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Abstract

Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and 

study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic 

resonance imaging (MRI) volumes are intensely researched, but the reported results are largely 

incomparable due to different datasets and evaluation schemes. We approached this urgent 

problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge 

organized in conjunction with the MICCAI 2015 conference. In this paper we propose a common 

evaluation framework, describe the publicly available datasets, and present the results of the two 

sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation 

(SPES). A total of 16 research groups participated with a wide range of state-of-the-art automatic 

segmentation algorithms. A thorough analysis of the obtained data enables a critical evaluation of 

the current state-of-the-art, recommendations for further developments, and the identification of 

remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found 

to be feasible. However, algorithms applied to sub-acute lesion segmentation in SISS still lack 

accuracy. Overall, no algorithmic characteristic of any method was found to perform superior to 

the others. Instead, the characteristics of stroke lesion appearances, their evolution, and the 

observed challenges should be studied in detail. The annotated ISLES image datasets continue to 

be publicly available through an online evaluation system to serve as an ongoing benchmarking 

resource (www.isles-challenge.org).
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1. Introduction

Ischemic stroke is the most common cerebrovascular disease and one of the most common 

causes of death and disability worldwide (WHO, 2012). In ischemic stroke an obstruction of 

the cerebral blood supply causes tissue hypoxia (underperfusion) and advancing tissue death 

over the next hours. The affected area of the brain, the stroke lesion, undergoes a number of 

disease stages that can be subdivided into acute (0-24h), sub-acute (24h-2w), and chronic 
(>2w) according to the time passed since stroke onset (González et al., 2011). Magnetic 

resonance imaging (MRI) of the brain is often used to assess the presence of a stroke lesion, 

it’s location, extent, age, and other factors as this modality is highly sensitive for many of 

the critical tissue changes observed in stroke.

Time is brain is the watchword of stroke units worldwide. Possible treatment options are 

largely restricted to reperfusion therapies (thrombolysis, thrombectomy), which have to be 

administered not later than four to six hours after the onset of symptoms. Unfortunately, 

these interventions are associated with an increasing risk of bleeding the longer the lesion 

has been underperfused. To this end, considerable effort has gone into finding image 

descriptors that predict stroke outcome (Wheeler et al., 2013), treatment response (Albers et 

al., 2006; Lansberg et al., 2012), or the patients that would benefit from a treatment even 

beyond the regular treatment window (Kemmling et al., 2015).

At present, only a qualitative lesion assessment is incorporated in the clinical workflow. 

Stroke research studies, which require quantitative evaluation, depend on manually 

delineated lesions. But the manual segmentation of the lesion remains a tedious and time 

consuming task, taking up to 15 minutes per case (Martel et al., 1999), with low inter-rater 

agreement (Neumann et al., 2009). Developing automated methods that locate, segment, and 

quantify the stroke lesion area from MRI scans remains an open challenge. Suitable image 

processing algorithms can be expected to have a broad impact by supporting the clinicians’ 

decisions and render their predictions more robust and reproducible.

In the treatment decision context, an automatic method would provide the medical 

practitioners with a reliable and, above all, reproducible penumbra estimation, based on on 

which quantitative decision procedures can be developed to weight the treatment risks 

against the potential gain. For medical trials, the results would become more reliable and 

reproducible, hence strengthening the finding and reducing the required amount of subjects 

for credible results. Another beneficiary would be cognitive neuroscientists, who often 

perform studies where cerebral injuries are correlated with cognitive function and for whom 

lesion segmentation is an important pre-requisite for statistical analysis.

Still, segmenting stroke lesions from MRI images poses a challenging problem. First, the 

stroke lesions’ appearance varies significantly over time, not only between but even within 

the clinical phases of stroke development. This holds especially true for the sub-acute phase, 

which is studied in the SISS sub-challenge: At the beginning of this interval, the lesion 

usually shows strongly hyperintense in the diffusion weighted imaging (DWI) sequence and 

moderately hyperintense in fluid attenuation inversion recovery (FLAIR). Towards the 

second week, the hyperintensity in the FLAIR sequence increases while the DWI 
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appearance converges towards isointensity (González et al., 2011). Additionally, a ring of 

edema can build up and disappear again. In the acute phase, the DWI denotes the infarcted 

region as hyperintensity. The magnitude of the actual under-perfusion shows up on perfusion 

maps. The mismatch between these two is often considered the potentially salvageable 

tissue, termed penumbra (González et al., 2011). Second, stroke lesions can appear at any 

location in the brain and take on any shape. They may or may not be aligned with the 

vascular supply territories and multiple lesions can appear at the same time (e.g. caused by 

an embolic shower). Some lesions may have radii of few millimeters while others 

encompass almost a complete hemisphere. Third, lesion structures may not appear as 

homogeneous regions; instead, their intensity can vary significantly within the lesion 

territory. In addition, automatic stroke lesion segmentation is complicated by the possible 

presence of other stroke-similar pathologies, such as chronic stroke lesions or white matter 

hyperintensities (WMHs). The latter is especially prevalent in older patients which constitute 

the highest risk group for stroke. Finally, a good segmentation approach must comply with 

the clinical workflow. That means working with routinely acquired MRI scans of clinical 

quality, coping with movement artifacts, imaging artifacts, the effects of varying scanning 

parameters and machines, and producing results within the available time window.

1.1. Current methods

The quantification of stroke lesions has gained increasing interest during the past years (Fig. 

1). Nevertheless, only few groups have started to develop automatic image segmentation 

techniques for this task in recent years despite the urgency of this problem. A recent review 

of non-chronic stroke lesion segmentation (Rekik et al., 2012) summarizes the most 

important works until 2008, reporting as few as five automated stroke lesion segmentation 

algorithms. A collection of more recent approaches not included in Rekik et al. (2012) are 

listed in Table 1. While an increasing number of automatic solutions are presented, there are 

also a number of semi-automatic methods indicating the difficulty of the task. Among the 

automatic algorithms, only a few employ pattern classification techniques to learn a 

segmentation function (Prakash et al., 2006; Maier et al., 2014, 2015c) or design 

probabilistic generative models of the lesion formation (Derntl et al., 2015; Menze et al., 

2015; Forbes et al., 2010; Kabir et al., 2007; Martel et al., 1999).

While all approaches make an e ort to quantify segmentation accuracies, most lack detailed 

descriptions of the employed dataset, which is a critical matter as stroke lesion shape and 

appearance changes rapidly during the first hours and days, significantly altering the 

difficulty of the segmentation task. Information about the stroke evolution phase is 

sometimes omitted (Seghier et al., 2008; Forbes et al., 2010) or, if mentioned, not clearly 

defined (Saad et al., 2011; Muda et al., 2015). Where provided, the definition of acute stroke 

often mixes with the sub-acute phase (Ghosh et al., 2014; Mah et al., 2014; Tsai et al., 

2014). Only a few studies give details on pathological inclusion and exclusion criteria of the 

data (James et al., 2006; Maier et al., 2015c), although these are important characteristics: 

Results obtained on right-hemispheric stroke only (Dastidar et al., 2000) are not comparable 

to ones omitting small lesions (Mah et al., 2014) nor to those obtained from two central axial 

slices of each volume (Li et al., 2004). Comparability is further impeded by a wide range of 

dataset sizes (N ∈ [2, 57]), employed MRI sequences and quantitative evaluation measures. 
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All this renders the interpretation of the results difficult and explains the wide range of 

segmentation accuracies reported over the years. A very recent work (Maier et al., 2015b) 

compares a number of classification algorithms on a common dataset, but these do not fully 

represent the state-of-the-art nor are they implemented by their respective authors.

