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Abstract

Clinical assessment routinely uses terms such as development, growth trajectory, degeneration, 

disease progression, recovery or prediction. This terminology inherently carries the aspect of 

dynamic processes, suggesting that single measurements in time and cross-sectional comparison 

may not sufficiently describe spatiotemporal changes. In view of medical imaging, such tasks 

encourage subject-specific longitudinal imaging. Whereas follow-up, monitoring and prediction 

are natural tasks in clinical diagnosis of disease progression and of assessment of therapeutic 

intervention, translation of methodologies for calculation of temporal profiles from longitudinal 

data to clinical routine still requires significant research and development efforts. Rapid advances 

in image acquisition technology with significantly reduced acquisition times and with increase of 

patient comfort favor repeated imaging over the observation period. In view of serial imaging 

ranging over multiple years, image acquisition faces the challenging issue of scanner 

standardization and calibration which is crucial for successful spatiotemporal analysis. 

Longitudinal 3D data, represented as 4D images, capture time-varying anatomy and function. 

Such data benefits from dedicated analysis methods and tools that make use of the inherent 

correlation and causality of repeated acquisitions of the same subject. Availability of such data 

spawned progress in the development of advanced 4D image analysis methodologies that carry the 

notion of linear and nonlinear regression, now applied to complex, high-dimensional data such as 

images, image-derived shapes and structures, or a combination thereof. This paper provides 

examples of recently developed analysis methodologies for 4D image data, primarily focusing on 

progress in areas of core expertise of the authors. These include spatiotemporal shape modeling 

and growth trajectories of white matter fiber tracts demonstrated with examples from ongoing 

longitudinal clinical neuroimaging studies such as analysis of early brain growth in subjects at risk 

for mental illness and neurodegeneration in Huntington’s disease (HD). We will discuss broader 

aspects of current limitations and need for future research in view of data consistency and analysis 

methodologies.
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1 Introduction

Clinical researchers increasingly make use of longitudinal image studies to examine subject-

specific changes due to pathology, intervention, therapy, neurodevelopment, or 

neurodegeneration. Moreover, dynamic organ changes as seen in cardiac imaging Peyrat et 

al. (2010) or functional changes as measured in perfusion imaging, just to name a few, by 

definition result in time-series volumetric image data. Expressions such as development, 

degeneration, disease progression, recovery, monitoring, or prediction inherently carry the 

aspect of a dynamic process – suggesting that imaging at multiple time points will be 

necessary. The detection and characterization of changes from base-line due to disease, 

trauma, or treatment require appropriate image processing and visualization tools for 

qualitative and quantitative assessment of change trajectories. Whereas longitudinal analysis 

of scalar data is well known in the statistics Fitzmaurice et al. (2012) and medical imagig 

communities, see for example Giedd et al. (1999); Thompson et al. (2000); Shaw et al. 

(2008); Lebel and Beaulieu (2011); Bernal-Rusiel et al. (2013), its extension to high-

dimensional image data, shapes, or functional changes represent significant challenges. 

Cross-sectional analysis of longitudinal data does not provide a model of growth or change 

that considers the inherent correlation of repeated images of individuals, nor does it inform 

how an individual patient changes relative to a comparable healthy or disease-specific 

population, an aspect which is highly relevant to decision making and therapy planning.

Although successful early results were presented for image regression in infant Aljabar et al. 

(2008) and aging studies Davis et al. (2010) of cross-sectional data across the age range, 

standard regression is not optimal for longitudinal data because such methods do not account 

for the correlation between repeated measurements and thus violate the Gauss-Markov 

assumption of independence. Moreover, individual change trajectories often need to be 

interpreted in relationship to a population growth model, which in turn is the hidden group 

model given a representative set of individual trajectories, and require a common framework 

based on the use of hierarchical linear (or nonlinear) models (HLM). Other typical driving 

applications are concerned with registration of serial data of the cardiac cycle, sampled at 

different time points, or measuring object shape changes via shape regression, both requiring 

new image registration and modeling approaches.

The special nature of longitudinal or repeated, time-series data of individual subjects, with 

the inherent correlation of structure and function across the sequence of images, spawns the 

development of new image processing and analysis approaches for 4-D image data. Such 

advances aim to tackle the challenging issues of registration, segmentation, and analysis in 

the presence of geometric and contrast changes over time. New methodologies are rapidly 

evolving, often focusing on the specific application at hand. The following is not a 

comprehensive survey of state-of-the-art methodologies for spatiotemporal processing of 
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longitudinal image data but discusses a few important key aspects of longitudinal modeling 

and analysis guided by current projects of the authors.

