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Abstract

Image registration is typically formulated as an optimization process, which aims to find the optimal transformation
parameters of a given transformation model by minimizing a cost function. Local minima may exist in the optimization
landscape, which could hamper the optimization process. To eliminate local minima, smoothing the cost function
would be desirable. In this paper, we investigate the use of a randomized smoothing (RS) technique for stochastic
gradient descent (SGD) optimization, to effectively smooth the cost function. In this approach, Gaussian noise is
added to the transformation parameters prior to computing the cost function gradient in each iteration of the SGD
optimizer. The approach is suitable for both rigid and nonrigid registrations. Experiments on synthetic images, cell
images, public CT lung data, and public MR brain data demonstrate the effectiveness of the novel RS technique in
terms of registration accuracy and robustness.
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1. Introduction

Image registration is often described as an ill-posed
optimization problem (Fischer and Modersitzki, 2008).
To solve a registration task, a cost function is defined,
and then it is minimized by a numerical optimization
routine. During the optimization process, local minima
in the cost function may trap the optimization to a sub-
optimal solution. This is a common cause of misregis-
tration.

The optimization landscape is fully defined by the
constituents of the cost function, such as input image
data, similarity metric, transformation model and inter-
polation method. Jenkinson et al. (2002) classified the
local minima that commonly occur for the cost func-
tions into two types: large-scale basins and small-scale
dips. They concluded that the large-scale basins are
responsible for large misregistrations because they are
often relatively far from the global minimum. For ex-
ample, neighboring structures with similar appearance
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could cause a wrong match, especially in case of a large
initial misalignment. The small-scale dips occur more
often and could cause the registration to get stuck at any
stage. A well-known example of such small scale dips
are the local minima induced by interpolation artifacts
(Pluim et al., 2000; Likar and Pernuš, 2001; Tsao, 2003;
Aganj et al., 2013).

In intensity-based image registration a multiresolu-
tion Gaussian stack of image data is often used to re-
duce local minima (Lester and Arridge, 1999; Sun et al.,
2013). Typically, the capture range of the optimal so-
lution is enlarged by using a multiresolution strategy.
However, Jenkinson and Smith (2001) argued that the
traditional multiresolution strategy cannot solve all pos-
sible local minima in image registration. Even though
multiresolution approaches reduce the effect of local
minima, on a certain scale level the convexity of the
cost function is not guaranteed in practice. In addi-
tion, the capture ranges of adjacent resolution levels
should be close enough without any barrier in between
them. In their research (Jenkinson and Smith, 2001),
the authors proposed a multi-start algorithm, using m
perturbations of the initial (affine) transformation pa-
rameters, to achieve a global optimization. They found
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that these perturbations correct for the majority of mis-
registrations. However, the computational cost for this
multi-start algorithm is increased by the factor m. In ad-
dition, this method becomes computationally impracti-
cal for high dimensional, nonrigid transformation mod-
els, since very high m would be needed. In their later
research (Jenkinson et al., 2002), two strategies are pro-
posed to reduce the effects of both large- and small-scale
local minima separately. For large-scale local minima,
they proposed to use a hybrid global-local optimization
method that exploits prior knowledge about the linear
transformation parameters. For small-scale local min-
ima, the cost function is apodized by reweighting the
contribution of intensity information. However, their
method can only be utilized for linear transformation
models rather than more complicated nonlinear cases.
In a number of papers (Likar and Pernuš, 2001; Tsao,
2003; Aganj et al., 2013; Thévenaz et al., 2006; Klein
et al., 2010) random coordinate (re)sampling was pro-
posed as a method for removing small-scale local min-
ima due to interpolation artifacts. These techniques can
be applied both to linear and nonlinear registration, but
they do not address the large-scale local minima and
non-interpolation-related small-scale local minima. An-
other often used approach in nonrigid registration meth-
ods is to add a regularization term to the cost function,
in order to promote smooth deformations, see for exam-
ple (Rueckert et al., 1999; Avants et al., 2008; Glocker
et al., 2008). However, smoothness of the deforma-
tion field does not imply that local minima in the cost
function are eliminated. Even with linear transforma-
tion models (i.e., rigid and affine), which are smooth by
definition, local minima pose a challenge. So, although
regularization terms may in practice suppress the effect
of some local minima, they do not directly target that is-
sue. Moreover, these methods are only devised for non-
rigid transformation models. In this paper we address
the issue of local minima directly and our approach is
applicable to any transformation model.

In our research, we try to tackle the problem by
smoothing the optimization landscape. Local minima
in the optimization landscape could potentially be elim-
inated by smoothing the cost function. Multiresolu-
tion strategies indirectly achieve some sort of cost func-
tion smoothing by blurring the images, but in our ap-
proach we investigate to directly smooth the cost func-
tion. Conceptually, a straightforward way to smooth the
cost function would be by convolution with a smoothing
kernel in the transformation parameter space. However,
a major challenge here is the high dimensionality of the
parameter space. To address this challenge, we will bor-
row an idea from the literature on numerical optimiza-

tion.

In the field of optimization, generic techniques for
smoothing the cost function have been investigated
(Nesterov, 2005; Beck and Teboulle, 2012; Duchi et al.,
2012). Research on this topic has mainly focused on
non-smooth, not everywhere differentiable cost func-
tions. Nesterov (2005) constructed a function with
Lipschitz-continuous gradient to approximate the origi-
nal non-smooth cost function. Instead of approximating
the entire non-smooth cost function, Beck and Teboulle
(2012) proposed to only smooth the non-smooth com-
ponent of a cost function. Duchi et al. (2012) proposed
a randomized smoothing (RS) algorithm for stochastic
optimization problems where only a stochastic (noisy)
measurement of the cost function gradient is avail-
able. In the RS algorithm, random variables are drawn
from a Gaussian or uniform distribution, and these vari-
ables are added to the estimated parameters during op-
timization. The underlying idea is a convolution-based
smoothing technique in which a Gaussian or uniform
distribution is convolved with the original cost function.

Inspired by Duchi et al. (2012), we propose to inject
Gaussian random noise into the transformation param-
eters during the optimization process of image regis-
tration. In contrast to the costly multi-start algorithm
by Jenkinson and Smith (2001), which applies multi-
ple perturbations to the initial transformation param-
eters, we apply one (or just a few) random perturba-
tion(s) to the transformation parameters in each itera-
tion. This RS technique is combined with a stochastic
gradient descent optimizer (Klein et al., 2009b), which
can naturally deal with the random perturbations. The
RS method could be seen as a computationally efficient
way that implicitly smoothes the cost function, thus
eliminating local minima in the optimization landscape.
We evaluate this assertion in experiments on synthetic
data, where we compare the proposed RS approach with
a method that explicitly smoothes the cost function in a
brute-force way. Since it is a generic technique, the pro-
posed RS registration method can in principle be used
in combination with any transformation model. In this
study, translation, rigid, affine and nonrigid B-spline
transformation models are used. Experiments on two-
dimensional artificial images, two-dimensional cell im-
ages, three-dimensional lung CT, and brain MRI scans
were carried out to evaluate the effectiveness of the RS
registration approach.
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2. Method