In the present benchmark study, we approach the urgent problem of comparability. To this 

end, we planned, organized, and pursued the Ischemic Stroke LEsion Segmentation (ISLES) 

challenge: A direct, fair, and independently controlled comparison of automatic methods on 

a carefully selected public dataset. ISLES 2015 was organized as a satellite event of the 

International Conference on Medical Image Computing and Computer Assisted Intervention 

(MICCAI) 2015, held in Munich, Germany. ISLES combined two sub-challenges dealing 

with different phases of the stroke lesion evolution: First, the Stroke Perfusion EStimation 

(SPES) challenge dealing with the image interpretation of the acute phase of stroke; second, 

the Sub-acute Ischemic Stroke lesion Segmentation (SISS) challenge dealing with the later 

stroke image patterns. In both tasks we aim at answering a number of open questions: What 

is the current state-of-the-art performance of automatic methods for ischemic stroke lesion 

segmentation? Which type or class of algorithms is most suited for the task? Which 

difficulties are overcome and which challenges remain? And what are the recommendations 

we can give to researchers in the field after the extensive evaluation conducted?

2. Setup of ISLES

Image segmentation challenges aim at an independent and fair comparison of various 

segmentation methods for a given segmentation task. In these de-facto benchmarks 

participants are first provided with representative training data with associated ground truth, 

on which they can adjust their algorithms. Later, a testing dataset without ground truth is 

distributed and the participants submit their results to the organizers, who score and rank the 

submissions.

Previous challenges in the medical image processing communities dealt with the 

segmentation of tumors (Menze et al., 2015) or multiple sclerosis lesions (Styner et al., 

2008) in MRI brain data; complete lungs (Murphy, 2011) or their vessels (Rudyanto et al., 

2014) in computed tomography scans; 4D ventricle extraction (Petitjean et al., 2015) as well 

as myocardial tracking and deformation (Tobon-Gomez et al., 2013); prostate segmentation 

from MRI (Litjens et al., 2014); and brain extraction in adults (Shattuck et al., 2009) and 

neonatals (Išgum et al., 2015).

The number of challenges has been steadily increasing over the past years (Fig. 2) as visible 

from the events listed on http://grand-challenge.org. Many of these have become the de-facto 

evaluation standard for new algorithms, in particular when adhering to some standards listed 

on the same web resource: Both training and testing dataset are representative for the task, 

well described, and large enough to draw significant conclusions from the results; the 

associated ground truth is created by experts following a clearly defined set of rules; the 

evaluation metrics chosen capture all aspects relevant for the task; and, ideally, challenges 

remain open for future contestants and serve as an ongoing benchmark for algorithms in the 

field.
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With ISLES 2015, we introduce for the first time a benchmark for the growing but 

inaccessible collection of stroke lesion segmentation algorithms. The challenge was 

launched in February 2015 and potential participants were contacted directly following an 

extensive literature review on stroke segmentation or via suitable mailing lists. The training 

datasets for SISS and SPES were released in April 2015 using the the SICAS Medical Image 

Repository (SMIR) platform2 (Kistler et al., 2013). The participants were able to download 

the testing datasets from September 14, 2015, and had to submit their results within a week. 

The ground truth for this second set is kept private with the organizers. Repeated 

submissions were allowed, but only the last one counted. The organizers evaluated the 

submitted results and presented them during a final workshop at the international MICCAI 

conference 2015 in Munich, Germany. All conclusions presented in this paper are drawn 

from these testing results.

We refrained from an on-site evaluation as previous attempts (Murphy et al., 2011; Menze et 

al., 2015; Petitjean et al., 2015) have shown that such endeavors may be prone to 

complications unrelated to the actual algorithms’ performances. Instead, the results obtained 

on the evaluation set were hidden from the participants to avoid tuning on the testing dataset.

The ISLES benchmark is open post-challenge for researchers to continue evaluating 

segmentation performance through the SMIR evaluation platform. The results and rankings 

of the initial participants remain as a frozen table on the challenge web page3 while the 

SMIR platform supplies an automatically generated listing of these and all future results.

Interested research teams could register for one or both sub-challenges. All submitted 

algorithms were required to be fully automatic; no other restrictions were imposed. Until the 

day of the challenge, the SMIR platform listed over 120 registered users for the ISLES 2015 

challenge and a similar count of training dataset downloads. Of these, 14 teams provided 

testing dataset results for SISS and 7 algorithms participated in SPES. Their affiliations and 

methods can be found in Table 2. For a detailed description of the algorithms please refer to 

Appendix A.

3. Data and methods

3.1. SISS image data and ground truth

We gathered 64 sub-acute ischemic stroke cases for the training and testing sets of the SISS 

challenge. A total of 56 cases were supplied by the University Medical Center Schleswig-

Holstein in Lübeck, Germany. They were acquired in diagnostic routine with varying 

resolutions, views, and imaging artifact load. Another eight cases were scanned at the 

Department of Neuroradiology at the Klinikum rechts der Isar in Munich, Germany. Both 

centers are equipped with 3T Phillips systems. The local ethics committee approved their 

release under Az.14-256A. Full data anonymization was ensured by removing all patient 

information from the files and the facial bone structure from the images.

2www.smir.ch
3www.isles-challenge.org
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Considered for inclusion were all cases with a diagnosis of ischemic stroke for which at least 

the set of T1-weighted (T1), T2-weighted (T2), DWI (b = 1000) and FLAIR MRI sequences 

had been acquired. Additional pathological deformation, such as, e.g., non-stroke WMHs, 

haemorrhages, or previous strokes, did not lead to the exclusion of a case. Scans performed 

outside the sub-acute stroke development phase were rejected. As the exact time passed 

since stroke onset is not known in most cases, lesions were visually classified as sub-acute 

infarct if a pathologic signal was found concomitantly in FLAIR and DWI images (presence 

of vasogenic and cytotoxic edema with evidence of swelling due to increased water content).

In order to focus the analysis on the participating algorithms rather than assessing the 

preprocessing techniques employed by each team, all cases were consistently preprocessed 

by the organizers: The MRI sequences are skull-stripped using BET2 (Jenkinson et al., 

2005) with a manual correction step where required, b-spline-resampled to an isotropic 

spacing of 1 mm3, and rigidly co-registered to the FLAIR sequences with the elastix toolbox 

(Klein et al., 2010).

Acquired in a routine diagnostic setting and representing the clinical reality, these data sets 

are a afflicted by secondary pathologies, such as stroke similar deformations and chronic 

stroke lesions, as well as imaging artifacts, varying acquisition orientations, differing 

resolutions, or movement artifacts.

In addition to the wide range of acquisition and clinically related variety, the sub-acute 

lesions themselves display a wide range of variability (Table 3). Great care has been taken to 

preserve the diversity of the stroke cases when splitting the data into testing and training 

datasets: both contain single- and multi-focal cases, small and large lesions, and were 

divided by further criteria (Table 3). The main difference between the sets is the addition of 

the eight cases from Munich to the testing dataset only; hence, this second center data was 

not available during the training phase (Table 4).

