
Brain Tumor Segmentation with Deep Neural NetworksI

Mohammad Havaeia,1, Axel Davyb, David Warde-Farleyc, Antoine Biardc,d, Aaron Courvillec, Yoshua Bengioc, Chris Palc,e,
Pierre-Marc Jodoina, Hugo Larochellea,f

aUniversité de Sherbrooke, Sherbrooke, Qc, Canada
bÉcole Normale supérieure, Paris, France

cUniversité de Montréal, Montréal, Canada
dÉcole polytechnique, Palaiseau, France

eÉcole Polytechnique de Montréal , Canada
fTwitter, USA

Abstract

In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The
proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these
tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our
exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we
give a description of different model choices that we’ve found to be necessary for obtaining competitive performance. We explore
in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data.

We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local
features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks
use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe
a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a
cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN.
Results reported on the 2013 BRATS test dataset reveal that our architecture improves over the currently published state-of-the-art
while being over 30 times faster.

Keywords:
Brain tumor segmentation, deep neural networks

1. Introduction

In the United States alone, it is estimated that 23,000 new
cases of brain cancer will be diagnosed in 20152. While
gliomas are the most common brain tumors, they can be less
aggressive (i.e. low grade) in a patient with a life expectancy of
several years, or more aggressive (i.e. high grade) in a patient
with a life expectancy of at most 2 years.

Although surgery is the most common treatment for brain
tumors, radiation and chemotherapy may be used to slow the
growth of tumors that cannot be physically removed. Magnetic
resonance imaging (MRI) provides detailed images of the brain,
and is one of the most common tests used to diagnose brain tu-
mors. All the more, brain tumor segmentation from MR im-
ages can have great impact for improved diagnostics, growth
rate prediction and treatment planning.

While some tumors such as meningiomas can be easily seg-
mented, others like gliomas and glioblastomas are much more
difficult to localize. These tumors (together with their surround-
ing edema) are often diffused, poorly contrasted, and extend

IAccepted in Medical Image Analysis.
1mohammad.havaei@gmail.com
2cancer.org

tentacle-like structures that make them difficult to segment. An-
other fundamental difficulty with segmenting brain tumors is
that they can appear anywhere in the brain, in almost any shape
and size. Furthermore, unlike images derived from X-ray com-
puted tomography (CT) scans, the scale of voxel values in MR
images is not standardized. Depending on the type of MR ma-
chine used (1.5, 3 or 7 tesla) and the acquisition protocol (field
of view value, voxel resolution, gradient strength, b0 value,
etc.), the same tumorous cells may end up having drastically
different grayscale values when pictured in different hospitals.

Healthy brains are typically made of 3 types of tissues: the
white matter, the gray matter, and the cerebrospinal fluid. The
goal of brain tumor segmentation is to detect the location and
extension of the tumor regions, namely active tumorous tissue
(vascularized or not), necrotic tissue, and edema (swelling near
the tumor). This is done by identifying abnormal areas when
compared to normal tissue. Since glioblastomas are infiltra-
tive tumors, their borders are often fuzzy and hard to distin-
guish from healthy tissues. As a solution, more than one MRI
modality is often employed, e.g. T1 (spin-lattice relaxation),
T1-contrasted (T1C), T2 (spin-spin relaxation), proton density
(PD) contrast imaging, diffusion MRI (dMRI), and fluid atten-
uation inversion recovery (FLAIR) pulse sequences. The con-

Preprint submitted to Medical Image Analysis May 23, 2016

ar
X

iv
:1

50
5.

03
54

0v
3 

 [
cs

.C
V

] 
 2

0 
M

ay
 2

01
6



trast between these modalities gives almost a unique signature
to each tissue type.

Most automatic brain tumor segmentation methods use hand-
designed features [15, 32]. These methods implement a clas-
sical machine learning pipeline according to which features
are first extracted and then given to a classifier whose train-
ing procedure does not affect the nature of those features. An
alternative approach for designing task-adapted feature repre-
sentations is to learn a hierarchy of increasingly complex fea-
tures directly from in-domain data. Deep neural networks have
been shown to excel at learning such feature hierarchies [7]. In
this work, we apply this approach to learn feature hierarchies
adapted specifically to the task of brain tumor segmentation that
combine information across MRI modalities.

Specifically, we investigate several choices for training Con-
volutional Neural Networks (CNNs), which are Deep Neural
Networks (DNNs) adapted to image data. We report their
advantages, disadvantages and performance using well estab-
lished metrics. Although CNNs first appeared over two decades
ago [29], they have recently become a mainstay of the com-
puter vision community due to their record-shattering perfor-
mance in the ImageNet Large-Scale Visual Recognition Chal-
lenge [27]. While CNNs have also been successfully applied
to segmentation problems [1, 31, 21, 8], most of the previous
work has focused on non-medical tasks and many involve ar-
chitectures that are not well suited to medical imagery or brain
tumor segmentation in particular. Our preliminary work on us-
ing convolutional neural networks for brain tumor segmentation
together with two other methods using CNNs was presented in
BRATS‘14 workshop. However, those results were incomplete
and required more investigation (More on this in chapter 2).

In this paper, we propose a number of specific CNN architec-
tures for tackling brain tumor segmentation. Our architectures
exploit the most recent advances in CNN design and training
techniques, such as Maxout [18] hidden units and Dropout [42]
regularization. We also investigate several architectures which
take into account both the local shape of tumors as well as their
context.

One problem with many machine learning methods is that
they perform pixel classification without taking into account the
local dependencies of labels (i.e. segmentation labels are con-
ditionally independent given the input image). To account for
this, one can employ structured output methods such as condi-
tional random fields (CRFs), for which inference can be com-
putationally expensive. Alternatively, one can model label de-
pendencies by considering the pixel-wise probability estimates
of an initial CNN as additional input to certain layers of a sec-
ond DNN, forming a cascaded architecture. Since convolutions
are efficient operations, this approach can be significantly faster
than implementing a CRF.

We focus our experimental analysis on the fully-annotated
MICCAI brain tumor segmentation (BRATS) challenge 2013
dataset [15] using the well defined training and testing splits,
thereby allowing us to compare directly and quantitatively to a
wide variety of other methods.

Our contributions in this work are four fold:

1. We propose a fully automatic method with results cur-
rently ranked second on the BRATS 2013 scoreboard;

2. To segment a brain, our method takes between 25 seconds
and 3 minutes, which is one order of magnitude faster than
most state-of-the-art methods.

3. Our CNN implements a novel two-pathway architecture
that learns about the local details of the brain as well as
the larger context. We also propose a two-phase training
procedure which we have found is critical to deal with im-
balanced label distributions. Details of these contributions
are described in Sections 3.1.1 and 3.2.

4. We employ a novel cascaded architecture as an efficient
and conceptually clean alternative to popular structured
output methods. Details on those models are presented
in Section 3.1.2.

2. Related work

As noted by Menze et al. [32], the number of publications
devoted to automated brain tumor segmentation has grown ex-
ponentially in the last several decades. This observation not
only underlines the need for automatic brain tumor segmenta-
tion tools, but also shows that research in that area is still a work
in progress.

Brain tumor segmentation methods (especially those devoted
to MRI) can be roughly divided in two categories: those based
on generative models and those based on discriminative mod-
els [32, 5, 2].

Generative models rely heavily on domain-specific prior
knowledge about the appearance of both healthy and tumor-
ous tissues. Tissue appearance is challenging to characterize,
and existing generative models usually identify a tumor as be-
ing a shape or a signal which deviates from a normal (or av-
erage) brain [9]. Typically, these methods rely on anatomical
models obtained after aligning the 3D MR image on an at-
las or a template computed from several healthy brains [12].
A typical generative model of MR brain images can be found
in Prastawa et al. [37]. Given the ICBM brain atlas, the method
aligns the brain to the atlas and computes posterior probabilities
of healthy tissues (white matter, gray matter and cerebrospinal
fluid) . Tumorous regions are then found by localizing vox-
els whose posterior probability is below a certain threshold. A
post-processing step is then applied to ensure good spatial reg-
ularity. Prastawa et al. [38] also register brain images onto an
atlas in order to get a probability map for abnormalities. An
active contour is then initialized on this map and iterated until
the change in posterior probability is below a certain threshold.
Many other active-contour methods along the same lines have
been proposed [25, 10, 36], all of which depend on left-right
brain symmetry features and/or alignment-based features. Note
that since aligning a brain with a large tumor onto a template
can be challenging, some methods perform registration and tu-
mor segmentation at the same time [28, 34].