2.1. Stochastic optimization for image registration
Let F(x) : ΩF ⊂ RD → R and M(x) : ΩM ⊂ RD →

R denote the D-dimensional fixed and moving images
where x represents an image coordinate, and ΩF and
ΩM are the fixed and moving image domains, respec-
tively. Assume T(µ, x) : RP × ΩF → ΩM represents a
coordinate transformation where µ ∈ RP is the param-
eter vector of the transformation model. T(µ, x) could
be a translation, rigid, affine or nonrigid (e.g., B-spline)
transformation model. Then, the registration problem is
formulated as:

µ̂ = arg min
µ
C (µ,ΩF) , (1)

where C(µ,ΩF) measures the dissimilarity between the
original fixed image F(x) and the deformed moving im-
age M(T(µ, x)) on the domain x ∈ ΩF . Examples of
C are the sum of squared differences (SSD), normalized
correlation coefficient (NCC), and mutual information
(Viola and Wells III, 1997; Maes et al., 1997). For ex-
ample, the cost function C of SSD is defined as:

C (µ,ΩF) =
1
|ΩF |

∑
xi∈ΩF

(F(xi) − M (T(µ, xi)))2 . (2)

Since Eq. (1) has no closed-form solution in many
realistic cases, an iterative optimization strategy is uti-
lized to determine the optimal set of parameters µ̂. Well-
known instances of such optimizers are gradient de-
scent, quasi-Newton, and nonlinear conjugate gradient
(Maes et al., 1999). Viola and Wells III (1997) proposed
to use SGD optimization for more efficient rigid image
registration. A comparison of different optimizers is re-
ported in Klein et al. (2007) indicating that the SGD op-
timizer is a competitive alternative to deterministic algo-
rithms in nonrigid registration problems as well. SGD
optimization is based on the following iterative update
strategy:

µk+1 = µk − ak g̃k, (3)

where g̃k is a stochastic approximation of the cost func-
tion derivative ∂C/∂µ, evaluated at the current recov-
ered transformation parameters µk, and ak is a scalar
gain factor that controls the step size along g̃k. Con-
vergence in SGD methods can be achieved by decay-
ing ak according to a pre-defined function. In Klein
et al. (2009b) an adaptive strategy for setting ak was
proposed. This adaptive stochastic gradient descent
(ASGD) method is used in this work. In previous stud-
ies, (A)SGD optimization has been successfully applied
in many image registration tasks, such as Bhagalia et al.

(a) (b)

(c) (d)

Figure 1: Smoothing an optimization landscape with local minima:
(a) fixed image; (b) moving image; (c) optimization landscape of the
translation transformation with X-translation tx ∈ [−80, 80]mm and
Y-translation ty ∈ [−80, 80]mm; (d) smoothed optimization landscape
by convolving with a Gaussian kernel using σ = 10mm along tx and
ty.

(2009); Metz et al. (2011); Murphy et al. (2011); Smal
et al. (2012); Sun et al. (2013).

In Klein et al. (2007), the stochastic approximation g̃k
was calculated by evaluating ∂C/∂µ on a small random
subset Ω̃k

F ⊂ ΩF of image samples, thus reducing the
computation time per iteration. This subset Ω̃k

F should
be randomly refreshed in each iteration k, to make the
approximation stochastic. We thus can write:

g̃k = g̃(µk, Ω̃
k
F) =

∂C

∂µ
(µk, Ω̃

k
F) ≈

∂C

∂µ
(µk,ΩF). (4)

For example, if we choose SSD as cost function C (see
Eq. (2)), g̃k is computed as:

g̃k =
2

|Ω̃k
F |

∑
xi∈Ω̃

k
F

(
F(xi) − M

(
T(µk, xi)

))
(5)

×

 ∂T
∂µ

∣∣∣∣∣
(µk ,xi)

T (
∂M
∂x

∣∣∣∣∣
T(µk ,xi)

)
.

2.2. Randomized smoothing

To avoid local minima and attain the global optimum,
smoothing the cost function of image registration would
be an attractive solution. To smooth the cost function a
straightforward approach would be to convolve it with a
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probability density function (PDF) ζ(ψ),

C̄ (µ,ΩF) =

∫
ψ∈RP
C (µ − ψ,ΩF) ζ(ψ)dψ (6)

= E
[
C (µ +Ψ,ΩF)

]
,

where Ψ is a zero-mean random multivariate variable
according to symmetric PDF ζ(ψ), and E[C(µ+Ψ,ΩF)]
represents the expectation of C(µ +Ψ,ΩF) given ζ(ψ).

Figure 1 shows an example of smoothing the cost
function by using Eq. (6). Figures 1 (a) and (b) show
two 2D artificial images with 25 Gaussian blobs ran-
domly shifted from regular grid positions. The pixel
size and dimension of each image are 1 × 1mm and
400 × 400 pixels. Figure 1 (c) plots the SSD (cost
function) values between the fixed image (Figure 1 (a))
and the moving image (Figure 1 (b)) as function of X-
translation tx ∈ [−80, 80]mm and Y-translation ty ∈
[−80, 80]mm. Due to the image content, the optimiza-
tion landscape contains many local minima, and a typi-
cal gradient descent based optimizer could be trapped in
local minima. Figure 1 (d) shows a smoothed optimiza-
tion landscape obtained using Eq. (6) by convolving
the original cost function with a Gaussian kernel using
σ = 10mm along tx and ty. It can be observed that the
local minima in Figure 1 (c) are effectively removed by
using the expectation of cost function.

Unfortunately, it is hard to evaluate the integral in Eq.
(6) in practice since the number of transformation pa-
rameters is usually large. To address this, we propose
to use a randomized smoothing (RS) technique. The RS
technique enables us to minimize C̄(µ,ΩF) without ac-
tually calculating the integral in Eq. (6). The optimiza-
tion with the RS technique could be considered a special
case of a SGD optimization algorithm. In general, SGD
algorithms are exactly meant for the task of minimizing
an expected value of a cost function in cases where this
expected value cannot be efficiently evaluated in prac-
tice. First, observe that the expected value in Eq. (6)
could be approximated by the following finite sum by
using the RS technique:

E
[
C(µ +Ψ,ΩF)

]
≈

1
Q

Q∑
q=1

C(µ +Ψq,ΩF), (7)

with Ψq ∼ ζ(ψ).

Therefore, the same approximation can be made for the
gradient of the cost function. The RS algorithm is noth-
ing more than a SGD algorithm, i.e., Eq. (3), where the
stochastic gradient g̃k is re-defined as:

g̃k =
1
Q

Q∑
q=1

g̃(µk +Ψq, Ω̃
k
F). (8)

In each iteration k, the derivative of the original cost
function is thus queried several (Q) times with different
realizations of the random variable Ψq. As in the origi-
nal SGD algorithm, these derivatives are computed on a
random subset Ω̃k

F . Thanks to the properties of the SGD
algorithm, the iterative scheme Eq. (3) with this choice
for g̃k will converge to the minimizer of Eq. (6). A
theoretical analysis of the convergence of the RS tech-
nique is provided in Duchi et al. (2012). Increasing Q
reduces the variance of g̃k and may thus accelerate con-
vergence, but increases the computational complexity
per iteration. Choosing the value of Q is an application-
dependent trade-off. Once the optimizer is sufficiently
close to the desired global optimum, it might be desir-
able to reduce the amount of smoothing. It is thus pro-
posed to let Ψq ∼ ζ(ψ/hk)/hk, where hk is some nonin-
creasing function that controls the amplitude of noise.
The choice of hk controls the trade-off between the ef-
fective amount of cost function smoothing (i.e., the abil-
ity to jump out of local minima) and the variance of the
estimate µk.