All expert segmentations used in ISLES were prepared by experienced raters. For SISS, two 

ground truth sets (GT01 and GT02) were created and the segmentations were performed on 

the FLAIR sequence, which is known to exhibit lower inter-rater differences as, e.g., T2 

(Neumann et al., 2009). The guidelines for expert raters were as follows:

1. The segmentation is performed on the FLAIR sequence

2. Other sequences provide additional information

3. Only sub-acute ischemic stroke lesions are segmented

4. Partially surrounded sulci/fissures are not included

5. Very thin/small or largely surrounded sulci/fissures are included

6. Surrounded haemorrhagic transformations are included

7. The segmentation contains no holes

8. The segmentation is exact but spatially consistent (no sudden spikes or 

notches)
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Acute infarct lesions (DWI signal for cytotoxic edema only, no FLAIR signal for vasogenic 

edema) or residual infarct lesions with gliosis and scarring after infarction (no DWI signal 

for cytotoxic edema, no evidence of swelling) were not included. For the training, only 

GT01 was made available to the participants, while the testing data evaluation took place 

over both sets.

3.2. SPES image data and ground truth

All patients included in the SPES dataset were treated for acute ischemic stroke at the 

University Hospital of Bern between 2005 and 2013. Patients included in the dataset 

received the diagnosis of ischemic stroke by MRI with an identifiable lesion on DWI as well 

as on perfusion weighted imaging (PWI), with a proximal occlusion of the middle cerebral 

artery (MCA) (M1 or M2 segment) documented on digital subtraction angiography. An 

attempt at endovascular therapy was undertaken, either by intra-arterial thrombolysis (before 

2010) or by mechanical thrombectomy (since 2010). The patients had a minimum age of 18 

and the images were not subject to motion artifacts.

The stroke MRI was performed on either a 1.5T (Siemens Magnetom Avanto) or 3T MRI 

system (Siemens Magnetom Trio). The stroke protocol encompassed whole brain DWI (24 

slices, thickness 5 mm, repetition time 3200 ms, echo time 87 ms, number of averages 2, 

matrix 256 × 256) yielding isotropic b1000 images. For PWI the standard dynamic-

susceptibility contrast enhanced perfusion MRI (gradient-echo echo-planar imaging 

sequence, repetition time 1410 ms, echo time 30 ms, field of view 230 × 230 mm, voxel 

size: 1.8 × 1.8 × 5.0 mm, slice thickness 5 mm, 19 slices, 80 acquisitions) was acquired. 

PWI scans were recorded during the first pass of a standard bolus of 0.1 mmol/kg gadobutrol 

(Gadovist, Bayer Healthcare). Contrast medium was injected at a rate of 5 ml/s followed by 

a 20 ml bolus of saline at a rate of 5 ml/s. Perfusion maps were obtained by block-circular 

singular value decomposition using the Perfusion Mismatch Analyzer (PMA, from Acute 

Stroke Imaging Standardization Group ASIST) Ver.3.4.0.6. The arterial input function is 

automatically determined by PMA based on histograms of peak concentration, time-to-peak 

and mean transit time.

Sequences and derived maps made available to the participants are T1 contrast enhanced 

(T1c), T2, DWI, cerebral blood flow (CBF), cerebral blood volume (CBV), time-to-peak 

(TTP), and time-to-max (Tmax) (Table 5).

For preprocessing, all images were rigidly registered to the T1c with constant resolution of 2 

× 2 × 2 mm and automatically skull-stripped (Bauer et al., 2013). This resolution was chosen 

in regard to the low 1.8.8 × 5.0 mm resolution of the PWI images. Together with the removal 

of all patient data from the files, full anonymization was achieved.

To determine the eligibility of a patient for treatment or to assess a treatment response in 

clinical trials, the pretreatment estimation of the potentially salvageable penumbral area is 

crucial. A 6 second threshold applied to the Tmax map has been suggested (Straka et al., 

2010) and successfully applied in large multi-center trials (Lansberg et al., 2012) to 

determine the area of hypoperfusion (i.e. penumbra + core). But this approach requires the 

manual setting of a region of interest as well as considerable manual postprocessing. For 
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SPES, we are interested in whether advanced segmentation algorithms could replace manual 

correction of thresholded perfusion maps, yielding faster and reproducible estimation of 

tissue at risk volume.

The hypoperfused tissue was segmented semi-manually with Slicer 3D Version 4.3.1 by a 

medical doctor with a preadjusted threshold for Tmax of 6 seconds applied to regions of 

interest as described in Straka et al. (2010) and Lansberg et al. (2012), followed by a manual 

correction step consisting in removing sulci, non-stroke pathologies and previous infarcts by 

taking into account the other perfusion maps and anatomical images. The label represents 

the stroke-affected regions with restricted perfusion, which is the first requirement to 

determine the penumbral area via a perfusion-diffusion mismatch approach.

The collected data therefore includes a variety of acute MCA cases (Table 6) that were split 

into training and testing cases by an experienced neuroradiologist using as criteria the 

complexity in visually defining the extent of the penumbral area.

The training dataset is additionally equipped with a manually created DWI segmentation 

ground truth set, which roughly denotes the stroke’s core area. These are not considered in 

the challenge.

3.3. Evaluation metrics

As measures we employ (1) Dice’s coefficient (DC), which describes the volume overlap 

between two segmentations and is sensitive to the lesion size; (2) the average symmetric 

surface distance (ASSD), which denotes the average surface distance between two 

segmentations; and (3) the Hausdor distance (HD), which is a measure of the maximum 

surface distance and hence especially sensitive to outliers.

The DC is defined as

(1)

with A and B denoting the set of all voxels of ground truth and segmentation respectively. To 

compute the ASSD we first define the average surface distance (ASD), a directed measure, 

as

(2)

and then average over both directions to obtain the ASSD

(3)
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Here AS and BS denote the surface voxels of ground truth and segmentation respectively. 

Similar, the HD is defined as the maximum of all surface distances with

(4)

The distance measure d(·) employed in both cases is the Euclidean distance, computed 

taking the voxel size into account.

3.4. Ranking

After selecting suitable evaluation metrics, we face the problem of establishing a meaningful 

ranking for the competing algorithms as the different measures are neither in the same range 

nor direction.

In the simplest case, metrics are evaluated individually and different rankings are offered 

(Menze et al., 2015). But this would mean neglecting the aspects revealed by the remaining 

measures and is hence a bad choice for most challenges.

A second approach taken by some challenges (Styner et al., 2008) is to compare two expert 

segmentations against each other. The resulting evaluation values are then assumed to 

indicate the upper limit and hence denote the 100 percent mark of each measure. New 

segmentations are then evaluated and the values compared to their respective 100 percent 

marks, resulting in a percentage rating for each measure. Drawback is that for measure with 

an infinite range, such as the ASSD, one has to define an arbitrary zero percent mark.

We chose a third approach based on the ideas of Murphy et al. (2011) that builds on the 

concept that a ranking reveals only the direction of a relationship between two items (i.e. 

higher, lower, equal) but not its magnitude. Basically, each participant’s results are ranked 

per case according to each of the three metrics and then the obtained ranks are averaged. For 

a more detailed account see Appendix B.

3.5. Label fusion

The specific design of each automatic segmentation algorithm will result in certain strengths 

and weaknesses for particular challenges in the present image data. Multiple strategies have 

been proposed in the past to automatically determine the quality of several raters or 

segmentation algorithms (Xu et al., 1992; Warfield et al., 2004; Langerak et al., 2010). 

These algorithms enable a suitable selection and/or fusion to best combine complementary 

segmentation approaches. To study and compensate the potential varying segmentation 

accuracy of all methods for individual cases, we apply the following three popular label 

fusion algorithms to their test results (see Tab 7, bottom): First, majority vote (Xu et al., 

1992), which simply counts the number of foreground votes over all classification results for 

each voxel separately and assigns a foreground label if this number is greater than half the 

number of algorithms. Second, the STAPLE algorithm (Warfield et al., 2004), which 

performs a simultaneous truth and performance level estimation, that calculates a global 

weight for each rater and attempts to remove the negative influence of poor algorithms 
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during majority voting. Third, the SIMPLE algorithm (Langerak et al., 2010), which 

employs a selective and iterative method for performance level estimation by successively 

removing the algorithms with poorest accuracy as judged by their respective Dice score 

against a weighted majority vote, where the weights are determined by the previously 

estimated performances.