Other approaches for brain tumor segmentation employ dis-
criminative models. Unlike generative modeling approaches,
these approaches exploit little prior knowledge on the brain’s

2



anatomy and instead rely mostly on the extraction of [a large
number of] low level image features, directly modeling the
relationship between these features and the label of a given
voxel. These features may be raw input pixels values [22, 20],
local histograms [26, 39] texture features such as Gabor fil-
terbanks [44, 43], or alignment-based features such as inter-
image gradient, region shape difference, and symmetry anal-
ysis [33]. Classical discriminative learning techniques such
as SVMs [4, 41, 30] and decision forests [48] have also been
used. Results from the 2012, 2013 and 2014 editions of the
MICCAI-BRATS Challenge suggest that methods relying on
random forests are among the most accurate [32, 19, 26].

One common aspect with discriminative models is their im-
plementation of a conventional machine learning pipeline rely-
ing on hand-designed features. For these methods, the classifier
is trained to separate healthy from non-heatlthy tissues assum-
ing that the input features have a sufficiently high discriminative
power since the behavior the classifier is independent from na-
ture of those features. One difficulty with methods based on
hand-designed features is that they often require the computa-
tion of a large number of features in order to be accurate when
used with many traditional machine learning techniques. This
can make them slow to compute and expensive memory-wise.
More efficient techniques employ lower numbers of features,
using dimensionality reduction or feature selection methods,
but the reduction in the number of features is often at the cost
of reduced accuracy.

By their nature, many hand-engineered features exploit very
generic edge-related information, with no specific adaptation to
the domain of brain tumors. Ideally, one would like to have
features that are composed and refined into higher-level, task-
adapted representations. Recently, preliminary investigations
have shown that the use of deep CNNs for brain tumor segmen-
tation makes for a very promising approach (see the BRATS
2014 challenge workshop papers of Davy et al. [11], Zikic et al.
[49], Urban et al. [45]). All three methods divide the 3D MR
images into 2D [11, 49] or 3D patches [45] and train a CNN to
predict its center pixel class. Urban et al. [45] as well as Zikic
et al. [49] implemented a fairly common CNN, consisting of a
series of convolutional layers, a non-linear activation function
between each layer and a softmax output layer. Our work here3

extends our preliminary results presented in Davy et al. [11] us-
ing a two-pathway architecture, which we use here as a building
block.

In computer vision, CNN-based segmentation models have
typically been applied to natural scene labeling. For these tasks,
the inputs to the model are the RGB channels of a patch from
a color image. The work in Pinheiro and Collobert [35] uses a
basic CNN to make predictions for each pixel and further im-
proves the predictions by using them as extra information in
the input of a second CNN model. Other work [13] involves
several distinct CNNs processing the image at different resolu-
tions. The final per-pixel class prediction is made by integrating

3 It is important to note that while we did participate in the BRATS 2014
challenge, we could not report complete and fair experiments for it at the time
of submitting this manuscript. See Section 5 for a discussion on this point.

information learned from all CNNs. To produce a smooth seg-
mentation, these predictions are regularized using a more global
superpixel segmentation of the image. Like our work, other re-
cent work has exploited convolution operations in the final layer
of a network to extend traditional CNN architectures for seman-
tic scene segmentation [31]. In the medical imaging domain in
general there has been comparatively less work using CNNs for
segmentation. However, some notable recent work by Huang
and Jain [23] has used CNNs to predict the boundaries of neu-
ral tissue in electron microscopy images. Here we explore an
approach with similarities to the various approaches discussed
above, but in the context of brain tumor segmentation.

3. Our Convolutional Neural Network Approach

Since the brains in the BRATS dataset lack resolution in the
third dimension, we consider performing the segmentation slice
by slice from the axial view. Thus, our model processes sequen-
tially each 2D axial image (slice) where each pixel is associ-
ated with different image modalities namely; T1, T2, T1C and
FLAIR. Like most CNN-based segmentation models [35, 13],
our method predicts the class of a pixel by processing the M×M
patch centered on that pixel. The input X of our CNN model is
thus an M × M 2D patch with several modalities.

The main building block used to construct a CNN architec-
ture is the convolutional layer. Several layers can be stacked
on top of each other forming a hierarchy of features. Each
layer can be understood as extracting features from its preced-
ing layer into the hierarchy to which it is connected. A single
convolutional layer takes as input a stack of input planes and
produces as output some number of output planes or feature
maps. Each feature map can be thought of as a topologically
arranged map of responses of a particular spatially local non-
linear feature extractor (the parameters of which are learned),
applied identically to each spatial neighborhood of the input
planes in a sliding window fashion. In the case of a first con-
volutional layer, the individual input planes correspond to dif-
ferent MRI modalities (in typical computer vision applications,
the individual input planes correspond to the red, green and blue
color channels). In subsequent layers, the input planes typically
consist of the feature maps of the previous layer.

Computing a feature map in a convolutional layer (see Fig-
ure 1 ) consists of the following three steps:

1. Convolution of kernels (filters): Each feature map Os is
associated with one kernel (or several, in the case of Max-
out). The feature map Os is computed as follows:

Os = bs +
∑

r

Wsr ∗ Xr (1)

where Xr is the rth input channel, Wsr is the sub-kernel
for that channel, ∗ is the convolution operation and bs is
a bias term4. In other words, the affine operation being

4Since the convolutional layer is associated to R input channels, X contains
M × M × R gray-scale values and thus each kernel Ws contains N × N × R
weights. Accordingly, the number of parameters in a convolutional block of
consisting of S feature maps is equal to R × M × M × S .

3



max

Maxout,  
K = 2

convolution, 
N = 3

max pooling, 
p = 2

5x5 4x4

5x5
7x7

7x7

HsZs

Os

Os+1

X

X

X

Figure 1: A single convolution layer block showing computa-
tions for a single feature map. The input patch (here 7 × 7), is
convolved with series of kernels (here 3 × 3) followed by Max-
out and max-pooling.

performed for each feature map is the sum of the appli-
cation of R different 2-dimensional N × N convolution
filters (one per input channel/modality), plus a bias term
which is added pixel-wise to each resulting spatial posi-
tion. Though the input to this operation is a M × M × R
3-dimensional tensor, the spatial topology being consid-
ered is 2-dimensional in the X-Y axial plane of the original
brain volume.
Whereas traditional image feature extraction methods rely
on a fixed recipe (sometimes taking the form of convo-
lution with a linear e.g. Gabor filter bank), the key to
the success of convolutional neural networks is their abil-
ity to learn the weights and biases of individual feature
maps, giving rise to data-driven, customized, task-specific
dense feature extractors. These parameters are adapted
via stochastic gradient descent on a surrogate loss function
related to the misclassification error, with gradients com-
puted efficiently via the backpropagation algorithm [40].
Special attention must be paid to the treatment of border
pixels by the convolution operation. Throughout our archi-
tecture, we employ the so-called valid-mode convolution,
meaning that the filter response is not computed for pixel
positions that are less than bN/2c pixels away from the im-
age border. An N×N filter convolved with an M×M input
patch will result in a Q×Q output, where Q = M − N + 1.
In Figure 1, M = 7, N = 3 and thus Q = 5. Note that the
size (spatial width and height) of the kernels are hyper-
parameters that must be specified by the user.

2. Non-linear activation function: To obtain features that are
non-linear transformations of the input, an element-wise
non-linearity is applied to the result of the kernel convo-
lution. There are multiple choices for this non-linearity,
such as the sigmoid, hyperbolic tangent and rectified lin-
ear functions [24], [16].
Recently, Goodfellow et al. [18] proposed a Maxout non-
linearity, which has been shown to be particularly effec-
tive at modeling useful features. Maxout features are as-
sociated with multiple kernels Ws. This implies each
Maxout map Zs is associated with K feature maps :
{Os,Os+1, ...,Os+K−1}. Note that in Figure 1, the Maxout
maps are associated with K = 2 feature maps. Maxout fea-

tures correspond to taking the max over the feature maps
O, individually for each spatial position:

Zs,i, j = max
{
Os,i, j,Os+1,i, j, ...,Os+K−1,i, j

}
(2)

where i, j are spatial positions. Maxout features are thus
equivalent to using a convex activation function, but whose
shape is adaptive and depends on the values taken by the
kernels.