2 Longitudinal Study Design

The main characteristics of longitudinal data are the following:

Correlation

Measurements obtained on the same individual are correlated, with measurements obtained 

closer in time being more correlated than the ones further apart. This correlation across 

repeated measurements breaks down the fundamental independence assumption of most 

statistical regression techniques.

Unbalanced Data

Most longitudinal studies plan to obtain the same number of measurements for each 

individual over a time period; however, in practice this is rarely the case. With studies that 

span over several years, it is inevitable that some individuals will drop out of the studies and 

some might miss their appointments and reschedule for a later time. Some imaging data also 

will have to be excluded due to motion of the subject or other imaging artifacts. This leads to 

uneven spacing of data in the time domain and in missing time points.

3 Longitudinal Analysis of Appearance: Application to DTI

Neurodevelopment or neurodegeneration can be characterized by changes of image contrast 

or appearance in longitudinal imaging, reflecting specific structural properties, e.g. scalar 

diffusion invariants from diffusion imaging. In view of unbalanced data and missing time 

points, a common repeated analysis of variance (repeated ANOVA) is questionable as it 

assumes that individuals have random effects that are constant over time. Second, experience 

in different applications demonstrate that temporal change is often not linear but requires a 

more complex nonlinear modeling Geng et al. (2012). Both favor the use of parametric 

growth models that reflect the underlying nature of change, and mixed effects models, a 

class of statistical methods that model the correlation of measurements of an individual 

along with modeling the mean response of a population over time. Figure 1 represents an 

example where measurements decrease nonlinearly over time (here we measure radial 

diffusivity from DTI tensor data). Applying nonlinear regression to the sample points as if 

these were cross-sectional data, we obtain a result which seems to well reflect the time 

course.

However, considering repeated data from subjects and calculating fixed and random effects 

via nonlinear mixed-effects modeling (NLME), the result is significantly different since it 

represents the average trajectory. This example well demonstrates that longitudinal data 

includes important additional information not available from cross-sectional data, but also 

highlights that in the presence of true longitudinal data, regression may not be the method of 

choice. We seek a method such as mixed-effects modeling that enables within-individual 

changes in the response variable, and thereby has the capacity to separate between cohort 

and age effects. This is of particular importance in health sciences where heterogeneity of 
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individuals due to genetic and environmental factors plays an important role in the 

progression of the disease or the response of individuals to treatment.

3.1 Linear and Nonlinear mixed-effects Models

Linear mixed-effects models are models where both the fixed and random effects enter the 

model linearly. In these models, the individual trend is a linear model built upon the overall 

population trend, which is also linear. Linear mixed-effects models can be formulated as:

(1)

where yi is the ni×1 vector of measurements for subject i. β is a p × 1 vector of fixed effects 

and bi is the q × 1 vector of random effects. Xi and Zi are design matrices that relate fixed 

effects and random effects to yi. Xi is the ni × p matrix, which can include variables such as 

clinical group, age and gender. Zi is the ni × q matrix for the random effects and includes 

variables such as age. bi is a multivariate Gaussian with mean zero, , and ei is 

the ni × 1 measurement error and is normally distributed . Random effects and 

measurement errors are assumed to be independent.

The nonlinear mixed effect model (NLME) is a generalization of linear mixed effect and 

nonlinear regression Pinheiro and Bates (2006). In NLME, some or all of the fixed or 

random effects enter the model nonlinearly. In the NLME model, each individual’s response 

is modeled as:

(2)

where ϕ = Aiβ +Bibi. Similar to the linear mixed effect model, β are the fixed effect and bi 

are random effects with distribution . Ai and Bi are design matrices that indicate 

whether specific fixed or random effect should be included in the model. The function f can 

be any nonlinear function, to be evaluated based on model selection. Figure 2 illustrates a 

comparisons of longitudinal modeling options for nonlinear mixed-effects modeling.