4. Results: SISS

4.1. Inter-observer variance

Comparing the two ground truths of SISS against each other provides (1) the baseline above 

which an automatic method can be considered to produce results superior to a human rater 

and (2) a measure of the task’s difficulty (Table 7, last row). The two expert segmentations 

overlap at least partially for all cases. Compared to similar tasks, such as, e.g., brain tumor 

segmentation, for which inter-observer DC values of 0.74 ± 0.13 to 0.85 ± 0.08 are reported 

(Menze et al., 2015), the ischemic stroke lesion segmentations problem can be considered 

difficult with a mean DC score of 0.70 ± 0.20.

4.2. Leaderboard

The main result of the SISS challenge is a leaderboard for state-of-the-art methods in sub-

acute ischemic stroke lesion segmentation (Table 7). The evaluation measures and ranking 

system employed are described in the method part of this article (Sec. 3.4). No participating 

method succeeded in segmenting all 36 testing cases successfully (DC> 0) and the best 

scores are still substantially below the human rater performance. Note that for all following 

experiments, we will focus on DC averages only as the ASSD and HD values cannot be 

readily computed for the failed cases and are thus not suitable for a direct comparison of 

methods with differing numbers of failure cases.

4.3. Statistical analysis

We performed a statistical analysis of the results to rule out random influences on the 

leaderboard ranking. Each pair of methods is compared with the two-sided Wilcoxon signed-

rank test (Wilcoxon, 1945), a nonparametric test of the null hypothesis that two samples 

come from the same population against an alternative hypothesis (Fig. 3).

The two highest ranking methods, UK-Imp2 and CN-Neu, show no statistically significant 

differences with a confidence of 95% (i.e. p < 0.025). No other algorithm performs better 

than them, and they both are better than the 12 remaining ones. Next comes a group of four 

methods (FI-Hus, BE-Kul2, US-Odu, De-UzL) to which only the two winners prove 

superior. But among these, FI-Hus takes the highest position as it is statistically better than 

eight other methods, while the other three only prove superior to at most four competitors. 

The established leaderboard ranking is largely confirmed by the statistical analysis.

4.4. Impact of multi-center data

Cases acquired at different medical centers can differ greatly in appearance. A good 

automatic stroke lesion segmentation method should be able to cope with these variations. 
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We broke down each method’s results by medical center (Fig. 4) to test whether this holds 

true for the participating algorithms.

Since the training dataset contained only cases from the first center, the difference in 

performance should reveal the methods’ generalization abilities. We observed that not a 

single algorithm reached second center scores comparable to its first center scores. This is a 

strong hint towards a difficult adaptation problem.

4.5. Combining the participants’ results by label fusion

Applying the three label fusion algorithms presented in Sec. 3.5 lead to the results presented 

in Table 7 at the bottom. We found that the SIMPLE algorithm performed best and could 

reduce outliers as evident by a lower Hausdor distance. When using majority voting or 

STAPLE, the negative influence of multiple failed segmentations that are correlated yielded 

a lower accuracy than at least the two top ranked algorithms.

4.6. Dependency on observer variations

A good segmentation method does not only adapt well to second center data but equally to 

another observer’s ground truth. Only the GT01 ground truth set was made available to the 

participating teams during the training/tuning phase. Hence, particularly machine learning 

solutions could be expected to show deficits on the second rater ground truth GT02. To test 

how well the methods generalize, we compared their performance on the testing sets GT01 

ground truth against their performance on the formerly unseen GT02 set (Fig. 5).

The average DC scores of each method differed only slightly over the ground truth sets. 

Only in a single case, UK-Imp2, the difference was significant (paired Student’s t-test with p 
< 0.05), but the higher results were obtained for the, formerly unseen, GT02 set. We can 

hence conclude that all algorithms generalized well with respect to expert segmentations of 

different raters. An additional data analysis showed that the ranking of the methods does not 

change if only one or the other of the ground truth sets is employed for evaluation.

4.7. Outlier cases

A benchmark is only as good as its data. The average scores obtained on the different cases 

of the testing dataset differed widely and some proved especially difficult or easy to segment 

(Fig. 6). For cases 29 to 36, this variation can be explained through the different acquisition 

parameters at the second medical center. But the weak performance of most methods on 

cases such as 10, 17 and 23 must have other reasons. We compared these visually to the 

overall most successful cases 2, 5 and 13 to detect possible commonalities (Fig. 7).

The three cases that were successfully processed by nearly all algorithms show large, clearly 

outlined lesions with a strongly hyperintense FLAIR signal. In two of these cases, the DWI 

signal is relatively weak, in some areas nearly isointense. Still, for these cases the algorithms 

displayed the highest confidence. One of the most difficult cases (17) contains only a single 

small lesion with marginal FLAIR and strong DWI hyperintensities. Another case (10), 

equally showing a small lesion, has a stronger FLAIR support, but also displays large 

periventricular WMHs that seem to confuse most algorithms despite missing DWI 
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hyperintensities. This behavior was also visible for the third of the failed cases (17): Here, 

the actual lesion is correctly segmented by most methods as it is clearly outlined with strong 

FLAIR and DWI support. But many algorithms additionally delineated parts of the 

periventricular WMHs, which again only show up in the FLAIR sequence.

4.8. Correlation with lesion characteristics

The properties of the cases might have an influence on the segmentation quality as some are 

clearly easier to segment than others. To find such correlations, we related various lesion 

characteristics to the average DC scores obtained over all teams using suitable statistics 

(Table 8).

Significant moderate correlation was found between the lesion volume and the average DC 

values. A statistically significant difference of means was found when comparing cases with 

haemorrhage present and cases without, as well as between left hemispheric and right 

hemispheric lesions. Since the characteristics cannot be assumed to be independent, we 

furthermore tested the last two groupings for significant differences in lesion volumes 

between the groups. This was found in both cases (see secondary test for each of these two 

characteristics). We could not reliably establish a significant influence on the results for any 

single parameter. Even the influence of lesion volume is not certain as we will detail in the 

discussion.

5. Results: SPES

5.1. Leaderboard

To establish an overall leaderboard for state-of-the-art methods in automatic acute ischemic 

stroke lesion segmentation, all submitted results were ranked relatively as described in Sec.

3.4 (Table 9).

We opted not to calculate the HD for SPES as it does not reflect the clinical interest of 

providing volumetric information of the penumbra region. In addition, since some lesions in 

SPES contained holes, the HD was not a useful metric for gauging segmentation quality. 

This ranking is the outcome of the challenge event and was used to determine the 

competition winners. No completely failed segmentation (DC< 0) was submitted for any of 

the algorithms and the evaluation results of the highest ranking teams denote a high 

segmentation accuracy.

5.2. Statistical analysis

A strict ranking is suited to determine the winners of a competition, but average performance 

scores are ignoring the spread of the results. To this end, we pursued a statistical analysis 

that takes into account the dispersion in the distribution of case-wise results, and we 

compare each pair of methods with the two-sided Wilcoxon signed-rank test (Fig. 8).

In this test, we do not observe significant differences between the two first ranked methods 

nor between the third and fourth place. Hence, SPES has two first ranked, two second 

ranked, and one third ranked method according to the statistical analysis.
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5.3. Results per case and method

A similarity in performance based on statistical tests and average scores between the first 

two and second two methods was already established. To test whether these pairs behave 

similarly for all of the testing dataset cases, we plotted the DC scores of each team against 

the cases (Fig. 9).