3. Max pooling: This operation consists of taking the maxi-
mum feature (neuron) value over sub-windows within each
feature map. This can be formalized as follows:

Hs,i, j = max
p

Zs,i+p, j+p, (3)

where p determines the max pooling window size. The
sub-windows can be overlapping or not (Figure 1 shows
an overlapping configuration). The max-pooling operation
shrinks the size of the feature map. This is controlled by
the pooling size p and the stride hyper-parameter, which
corresponds to the horizontal and vertical increments at
which pooling sub-windows are positioned. Let S be the
stride value and Q × Q be the shape of the feature map
before max-pooling. The output of the max-pooling oper-
ation would be of size D × D, where D = (Q − p)/S + 1.
In Figure 1, since Q = 5, p = 2, S = 1, the max-pooling
operation results into a D = 4 output feature map. The
motivation for this operation is to introduce invariance to
local translations. This subsampling procedure has been
found beneficial in other applications [27].

Convolutional networks have the ability to extract a hierar-
chy of increasingly complex features which makes them very
appealing. This is done by treating the output feature maps of a
convolutional layer as input channels to the subsequent convo-
lutional layer.

From the neural network perspective, feature maps corre-
spond to a layer of hidden units or neurons. Specifically, each
coordinate within a feature map corresponds to an individual
neuron, for which the size of its receptive field corresponds to
the kernel’s size. A kernel’s value also represents the weights of
the connections between the layer’s neurons and the neurons in
the previous layer. It is often found in practice that the learned
kernels resemble edge detectors, each kernel being tuned to a
different spatial frequency, scale and orientation, as is appropri-
ate for the statistics of the training data.

Finally, to perform a prediction of the segmentation labels,
we connect the last convolutional hidden layer to a convolu-
tional output layer followed by a non-linearity (i.e. no pool-
ing is performed). It is necessary to note that, for segmenta-
tion purposes, a conventional CNN will not yield an efficient
test time since the output layer is typically fully connected.
By using a convolution at the end, for which we have an ef-
ficient implementation, the prediction at test time for a whole
brain will be 45 times faster. The convolution uses as many
kernels as there are different segmentation labels (in our case
five). Each kernel thus acts as the ultimate detector of tissue
from one of the segmentation labels. We use the softmax non-
linearity which normalizes the result of the kernel convolutions

4



into a multinominal distribution over the labels. Specifically, let
a be the vector of values at a given spatial position, it computes
softmax(a) = exp(a)/Z where Z =

∑
c exp(ac) is a normaliza-

tion constant. More details will be discussed in Section 4.
Noting Y as the segmentation label field over the input patch

X, we can thus interpret each spatial position of the convolu-
tional output layer as providing a model for the likelihood dis-
tribution p(Yi j|X), where Yi j is the label at position i, j. We
get the probability of all labels simply by taking the product
of each conditional p(Y|X) =

∏
i j p(Yi j|X). Our approach thus

performs a multiclass labeling by assigning to each pixel the
label with the largest probability.

3.1. The Architectures

Our description of CNNs so far suggests a simple architec-
ture corresponding to a single stack of several convolutional
layers. This configuration is the most commonly implemented
architecture in the computer vision literature. However, one
could imagine other architectures that might be more appropri-
ate for the task at hand.

In this work, we explore a variety of architectures by using
the concatenation of feature maps from different layers as an-
other operation when composing CNNs. This operation allows
us to construct architectures with multiple computational paths,
which can each serve a different purpose. We now describe the
two types of architectures that we explore in this work.

3.1.1. Two-pathway architecture
This architecture is made of two streams: a pathway with

smaller 7 × 7 receptive fields and another with larger 13 × 13
receptive fields. We refer to these streams as the local pathway
and the global pathway, respectively. The motivation for this
architectural choice is that we would like the prediction of the
label of a pixel to be influenced by two aspects: the visual de-
tails of the region around that pixel and its larger “context”, i.e.
roughly where the patch is in the brain.

The full architecture along with its details is illustrated in
Figure 2. We refer to this architecture as the TwoPathCNN.
To allow for the concatenation of the top hidden layers of both
pathways, we use two layers for the local pathway, with 3 × 3
kernels for the second layer. While this implies that the effective
receptive field of features in the top layer of each pathway is the
same, the global pathway’s parametrization more directly and
flexibly models features in that same area. The concatenation
of the feature maps of both pathways is then fed to the output
layer.

3.1.2. Cascaded architectures
One disadvantage of the CNNs described so far is that they

predict each segmentation label separately from each other.
This is unlike a large number of segmentation methods in the
literature, which often propose a joint model of the segmen-
tation labels, effectively modeling the direct dependencies be-
tween spatially close labels. One approach is to define a con-
ditional random field (CRF) over the labels and perform mean-
field message passing inference to produce a complete segmen-

tation. In this case, the final label at a given position is effec-
tively influenced by the models beliefs about what the label is
in the vicinity of that position.

On the other hand, inference in such joint segmentation
methods is typically more computationally expensive than a
simple feed-forward pass through a CNN. This is an impor-
tant aspect that one should take into account if automatic brain
tumor segmentation is to be used in a day-to-day practice.

Here, we describe CNN architectures that both exploit the
efficiency of CNNs, while also more directly model the depen-
dencies between adjacent labels in the segmentation. The idea
is simple: since we’d like the ultimate prediction to be influ-
enced by the model’s beliefs about the value of nearby labels,
we propose to feed the output probabilities of a first CNN as
additional inputs to the layers of a second CNN. Again, we do
this by relying on the concatenation of convolutional layers. In
this case, we simply concatenate the output layer of the first
CNN with any of the layers in the second CNN. Moreover, we
use the same two-pathway structure for both CNNs. This effec-
tively corresponds to a cascade of two CNNs, thus we refer to
such models as cascaded architectures.

In this work, we investigated three cascaded architectures
that concatenate the first CNN’s output at different levels of the
second CNN:

• Input concatenation: In this architecture, we provide the
first CNN’s output directly as input to the second CNN.
They are thus simply treated as additional image channels
of the input patch. The details are illustrated in Figure 3a.
We refer to this model as InputCascadeCNN.

• Local pathway concatenation: In this architecture, we
move up one layer in the local pathway and perform con-
catenation to its first hidden layer, in the second CNN. The
details are illustrated in Figure 3b. We refer to this model
as LocalCascadeCNN.

• Pre-output concatenation: In this last architecture, we
move to the very end of the second CNN and perform con-
catenation right before its output layer. This architecture
is interesting, as it is similar to the computations made by
one pass of mean-field inference [46] in a CRF whose pair-
wise potential functions are the weights in the output ker-
nels. From this view, the output of the first CNN is the
first iteration of mean-field, while the output of the sec-
ond CNN would be the second iteration. The difference
with regular mean-field however is that our CNN allows
the output at one position to be influenced by its previ-
ous value, and the convolutional kernels are not the same
in the first and second CNN. The details are illustrated in
Figure 3c. We refer to this model as MFCascadeCNN.

3.2. Training

Gradient Descent. By interpreting the output of the convolu-
tional network as a model for the distribution over segmentation
labels, a natural training criteria is to maximize the probability
of all labels in our training set or, equivalently, to minimize the

5



  
Conv 3x3 +
Maxout + 
Pooling 2x2

Conv 7x7 +
Maxout + 
Pooling 4x4

Conv 13x13 +
Maxout 

Input
4x33x33

Concatenation

Conv 21x21 +
Softmax

Output
5x1x1

64x21x2164x24x24

160x21x21

                                                                     

224x21x21

# Parameters  651,488

Figure 2: Two-pathway CNN architecture (TwoPathCNN). The figure shows the input patch going through two paths of convolu-
tional operations. The feature-maps in the local and global paths are shown in yellow and orange respectively. The convolutional
layers used to produce these feature-maps are indicated by dashed lines in the figure. The green box embodies the whole model
which in later architectures will be used to indicate the TwoPathCNN.

negative log-probability − log p(Y|X) =
∑

i j − log p(Yi j|X) for
each labeled brain.

To do this, we follow a stochastic gradient descent ap-
proach by repeatedly selecting labels Yi j at a random subset
of patches within each brain, computing the average negative
log-probabilities for this mini-batch of patches and performing
a gradient descent step on the CNNs parameters (i.e. the kernels
at all layers).