3.2 Analogy to Traditional Clinical Practice

One of the important aspects of longitudinal analysis is the direct measurement of intra-

individual changes over time. Even if all the observations for all the time points are not 

available for a subject, pooling the data from other subjects in the study along with the 

available observations for the individual enables prediction of individual trajectories Sadeghi 

et al. (2014); Rekik et al. (2016). The estimation of personalized growth profiles is of great 

clinical interest as individuals respond differently to treatment and show different growth 

trajectories. Also, in cases where only one scan is available, the intensity or diffusion 

parameters of the subject can be compared to the normative model. This way, one can 

predict subject-specific growth trajectory and predictive intervals Sadeghi et al. (2014).

Gerig et al. Page 4

Med Image Anal. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In pediatric examination, comparison of body length or head circumference to a normative 

model of growth is ubiquitous. Such a comparison places a child’s measurement against the 

population average to monitor normal (or abnormal) development. Here we present an 

analogous example from a normative neuroimaging study of early brain development 

outlined in more detail in Sadeghi et al. (2013), but methods and analysis procedure are 

generic and applicable to a broad range of applications where longitudinal images are 

available.

Change over time is modeled as a Gompertz function, a sigmoid curve with three intuitive 

parameters: asymptote, delay and speed. Individual and group level Gompertz trajectories 

are jointly estimated in a NLME scheme. Once average trajectories are obtained for different 

groups, we can make inferences about parameters of the regression. In the examples 

illustrated here, inferences are made in regard to regional differences and growth is 

described quantitatively in terms of the estimated Gompertz parameters asymptote, delay 

and speed. Figure 3 illustrates the concept. Population modeling results in the overall 

prediction interval, shown as gray shaded area. Given measurements of a new individual, 

here one or two timepoints shown as blue dots, NLME calculates the individual subject 

trajectories and its prediction intervals (blue solid line and light blue area). The red dots 

show the additional measurements from each subject not used for modeling but available for 

testing of prediction. The figure clearly demonstrates the narrowing of the subject prediction 

interval with availability of more data. This clearly illustrates the power of mixed-effects 

modeling for subject-specific analysis and prediction based on growth trajectories, which 

could include comparison of an individual’s measurements to a normative model, a 

procedure commonly used in clinical practice.

4 Longitudinal Analysis of Shape

Most longitudinal studies involve extracting clinically relevant measurements from imaging 

data and fitting a regression model to the discrete values. Typical choices for regression 

include non-parametric methods such as kernel regression, or polynomials of fixed degree. 

These choices come with limitations; there is no clear anatomical or biological interpretation 

to help choose the regression model. It is particularly challenging to account for multiple 

clinical variables, as independent models for each variable do not account for correlation 

between measures, effectively removing clinical measurements from their anatomical 

context. This motivates the study of shape, as we believe that shape models can capture more 

realistic anatomical trajectories than would be estimated from discrete scalar measurements. 

Further, shape models have the benefit to include multiple sources of geometry, properly 

accounting for the spatial relationship between objects.

One natural way to characterize geometry is to consider the distribution of particles on the 

surface of a shape. Variability is then measured by the displacement of particles between 

shapes Datar et al. (2012, 2009). The major downside is this requires explicit 

correspondence between shapes, to be able to trace the displacement of a given particle on 

one shape to its corresponding location on another. In that sense, shape differences are 

dependent on the specific parameterization of the shapes, rather than capturing intrinsic 

geometric properties.
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As an alternative, shape variability can be measured by the deformation of space needed to 

align one shape to another. It is highy recommended to read the excellent visionary work by 

D’Arcy Thompson on Growth and Form Thompson (1992). By using the mathematical 

representation of transformations to study anatomical variability, the reliance on a given 

parameterization of shape is eliminated. Deformations of the ambient space itself are 

therefore independent of the specific representation of any shapes embedded into the space. 

This is particularly important in the study of anatomy, as structures extracted from medical 

images have numerous shape representations, such as points, curves, surfaces, as well as the 

volumetric image data itself. We assume that several anatomical structures (with potentially 

different representations) sharing the same ambient space do not undergo independent 

transformations, rather the entire ambient space deforms with various structures embedded 

into it. It is therefore important for a spatiotemporal model to leverage various shape 

representations, and particularly advantageous to handle multiple shapes in any combination. 

This is precisely the vision of D’Arcy Thompson Thompson (1992), to compare objects 

without the need for a specific definition or form of shape. This motivates spatiotemporal 

models which estimate a single deformation of the ambient space taking into account a 

variety of sources of structural/geometric information Durrleman et al. (2014).