The performance lines of the highest ranked methods, CH-Insel and DE-UzL, display a very 

similar pattern and, except for some small variation, reach mostly very similar DC values. It 

seems like both methods are doing roughly the same. This observation does not hold true for 

the two runner-ups, BE-Kul2 and CN-Neu. Both methods display outliers towards the lower 

end and their performances for the testing dataset cases are not as near to each other as 

observed for the first two methods, i.e., while similar in average performance, the methods 

seem to represent different segmentation functions. The lowest ranked methods mainly differ 

from the others in the sense that they fail to cope with the more difficult cases.

Overall, most algorithms exhibit the same tendencies, i.e., imaging and/or pathological 

differences between the cases seem to influence all methods in a similar fashion. In other 

words, the methods agree largely on what could be considered difficult and easy cases.

The outcome of combining all participants’ results by means of label fusion (c.f. Sec.3.5) 

yielded the highest Dice scores when using the SIMPLE algorithm, but (for the SPES data) 

applying STAPLE and majority vote produce a similar outcome (see Table 9, bottom)

5.4. Outlier cases

We took a close look at two cases with overall low average DC scores, cases 05 and 11, to 

establish a rationale behind the lower performance of the algorithms (Fig. 10). For case 05, 

we can be observed two previous embolisms that cause a compensatory perfusion change, 

depicted as two hyperintensity regions within the lesion area in the diffusion image and as 

hypoperfused areas in the Tmax map. The difficulties associated to the segmentation of case 

11 are related to an acute infarct presenting a mismatch with a intensity pattern similar on 

the Tmax and in the borderline intensity range of 6 seconds. In summary, the main 

difficulties faced by the algorithms are related to physiological aspects, such as collateral 

flow, previous infarcts, etc.

6. Discussion: SISS

With the SISS challenge, we provided a public dataset with a fair and independent automatic 

evaluation system to serve as a general benchmark for automatic sub-acute ischemic stroke 

lesion segmentation methods. As main result of the challenge event, we are able to assess the 

current state of the art performance in automatic sub-acute ischemic stroke lesion 

segmentation and to give well-founded recommendations for future developments. In this 

section, we review the results of the experiments conducted, discuss their potential 

implications, and try to answer the questions posed in the introduction.

Foremost, we aimed to establish if the task can be considered solved: The answer is a clear 

no. Even the best methods are still far from human rater performance as set by the inter-rater 
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results. And while the observers agreed at least partially in all cases, no automatic method 

segmented all cases successfully. Many issues remain and a target-oriented community effort 

is required to improve the situation.

The best accuracy reached is an average DC of 0.6 with an ASSD of 4 mm. The high 

average HD of at least 20 mm reveals many outliers and/or missed lesions. An STD of 0.3 

DC denotes high variations; indeed, we observe many completely or largely failed cases for 

each method.

Previously published DC results on sub-acute data (Table 1) are all slightly to considerably 

better. This underlines the need for a public dataset for stroke segmentation evaluation that 

encompasses the entire complexity of the task as private datasets are often too selective and 

the reported results differ greatly without providing the information required to identify the 

causes behind these variations.

The low scores obtained by all participating algorithms show that sub-acute ischemic stroke 

lesion segmentation is a very difficult task. This is furthermore supported by the high inter-

rater variations obtained, an observation that has been made before: Neumann et al. (2009) 

report median inter-rater agreement of DC = 0.78 and HD = 23.4 mm over 14 subjects and 9 

raters and Fiez et al. (2000) volume differences of 18 ± 16%.

6.1. The most suitable algorithm and the remaining challenges

The benchmark results were reviewed to identify the type of algorithm most suitable for sub-

acute ischemic stroke lesion segmentation, but no definite winner could be determined. 

While there are clear methodological differences between the submitted methods, the same 

methodological approach (used in different algorithms) may lead to substantially different 

performance. We were not even able to determine clear performance differences between 

types of approaches: The two statistically equally well performing winners include one 

machine learning algorithm based on deep learning (UK-Imp2 with a convolutional neural 

network (CNN)) and one non-machine learning approach (CN-Neu with fuzzy C-means). 

We have to conclude that many of the participating algorithms are equally suited and that the 

devil is in the detail. This finding is supported by the wide spread of performances for 

random forest (RF) methods, including the third and the next to last position in the ranking. 

Adaptation to the task and tuning of the hyperparameters is the key to good results. An 

observation made is that the three winners all use a combination of two algorithms, possibly 

compensating the weak points of one with the other.

All participating methods showed good generalization abilities regarding the second rater. 

Since the inter-rater variability is high, we can assume that even the machine learning 

algorithms did not suffer from overfitting or, in other words, managed to avoid the inter-rater 

idiosyncrasies. Another explanation could be that the differences between the two raters fall 

into regions where little image information supports the presence of lesions.

Quite contrary, not a single algorithm adapted well to the second medical center data. 

differences in MRI acquisition parameters and machine dependent intensity variations are 

known to pose a challenge for all automatic image processing methods (Han et al., 2006). 
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Seemingly, the center-dependent differences are difficult to learn or model. Regrettably, we 

did not have enough second center data in the testing dataset to draw a conclusive picture as 

the observed high variations might equally be caused by the considerably smaller lesion 

sizes in the second center dataset or other factors not attributable to multi-center variations 

(Jovicich et al., 2009). Special attention should be paid to this point when developing 

applications.

Cases for which all methods obtained good results show mostly large and well delineated 

lesions with a strong FLAIR signal while small lesions with only a slightly hyperintense 

FLAIR support posed difficulties. Surprisingly, quite a number of algorithms have trouble 

differentiating between sub-acute stroke lesions and periventricular WMHs despite the fact 

that the latter shows an isointense DWI signal. This might be attributable to the strongly 

hyperintense DWI artifacts and often inhomogeneous lesion appearance, reducing the 

methods’ confidence in the DWI signal. It is hard to judge whether these findings hold true 

for other state-of-the-art methods because most publications provide only limited 

information and discussions on the particularities of their performance or failure scenarios.

None of our collected lesion characteristics was found to exhibit a significant influence on 

the results (Table 8): The lesion volume correlates significantly with the scores, but the DC 

is known to reach higher values for larger volumes. The apparent performance differences in 

the presence of haemorrhages and the dependency on laterality could both be explained by 

differences in the respective group’s lesion sizes. To investigate combinations of 

characteristics with, e.g., multifactorial ANOVAs, a larger number of cases would be 

required.

The conclusions drawn here are meant to be general and valid for most of the participating 

methods. A method-wise discussion is out of the scope of this article. Any interested reader 

is invited to download the participants’ training dataset results and perform her/his own 

analysis to test whether these findings hold true for a particular algorithm.

6.2. Recommendations and limitations

When developing new methods, no particular algorithm should be excluded a-priori. Instead, 

the characteristics of stroke lesion appearances, their evolution, and the observed challenges 

should be studied in detail. Based on this information, new solutions targeting the specific 

problems can be developed. A specific algorithm can then be selected depending on how 

well the envisioned solutions can be integrated. Where possible, the strength of different 

approaches should be combined to counterbalance their weaknesses.

Evaluation should never be solely conducted on a private dataset as the variation between the 

cases is too large for a small set to compensate for all of them and, hence, renders any fair 

comparison impossible. We believe that with SISS we supplied a testing dataset which 

suitably reflects the high variation in stroke lesions characteristics and encompassed the 

complexity of the segmentation task.