Performing updates based only on a small subset of patches
allows us to avoid having to process a whole brain for each
update, while providing reliable enough updates for learning.
In practice, we implement this approach by creating a dataset
of mini-batches of smaller brain image patches, paired with the
corresponding center segmentation label as the target.

To further improve optimization, we implemented a so-called
momentum strategy which has been shown successful in the
past [27]. The idea of momentum is to use a temporally av-
eraged gradient in order to damp the optimization velocity:

Vi+1 = µ ∗ Vi − α ∗ ∇Wi

Wi+1 = Wi + Vi+1

where Wi stands for the CNNs parameters at iteration i, ∇Wi

the gradient of the loss function at Wi, V is the integrated ve-
locity initialized at zero, α is the learning rate, and µ the mo-
mentum coefficient. We define a schedule for the momentum µ
where the momentum coefficient is gradually increased during
training. In our experiments the initial momentum coefficient
was set to µ = 0.5 and the final value was set to µ = 0.9.

Also, the learning rate α is decreased by a factor at every
epoch. The initial learning rate was set to α = 0.005 and the
decay factor to 10−1.

Two-phase training. Brain tumor segmentation is a highly data
imbalanced problem where the healthy voxels (i.e. label 0)
comprise 98% of total voxels. From the remaining 2% patho-
logical voxels, 0.18% belongs to necrosis (label 1), 1.1% to
edema (label 2), 0.12% to non-enhanced (label 3) and 0.38% to
enhanced tumor (label 4). Selecting patches from the true dis-
tribution would cause the model to be overwhelmed by healthy

patches and causing problem when training out CNN models.
Instead, we initially construct our patches dataset such that all
labels are equiprobable. This is what we call the first training
phase. Then, in a second phase, we account for the un-balanced
nature of the data and re-train only the output layer (i.e. keep-
ing the kernels of all other layers fixed) with a more represen-
tative distribution of the labels. This way we get the best of
both worlds: most of the capacity (the lower layers) is used in
a balanced way to account for the diversity in all of the classes,
while the output probabilities are calibrated correctly (thanks to
the re-training of the output layer with the natural frequencies
of classes in the data).

Regularization. Successful CNNs tend to be models with a lot
of capacity, making them vulnerable to overfitting in a setting
like ours where there clearly are not enough training examples.
Accordingly, we found that regularization is important in ob-
taining good results. Here, regularization took several forms.
First, in all layers, we bounded the absolute value of the kernel
weights and applied both L1 and L2 regularization to prevent
overfitting. This is done by adding the regularization terms
to the negative log-probability (i.e. − log p(Y|X) + λ1‖W‖1 +

λ2‖W‖2, where λ1 and λ2 are coefficients for L1 and L2 regu-
larization terms respectively). L1 and L2 affect the parameters
of the model in different ways, while L1 encourages sparsity, L2
encourages small values. We also used a validation set for early
stopping, i.e. stop training when the validation performance
stopped improving. The validation set was also used to tune the
other hyper-parameters of the model. The reader shall note that
the hyper-parameters of the model which includes using or not
L2 and/or L1 coefficients were selected by doing a grid search
over range of parameters. The chosen hyper-parameters were
the ones for which the model performed best on a validation
set.

Moreover, we used Dropout [42], a recent regularization
method that works by stochastically adding noise in the com-
putation of the hidden layers of the CNN. This is done by mul-
tiplying each hidden or input unit by 0 (i.e. masking) with a
certain probability (e.g. 0.5), independently for each unit and
training update. This encourages the neural network to learn

6



Input
4x33x33

Output
5x1x1

64x21x2164x24x24

160x21x21

Input
4x65x65

224x21x21
Conv 7x7 +
Maxout + 
Pooling 4x4

Conv 3x3 +
Maxout + 
Pooling 2x2

Conv 21x21 +
Softmax

Conv 13x13 +
Maxout 

5x33x33

# Parameters 802,368

9x33x33

(a) Cascaded architecture, using input concatenation (InputCascadeCNN).

Input
4x33x33

Output
5x1x1

64x21x2169x24x24

160x21x21

5x24x24

224x21x21

Conv 7x7 +
Maxout +
Pooling 4x4

Conv 3x3 +
Maxout + 
Pooling 2x2

Conv 21x21 +
Softmax

Conv 13x13 +
Maxout 

Input
4x56x56

# Parameters 654,368

(b) Cascaded architecture, using local pathway concatenation (LocalCascadeCNN).

Input
4x33x33

Output
5x1x1

64x21x2164x24x24

160x21x21

Input
4x53x53

5x21x21

229x21x21

Conv 7x7 +
Maxout + 
Pooling 4x4

Conv 3x3 +
Maxout + 
Pooling 2x2

Conv 21x21 +
Softmax

Conv 13x13 +
Maxout # Parameters 662,513

(c) Cascaded architecture, using pre-output concatenation, which is an architecture with properties similar to that of learning using a limited number of
mean-field inference iterations in a CRF (MFCascadeCNN).

Figure 3: Cascaded architectures.

7



features that are useful “on their own”, since each unit cannot
assume that other units in the same layer won’t be masked as
well and co-adapt its behavior. At test time, units are instead
multiplied by one minus the probability of being masked. For
more details, see Srivastava et al. [42].

Considering the large number of parameters our model has,
one might think that even with our regularization strategy, the
30 training brains from BRATS 2013 are too few to prevent
overfitting. But as will be shown in the results section, our
model generalizes well and thus do not overfit. One reason for
this is the fact that each brain comes with 200 2d slices and
thus, our model has approximately 6000 2D images to train on.
We shall also mention that by their very nature, MRI images
of brains are very similar from one patient to another. Since
the variety of those images is much lower than those in real-
image datasets such as CIFAR and ImageNet, a fewer number
of training samples is thus needed.

Cascaded Architectures. To train a cascaded architecture, we
start by training the TwoPathCNN with the two phase stochas-
tic gradient descent procedure described previously. Then, we
fix the parameters of the TwoPathCNN and include it in the
cascaded architecture (be it the InputCascadeCNN, the Local-
CascadeCNN, or the MFCascadeCNN) and move to training
the remaining parameters using a similar procedure. It should
be noticed however that for the spatial size of the first CNN’s
output and the layer of the second CNN to match, we must feed
to the first CNN a much larger input. Thus, training of the sec-
ond CNN must be performed on larger patches. For example
in the InputCascadeCNN (Figure 3a), the input size to the first
model is of size 65 × 65 which results into an output of size
33 × 33. Only in this case the outputs of the first CNN can be
concatenated with the input channels of the second CNN.

4. Implementation details

Our implementation is based on the Pylearn2 library [17].
Pylearn2 is an open-source machine learning library special-
izing in deep learning algorithms. It also supports the use of
GPUs, which can greatly accelerate the execution of deep learn-
ing algorithms.

Since CNN’s are able to learn useful features from scratch,
we applied only minimal pre-processing. We employed the
same pre-processing as Tustison et al., the winner of the 2013
BRATS challenge [32]. The pre-processing follows three steps.
First, the 1% highest and lowest intensities are removed. Then,
we apply an N4ITK bias correction [3] to T1 and T1C modali-
ties. The data is then normalized within each input channel by
subtracting the channel’s mean and dividing by the channel’s
standard deviation.

As for post-processing, a simple method based on connected
components was implemented to remove flat blobs which might
appear in the predictions due to bright corners of the brains
close to the skull.

The hyper-parameters of the different architectures (kernel
and max pooling size for each layer and the number of layers)
can be seen in Figure 3. Hyper-parameters were tuned using

grid search and cross-validation on a validation set (see Bengio
[6]). The chosen hyper-parameters were the ones for which the
model performed best on the validation set. For max pooling,
we always use a stride of 1. This is to keep per-pixel accuracy
during full image prediction. We observed in practice that max
pooling in the global path does not improve accuracy. We also
found that adding additional layers to the architectures or in-
creasing the capacity of the model by adding additional feature
maps to the convolutional blocks do not provide any meaning-
ful performance improvement.

Biases are initialized to zero except for the softmax layer for
which we initialized them to the log of the label frequencies.
The kernels are randomly initialized from U (−0.005, 0.005).
Training takes about 3 minutes per epoch for the TwoPathCNN
model on an NVIDIA Titan black card.