It is worth noting that the RS algorithm treats the
cost function as a black box, which means that it does
not require modification of the cost function itself (Ne-
mirovsky and Yudin, 1983). It could be considered a
“plug-in” technique, which only requires access to a
function that evaluates the cost function gradient for a
specified transformation parameter vector. This makes
the technique potentially applicable to many registration
methods.

Theoretically, we can use any smoothing PDF ζ(ψ),
e.g., uniform or Gaussian. In this work, we use a Gaus-
sian distribution with mean = 0 and user-definedσ. The
Gaussian distribution was truncated at ±2σ. The tradi-
tional approach without added noise can be considered
adding Gaussian noise with mean = 0 and σ = 0 (i.e., a
Dirac delta distribution). Both approaches with (σ > 0)
and without (σ = 0) the RS technique will be evalu-
ated and compared in the experiments. The function hk

that controls the amplitude of noise is chosen as an ex-
ponentially decreasing function hk = e−k/(λ·K) where λ
represents the decrease rate of hk, K is the number of
iterations and k ≤ K.

Algorithm 1 presents the registration algorithm with
the RS technique, assuming SSD as a similarity mea-
sure for the sake of clarity (similarity measures like MI
involve an additional loop over the samples xi, to com-
pute the joint histogram, but the principle is the same).

2.3. Transformation models
In the RS technique, random noise is directly added to

transformation parameters. Therefore, RS can in prin-
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Input: F ← fixed image, M ← moving image,
K ← number of iterations, S ← number of samples |Ω̃F |,
Q← number of queries and
ζ(ψ)← smoothing PDF (e.g., Gaussian)

Output: Estimated transformation parameters µ̂
1 Initialize transformation parameters µk ← 0
2 for k ← 1 to K do
3 Initialize random samples Ω̃k

F = {x1 . . . xS } according to uniform
distribution, g̃k = 0, step size ak , and noise level hk

4 for q← 1 to Q do
5 Draw random noise Ψq ∼ ζ(ψ/hk)/hk
6 µ̃← µk +Ψq
7 for x← x1 to xS do
8 Evaluate F(x), and y← T(µ̃, x)
9 Interpolate moving image value M(y) and gradient

∇M(y)

10 Calculate ∂T
∂µ

∣∣∣∣
(µ̃,x)

11 Calculate contribution to g̃(µk +Ψq, Ω̃
k
F ) using the

results of steps 8-10
12 end
13 end
14 g̃k = 1

Q
∑Q

q=1 g̃(µk +Ψq, Ω̃
k
F )

15 Update transformation parameters µk+1 ← µk − ak g̃k
16 end
17 µ̂← µK
18 return µ̂

Algorithm 1: Proposed registration method.

ciple be used in combination with any transformation
model. We evaluate the RS technique with global trans-
lation, rigid, and affine transformations, and with B-
spline based free-form deformation (FFD) models.

2.3.1. Translation transformation
Translation transformation is defined as:

T(µ, x) = x + µ, (9)

where µ represents the translation vector with length D.

2.3.2. Rigid transformation
A rigid transformation is defined as:

T(µ, x) = R(x − c) + t + c, (10)

where R represents a rotation matrix, c is the center
of rotation, and t is the vector of translations. The
transformation of the rigid model is parameterized us-
ing µ = (θT , tT )T where θ represents the vector of Euler
angles. For example transformation parameters µ are
expressed as (θ, tx, ty)T in 2D registration. Since the Eu-
ler angles can have an entirely different range than the
translations, the following reparameterization in ASGD
(Klein et al., 2009b) is used:

µ =

[
Γ 0
0 I

] [
θ
t

]
, (11)

where Γ is a diagonal scaling matrix with the diagonal
element:

Γii =

(∫
ΩF

∥∥∥∥∥∂T
∂θi

(µ0, x)
∥∥∥∥∥2

dx
/ ∫

ΩF

dx
)− 1

2

. (12)

In this way, the rotation parameters θ are scaled by the
average voxel displacement caused by a small change
of the Euler angle. Through the above normalizing pro-
cess, it is meaningful to add Gaussian noise to different
transformation parameters regardless their ranges.

2.3.3. Affine transformation
An affine transformation can be formulated as:

T(µ, x) = A(x − c) + t + c, (13)

where A is an affine matrix, c is also the center of rota-
tion, and t represents the vector of translations. The pa-
rameter vector µ is formed by affine matrix elements and
translation vector. For example, in 2D registration this
gives a vector of length 6: µ = (a11, a12, a21, a22, tx, ty)T .
The parameters are normalized using a similar proce-
dure as described in Eqs. (11) and (12).

2.3.4. B-spline based FFD transformation
The traditional FFD transformation model (Rueckert

et al., 1999) is defined as:

T(µ, x) = x +
∑
ξ∈Ξ

cξΦD(x/η − ξ), (14)

where ΦD(x) : RD → R represents the cubic D-
dimensional B-spline function, Ξ ⊂ ZD is a D-
dimensional control-point grid, η is the grid spacing, cξ
represents the coefficient vector for a control point ξ,
and the parameter vector µ is formed by the elements
of all coefficient vectors (µ = {cξ | ξ ∈ Ξ}). Since the
B-spline function ΦD(x) has compact support, the sum-
mation effectively goes only over a small neighborhood
of control points.

3. Experiments

The experiments were carried out on 2D synthetic
Gaussian blob images, 2D cell data, 2D synthetic tagged
MRI (tMRI) cardiac image, 3D lung CT and 3D brain
MRI scans.
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(a) (b) (c) (d)

Figure 2: Cell images: (a) frame No.1; (b) frame No.5; (c) frame No.5 with rigid transformation; (d) frame No.5 with affine transformation.

Figure 3: Synthetic tMRI cardiac phantom: (a) frame No.1; (b) frame No.10; (c) ground truth tracks of the tags within the modeled left ventricle.

3.1. Experimental settings

All experiments were implemented based on the
open source image registration package elastix (Klein
et al., 2010). Similarity measure SSD was used as the
dissimilarity term on 2D blob images, 2D cell images
and 3D lung CT data. On 2D cardiac tMRI images and
3D brain MRI data, NCC was used as the dissimilar-
ity term to handle the image noise and linear intensity
changes among scans. Linear interpolation was used
to interpolate the moving image. For the ASGD opti-
mizer, the number of random samples S was set to 2000
and 10000 on 2D and 3D data, respectively. The num-
ber of iterations K of the optimizer was set to 1000 for
all experiments. All experiments with the RS technique
were done with numbers of queries: Q = 1, Q = 3
and Q = 6. λ = 0.15 was used for the exponen-
tially decreasing function hk. For translation transfor-
mation, we added Gaussian noise with σ = 10mm. For
rigid and affine transformations, we applied the RS tech-
nique with Gaussian noise σ = 5mm, σ = 10mm and
σ = 15mm. For nonrigid B-spline transformation, we
added Gaussian noise with σ = 1

4η, where η is the con-

trol point spacing. The transformation estimated at a
coarser scale was used to initialize the transformation
on a finer scale when multiresolution strategy is utilized
in a experiment. For nonrigid registrations, we repeated
all experiments with and without a regularization term
that promotes smoothness of the transformation. The
commonly used bending energy (Rueckert et al., 1999)
was used, with weighting factors of 1 and 107 in combi-
nation with NCC and SSD, respectively.