Special attention should be put on the adaptation to second center data, which proved to be 

especially difficult. One could either concentrate on single-center solutions, try to develop a 
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method that can encompass the large inter-center variations, or aim for an approach that can 

be specifically adapted. The whole subject requires further investigation and should not be 

handled lightly.

Considering that multiple complete failures were exhibited, it would be interesting to 

develop solutions that allow automatic segmentation algorithms to signal a warning when 

they assume to have failed on a segmentation. This problem is related to multi-classifier 

competence, which few publications have dealt with to date (Woloszynski and Kurzynski, 

2011; Galar et al., 2013).

Label fusion (see Sec. 3.5) and automatic quality rating may be a potential avenue to 

compensate for different shortcomings of multiple algorithms that have been applied to the 

same data. We found that up to some degree the SIMPLE algorithm (Langerak et al., 2010) 

was able to improve over the average participants’ results by automatically assigning a 

higher weight to the respective algorithm that performed best for a given image. The weights 

obtained with the SIMPLE algorithm for each method may be used as an a priori selection 

of effective algorithms in the absence of manual segmentations. There is, however, a risk of 

a negative influence of multiple failed segmentations that are correlated as evident by the 

generally lower accuracy of the STAPLE fusion (tables 7 and 9).

Physicians and clinical researchers should not expect a fully automatic, reliable, and precise 

solution in the near future; the task is simply too complex and variable for current 

algorithms to solve. Instead, the findings of this investigation can help them to identify 

suitable solutions that can serve as support tools: In particular clearly outlined, large lesions 

are already segmented with good results, which are usually tedious to outline by hand. For 

smaller and less pronounced lesions the manual approach is still recommended. 

Furthermore, they should be aware that individual adaptations to each data source are most 

likely required - either by tuning the hyperparameters or through machine learning.

7. Discussion: SPES

All the best ranking methods show high average DC, low ASSD and only minimal STD, 

denoting accurate and robust results. A linear regression analysis furthermore revealed a 

good volume fit for the best methods (CH-Insel: r = 0.87 and DE-UzL: r = 0.93). We can say 

that reliable and robust perfusion lesion estimation from acute stroke MRI is in reach. For a 

final answer, a thorough investigation of the inter- and intra-rater scores would be required, 

which lies out of the scope of this work.

In clinical context a Tmax thresholding at > 6s was established to correlate best with other 

cerebral blood flow measures (Takasawa et al., 2008; Olivot et al., 2009b) and final lesion 

outcome (Olivot et al., 2009a; Christensen et al., 2010; Forkert et al., 2013). It is already 

used in large studies (Lansberg et al., 2012). We started out with the same method when 

creating the ground truth for SPES, but followed by considerable human correction. The 

comparison against the simple thresholding (Table 9, second to last row) hence gives an idea 

of the intervention in creating the ground truth. Compared against the participating methods, 
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it becomes clear that these managed to capture the physicians intention when segmenting the 

perfusion lesion quite well and that simple thresholding might not suffice.

An improved version proposed by Straka et al. (2010), where binary objects smaller than 3 

ml are additionally removed, leads to better results (Table 9, last row) than simple 

thresholding but still far from SPES’ algorithms. Thresholding is clearly not a suitable 

approach for penumbra estimation.

The discrepancy between the relatively good results reported by Olivot et al. (2009a), 

Christensen et al. (2010) and Straka et al. (2010) and the poor performance observed in this 

study can be partially explained by the different end-points (expert segmentation on PWI-

MRI vs. follow-up FLAIR/T2), the different evaluation measures (DC/ASSD vs. volume 

similarity), and the different data. This only serves to highlight the need for a public 

evaluation dataset. From an image processing point of view, the volume correlation is not a 

suitable measure to evaluate segmentations as it can lead to good results despite completely 

missed lesions.

7.1. The most suitable algorithm and the remaining challenges

Both of the winning methods are based on machine learning (RFs) and both additionally 

employ expert knowledge (e.g. a prior thresholding of the Tmax map). Their results are 

significantly better than those of all other teams. The other methods in order of decreasing 

rank are: another RF method, a modeling approach, a rule based approach, another modeling 

approach, and a CNN.

Although the number of participating methods is too small to draw a general conclusion, the 

results suggest that RFs in their various configurations are highly suitable algorithms for the 

task of stroke penumbra estimation. Furthermore, they are known to be robust and allow for 

a computational effective application, both of which are strong requirements in clinical 

context.

An automated method has to fulfill the strict requirements of clinical routine. Since time is 
brain when treating stroke, it has to fit tightly into the stroke protocol, i.e., is restricted to a 

few minutes of runtime (Straka et al. (2010) state ±5min as an upper limit). With 6min (CH-

Insel) and 20sec (DE-UzL), including all pre- and post-processing steps, the two winning 

methods fit the requirements, DE-UzL even leaving room for overhead.

7.2. Recommendations and limitations

New approaches for perfusion estimation should move away from simple methods (e.g. rule-

based or thresholding). These are easy to apply, but our results indicate that they cannot 

capture the whole complexity of the problem. Machine learning, especially RFs, seem to be 

more suitable for the task: They can model non-linear functional relationship between data 

and desired results that a simpler approach cannot. Domain knowledge is likely required to 

achieve state-of-the-art results as the Tmax map thresholding of the two winning methods 

indicates. Evaluation should in any case be performed via a combination of suitable, 

quantitative measures. Simple volume difference or qualitative evaluation are of limited 

expressiveness and render the presented results incomparable. Where possible, the 
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evaluation and training data should be publicly released. Finally, it has to be kept in mind 

that the segmentation task is a time-critical one and application times are always to be 

reported alongside the quantitative results.

The presented algorithms are close to clinical use. However, intensive work is further needed 

to increase their robustness for the variety of confounding factors appearing in clinical 

practice. In this direction, a clear direct improvement seems to be the incorporation of 

knowledge regarding collateral flow, which is also used in the clinical workflow to stratify 

selection of patient treatment. It remains to be shown that the diffusion lesion can be 

segmented equally well and whether the resulting perfusion-diffusion mismatch agrees with 

follow-up lesions. To this end, a benchmark with manually segmented follow-up lesions 

would be desirable.

SPES suffers from a few limitations: While MCA strokes are most common and well suited 

for mechanical reperfusion therapies (Kemmling et al., 2015), the restriction to low-noise 

MCA cases limits the result transfer to clinical routine. The generality of the results is 

additionally reduced by providing only single-center, single-ground truth data. Finally, 

voxel-sized errors in the ground truth prevented the evaluation of the HD, which would have 

provided additional information.

8. Conclusion

With ISLES, we provide an evaluation framework for the fair and direct comparison of 

current and future ischemic stroke lesion segmentation algorithms. To this end, we prepared 

and released well described, carefully selected, and annotated multi-spectral MRI datasets 

under a research license; developed a suitable ranking system; and invited research groups 

from all over the world to participate. An extensive analysis of 21 state-of-the-art methods’ 

results presented in this work allowed us to derive recommendations and to identify 

remaining challenges. We have shown that segmentation of acute perfusion lesions in MRI is 

feasible. The best methods for sub-acute lesion segmentation, on the other hand, still lack 

the accuracy and robustness required for an immediate employment. Second-center 

acquisition parameters and small lesions with weak FLAIR-support proved the main 

challenges. Overall, no type of segmentation algorithm was found to perform superior to the 

others. What could be observed is that approaches using combinations of multiple methods 

and/or domain knowledge performed best.

A valuable addition to ISLES would be a similarly organized benchmark based on CT image 

data, enabling a direct comparison between the modalities and the information they can 

provide to segmentation algorithms.