At test time, we run our code on a GPU in order to exploit
its computational speed. Moreover, the convolutional nature of
the output layer allows us to further accelerate computations at
test time. This is done by feeding as input a full image and not
individual patches. Therefore, convolutions at all layers can be
extended to obtain all label probabilities p(Yi j|X) for the entire
image. With this implementation, we are able to produce a seg-
mentation in 25 seconds per brain on the Titan black card with
the TwoPathCNN model. This turns out to be 45 times faster
than when we extracted a patch at each pixel and processed
them individually for the entire brain.

Predictions for the MFCascadeCNN model, the LocalCas-
cadeCNN model, and InputCascadeCNN model take on aver-
age 1.5 minutes, 1.7 minutes and 3 minutes respectively.

5. Experiments and Results

The experiments were carried out on real patient data ob-
tained from the 2013 brain tumor segmentation challenge
(BRATS2013), as part of the MICCAI conference [15]. The
BRATS2013 dataset is comprised of 3 sub-datasets. The train-
ing dataset, which contains 30 patient subjects all with pixel-
accurate ground truth (20 high grade and 10 low grade tumors);
the test dataset which contains 10 (all high grade tumors) and
the leaderboard dataset which contains 25 patient subjects (21
high grade and 4 low grade tumors). There is no ground truth
provided for the test and leaderboard datasets. All brains in
the dataset have the same orientation. For each brain there ex-
ists 4 modalities, namely T1, T1C, T2 and Flair which are co-
registered. The training brains come with groundtruth for which
5 segmentation labels are provided, namely non-tumor, necro-
sis, edema, non-enhancing tumor and enhancing tumor. Fig-
ure 4 shows an example of the data as well as the ground truth.
In total, the model iterates over about 2.2 million examples of
tumorous patches (this consists of all the 4 sub-tumor classes)
and goes through 3.2 million of the healthy patches. As men-
tioned before during the first phase training, the distribution of
examples introduced to the model from all 5 classes is uniform.

Please note that we could not use the BRATS 2014 dataset
due to problems with both the system performing the evalu-
ation and the quality of the labeled data. For these reasons

8



T1 T2 T1-enhanced Flair GT

Figure 4: The first four images from left to right show the MRI
modalities used as input channels to various CNN models and
the fifth image shows the ground truth labels where � edema,
� enhanced tumor, � necrosis, � non-enhanced tumor.

the old BRATS 2014 dataset has been removed from the of-
ficial website and, at the time of submitting this manuscript,
the BRATS website still showed: “Final data for BRATS 2014
to be released soon”. Furthermore, we have even conducted
an experiment where we trained our model with the old 2014
dataset and made predictions on the 2013 test dataset; however,
the performance was worse than our results mentioned in this
paper. For these reasons, we decided to focus on the BRATS
2013 data.

As mentioned in Section 3, we work with 2D slices due to
the fact that the MRI volumes in the dataset do not posses an
isotropic resolution and the spacing in the third dimension is
not consistent across the data. We explored the use of 3D infor-
mation (by treating the third dimension as extra input channels
or by having an architecture which takes orthogonal slices from
each view and makes the prediction on the intersecting cen-
ter pixel), but that didn’t improve performance and made our
method very slow.

Note that as suggested by Krizhevsky et al. [27], we applied
data augmentation by flipping the input images. Unlike what
was reported by Zeiler and Fergus [47], it did not improve the
overall accuracy of our model.

Quantitative evaluation of the models performance on the test
set is achieved by uploading the segmentation results to the on-
line BRATS evaluation system [14]. The online system pro-
vides the quantitative results as follows: The tumor structures
are grouped in 3 different tumor regions. This is mainly due
to practical clinical applications. As described by Menze et al.
[32], tumor regions are defined as:

a) The complete tumor region (including all four tumor
structures).

b) The core tumor region (including all tumor structures
exept “edema”).

c) The enhancing tumor region (including the “enhanced
tumor” structure).

For each tumor region, Dice (identical to F measure), Sensi-
tivity and Specificity are computed as follows :

Dice(P,T ) =
|P1 ∧ T1|

(|P1| + |T1|)/2
,

S ensitivity(P,T ) =
|P1 ∧ T1|

|T1|
,

S peci f icity(P,T ) =
|P0 ∧ T0|

|T0|
,

where P represents the model predictions and T represents
the ground truth labels. We also note as T1 and T0 the sub-
set of voxels predicted as positives and negatives for the tumor
region in question. Similarly for P1 and P0. The online evalua-
tion system also provides a ranking for every method submitted
for evaluation. This includes methods from the 2013 BRATS
challenge published in [32] as well as anonymized unpublished
methods for which no reference is available. In this section, we
report experimental results for our different CNN architectures.

5.1. The TwoPathCNN architecture
As mentioned previously, unlike conventional CNNs, the

TwoPathCNN architecture has two pathways: a “local” path
focusing on details and a “global” path more focused on the
context. To better understand how joint training of the global
and local pathways benefits the performance, we report results
on each pathway as well as results on averaging the outputs of
each pathway when trained separately. Our method also deals
with the unbalanced nature of the problem by training in two
phases as discussed in Section 3.2. To see the impact of the
two phase training, we report results with and without it. We
refer to the CNN model consisting of only the local path (i.e.
conventional CNN architecture) as LocalPathCNN, the CNN
model consisting of only the global path as GlobalPathCNN,
the model averaging the outputs of the local and global paths
(i.e. LocalPathCNN and GlobalPathCNN) as AverageCNN
and the two-pathway CNN architecture as TwoPathCNN. The
second training phase is noted by appending ‘*’ to the archi-
tecture name. Since the second phase training has a substantial
effect and always improves the performance, we only report re-
sults on GlobalPathCNN and AverageCNN with the second
phase.

Table 1 presents the quantitative results of these variations.
This table contains results for the TwoPathCNN with one and
two training phases, the common single path CNN (i.e. Lo-
calPathCNN) with one and two training phases, the Global-
PathCNN* which is a single path CNN model following the
global pathway architecture and the output average of each of
the trained single-pathway models (AverageCNN*). Without
much surprise, the single path with one training phase CNN
was ranked last with the lowest scores on almost every region.
Using a second training phase gave a significant boost to that
model with a rank that went from 15 to 9. Also, the table shows
that joint training of the local and global paths yields better per-
formance compared to when each pathway is trained separately
and the outputs are averaged. One likely explanation is that by
joint training the local and global paths, the model allows the
two pathways to co-adapt. In fact, the AverageCNN* performs
worse than the LocalPathCNN* due to the fact that the Glob-
alPathCNN* performs very badly. The top performing method
in the uncascaded models is the TwoPathCNN* with a rank of
4.

Also, in some cases results are less accurate over the En-
hancing region than for the Core and Complete regions. There
are 2 main reasons for that. First, borders are usually diffused
and there are no clear cut between enhanced tumor and non-
enhanced tissues. This creates problems for both user labeling,

9



Global Path Local Path

Figure 5: Randomly selected filters from the first layer of the
model. From left to right the figure shows visualization of fea-
tures from the first layer of the global and local path respec-
tively. Features in the local path include more edge detectors
while the global path contains more localized features.

ground truth, as well as the model. The second reason is that
the model learns what it sees in the ground truth. Since the la-
bels are created by different people and since the borders are
not clear, each user has a slightly different interpretation of the
borders of the enhanced tumor and so sometimes we see overly
thick enhanced tumor in the ground truth.

Figure 5 shows representation of low level features in both
local and global paths. As seen from this figure, features in the
local path include more edge detectors while the ones in the
global path are more localized features. Unfortunately, visual-
izing the learned mid/high level features of a CNN is still very
much an open research problem. However, we can study the im-
pact these features have on predictions by visualizing the seg-
mentation results of different models. The segmentation results
on two subjects from our validation set, produced by different
variations of the basic model can be viewed in Figure 75. As
shown in the figure, the two-phase training procedure allows
the model to learn from a more realistic distribution of labels
and thus removes false positives produced by the model which
trains with one training phase. Moreover, by having two path-
ways, the model can simultaneously learn the global contextual
features as well as the local detailed features. This gives the
advantage of correcting labels at a global scale as well as rec-
ognizing fine details of the tumor at a local scale, yielding a bet-
ter segmentation as oppose to a single path architecture which
results in smoother boundaries. Joint training of the two con-
volutional pathways and having two training phases achieves
better results.

5.2. Cascaded architectures

We now discuss our experiments with the three cascaded
architectures namely InputCascadeCNN, LocalCascadeCNN
and MFCascadeCNN. Table 2 provides the quantitative results
for each architecture. Figure 7 also provides visual examples of
the segmentation generated by each architecture.