Beyond studying the difference between static shape, problems in medicine are often 

characterized by dynamic changes over time. Serial MRI acquired from the same patient 

over time represent snapshots of anatomical structures, which can be considered a sparse 

probing of the underlying dynamic process of change. From observations distributed 

sparsely in time, we must infer the continuous evolution in an attempt to capture the 

dynamics of anatomical change. In recent years, our lab has focused on spatiotemporal 

models based on the assumption that the mechanism which drives anatomical change is a 

continuous process, and is therefore temporally smooth; the path traced by a particle on an 

anatomical surface is continuously differentiable, without discontinuities.

To summarize, the necessary tool for modeling shape change is a deformation model which 

acts on the ambient space, to elegantly handle multiple shape representations and images in 

various combinations. For medical applications, such deformations should also preserve 

topology, so as not to tear or generate holes in anatomical structures. For modeling change 

over time, we require a model which guarantees temporally smooth evolution, to match our 

understanding of the smooth process which drives anatomical change. With this criteria in 

mind, we base our spatiotemporal models on the Large Deformation Diffeomorphic Metric 

Mapping (LDDMM) framework. Diffeomorphic transformations are well suited for the 

study of anatomy as they are one-to-one and invertible mappings. Further, the action of a 

diffeomorphism on medical images and extracted geometric structures is well studied, 

allowing for the embedding of multiple shapes in a variety of representations. 

Spatiotemporal models can be defined in the LDDMM framework by specifying a family of 

curves on the infinite dimensional manifold of diffeomorphisms, curves that minimizes 

length for example. Such shortest path curves represent geodesic flows of diffeomorphisms, 

and the resulting geodesic regression model can be thought of as an extension of linear 

regression to the manifold of diffeomorphisms.
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4.1 Deformation Model

The LDDMM framework supplies the mathematical tools we need to work with the infinite 

dimensional manifold of diffeomorphisms, by providing a finite dimensional 

parameterization for flows of diffeomorphisms. Such flows are parameterized by initial 

momenta, a finite dimensional vector field defined in the tangent space. The momenta 

vectors act as initial conditions to compute a flow of diffeomorphisms starting from the 

identity transformation. In the case of images, this is either a scalar or vector momenta field 

defined at every voxel. In the case of shape data, the momenta are defined at the vertices of 

the shape.

The key ingredient needed to define a spatiotemporal model which handles multiple shapes 

and images in different combinations is a parameterization of diffeomorphisms which is 

independent of the specific representation of the data, i.e. not tied to the voxels or vertices. 

Let c(t) = {c1(t), …, cN(t)} be the coordinates of a set of N control points for each time t, 
which carry momenta vectors α(t) = {α1(t), …αN(t)}. The finite set of control point/

momenta pairs define the time-varying velocity field everywhere in space as

(3)

where K is a Gaussian kernel  defining the metric properties 

of the reproducing kernel Hilbert space (RKHS) through parameter σV. Eq. (3) is referred to 

as the flow equation.

The time-varying velocity field vt then builds a flow of diffeomorphisms as in the LDDMM 

framework by integration:

(4)

given initial value x(0). Additionally, the location of control points evolve in time according 

to the equation of motion in the same manner, written as

(5)

given initial values ci(0). The trajectory x(t) is computed by solving (4), which is defined 

fully by the control point/momenta pairs.

The geodesic path connecting ϕ0 to ϕ1 is the path which minimizes the total kinetic energy 

of the the velocity field vt
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(6)

which is defined entirely by c(t) and α(t). The c(t) and α(t) that minimize (6) satisfy the 

following set of differential equations:

(7)

with initial conditions c0 and α0, which are referred to as the shooting equations, or geodesic 

shooting. This shows that a geodesic flow of diffeomorphisms is parameterized completely 

by the initial control points and initial momenta.

In Fishbaugh et al. (2014) we combine this parameterization of diffeomorphic flows within a 

variational framework to estimate a geodesic flow of diffeomorphisms which minimizes the 

sum-of-squared distance to observations, which can take the form of images or shapes in any 

combination in 2D or 3D. All available shape information from images and extracted objects 

is therefore leveraged to estimate a single time-varying deformation. Compared to image 

regression alone, shape data provides anatomical information that constrains estimation, 

particularly in regions of low image contrast. Compared to shape regression alone, image 

information provides data in regions where segmentations are not available, as well as 

providing context for the embedded anatomical objects.