For the next version of ISLES, we would like to focus on the acute segmentation problem 

from a therapeutical point of view. By modeling a benchmark reflecting the time-critical 

decision making processes for cerebrovascular therapies, we hope to promote the transfer 

from methods to clinical routine and further the exchange between the disciplines. A multi-

center dataset with hundreds of cases will allow the participants to develop complex 

solutions.
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Appendix A. Participating algorithms

This section includes short descriptions of the participating algorithms. For a more detailed 

description please refer to the workshop’s postproceeding volume (Crimi et al., 2016) or the 

challenge proceedings (Maier et al., 2015a).

Used abbreviations are: white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), 

random forest (RF), extremely randomized trees (ET), contextual clustering (CC), gaussian 

mixture models (GMM), convolutional neural network (CNN), Markov Random Field 

(MRF), Conditional Random Field (CRF) and expectation maximization (EM).

Appendix A.1.  UK-Imp1 (Liang Chen et al.)

We propose a multi-scale patch-based random forest algorithm for sub-acute stroke lesion 

segmentation. In the first step, we perform an intensity normalization under the exclusion of 

outliers. Second, we extract features from all images: Patch-wise intensities of each modality 

are extracted at multiple scales obtained with Gaussian smoothing. We parcellate the whole 

brain into three parts, including top, middle, and bottom. To keep an equilibrated class 

balance in the training set, only a subset of background patches is samples from locations all 

over the brain. Subsequently, we train three standard RF (Breiman, 2001) classifiers based 

on the patches selected from three parts of the brain. Finally, we perform some 
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postprocessing operations, including smoothing the outputs of the RFs, applying a threshold, 

and performing some morphological operations to obtain the binary lesion map.

Appendix A.2.  DE-Dkfz (Michael Götz et al.)

The basic idea of this approach is that a single classifier might not be able to learn all 

possible appearances of stroke lesions. We therefore use ‘Input-Data Adaptive Learning’ to 

train an individual classifier for every input image. The learning is done in two steps: First, 

we learn the similarity between two images to be able to find similar images for unseen data. 

We define the similarity between two images as the DC that can be achieved by a classifier 

trained on the first image with the second image. Neighborhood Approximation Forests 

(NAF) (Konukoglu et al., 2013) are used to predict similar images for images without a 

ground-truth label (e.g. without the possibility to calculate the DC). We use first-order 

statistic description of the complete images as features for the learning algorithm. While the 

first step is done offline, the second step is done online, when a new and unlabeled image 

should be segmented. A specific, voxel-wise classifier is trained from the closest three 

images, selected by the previous trained NAF. For the voxel classifier we use ETs (Geurts et 

al., 2006) which incorporate DALSA to show the general applicability of our approach 

(Goetz et al., 2016). In addition to the intensity values we use Gaussian, Difference of 

Gaussian, Laplacian of Gaussian (3 directions), and Hessian of Gaussian with Gaussian 

sigmas of 1, 2, 3mm for every modality, leading to 82 features per voxel.

Appendix A.3.  FI-Hus (Hanna-Leena Halme et al.)

The method performs lesion segmentation with a RF algorithm and subsequent CC (Salli et 

al., 2001). We utilize the training data to build statistical templates and use them for 

calculation of individual voxel-wise differences from the voxel-wise cross-subject mean. 

First, all image volumes are warped to a common template space using Advanced 

Normalization Tools (ANTS). Mean and standard deviation over subjects are calculated 

voxel-by-voxel, separately for T1, T2, FLAIR and DWI images; these constitute the 

statistical templates. The initial lesion segmentation is calculated using RF classification and 

16 image features. The features include normalized voxel intensity, spatially filtered voxel 

intensity, intensity deviation from the mean specified by the template, and voxel-wise 

asymmetry in intensities across hemispheres, calculated separately for each imaging 

sequence. For RF training, we only use a random subset of voxels in order to decrease 

computational time and avoid classifier overfitting, As a last phase, the lesion probability 

maps given by the RF classifier are subjected to CC to spatially regularize the segmentation. 

The CC algorithm takes the neighborhood of each voxel into account by using a Markov 

random field prior and iterated conditional modes algorithm.

Appendix A.4.  CA-McGill

The authors of this method decided against participating in this article. A description of their 

approach can be found in the challenge’s proceedings on http://www.isles-challenge.org/

ISLES2015/
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Appendix A.5.  UK-Imp2 (Konstantinos Kamnitsas et al.)

We developed an automatic segmentation system, based on a 11-layers deep, multi-scale, 3D 

CNN. The network classifies voxels after processing a multi-modal 3D patch around them. 

To achieve e cient processing of greater image context, we developed a network architecture 

with two parallel convolutional pathways that processes the image at different scales. To 

train our system we build upon the work in Urban et al. (2014) and form batches with large 

image segments, equally sampled from the two classes. We exploit our network’s fully 

convolutional nature to densely train on multiple voxels in the central part of the segments. 

By utilizing small 33 kernels that lead to deeper architectures with less trainable parameters, 

as well as adopting Dropout, Batch Normalization (Ioffe and Szegedy, 2015) and 

augmenting the database using reflection along the sagittal axis, we heavily regularize our 

network and show that it is possible to train such a deep and wide network on a limited 

database. Training our CNN takes approximately one day on a GeForce GTX Titan Black, 

while inference on a brain volume requires 3 minutes. We applied only minimum 

preprocessing, normalizing the modalities of each patient to zero mean and unit variance. 

For our final submission in the testing phase of the challenge, the outputs of 3 similar CNNs 

were averaged, to reduce noise caused by randomness during training. Additionally, we 

implemented a 3D, densely connected CRF by extending the work of Krähenbuhl and 

Koltun (2012), which can efficiently postprocess a multi-modal scan in 2 minutes. Finally, 

connected components smaller than 20 voxels are eliminated.

Appendix A.6.  US-Jhu (John Muschelli)

As rigid registration may not correct local differences between spatial locations across 

sequences, we re-register images to the FLAIR using Symmetric Normalization (Avants et 

al., 2008). We normalize the voxel intensities to a z-score using the 20% trimmed mean and 

standard deviation from each image. To train an algorithm, we create a series of predictors, 

including the x-y flipped voxel intensity, local moments (mean, sd, skew, kurtosis), and the 

images smoothed with large Gaussian filters. We trained a RF from 9 images, downsampled 

to 300, 000 voxels, with the manual segmentation as the outcome (Breiman, 2001). From the 

RF, we obtained the probability of lesion and determined the threshold for these probabilities 

using the out-of-sample voxels from the training images, optimizing for the DC.

Appendix A.7.  SE-Cth (Qaiser Mahmood et al.)

The proposed framework takes the multi-spectral MRI brain images as input and includes 

two preprocessing steps: (1) Correction of bias field using the N3 bias field correction 

algorithm (Sled et al., 1998) and (2) normalization of the intensity values of each MRI 

modality to the interval [0, 1], done by applying linear histogram stretching. For each voxel 

of multi-spectral MRI images, the following set of meaningful features is extracted: 

intensities, smooth intensities, median intensities, gradient, magnitude of the gradient and 

local entropy. All these features were normalized to zero mean and unit deviation. These 

features are then employed to train the RF (Criminisi and Shotton, 2013) classifier and 

segment the sub-acute ischemic stroke lesion. In this work, we set the RF parameters to: 

number of trees=150 and depth of each tree=50. A total of 999, 000 data samples (i.e. 37, 
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000 randomly selected from each training case) is used to train the RF classifier. Finally, the 

postprocessing is performed using dilation and erosion operations in order to remove small 

objects falsely classified as stroke lesion.