We find that the MFCascadeCNN* model yields smoother
boundaries between classes. We hypothesize that, since the

5It is important to note that we do not train the model on the validation set
and thus the quality of the results is not due to overfitting

T1C GT InputCascadeCNN*

T1C GT InputCascadeCNN*

Figure 8: Visual results from our top performing model, In-
putCascadeCNN* on Coronal and Sagittal views. The subjects
are the same as in Figure 7. In every sub-figure, the top row
represents the Sagital view and the bottom row represents the
Coronal view. The color codes are as follows: � edema, �
enhanced tumor, � necrosis, � non-enhanced tumor.

neurons in the softmax output layer are directly connected to
the previous outputs within each receptive field, these parame-
ters are more likely to learn that the center pixel label should
have a similar label to its surroundings.

As for the LocalCascadeCNN* architecture, while it resulted
in fewer false positives in the complete tumor category, the per-
formance in other categories (i.e. tumor core and enhanced tu-
mor) did not improve.

Figure 8 shows segmentation results from the same brains
(as in Figure 7) in Sagittal and Coronal views. The InputCas-
cadeCNN* model was used to produce these results. As seen
from this figure, although the segmentation is performed on
Axial view but the output is consistent in Coronal and Sagittal
views. Although subjects in Figure 5 and Figure 6 are from our
validation set for which the model is not trained on and the seg-
mentation results from these subjects can give a good estimate
of the models performance on a test set, however, for further
clarity we visualise the models performance on two subjects
from BRATS-2013 testst. These results are shown in Figure 9
in Saggital (top) and Axial (bottom) views.

To better understand the process for which InputCas-
cadeCNN* learns features, we present in Figure 6 the progres-
sion of the model by making predictions at every few epochs on
a subject from our validation set.

Overall, the best performance is reached by the InputCas-
cadeCNN* model. It improves the Dice measure on all tu-
mor regions. With this architecture, we were able to reach

10



Second Phase

T1C Epoch = 5 Epoch = 11 Epoch = 25 Epoch = 35 Epoch = 55Epoch = 1

Epoch = 7Epoch = 5Epoch = 4Epoch = 2 Epoch = 10GT

Figure 6: Progression of learning in InputCascadeCNN*. The stream of figures on the first row from left to right show the learning
process during the first phase. As the model learns better features, it can better distinguish boundaries between tumor sub-classes.
This is made possible due to uniform label distribution of patches during the first phase training which makes the model believe
all classes are equiprobable and causes some false positives. This drawback is alleviated by training a second phase (shown in
second row from left to right) on a distribution closer to the true distribution of labels. The color codes are as follows: � edema, �
enhanced tumor, � necrosis, � non-enhanced tumor.

Table 1: Performance of the TwoPathCNN model and variations. The second phase training is noted by appending ‘*’ to the
architecture name. The ‘Rank’ column represents the ranking of each method in the online score board at the time of submission.

Rank Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

4 TwoPathCNN* 0.85 0.78 0.73 0.93 0.80 0.72 0.80 0.76 0.75
9 LocalPathCNN* 0.85 0.74 0.71 0.91 0.75 0.71 0.80 0.77 0.73
10 AverageCNN* 0.84 0.75 0.70 0.95 0.83 0.73 0.77 0.74 0.73
14 GlobalPathCNN* 0.82 0.73 0.68 0.93 0.81 0.70 0.75 0.65 0.70
14 TwoPathCNN 0.78 0.63 0.68 0.67 0.50 0.59 0.96 0.89 0.82
15 LocalPathCNN 0.77 0.64 0.68 0.65 0.52 0.60 0.96 0.87 0.80

11



LocalPathCNNT1C

GT LocalCascadeCNN*

LocalPathCNN LocalPathCNN*

TwoPathCNN*

T1C

LocalCascadeCNN* MFCascadeCNN* InputCascadeCNN*GT

GlobalPathCNN* AverageCNN*

GlobalPathCNN* AveragePathCNN*

MFCascadeCNN* InputCascadeCNN*

LocalPathCNN*

TwoPathCNN*

Figure 7: Visual results from our CNN architectures from the Axial view. For each sub-figure, the top row from left to right
shows T1C modality, the conventional one path CNN, the Conventional CNN with two training phases, and the TwoPathCNN
model. The second row from left to right shows the ground truth, LocalCascadeCNN model, the MFCascadeCNN model and the
InputCascadeCNN. The color codes are as follows: � edema, � enhanced tumor, � necrosis, � non-enhanced tumor.

12



Table 2: Performance of the cascaded architectures. The reported results are from the second phase training. The ‘Rank’ column
shows the ranking of each method in the online score board at the time of submission.

Rank Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

2 InputCascadeCNN* 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80
4-a MFCascadeCNN* 0.86 0.77 0.73 0.92 0.80 0.71 0.81 0.76 0.76
4-c LocalCascadeCNN* 0.88 0.76 0.72 0.91 0.76 0.70 0.84 0.80 0.75

Figure 9: Visual segmentation results from our top performing
model, InputCascadeCNN*, on examples of the BRATS2013
test dataset in Saggital (top) and Axial (bottom) views. The
color codes are as follows: � edema, � enhanced tumor, �
necrosis, � non-enhanced tumor.

the second rank on the BRATS 2013 scoreboard. While MF-
CascadeCNN*, TwoPathCNN* and LocalCascadeCNN* are
all ranked 4, the inner ranking between these three models is
noted as 4a, 4b and 4c respectively.

Table 3 shows how our implemented architectures compare
with currently published state-of-the-art methods as mentioned
in [32]6. The table shows that InputCascadeCNN* out per-
forms Tustison et al. the winner of the BRATS 2013 challenge
and is ranked first in the table. Results from the BRATS-2013
leaderboard presented in Table 4 shows that our method outper-
forms other approaches on this dataset. We also compare our
top performing method in Table 5 with state-of-the-art methods
on BRATS-2012, ”4 label” test set as mentioned in [32]. As
seen from this table, our method out performs other methods in
the tumor Core category and gets competitive results on other
categories.

Let us mention that Tustison’s method takes 100 minutes to
compute predictions per brain as reported in [32], while the
InputCascadeCNN* takes 3 minutes, thanks to the fully con-
volutional architecture and the GPU implementation, which is
over 30 times faster than the winner of the challenge. The
TwoPathCNN* has a performance close to the state-of-the-art.
However, with a prediction time of 25 seconds, it is over 200
times faster than Tustison’s method. Other top methods in the
table are that of Meier et al and Reza et al with processing
times of 6 and 90 minutes respectively. Recently Subbanna
et al. [43] published competitive results on the BRATS 2013
dataset, reporting dice measures of 0.86, 0.86, 0.77 for Com-
plete, Core and Enhancing tumor regions. Since they do not
report Specificity and Sensitivity measures, a completely fair
comparison with that method is not possible. However, as men-
tioned in [43], their method takes 70 minutes to process a sub-
ject, which is about 23 times slower than our method.

Regarding other methods using CNNs, Urban et al. [45] used
an average of two 3D convolutional networks with dice mea-
sures of 0.87, 0.77, 0.73 for Complete, Core and Enhancing tu-
mor regions on BRATS 2013 test dataset with a prediction time
of about 1 minute per model which makes for a total of 2 min-
utes. Again, since they do not report Specificity and Sensitiv-
ity measures, we can not make a full comparison. However,
based on their dice scores our TwoPathCNN* is similar in per-

6Please note that the results mentioned in Table 3 and Table 4 are from meth-
ods competing in the BRATS 2013 challenge for which a static table is provided
[https://www.virtualskeleton.ch/BRATS/StaticResults2013]. Since then, other
methods have been added to the score board but for which no reference is avail-
able.

13



Table 5: Comparison of our top implemented architectures with
the state-of-the-art methods on the BRATS-2012 ”4 label” test
set as discussed in [32].

Method Dice
Complete Core Enhancing

InputCascadeCNN* 0.81 0.72 0.58
Subbanna 0.75 0.70 0.59

Zhao 0.82 0.66 0.42
Tustison 0.75 0.55 0.52

Festa 0.62 0.50 0.61

formance while taking only 25 seconds, which is four times
faster. And the InputCascadeCNN* is better or equal in accu-
racy while having the same processing time. As for [49], they
do not report results on BRATS 2013 test dataset. However,
their method is very similar to the LocalPathCNN which, ac-
cording to our experiments, has worse performance.