We illustrate the concept of geodesic regression with two examples. First, the estimation of a 

population average genu fiber tract from a cross-sectional dataset of infants and young 

children. Snapshots of the estimated growth model are shown in figure 4. Such an 

experiment is made possible by the ambient space deformation model, as it is not feasible to 

establish point correspondence between fiber bundles from different subjects. The second 

example is a subject-specific model of a patient with Huntington’s disease with observations 

acquired at baseline, 1 year, and 2 years. The resulting personalized growth model is 

summarized in figure 5, where we explore an additional 4 years by extrapolation. The model 

was estimated using volumetric imaging data as well as extracted geometry of the white 

matter surface and left/right caudate. The inclusion of shape information helps drive the 

deformation over time in areas where image contrast alone is not sufficient, capturing the 

elongation and thinning of the caudate as well as ventricle expansion.

4.2 From Regression to Mixed-Effects Models

In the previous section, we outlined a generic and flexible deformation model designed to 

include combinations of shapes with various representations. Around this concept, we 

designed a spatiotemporal model which can be thought of as the straightforward extension 
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of linear regression to the space of diffeomorphisms. Early work in our lab focused on using 

regression to estimate subject-specific trajectories, in order to age match against a normative 

model of evolution Fishbaugh et al. (2012). However, what remains is to incorporate such 

regression models into a mixed-effects framework, to jointly estimate individual and group 

trends, as in section 3.1.

However, such an extension is non-trivial, as mixed-effects models given manifold valued 

data require careful consideration. For the general Riemannian manifold, we must deal 

explicitly with the curvature of the space. To solve for the parameters of a geodesic, one has 

to solve a second order ODE which relates the second derivative of Jacobi fields with the 

Riemannian curvature tensor Thomas Fletcher (2013). For a given manifold, the difficulty is 

in defining the exponential/log maps as well as computing sectional curvature. Furthermore, 

an implicit Riemannian mixed-effects model requires a notion of distances between 

geodesics, which again requires cumbersome manifold specific calculations of covariant 

derivatives and explicit computation of curvature. The challenge in extending the statistical 

models of section 3.1 to general manifold valued data can be attributed to the nonlinearity of 

the space, where simple and fundamental operations are not defined.

Promising early work is presented in Muralidharan et al. (2014, 2016) where LME is applied 

to longitudinal anatomical shape complexes after establishing point-to-point correspondence 

via LDDMM regression of subject-specific trajectories. Modeling follows the principle 

outlined in equation 1 for LME followed by hypothesis permutation test based on the 

Hotelling’s T2 statistics. Figure 6 illustrates a preliminary result of fixed effects for control 

and Huntington’s subjects. LME modeling of scalar data (left figure) was extended to shape 

complexes of subcortical structures (right) for studying locality and type of changes. This 

scheme eases the estimation of an LME model for shapes by assuming that each particle on 

the surface follows a linear trajectory, even though overall shape change is nonlinear. A 

linear approximation is well suited to studying the subtle changes associated with HD, but 

may not be appropriate for periods of rapid change, such as early childhood development. 

Due to the difficulty of the problem and the fact that high quality and well controlled 

longitudinal imaging data is just now becoming available, very few true longitudinal mixed-

effects models for shape currently exist. This is an area that is of great interest, to show that 

there is indeed rich information encoded by shape beyond scalar measures such as volume. 

Beyond the development of additional methods/theory, what is needed are compelling 

applications to demonstrate the power of longitudinal shape models to the scientific 

community, to leverage strengths as outlined in section 3.

5 Challenges for consistency of longitudinal image data

Longitudinal image analysis primarily makes the assumption that data acquisition, i.e. the 

“camera” and its parameters, remains the same over the observation period and variations 

would due to noise attributed to different sources. Would the imaging process change due to 

systematic technology upgrade, we would no longer be able to decouple changes due to time 

from changes due to imaging conditions. This is a critical and challenging problem in 

medical imaging as the community does not only see rapid progress in novel and improved 

processing methodologies but also in imagining technology. Manufacturers of scanners 
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regularly provide updates of software in order to improve imaging capabilities but which 

often require updates of imaging protocols, thus affecting consistency of image quality. Even 

more, so called upgrades of scanners are available in regular intervals of 5 to 10 years, where 

the word upgrade stands for a full replacement with new hardware.