3.2. Blob images

Five 2D artificial images with 25 randomly placed
Gaussian blobs were created to carry out pair-wise reg-
istrations. Figures 1 (a) and (b) give two examples of
these images. The synthetic blob images were con-
structed to simulate a scenario in which the registration
cost function exhibits strong local minima. Registration
was done directly on the non-blurred original images
(i.e., no multiresolution strategy was employed). This
allows us to investigate if the RS method can indeed im-
prove the capture range in the presence of strong local
minima.
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Figure 4: Comparison of the results obtained using deterministic and
stochastic approaches on the blob image with translation transform.
Boxplots show the distribution of Residual(Tinit ,Tµ̂) of 400 test cases
using σ = 0mm or 10mm. The whiskers indicate the smallest and
largest values within 1.5× the interquartile range and the open circle
in each boxplot represents the mean value of all results.

Random translation, rigid, and affine transforma-
tions were created and used as initial transforma-
tions Tinit. The active transformation Tµ was precom-
posed with Tinit. The average residual deformation
Residual(Tinit,Tµ̂) was defined to measure the registra-
tion accuracy by each registration method. The metric
measures the average Euclidean distance between the
recovered Tinit, i.e., Tµ̂(Tinit(xi)) and the original loca-
tion xi:

Residual(Tinit,Tµ̂) =
1
|ΩF |

∑
xi∈ΩF

∥∥∥Tµ̂(Tinit(xi)) − xi

∥∥∥ .
(15)

For 2D translation transformation with µ = (tx, ty), 20
initial transformations were randomly generated within
uniform range tx, ty ∈ [−40, 40]mm. Therefore, there
are in total 4×5×20 test cases for pair-wise registrations
on 5 images and 20 initial transformations. For rigid
registration with µ = (θ, tx, ty), 100 initial rigid transfor-
mations were randomly generated with uniform range
θ ∈ [−0.3, 0.3]rad, tx, ty ∈ [−40, 40]mm. For affine
registration with µ = (a11, a12, a21, a22, tx, ty), 100 ran-
dom affine transformations were generated as the initial
transformations. For ai j, random variables were uni-
formly drawn from range [−0.2, 0.2] and added to an
identity matrix. For the translation variables, tx, ty ∈
[−40, 40]mm. Therefore, there are in total 4 × 5 × 100
rigid test cases for both pair-wise rigid and affine regis-

trations on 5 images.
To verify whether the proposed stochastic RS tech-

nique indeed minimizes Eq. (6), we performed an exper-
iment with a deterministic optimization method, which
explicitly tries to minimize Eq. (6) by evaluating the ex-
pectation in a brute-force manner. For the deterministic
optimization of Eq. (6), all voxels were used (instead of
a random subset of S samples in each iteration) to make
the optimization deterministic. To numerically approx-
imate the expectation (i.e., integral) in Eq. (6), we ex-
haustively summed over Ψ in steps of 1mm in x- and
y-directions with Gaussian weighting factor (denoted as
Q→ ∞). Because of the high computational cost of the
deterministic validation, we only apply it to the transla-
tion transformation.

3.3. Cell images
A series of 2D fluorescence images of a living mouse

fibroblast cell were provided by Ghosh et al. (2010). We
extracted the first 5 consecutive frames from the 105 im-
ages acquired with 2 seconds intervals. The dimensions
of these image were resampled to 300×300 pixels. Fig-
ures 2 (a) and (b) show frames No.1 and No.5 of these
images. Since the first 5 frames are perfectly aligned in
the original data, this allows us to evaluate registration
accuracy with respect to a ground truth, while using real
data. Similar to the experiments on blob images, ini-
tial deformations Tinit were generated and the residual
deformation after registration Residual(Tinit,Tµ̂) was
computed.

The cell images were registered using a common
multiresolution approach, where a Gaussian filter us-
ing {σ1, . . . , σ3} = {2, 1, 0.5} pixels was adopted to
create 3 image resolution levels. Experiments were
performed with rigid and affine transformation mod-
els. For rigid transformation, 100 initial rigid transfor-
mations were randomly generated with uniform range
θ ∈ [−0.3, 0.3]rad, tx, ty ∈ [−25, 25]pixels. Pairwise
registrations were carried out among these 5 images.
For affine transformation, 100 random affine transfor-
mations were generated as the initial deformations us-
ing ai j ∈ [−0.2, 0.2] and tx, ty ∈ [−25, 25]pixels. Thus,
there are in total 4 × 5 × 100 test cases for both rigid
and affine registrations. Figures 2 (c) and (d) show ex-
amples of the moving image with initial rigid and affine
transformation, respectively.

3.4. Synthetic tMRI cardiac images
To assess ventricular function, tMRI is a popular car-

diac tissue tracking technique. tMRI enables noninva-
sive measurement of tissue displacement and deforma-
tion of the myocardium by tagging regions of the heart
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Figure 5: Registration accuracy of rigid and affine registrations on blob images. An asterisk (*) above the label indicates the result is significantly
different (paired Wilcoxon signed rank test, p < 0.05) from the conventional method (σ = 0) in the same group. (a) Boxplots of Residual(Tinit ,Tµ̂)
for rigid registration with each approach; (b) boxplots of Residual(Tinit ,Tµ̂) for affine registration with each approach.

wall with two orthogonal sets of magnetic saturation
planes, each orthogonal to the image plane. During
tissue contraction, the tag pattern moves, allowing vi-
sual tracking of the tag-lines over time. Since the de-
formation of the tag pattern reflects the deformation of
the underlying cardiac tissue, robust and accurate local-
ization and tracking of the tags within the images is of
clinical significance for assessing dynamic properties of
the heart. In this paper we adopted a synthetic phantom
(Carranza-Herrezuelo et al., 2010; Smal et al., 2012) to
evaluate the RS method in a controlled, but fairly real-
istic setting, involving nonrigid deformations. Figures 3
(a) and (b) show two examples, one without deforma-
tion and one with the largest deformation among the 30
frames of the simulated cardiac cycle. On each frame,

Rician noise was added in order to create images with
the same signal-to-noise ratio of 18 dB. Figure 3 (c)
plots the ground truth tracks of the tags of the modeled
left ventricle. It can be found that the nonrigid defor-
mation contains radial expansion, contraction and rota-
tion to simulate left ventricular contraction through the
cardiac cycle. Note that the tagging lines may cause
local minima during image registration. We did pair-
wise registrations among all 30 frames instead of only
between neighboring frames. In total 29 × 30 nonrigid
registration experiments were thus performed. A Gaus-
sian filter using {σ1, . . . , σ3} = {2, 1, 0.5} pixels was ap-
plied to create 3 image resolution levels. Also for the
B-spline transformation model, we employed a standard
multiresolution scheme, halving the grid spacing η in
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Figure 6: Registration accuracy of rigid and affine registrations on cell images. An asterisk (*) above the label indicates the result is significantly
different (paired Wilcoxon signed rank test, p < 0.05) from the conventional method (σ = 0) in the same group. (a) Boxplots of Residual(Tinit ,Tµ̂)
for rigid registration with each approach; (b) boxplots of Residual(Tinit ,Tµ̂) for affine registration with each approach.

each resolution level: {η1, η2, η3} = {64, 32, 16}mm. The
mean of target registration errors (TRE), which measure
the distances between the transformed and ground truth
landmarks, was used to measure the registration accu-
racy. The centers of tag-line intersections (Smal et al.,
2012) were used as landmarks.