Using our best performing method, we took part in the
BRATS 2015 challenge. The BRATS 2015 training dataset
comprises of 220 subjects with high grade and 54 subjects with
low grade gliomas. There are 53 subjects with mixed high and
low grade gliomas for testing. Every participating group had
48 hours from receiving the test subjects to process them and
submit their segmentation results to the online evaluation sys-
tem. BRATS’15 contains the training data of 2013. The ground
truth for the rest of the training brains is generated by a voted
average of segmented results of the top performing methods in
BRATS’13 and BRATS’12. Some of these automatically gen-
erated ground truths have been refined manually by a user.

Because distribution of the intensity values in this dataset is
very variable from one subject to another, we used a 7 fold cross
validation for training. At test time, a voted average of these
models was made to make prediction for each subject in the test
dataset. The results of the challenge are presented in Figure 10.
The semi-automatic methods participating in the challenge have
been highlighted in grey. Please note since these results are not
yet publicly available, we refrain from disclosing the name of
the participants. In this figure the semi-automatic methods are
highlighted in gray. As seen from the figure, our method ranks
either first or second on Complete tumor and tumor Core cat-
egories and gets competitive results on active tumor category.
Our method has also less outliers than most other approaches.

6. Conclusion

In this paper, we presented an automatic brain tumor segmen-
tation method based on deep convolutional neural networks.
We considered different architectures and investigated their im-
pact on the performance. Results from the BRATS 2013 on-
line evaluation system confirms that with our best model we
managed to improve on the currently published state-of-the-art
method both on accuracy and speed as presented in MICCAI

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 6
competitor 7
competitor 12
competitor 4
competitor 11
competitor 9
competitor 5
competitor 3
InputCascadeCNN*
competitor 1
competitor 2
competitor 10
competitor 8

−5 −4 −3 −2 −1
Hausdorff

Pa
rti

ci
pa

nt
s

Hausdorff Distance Active Tumor

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 7
competitor 6
competitor 5
competitor 9
competitor 11
competitor 12
competitor 1
competitor 4
competitor 8
competitor 10
competitor 3
InputCascadeCNN*
competitor 2

−4 −3 −2 −1
Hausdorff

Pa
rti

ci
pa

nt
s

Hausdorff Distance Tumor Core

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 7
competitor 6
competitor 5
competitor 9
competitor 12
competitor 11
competitor 3
competitor 1
competitor 8
competitor 4
competitor 10
InputCascadeCNN*
competitor 2

−4 −3 −2 −1
Hausdorff

Pa
rti

ci
pa

nt
s

Hausdorff Distance Whole Tumor

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 6
competitor 7
competitor 4
competitor 12
competitor 3
competitor 5
competitor 11
competitor 1
competitor 9
InputCascadeCNN*
competitor 8
competitor 2
competitor 10

0.00 0.25 0.50 0.75
Dice

Pa
rti

ci
pa

nt
s

Dice Measure Active Tumor

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 7
competitor 6
competitor 4
competitor 12
competitor 11
competitor 9
competitor 5
competitor 3
competitor 2
competitor 8
InputCascadeCNN*
competitor 10
competitor 1

0.00 0.25 0.50 0.75
Dice

Pa
rti

ci
pa

nt
s

Dice Measure Tumor Core

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 7
competitor 6
competitor 3
competitor 5
competitor 12
competitor 11
competitor 4
competitor 8
competitor 9
competitor 10
InputCascadeCNN*
competitor 1
competitor 2

0.00 0.25 0.50 0.75 1.00
Dice

Pa
rti

ci
pa

nt
s

Dice Measure Whole Tumor

Figure 10: Our BRATS’15 challenge results using InputCas-
cadeCNN*. Dice scores and negative log Hausdorff distances
are presented for the three tumor categories. Since the results
of the challenge are not yet publicly available, we are unable
to disclose the name of the participants. The semi-automatic
methods are highlighted in gray. In each sub-figure, the meth-
ods are ranked based on the mean value. The mean is presented
in green, the median in red and outliers in blue.

2013. The high performance is achieved with the help of a novel
two-pathway architecture (which can model both the local de-
tails and global context) as well as modeling local label depen-
dencies by stacking two CNN’s. Training is based on a two
phase procedure, which we’ve found allows us to train CNNs
efficiently when the distribution of labels is unbalanced.

Thanks to the convolutional nature of the models and by us-
ing an efficient GPU implementation, the resulting segmenta-
tion system is very fast. The time needed to segment an entire
brain with any of the these CNN architectures varies between
25 seconds and 3 minutes, making them practical segmentation
methods.

References

References

[1] Alvarez, J.M., Gevers, T., LeCun, Y., Lopez, A.M., 2012. Road scene
segmentation from a single image, in: Proceedings of the 12th Euro-
pean Conference on Computer Vision - Volume Part VII, Springer-Verlag,
Berlin, Heidelberg. pp. 376–389.

[2] Angelini, E., Clatz, O., E., Konukoglu, E., Capelle, L., Duffau, H., 2007.
Glioma dynamics and computational models: A review of segmentation,
registration, and in silico growth algorithms and their clinical applications
3.

14



Table 3: Comparison of our implemented architectures with the state-of-the-art methods on the BRATS-2013 test set.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

InputCascadeCNN* 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80
Tustison 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83

MFCascadeCNN* 0.86 0.77 0.73 0.92 0.80 0.71 0.81 0.76 0.76
TwoPathCNN* 0.85 0.78 0.73 0.93 0.80 0.72 0.80 0.76 0.75

LocalCascadeCNN* 0.88 0.76 0.72 0.91 0.76 0.70 0.84 0.80 0.75
LocalPathCNN* 0.85 0.74 0.71 0.91 0.75 0.71 0.80 0.77 0.73

Meier 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73
Reza 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76
Zhao 0.84 0.70 0.65 0.80 0.67 0.65 0.89 0.79 0.70

Cordier 0.84 0.68 0.65 0.88 0.63 0.68 0.81 0.82 0.66
TwoPathCNN 0.78 0.63 0.68 0.67 0.50 0.59 0.96 0.89 0.82

LocalPathCNN 0.77 0.64 0.68 0.65 0.52 0.60 0.96 0.87 0.80
Festa 0.72 0.66 0.67 0.77 0.77 0.70 0.72 0.60 0.70
Doyle 0.71 0.46 0.52 0.66 0.38 0.58 0.87 0.70 0.55

Table 4: Comparison of our top implemented architectures with the state-of-the-art methods on the BRATS-2013 leaderboard set.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

InputCascadeCNN* 0.84 0.71 0.57 0.88 0.79 0.54 0.84 0.72 0.68
Tustison 0.79 0.65 0.53 0.83 0.70 0.51 0.81 0.73 0.66

Zhao 0.79 0.59 0.47 0.77 0.55 0.50 0.85 0.77 0.53
Meier 0.72 0.60 0.53 0.65 0.62 0.48 0.88 0.69 0.6
Reza 0.73 0.56 0.51 0.68 0.64 0.48 0.79 0.57 0.63

Cordier 0.75 0.61 0.46 0.79 0.61 0.43 0.78 0.72 0.52

15



[3] Avants, B.B., Tustison, N., Song, G., 2009. Advanced normalization tools
(ants). Insight J .

[4] Bauer, S., Nolte, L.P., Reyes, M., 2011. Fully automatic segmentation of
brain tumor images using support vector machine classification in com-
bination with hierarchical conditional random field regularization., in:
MICCAI, pp. 354–361.

[5] Bauer, S., Wiest, R., Nolte, L., Reyes, M., 2013. A survey of mri-based
medical image analysis for brain tumor studies. Physics in medicine and
biology 58, 97–129.

[6] Bengio, Y., 2012. Practical recommendations for gradient-based training
of deep architectures, in: Neural Networks: Tricks of the Trade. Springer,
pp. 437–478.

[7] Bengio, Y., Courville, A., Vincent, P., 2013. Representation learning: A
review and new perspectives. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 35, 1798–1828.

[8] Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J., 2012. Deep
neural networks segment neuronal membranes in electron microscopy im-
ages, in: Advances in neural information processing systems, pp. 2843–
2851.

[9] Clark, M., Hall, L., Goldgof, D., Velthuizen, R.P., Murtagh, F., Silbiger,
M.L., 1998. Automatic tumor segmentation using knowledge-based clus-
tering. IEEE Trans. Med. Imaging 17, 187–201.