Large-scale analysis of patient populations acquired across multiple sites is chosen as an 

option to include a larger number of subjects to increase statistical power. Examples are the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Autism Brain Imaging Data 

Exchange (ABIDE), or the Autism Centers of Excellence (ACE) network projects, just to 

name a few, where consortia spend strong efforts to freely distribute large imaging databases 

in order to invite the scientific community to accelerate progress of analysis methodologies 

and to compete in so called challenges. In addition to questions of site-specific consistency 

of longitudinal data, multi-site studies generate additional variability by pooling scans from 

multiple sites.

Longitudinal and multi-site imaging studies therefore require advanced concepts for multi-

site imaging calibration by developing standardization, calibration via geometric and/or 

human phantom scanning, and evaluation and modeling of cross-site differences and 

stability. This seems an excellent opportunity for the medical image analysis community as 

questions of quantification of image quality, comparison of images, and correction and 

calibration are core research topics. Besides improving consistency of the imaging process, 

increased efforts are necessary to evaluate and improve robustness of processing pipelines in 

view of intra-, inter-site and longitudinal variability of imaging data.

The following illustrates an example of scanner comparison and quality control Gouttard et 

al. (2008). As part of a longitudinal infant high-risk autism study (ACE-IBIS), inter-site and 

intra-site variability was assessed with human phantoms annually scanned at all participating 

sites with repeated imaging in intervals of several hours. In order to answer the question if 

different scanner types than 3T Tim Trio could be included, the human phantoms also got 

scanned on a 3T Allegra. Images were processed with a well-established automatic atlas-

moderated tissue segmentation pipeline based on expectation maximization (EM) after rigid 

co-registration of data from the individual phantoms. Figure 7 illustrates a subset of MRI 

and segmentation images with a graph which shows percentage tissue volumes for Trio and 

Allegra results. Note that here we do not include modeling of intra-, inter-site and 

longitudinal variability which is published elsewhere but just illustrate a simplified overview 

analysis. Results clearly show large differences of tissue segmentations of the same subject 

between Trio and Allegra image data although MRI data and segmentation images visually 

look very similar. We conclude that using the same scanner type and controlled protocols 

over multiple sites results in relatively small variabilities whereas the use of a different 

scanner appears like an outlier. The observed differences may be attributed to subtle spatial 

deformations due to head coil differences or to sensitivity of tissue segmentation methods to 

different contrast-to-noise ratio. Significantly more research effort by our scientific 

community is needed to develop methodologies for calibration and robust segmentation and 

analysis, as this is a precondition for optimal use of longitudinal imaging. Since large-scale 

clinical longitudinal studies represent enormous efforts and costly investments in recruiting, 
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scanning, data preprocessing and analysis, questions on re-using data in combination with 

newly planned studies on new scanner technologies are of utmost importance.

6 Conclusion

Longitudinal imaging is becoming a method of choice for measuring subject-specific 

temporal profiles of change of anatomy and function due to disease progression or 

therapeutic intervention. Experience with clinical collaborations demonstrate that subject-

specific modeling of changes due to disease progression or response to therapeutic treatment 

are highly sought for improved diagnosis or prediction, but that image analysis procedures to 

extract such information from imaging data lag far behind progress in acquisition 

methodologies. Spatiotemporal profiles may include volume changes, shape deformations, 

alterations of tissue contrast or changes of functional measures. We discuss that using time-

sampled repeated image data, the inherent correlation of such data needs to be considered 

for statistical modeling to set it apart from cross-sectional analysis, favoring mixed-effects 

modeling over regression. Such models provide improved statistical power of longitudinal 

versus cross-sectional analysis and not only result in average trajectories of change but in 

individual, subject-specific change profiles. Whereas mixed-effects modeling is a standard 

concept in statistical analysis of scalar and low-dimensional data, its extension to high-

dimensional data such as shapes or images and/or inclusion of nonlinear functions to 

accommodate application-specific trajectories is still to be seen at an early stage of research.

With imaging often collected over years, in particular in studies of mental illness, early brain 

growth or aging, rapidly evolving scanner technology creates significant obstacles as it 

prohibits a standardization of imaging. The improved contrast, spatial resolution and novel 

capabilities after scanner upgrades may not be appreciated in longitudinal studies since 

associated changes in image appearance, anatomical details or diffusion and functional 

imaging, for example, cannot just be seen as noise in these measurements but represent 

systematic differences that represent significant challenges for longitudinal modeling and 

analysis. Although most of the rapidly emerging longitudinal studies face these problems, 

there are, to our knowledge, no convincing solutions yet that would allow a flexible change 

or mixing of scanner types in such studies. Geometric phantoms are used for calibration of 

scanner-related spatial deformations, but subject-induced deformations and differences due 

to different contrast and spatial resolution still await novel solutions.