3.5. Lung CT images
Public DIR-Lab 3D chest CT data enables a rigor-

ous and objective assessment of the spatial accuracy of
registration methods (Castillo et al., 2009). The DIR-
Lab data set contains 10 pairs of scans with 300 manu-
ally annotated landmarks on the lungs, which allows us
to evaluate the registration accuracy obtained by RS on
real data. The voxel sizes and dimensions of these scans

are around 1.0×1.0×2.5mm and around 256×256×110
voxels. To focus on the lung region, lung masks were
created to restrict the registration. The masks were
created by thesholding, 3D-6-neighborhood connected
component analysis, and morphological closing opera-
tion using a spherical kernel with a diameter of 9 voxels.
In the experiments, the exhale phase (moving image)
was registered to the inhale phases (fixed image). A
Gaussian filter using {σ1, . . . , σ4} = {4, 2, 1, 0.5} voxels
was used to create 4 image resolution levels.

Registration experiments on lung CT images were
done with a B-spline transformation. We fixed the
coarsest grid spacing η1 to be 64mm to avoid too large
grid spacing, and we used η4 = 8mm and η4 =

10mm as the finest grid spacings. From η1 and η4, the
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Table 1: Registration robustness using blob images for rigid and affine registrations, measured by the percentage of cases where
Residual(Tinit ,Tµ̂) ≤ 2mm.

Q = 1 Q = 1 Q = 3 Q = 6

Initial Residual(Tinit ,Tµ̂) σ = 0mm 5mm 10mm 15mm 5mm 10mm 15mm 5mm 10mm 15mm
Rigid (0, 25]mm 68% 33% 25% 19% 47% 38% 35% 63% 53% 45%

(25, 45]mm 41% 69% 64% 53% 80% 87% 83% 82% 94% 92%
(45, 65]mm 60% 69% 63% 56% 74% 78% 74% 76% 81% 78%
Overall 51% 63% 58% 48% 73% 77% 73% 77% 84% 81%

Affine (0, 25]mm 87% 41% 27% 24% 75% 57% 46% 91% 78% 74%
(25, 45]mm 41% 57% 50% 39% 73% 77% 67% 75% 81% 77%
(45, 65]mm 19% 29% 34% 30% 34% 41% 39% 32% 45% 42%
Overall 39% 47% 43% 35% 61% 64% 56% 64% 70% 66%

Table 2: Registration robustness using cell images for rigid and affine registrations, measured by the percentage of cases where Residual(Tinit ,Tµ̂) ≤
2mm.

Q = 1 Q = 1 Q = 3 Q = 6

Initial Residual(Tinit ,Tµ̂) σ = 0mm 5mm 10mm 15mm 5mm 10mm 15mm 5mm 10mm 15mm
Rigid (0, 15]mm 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

(15, 30]mm 80% 96% 98% 100% 98% 100% 100% 100% 100% 100%
(30, 45]mm 45% 50% 50% 52% 49% 64% 64% 59% 70% 70%
Overall 60% 69% 71% 72% 71% 77% 76% 75% 80% 80%

Affine (0, 15]mm 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
(15, 30]mm 92% 99% 99% 99% 100% 100% 100% 97% 100% 100%
(30, 45]mm 40% 63% 59% 57% 58% 64% 62% 65% 68% 63%
Overall 64% 72% 69% 67% 73% 74% 71% 74% 77% 74%

multiresolution schedule was calculated according to
{η1, η4(η1/η4)2/3, η4(η1/η4)1/3, η4}. Therefore, the grid
schedules were set to {η1, η2, η3, η4}={64, 34, 19, 10}mm
and {η1, η2, η3, η4}={64, 32, 16, 8}mm from coarsest to
the finest grid spacings. The two slightly different
schedules were used to verify the consistency of the (rel-
ative) performances of different registration methods.
TRE of the landmarks was used to measure the registra-
tion accuracy. In addition to accuracy, the standard de-
viation of the determinant of the spatial Jacobian (DS J)
was utilized to evaluate the transformation smoothness.
DS J represents the local volume change at a specific lo-
cation. Its standard deviation measures the variation of
local compression and expansion, and thus provides an
indication of the smoothness of a transformation.

3.6. Brain MRI images

Intersubject brain registration is a challenging task
in medical image analysis. It is widely used for at-
las based segmentation (Heckemann et al., 2006) and
template construction (Mandal et al., 2012). We used
the public Internet brain segmentation repository (IBSR
v2.0), which contains 18 T1-weighted MRI 3D brain
scans, to evaluate the RS method in the setting of inter-

subject registration. The volumes of these images are
256 × 256 × 128 voxels. The voxel sizes are around
1 × 1 × 1.5mm. A Gaussian filter using {σ1, . . . , σ4} =

{4, 2, 1, 0.5} voxels was used to create 4 image resolu-
tion levels. The same affine registrations were used to
roughly align the brain data, and then these initialized
results were used as input data for the B-spline registra-
tions. All experiments were repeated with grid sched-
ules {40, 20, 10, 5}mm and {24, 12, 6, 3}mm, to verify
the consistency of the (relative) performances of differ-
ent registration methods. To evaluate the registration ac-
curacy, overall mean overlap which measures the over-
lap between the transformed and ground truth atlases
over all labels was used (Klein et al., 2009a). We used
the standard deviation of DS J to evaluate the smooth-
ness of the transformation inside the brain mask. Be-
cause intersubject registration on 18 patients was per-
formed there were in total 306 test cases.

4. Results

4.1. Blob images

Figure 4 shows the experimental results on blob im-
ages using translation transformation. It shows the ini-
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Figure 7: Registration accuracy on synthetic tMRI cardiac images: (a) and (c) registration accuracy by the conventional method (σ = 0), without
and with regularization term respectively; (b) and (d) registration accuracy produced by the RS technique (σ = 1

4 η) using Q = 1, 3 and 6, without
and with regularization term respectively. Each dot represents a test case based on a pair of images.

Table 3: TREs (in mm, mean ± st.dev.) achieved by different unregularized approaches on 10 lung CT pairs. Results for B-spline grid spacings
η4 = 10mm and η4 = 8mm are shown. The best results in each row for each η4 are marked bold.

