analysis results of the left striatum between a group of healthy subjects and 

schizophrenia patients. Color indicates the statistically different regions between the two 

groups.
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Figure 14. 
The analysis results of the right striatum between a group of healthy subjects and 

schizophrenia patients. Color indicates the statistically different regions between the two 

groups.
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Figure 15. 
Results of the left amygdala-hippocampus complex. Top row: mean shape at time 1 with 

raw p-value map. Bottom row: mean shape at time 2 with raw p-value map.
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Figure 16. 
Results of the right amygdala-hippocampus complex. Top row: mean shape at time 1 with 

raw p-value map. Bottom row: mean shape at time 2 with raw p-value map.
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