Future research also needs to include solutions for multi-modal integration, either via joint 

use of multiple imaging modalities or multiple geometric structures such as images, 

surfaces, lines and points as discussed above. Scenarios where both, shape and appearance, 

will change over time (such as early development, aging or pathology progression, e.g.) will 

require joint modeling of appearance and anatomical boundaries, thus combining techniques 

as discussed above. Moreover, longitudinal changes of brain connectivity characterized as 

graphs altered through disease, pathology or growth, seem superb open challenges for 

medical imaging research as such data have become available to scientists. We are convinced 

that longitudinal imaging and analysis for improved diagnosis, prediction of disease and 

monitoring of efficacy of treatment will translate to the clinic and will have a major impact 
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on health care, given that medical image analysis researchers will overcome current 

limitations by providing novel solutions.
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Fig. 1. 
Modeling of longitudinal data. Left: Nonlinear least squares (NLS) regression without 

considering repeated time points. Middle: Nonlinear mixed-effects modeling (NLME) with 

fixed effect (black) and subject-specific random effects (colored curves). Right: Regression 

result overlaid on NLME result. The figures indicate that regression provides a plausible 

model would one not know about repeated time points, but that mixed-effects modeling 

provides a significantly different result that reflects the average of the individual trajectories. 

The data, used here as an example, represents radial diffusivity changes of a brain subregion 

in longitudinal infant DTI datasets taken at neonate, 1 year and 2 years of age.
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Fig. 2. 
Comparison of different growth models for longitudinal RD data of posterior thalamic 

radiation. Top: Posterior thalamic radiation is shown as red label on the longitudinal FA 

images of one subject. Images taken at 2 weeks, 1 year and 2 years. Bottom left: Linear 

mixed-effects models of RD. Bottom right: nonlinear mixed-effects models.
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Fig. 3. 
Subject-specific interval compared to the overall prediction for RD of posterior thalamic 

radiation. Left: Subject-specific interval calculated based on only one time point (neonate). 

Right: Subject-specific interval calculated based on scans at neonate and 1 year. Subject-

specific 95% prediction intervals (light blue) are compared to the overall prediction interval 

(gray shaded) for RD of posterior thalamic radiation. Solid blue curves illustrate the 

predicted subject trajectories based on NLME analysis. Red dots indicate subject’s test data 

left out for analysis but available for testing.

Gerig et al. Page 16

Med Image Anal. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Average development of genu fiber tract from 2 to 24 months. A) Observed data for all 

subjects, which is clustered around 2, 12, and 24 months. B) Genu fiber tracts estimated at 

several time points with velocity of fiber development displayed on the surface of the 

estimated fibers.
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Fig. 5. 
A) Shape data used for model estimation in addition to image data. B) Evolution estimated 

for an HD subject at baseline, 3 years, and 6 years.
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Fig. 6. 
Left: LME modeling of control versus risk Hungtinton’s groups. Right: Fixed effects trends 

from linear mixed-effects shape modeling. Example illustrates LME modeling of 

longitudinal segmentations of subcortical structures with three time points over two years 

from 7 controls and 6 Huntington’s subjects. Colormaps of fixed effects slopes for controls 

and HD indicate local expansion (blue) or contraction (yellow). Data and analysis courtesy 

of PREDICT-HD study and PhD thesis of Manasi Datar, Utah 2013.
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Fig. 7. 
Scanner comparison via traveling phantom. Left: Subset of sagittal MRI of 3T Allegra and 

3T Trio brain scans (top) and tissue segmentations (bottom). Right: Graph of normalized 

percentage tissue volumes for Tim Trio and Allegra data. White matter, gray matter, 

cerebrospinal fluid and intracranial volume are indicated as GM, WM, CSF and ICV. The 

Allegra results are plotted as open squares. Statistical analysis shows that the Allegra data 

differs significantly from the Trio data for WM, CSF and ICV. Results from 3 sites with 2 

repetitions and 2 phantoms with Trio and 1 site with 2 repetitions and 2 phantoms with 

Allegra scanners are shown.
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