η4 = 10mm η4 = 8mm
No. Initial σ=0 Q=1 Q=3 Q=6 σ=0 Q=1 Q=3 Q=6
1 3.89±2.8 0.98±0.5 0.98±0.5 0.98±0.5 0.98±0.5 0.99±0.5 0.99±0.5 0.99±0.5 0.99±0.5
2 4.34±3.9 0.96±0.5 0.96±0.5 0.96±0.5 0.96±0.5 0.96±0.5 0.97±0.5 0.98±0.5 0.98±0.5
3 6.94±4.1 1.13±0.6 1.12±0.6 1.13±0.6 1.12±0.6 1.14±0.6 1.16±0.6 1.15±0.6 1.14±0.6
4 9.83±4.9 2.98±4.4 2.36±3.0 2.40±3.2 2.45±3.3 3.53±5.1 2.99±4.1 2.93±4.2 2.94±4.2
5 7.48±5.5 1.38±1.3 1.35±1.2 1.35±1.2 1.35±1.2 1.37±1.3 1.34±1.2 1.34±1.2 1.34±1.2
6 10.89±7.0 3.79±5.5 3.62±5.2 3.65±5.2 3.62±5.1 4.43±5.9 4.17±5.6 4.23±5.6 4.44±5.8
7 11.03±7.4 1.55±1.2 1.49±1.0 1.50±1.0 1.50±1.0 1.71±1.6 1.64±1.4 1.60±1.3 1.64±1.4
8 14.99±9.0 2.17±3.8 2.19±3.8 2.14±3.7 2.08±3.5 2.29±4.0 2.35±4.0 2.29±3.9 2.24±3.8
9 7.92±4.0 1.81±1.9 1.61±1.5 1.58±1.4 1.71±1.8 2.31±2.9 2.04±2.4 2.12±2.6 2.10±2.6

10 7.30±6.4 1.32±0.9 1.31±0.9 1.31±0.9 1.31±0.9 1.32±1.0 1.32±0.9 1.32±0.9 1.33±0.9
Mean 8.46±3.3 1.81±0.9 1.70±0.8 1.70±0.8 1.71±0.8 2.01±1.2 1.90±1.0 1.90±1.0 1.91±1.1

tial Residual(Tinit,Tµ̂), the results of the determinis-
tic approaches (see Section 3.2), and the results of the
stochastic methods with and without RS on translation
transformations. For the deterministic optimization,
both the registration results achieved by the ordinary de-
terministic (Q = 1; σ = 0) and the brute-force (Q→ ∞;
σ = 10) methods are presented. We can find the ordi-
nary method obtained unsatisfactory results with large
Residual(Tinit,Tµ̂). However, the brute-force approach,
which directly minimizes the smoothed cost function
(Eq. (6)), reached the global optimum with almost zero
Residual(Tinit,Tµ̂). For the stochastic group, the ordi-
nary stochastic approach (Q = 1; σ = 0) obtained sim-
ilar results as the ordinary deterministic method. The
proposed RS method improved the registration results
and, when Q = 3 or Q = 6, achieved similar registra-
tion accuracy as the costly brute-force manner.

Figures 5 (a) and (b) show the results by different reg-
istration approaches on rigid and affine transformations.
The results are grouped by the magnitude of the ini-
tial transformation (i.e., Residual(Tinit,Tµ̂) before reg-

istration). In most cases, the results with RS (σ > 0)
achieved better accuracy than the conventional method
(σ = 0). For small initial transformations, RS lead
to somewhat worse median accuracies, especially with
high σ and low Q. Paired Wilcoxon signed rank tests
(Hollander and Wolfe, 1999) were performed to ver-
ify the statistical significance of the registration results.
Significance is indicated by an asterisk in this paper.
The paired comparisons were carried out between the
conventional method (σ = 0) and the methods with the
RS technique (σ > 0) inside each group. It was found
that the methods with the RS technique produced sig-
nificantly better results than the conventional method in
the cases with medium and large initial transformations.
Among the methods with the RS technique, registration
accuracy was usually further enhanced by increasing the
number of queries Q.

To summarize the robustness of different registration
methods, Tables 1 provides an overview of the percent-
ages of the results with Residual(Tinit,Tµ̂) ≤ 2mm using
rigid and affine transformations, respectively. In most
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Table 4: TREs (in mm, mean ± st.dev.) achieved by different regularized approaches on 10 lung CT pairs. Results for B-spline grid spacings
η4 = 10mm and η4 = 8mm are shown. The best results in each row for each η4 are marked bold.

η4 = 10mm η4 = 8mm
No. Initial σ=0 Q=1 Q=3 Q=6 σ=0 Q=1 Q=3 Q=6
1 3.89±2.8 0.97±0.5 0.97±0.5 0.97±0.5 0.97±0.5 0.97±0.5 0.97±0.5 0.97±0.5 0.97±0.5
2 4.34±3.9 0.94±0.5 0.94±0.5 0.94±0.5 0.95±0.5 0.94±0.5 0.95±0.5 0.95±0.5 0.95±0.5
3 6.94±4.1 1.10±0.6 1.10±0.6 1.10±0.6 1.12±0.6 1.11±0.6 1.10±0.6 1.10±0.6 1.10±0.6
4 9.83±4.9 2.32±3.0 1.99±2.2 2.01±2.3 2.02±2.3 2.73±3.9 2.21±2.8 2.29±3.0 2.29±3.0
5 7.48±5.5 1.37±1.2 1.35±1.2 1.34±1.2 1.35±1.2 1.34±1.2 1.32±1.2 1.32±1.2 1.33±1.2
6 10.89±7.0 3.33±4.8 3.02±4.3 3.18±4.5 3.07±4.4 3.71±5.2 3.60±5.1 3.64±5.1 3.70±5.3
7 11.03±7.4 1.48±1.1 1.43±1.0 1.43±1.0 1.44±1.0 1.55±1.3 1.46±1.0 1.45±1.0 1.48±1.1
8 14.99±9.0 2.12±3.7 2.16±3.7 2.12±3.6 2.03±3.4 2.21±3.9 2.28±3.9 2.22±3.8 2.17±3.7
9 7.92±4.0 1.45±1.1 1.36±0.9 1.36±0.9 1.40±1.1 1.74±1.7 1.59±1.5 1.61±1.6 1.55±1.4

10 7.30±6.4 1.29±0.9 1.28±0.9 1.28±0.9 1.28±0.8 1.27±0.9 1.27±0.9 1.27±0.8 1.27±0.9
Mean 8.46±3.3 1.64±0.7 1.36±0.8 1.57±0.7 1.56±0.7 1.76±0.9 1.67±0.8 1.68±0.8 1.68±0.8

Table 5: Transformation smoothness obtained by different unregularized registration approaches on 10 lung CT pairs. Results for B-spline grid
spacings η4 = 10mm and η4 = 8mm are shown. The best results in each row for each η4 are marked bold.