[10] Cobzas, D., Birkbeck, N., Schmidt, M., Jgersand, M., Murtha, A., 2007.
3d variational brain tumor segmentation using a high dimensional feature
set, in: ICCV, pp. 1–8.

[11] Davy, A., Havaei, M., Warde-Farley, D., Biard, A., Tran, L., Jodoin, P.M.,
Courville, A., Larochelle, H., Pal, C., Bengio, Y., 2014. Brain tumor
segmentation with deep neural networks. in proc of BRATS-MICCAI .

[12] Doyle, S., Vasseur, F., Dojat, M., Forbes, F., 2013. Fully automatic brain
tumor segmentation from multiple mr sequences using hidden markov
fields and variational em. in proc of BRATS-MICCAI .

[13] Farabet, C., Couprie, C., Najman, L., LeCun, Y., 2013. Learning hierar-
chical features for scene labeling. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 35, 1915–1929.

[14] Farahani, K., Menze, B., Reyes, M., 2013. Multimodal Brain Tumor
Segmentation (BRATS 2013). URL: http://martinos.org/qtim/
miccai2013/.

[15] Farahani, K., Menze, B., Reyes, M., 2014. Brats 2014 Challenge
Manuscripts. URL: http://www.braintumorsegmentation.org.

[16] Glorot, X., Bordes, A., Bengio, Y., 2011. Domain adaptation for large-
scale sentiment classification: A deep learning approach, in: Proceedings
of the 28th International Conference on Machine Learning (ICML-11),
pp. 513–520.

[17] Goodfellow, I.J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza,
M., Pascanu, R., Bergstra, J., Bastien, F., Bengio, Y., 2013a. Pylearn2: a
machine learning research library. arXiv preprint arXiv:1308.4214 .

[18] Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.,
2013b. Maxout networks, in: ICML.

[19] Gotz, M., Weber, C., Blocher, J., Stieltjes, B., Meinzer, H.P., Maier-Hein,
K., 2014. Extremely randomized trees based brain tumor segmentation,
in: in proc of BRATS Challenge - MICCAI.

[20] Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G., 2012.
Tumor-cut: Segmentation of brain tumors on contrast enhanced mr im-
ages for radiosurgery applications. IEEE trans. Medical Imaging 31, 790–
804.

[21] Hariharan, B., Arbeláez, P., Girshick, R., Malik, J., 2014. Simultaneous
detection and segmentation, in: Computer Vision–ECCV 2014. Springer,
pp. 297–312.

[22] Havaei, M., Jodoin, P.M., Larochelle, H., 2014. Efficient interactive brain
tumor segmentation as within-brain knn classification, in: International
Conference on Pattern Recognition (ICPR).

[23] Huang, G.B., Jain, V., 2013. Deep and wide multiscale recursive networks
for robust image labeling. arXiv preprint arXiv:1310.0354 .

[24] Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y., 2009. What is
the best multi-stage architecture for object recognition?, in: Computer
Vision, 2009 IEEE 12th International Conference on, IEEE. pp. 2146–
2153.

[25] Khotanlou, H., Colliot, O., Atif, J., Bloch, I., 2009. 3d brain tumor seg-
mentation in mri using fuzzy classification, symmetry analysis and spa-
tially constrained deformable models. Fuzzy Sets Syst. 160, 1457–1473.

[26] Kleesiek, J., Biller, A., Urban, G., Kothe, U., Bendszus, M., Hamprecht,

F.A., 2014. ilastik for multi-modal brain tumor segmentation. in proc of
BRATS-MICCAI .

[27] Krizhevsky, A., Sutskever, I., Hinton, G., 2012. ImageNet classification
with deep convolutional neural networks, in: NIPS.

[28] Kwon, D., Akbari, H., Da, X., Gaonkar, B., Davatzikos, C., 2014. Multi-
modal brain tumor image segmentation using glistr, in: in proc of BRATS
Challenge - MICCAI.

[29] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based
learning applied to document recognition. Proceedings of the IEEE 86,
2278–2324.

[30] Lee, C.H., Schmidt, M., Murtha, A., Bistritz, A., S, J., Greiner, R., 2005.
Segmenting brain tumor with conditional random fields and support vec-
tor machines, in: in Proc of Workshop on Computer Vision for Biomedi-
cal Image Applications.

[31] Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks
for semantic segmentation. CVPR (to appear) .

[32] Menze, B., Reyes, M., Leemput, K.V., 2014. The multimodal brain tumor
image segmentation benchmark (brats). IEEE Trans. on Medical Imaging
(accepted) .

[33] N.Tustison, M. Wintermark, C.D., Avants, B., 2013. Ants and árboles, in:
in proc of BRATS Challenge - MICCAI.

[34] Parisot, S., Duffau, H., Chemouny, S., Paragios, N., 2012. Joint tumor
segmentation and dense deformable registration of brain mr images., in:
MICCAI, pp. 651–658.

[35] Pinheiro, P., Collobert, R., 2014. Recurrent convolutional neural networks
for scene labeling, in: Proceedings of The 31st International Conference
on Machine Learning, pp. 82–90.

[36] Popuri, K., Cobzas, D., Murtha, A., Jgersand, M., 2012. 3d variational
brain tumor segmentation using dirichlet priors on a clustered feature set.
Int. J. Computer Assisted Radiology and Surgery 7, 493–506.

[37] Prastawa, M., Bullit, E., Ho, S., Gerig, G., 2004. A brain tumor segmen-
tation framework based on outlier detection. Medical Image Anaylsis 8,
275–283.

[38] Prastawa, M., Bullitt, E., Ho, S., Gerig, G., 2003. Robust estimation for
brain tumor segmentation, in: Medical Image Computing and Computer-
Assisted Intervention-MICCAI 2003. Springer, pp. 530–537.

[39] R.Meier, S.Bauer, J.Slotboom, R.Wiest, M.Reyes, 2014. Appearance-
and context-sensitive features for brain tumor segmentation, in: in proc
of BRATS Challenge - MICCAI.

[40] Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1988. Learning represen-
tations by back-propagating errors. Cognitive modeling 5.

[41] Schmidt, M., Levner, I., Greiner, R., Murtha, A., Bistritz, A., 2005. Seg-
menting brain tumors using alignment-based features, in: Int. Conf on
Machine Learning and Applications, pp. 6–pp.

[42] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R., 2014. Dropout: A simple way to prevent neural networks from over-
fitting. Journal of Machine Learning Research 15, 1929–1958. URL:
http://jmlr.org/papers/v15/srivastava14a.html.

[43] Subbanna, N., Precup, D., Arbel, T., 2014. Iterative multilevel mrf lever-
aging context and voxel information for brain tumour segmentation in
mri.

[44] Subbanna, N., Precup, D., Collins, L., Arbel, T., 2013. Hierarchical prob-
abilistic gabor and mrf segmentation of brain tumours in mri volumes.,
in: in proc of MICCAI, pp. 751–758.

[45] Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J., 2014. Multi-modal
brain tumor segmentation using deep convolutional neural networks. in
proc of BRATS-MICCAI .

[46] Xing, E.P., Jordan, M.I., Russell, S., 2002. A generalized mean field algo-
rithm for variational inference in exponential families, in: Proceedings of
the Nineteenth conference on Uncertainty in Artificial Intelligence, Mor-
gan Kaufmann Publishers Inc.. pp. 583–591.

[47] Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolu-
tional networks, in: Computer Vision–ECCV 2014. Springer, pp. 818–
833.

[48] Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shot-
ton, J., Thomas, O., Das, T., Jena, R., Price, S., 2012. Decision forests
for tissue-specific segmentation of high-grade gliomas in multi-channel
mr, in: Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2012. Springer, pp. 369–376.

[49] Zikic, D., Ioannou, Y., Brown, M., Criminisi, A., 2014. Segmentation
of brain tumor tissues with convolutional neural networks. in proc of

16

http://martinos.org/qtim/miccai2013/
http://martinos.org/qtim/miccai2013/
http://www.braintumorsegmentation.org
http://jmlr.org/papers/v15/srivastava14a.html


BRATS-MICCAI .

17


	1 Introduction
	2 Related work
	3 Our Convolutional Neural Network Approach
	3.1 The Architectures
	3.1.1 Two-pathway architecture
	3.1.2 Cascaded architectures

	3.2 Training

	4 Implementation details
	5 Experiments and Results
	5.1 The TwoPathCNN architecture
	5.2 Cascaded architectures

	6 Conclusion