η4 = 10mm η4 = 8mm
No. σ=0 Q=1 Q=3 Q=6 σ=0 Q=1 Q=3 Q=6
1 0.10 0.10 0.10 0.10 0.12 0.13 0.13 0.12
2 0.10 0.10 0.10 0.10 0.12 0.12 0.12 0.12
3 0.12 0.12 0.12 0.12 0.14 0.15 0.15 0.15
4 0.31 0.25 0.26 0.27 0.40 0.38 0.37 0.38
5 0.16 0.15 0.16 0.15 0.18 0.19 0.18 0.18
6 0.36 0.37 0.36 0.36 0.48 0.45 0.47 0.48
7 0.20 0.19 0.19 0.20 0.25 0.25 0.25 0.25
8 0.18 0.18 0.18 0.18 0.21 0.22 0.22 0.22
9 0.21 0.19 0.19 0.20 0.32 0.29 0.31 0.30
10 0.17 0.17 0.17 0.17 0.20 0.21 0.21 0.21

Mean 0.19±0.1 0.18±0.1 0.18±0.1 0.19±0.1 0.24±0.1 0.24±0.1 0.24±0.1 0.24±0.1

cases, the RS technique enhanced the registration ro-
bustness, except for small initial transformations. Over-
all, the RS approach with σ = 10 and Q = 6 achieved
the best robustness.

4.2. Cell images

Figures 6 (a) and (b) show the registration results by
different registration approaches using rigid and affine
transformations on cell data. Like in Figure 5, the re-
sults are grouped by initial degree of transformation be-
fore registration. It can be observed that the approaches
with the RS technique improve the registration results
in most cases. For cases with small initial transforma-
tion magnitude, the accuracy of the original method was
maintained. The paired Wilcoxon signed rank tests were
carried out between the conventional method (σ = 0)
and the methods with the RS technique (σ > 0) inside
each group.

The registration results with Residual(Tinit,Tµ̂) ≤
2mm are summarized in Tables 2 for rigid and affine
transformations, respectively. For the cases with small
initial transformation, all methods can register well. For
the cases with medium and large initial transforma-
tions, the approaches with the RS technique consistently
achieved better registration robustness than the conven-
tional method. Overall, the RS approach with σ = 10
and Q = 6 achieved the best robustness.

4.3. Synthetic tMRI cardiac images

Figure 7 show the registration results achieved by the
conventional method (σ = 0) and the methods with the
RS technique (σ = 1

4η) using different values of Q.
Figures 7 (a) and (b) presents the results without reg-
ularization term, whereas Figures 7 (c) and (d) show
the results obtained by adding a regularization term to
the cost function. The proposed RS technique obtained
much better registration accuracy than the conventional
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Table 6: Transformation smoothness obtained by different regularized registration approaches on 10 lung CT pairs. Results for B-spline grid
spacings η4 = 10mm and η4 = 8mm are shown. The best results in each row for each η4 are marked bold.

η4 = 10mm η4 = 8mm
No. σ=0 Q=1 Q=3 Q=6 σ=0 Q=1 Q=3 Q=6
1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
4 0.20 0.18 0.19 0.19 0.24 0.21 0.21 0.21
5 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14
6 0.29 0.27 0.29 0.28 0.35 0.32 0.32 0.33
7 0.17 0.17 0.17 0.17 0.19 0.19 0.19 0.19
8 0.16 0.16 0.16 0.16 0.17 0.18 0.18 0.18
9 0.15 0.15 0.15 0.15 0.18 0.17 0.18 0.17
10 0.15 0.15 0.15 0.15 0.17 0.17 0.17 0.17

Mean 0.15±0.1 0.15±0.1 0.15±0.1 0.15±0.1 0.17±0.1 0.17±0.1 0.17±0.1 0.17±0.1

one in both cases with or without regularization terms.
It should be noted that the regularization term did not
help to avoid the local minima in Figure 7 (c). For the
test cases with small initial means of TREs (small val-
ues along X-axis), the final registration accuracy was
not distracted by the added noise. Meanwhile, the regis-
tration results for large initial means of TREs were sub-
stantially improved by using the RS technique.

4.4. Lung CT images

Table 3 presents the registration accuracy TRE
achieved by registration methods with different values
of σ and Q without using a regularization term. Reg-
istration methods with the RS technique (σ = 1

4η)
achieved slightly better overall TREs than the conven-
tional method (σ = 0). Even though the differences
of accuracy are small, these improvements are consis-
tently found for both η4 = 10mm and η4 = 8mm.
The results of registration accuracy with the regular-
ization term are shown in Table 4. The overall results
were improved by regularizing the registration process.
Again, the mean results achieved with the RS technique
were consistently better than the conventional method
(σ = 0). Compared with a recent study (Papież et al.,
2014) on the same data, the TREs reported here are
competitive. The registration accuracy was not further
enhanced by increasing Q. Table 5 reports the trans-
formation smoothness obtained by each registration ap-
proach. The RS method produced similar results as
the conventional approach. Because the regularization
term promotes smooth transformations, the transforma-
tion smoothness was improved significantly as shown in
Table 6. In these results the RS approaches still obtained
similar smoothness as the conventional method.

4.5. Brain MRI images

Figure 8 shows the registration accuracy (Figure 8
(a)) and transformation smoothness (Figure 8 (b)) by
different approaches without and with regularization
term. Since we have sufficient (306) test cases in this ex-
periment, paired Wilcoxon signed rank tests were per-
formed to verify the statistical significance of the reg-
istration results. The paired comparisons were carried
out between the traditional approach (σ = 0) and the
methods with the RS technique. Figure 8 (a) shows that
the registration accuracies achieved with the RS method
are statistically significantly better than the accuracies
without the RS method. Even though these differences
are small in magnitude (around 1% in overlap), the
improvements of registration accuracy are consistently
found for both η4 = 5mm and η4 = 3mm. The overall
registration accuracy was not improved in the regular-
ized experiments. Figure 8 (b) shows that the results
of transformation smoothness are practically identical
without and with RS technique, despite being statisti-
cally different. As expected, adding the regularization
term improved transformation smoothness.

5. Discussion

We evaluated the feasibility of using the stochastic
RS technique in image registration. The RS technique
was applied to various registration problems includ-
ing translation, rigid, affine and B-spline transformation
models. Extensive experiments were carried out on both
synthetic and real biomedical data. The improvement in
registration results proves the effectiveness of the RS
technique. In theory the RS technique approximates a
convolution of the cost function with a Gaussian PDF.
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Figure 8: Registration results on brain MRI data when using different values of σ and Q. An asterisk (*) below the label indicates a significant
difference (paired Wilcoxon signed rank test, p < 0.05) from σ = 0mm. (a) accuracy of unregularized and regularized registration (overall mean
overlap, higher values are better); (b) transformation smoothness of unregularized and regularized registration (standard deviation of DS J , lower
values are better). Results for B-spline grid spacings η4 = 5mm and η4 = 3mm are shown.

Thus, the technique helps to avoid local minima while
minimizing the cost function of the image registration.

The brute-force approach discussed in Section 3.2
was implemented as a deterministic reference method,
which directly smoothes the cost function by convolv-
ing it with a Gaussian PDF, according to Eq. (6). The
registration results obtained using this deterministic
method confirm that improved smoothness of the cost
function leads to better registration accuracy. The pro-
posed stochastic RS method obtained very similar regis-
tration accuracy as the deterministic reference method.
This indicates that the RS method has an equivalent
cost function smoothing effect, as predicted by theory.
The brute-force manner was feasible for translations in
2D, but becomes computationally impractical for high-
dimensional transformation models because of the high
computational cost. In contrast, the RS approach is an
efficient way to minimize Eq. (6) in high-dimensional
settings.

This is the first time that the RS technique is intro-
duced in the image registration domain, where local
minima often lead to misregistrations. To apply the
technique in this domain, we made the following contri-
butions to the original RS technique (Duchi et al., 2012):
1) the rotation, scale and shear parameters have totally

different ranges from the translation parameters in rigid
and affine transformations; therefore, we applied an au-
tomatically estimated diagonal scaling matrix to nor-
malize the optimization process; 2) we employed an
exponentially decreasing function to control the ampli-
tude of Gaussian noise during optimization; 3) the RS
technique is combined with the ASGD optimizer (Klein
et al., 2009b), which is a widely used stochastic opti-
mizer in image registration. Finally, exhaustive exper-
iments were performed on both synthetic and real im-
ages, using translation, rigid, affine and B-spline trans-
formations, both with and without regularization term,
in order to provide detailed insight into the value of RS
for image registration.

Except for the experiments on artificial blob im-
ages, a standard multiresolution strategy was incorpo-
rated in all experiments. As an established and well-
proven technique, a multiresolution strategy is usually
considered an essential component in image registra-
tion. However, it cannot remove all the local min-
ima in the optimization landscape of image registra-
tion (Jenkinson and Smith, 2001). The experimental
results show that the proposed RS technique is com-
plementary to the multiresolution strategy for further
reducing the local minima in image registration. As a
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generic approach, RS technique is not only constrained
for intensity-based registrations but also for more gen-
eralized registration tasks, such as point-based registra-
tions (Besl and McKay, 1992; Chui and Rangarajan,
2003; Jian and Vemuri, 2011).

In case of larger initial transformations, the chance to
encounter multiple local minima due to image structures
with similar appearance increases. The results on blob,
cell and tMRI data clearly show that the RS technique
increased the success rates for the cases with medium
and large initial transformations. A 100% success rate
was not achieved, since for very large-scale local min-
ima it could be impossible to overcome them. Intu-
itively, the size of local minima that can be overcome is
proportional to the setting of σ, which controls the mag-
nitude of random perturbations. In practice, the value of
σ cannot be increased indefinitely, since the optimiza-
tion process may start to diverge.

In contrast to the traditional regularization term that is
often added to the cost function in nonlinear registration
problems, the proposed RS technique provides a direct
way to tackle local minima encountered in both linear
and nonlinear registration problems. In the experiments
on synthetic tMRI cardiac images, the bending energy
regularization term did not help to avoid the local min-
ima, whereas the RS technique improved the accuracy
substantially, both with and without the regularization
term. On the lung CT images, regularization led to im-
proved accuracy and transformation smoothness, but the
RS technique led to even further improvement on that
result in terms of accuracy. On brain MRI data, regu-
larization improved transformation smoothness, but did
not improve accuracy. RS resulted in a slight improve-
ment in accuracy, both with and without regularization.
From these results, it becomes clear that the regulariza-
tion term and the RS technique target different aspects.

For the blob images, the registration accuracy ob-
tained by the RS technique deteriorated in some cases
with small initial transformations and higher values of
σ (see Figure 5). However, this was not observed for the
cell images and other data types. A possible explanation
for this unsatisfactory result is that the large Gaussian
noise prohibits optimal convergence. One possible so-
lution is to finetune the exponentially decreasing func-
tion hk, e.g., using a smaller λ to enforce faster decay.
In this paper, however, we kept hk consistent for all ex-
periments.

In most experiments with medium to large initial de-
formations, increasing Q improved the accuracy. In
a few experiments, however, increasing Q seems to
slightly deteriorate the accuracy. This could be seen in
Figure 6 for cell images with small initial deformations,

in Tables 3 and 4 for lung CT data, and in Figure 8 for
brain MRI. These unexpected results might be related
to the automatically estimated step sizes ak used by the
ASGD optimizer. The optimal step size depends on the
amount of noise on the stochastic gradient. For high Q,
the variance of g̃ is reduced, and therefore a higher step
size might be optimal. This is a possible direction for
future research.

Compared with the other presented applications, the
relatively small improvement on CT lung and MRI brain
data could be explained by less number of local minima
presented in the cost function. The multiresolution strat-
egy could already effectively avoid many of them. De-
spite this, consistent and statistically significant small
improvements were observed in the experiments.

Regarding computational cost, all experiments with
the RS technique were done with query numbers Q = 1,
3 and 6. For the method with Q = 1, the computational
cost is kept the same as for the traditional method. For
the method with multiple queries (Q = 3 and Q = 6) the
computation cost is increased by a factor Q. However,
the RS technique itself is very suitable to parallel com-
putation since multiple queries are independent of each
other. The experimental results indicate that for not too
large σ, Q = 1 is sufficient.

In our previous studies (Sun et al., 2014b,a) a per-
turbation technique was derived from the convolutional
relationship of B-splines, in order to enable the use
of computationally efficient lower-order B-spline ba-
sis functions for nonrigid image registration. In these
works the entire B-spline grid is shifted to approxi-
mate a higher-order B-spline transformation. However,
the transformation parameters themselves were not per-
turbed.

The random coordinate resampling techniques (Likar
and Pernuš, 2001; Tsao, 2003; Aganj et al., 2013) are,
in a way, based on a similar principle as the RS method,
as they effectively smooth the cost function by perturb-
ing the image coordinates. The RS technique presented
in our work is more generically applicable, since it not
only focuses on small-scale local minima due to inter-
polation artifacts, but also on large-scale local minima,
caused for example by image content.

In future work we plan to apply the RS technique to
more registration tasks. The RS technique treats the cost
function as a black box; it works directly on the param-
eters µ. Therefore, in principle the RS technique can
be used in combination with any transformation model
and similarity measure. Whereas in this work, we re-
stricted ourselves to intensity-based registration meth-
ods, it could be an interesting future research direction
to apply the method to point-based registration methods.
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For instance, a general framework for point set registra-
tion is presented and incorporated with rigid and non-
rigid transformation models by Jian and Vemuri (2011).
In their work, it was observed that the L2 distance for
measuring similarity between two Gaussian mixtures
may cause local minima in the optimization process.
Thus, it could be interesting to apply the RS technique
to these types of point set registration problems as well.
In addition, developing a mechanism to automatically
determine the optimal amplitude of added noise could
be an interesting direction.

6. Conclusion

In this work we developed a RS technique for im-
age registration. This technique consists of adding ran-
dom noise to the transformation parameters during the
stochastic optimization of the registration parameters. It
is shown that the RS technique smoothes the cost func-
tion, thus suppressing local minima and thereby improv-
ing the chance of finding the global minimum. By grad-
ually decreasing the noise level during optimization, the
local optimization performance is maintained. The im-
proved registration results demonstrate the effectiveness
of the RS technique.
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