Appendix A.8.  US-Odu (Syed M S Reza et al.)

This work proposes fully automatic ischemic stroke lesion segmentation in multispectral 

brain MRI by innovating on our prior brain tumor segmentation work (Reza and 

Iftekharuddin, 2014). The method starts with the standard MRI preprocessing steps: 

intensity inhomogeneity correction and normalization. Next step involves two primary sets 

of feature extraction from T1, T2, FLAIR and DWI imaging sequences. The first set of 

features includes the pixel intensities (IFL, IT1, IT2, IDWI) and differences of intensities (d1 = 

IFL − IT1, d2 = IFL − IT2, d3 = IFL − IDWI) that represents the global characteristics of brain 

tissues. In the second set, local texture features such as piece-wise triangular prism surface 

area, multi-fractal Brownian motion (Islam et al., 2013) and structure tensor based local 

gradients are extracted to capture the surface variation of the brain tissues. We use a mutual 

information based implementation of minimum redundancy maximum relevance feature 

ranking technique and choose the 19 top ranked features. A classical RF classifier is 

employed to classify the brain tissues as lesion or background. Finally, a binary 

morphological filter is used to reduce the false positives from the original detections. We 

observe a few remaining false positives that compromise the overall performance. Our future 

works will include the study of more e ective features, sophisticated feature selection 

techniques and an e ective false positive reduction technique.

Appendix A.9.  TW-Ntust (Ching-Wei Wang et al.)

A fully automatic machine learning based stroke lesion three-dimensions segmentation 

system is built, which consists of a feature selection method, a multi-level RF model and a 

simple 3D registration approach. Only the FLAIR sequence was used and 275 features, 

which can be categorized into 24 types, are extracted for building RF models. To deal with 

the three dimensional data, a multi-RF model is developed and for stacks of five slices in the 

Z direction, a random forest model is built. The RF model generates probability maps. After 

obtaining the potential candidates from the RFs, we build a three-dimensional registration 

framework with backward and forward searching (Wang et al., 2015). It is applied to 

generate optimal three-dimensional predictions and too remove larger outliers. The system 

finds the largest object among all stacks and uses the stack with the largest object as the 

referenced stack. Then, the system performs backward and forward registration to maintain 

spatial consistency and remove the objects with no overlap to the detected objects in the 

neighboring stacks.

Appendix A.10.  CN-Neu (Chaolu Feng)

We propose a framework to automatically extract ischemic lesions from multi-spectral MRI 

images. We suppose that the input images of different modalities have already been rigidly 

registered in the same coordinate system and non-brain tissues have already been removed 

from the images (Gao et al., 2014). Lesion segmentation is then performed by the proposed 
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framework in three major steps: 1) preliminary segmentation, 2) segmentation fusion, and 3) 

boundary refinement. No training data is needed and no preprocessing and postprocessing 

steps involved. In the proposed framework, MRI images of each modality are first 

segmented into brain tissues (WM, GM and CSF) and ischemic lesions by weighting 

suppressed fuzzy c-means. Preliminary lesion segmentation results are then fused among all 

the imaging modalities by majority voting. The judge rule is that candidate voxels are 

regarded as lesions only if 1) they are considered as brain lesions in FLAIR images, and 2) 

they are viewed as brain lesions in more than 1 imaging modality beside FLAIR. The fused 

segmentation results are finally refined by a three phase level set method. The level set 

formulation is defined on multi-spectral images with the capability of dealing with intensity 

inhomogeneities (Feng et al., 2013).

Appendix A.11.  BE-Kul1 (Tom Haeck et al.)

We present a fully-automated generative method that can be applied to individual patient 

images without need for a training data set. An EM-approach is used for estimating intensity 

models (GMMs) for both normal and pathological tissue. The segmentation is represented 

by a level-set that is iteratively updated to label voxels as either normal or pathological, 

based onwhich intensity model explains the voxels’ intensity the best. A convex level-set 

formulation is adopted (Goldstein et al., 2009), that eliminates the need for manual 

initialization of the the level-set. For each iteration to update the level-set, a full EM-

estimation of the GMM parameters is done.

As a preprocessing step, spatial priors of WM, GM and CSF are non-rigidly registered to the 

patient image. The prior information is relaxed by smoothing the spatial priors with a 

Gaussian kernel. For SPES, we make use of the T2-weighted and TTP-weighted MR images 

and for SISS the diffusion weighted and FLAIR-weighted MR images. For SPES, the 

modalities are used in a completely multivariate way, i.e., with bivariate Gaussian models. 

For SISS, the modalities are segmented separately and a voxel is only labeled as lesion if it 

is a lesion in both modalities.

Appendix A.12.  CA-USher (Francis Dutil et al.)

We propose a fully-automatic CNN approach which is accurate while also being 

computationally e cient, a balance that existing methods have struggled to achieve. We 

approach the problem by solving it slice by slice from the axial view. The segmentation 

problem is then treated by predicting the label of the center of all the overlapping patches. 

We propose an architecture with two pathways: one which focuses on small details of the 

tissues and one focusing on the larger context. We also propose a two-phase patch-wise 

training procedure allowing us to train models in a few hours and to account for the 

imbalanced classes. We first train the model with a balanced dataset which allows us to learn 

features impartial to the distribution of classes. We then train the second phase by only 

training on1 the classification layer with a distribution closer to the ground1 truth’s. This 

way we learn good features and introduce the cor-1 rect class prior to the model. Fully 

exploiting the convolutional1 nature of our model also allows to segment a complete brain1 

image in 25 seconds. To test the ability of CNNs to learn useful1 features from scratch, we 
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employ only minimal preprocessing.1 We truncate the 1% highest and lowest intensities and 

applied1 N4ITK bias correction. The input data is then normalized by1 subtracting the 

channel mean and dividing by its standard de-1 viation. A postprocessing method based on 

connected compo-1 nents is also implemented to remove small blobs which might1 appear in 

the predictions.

Appendix A.13.  DE-UzL (Oskar Maier et al.)

We propose a novel voxel-wise RF classification method with features chosen to model a 

human observers discriminative criteria when segmenting a brain lesion. They are based on 

intensity, hemispheric difference, local histograms and center distances as detailed in (Maier 

et al., 2015c, 2016). First, the already co-registered, isotropic voxel-spacing and skull-

stripped sequences are preprocessed with bias field correction and intensity range 

standardization (Maier, 2016) (SISS) resp. the Tmax capped at 10s (SPES). A total of 1, 

000, 000 voxels are randomly sampled, keeping each case’s class ratio intact (i.e. 

imbalanced). With this training set, 50 trees are trained using Gini impurity and 

features for node optimization. For SISS, the a-posteriori forest probability map is 

thresholded at 0.4 and objects smaller than 1ml removed. For SPES, the threshold is 0.35 

and only the largest connected component is kept. Both are followed by an hole closing in 

sagittal slices. The proposed method was equally successfully applied to BRATS challenge 

data (Maier et al., 2016), underlining the generality of our approach.

Appendix A.14.  BE-Kul2 (David Robben et al.)

A single segmentation method for both the SISS and SPES sub-challenges is proposed 

(Robben et al., 2016). First, all data is preprocessed, including bias-field correction, linear 

intensity standardization, and affine registration to MNI space. Then, each voxel is 

probabilistically classified as lesion or background within the native image space. The 

classifier consists of 3 cascaded levels, in which each level extends the feature set and uses a 

more complex extremely randomized forest (Geurts et al., 2006). The first level only uses 

the T1 intensity. The second level uses all modalities, smoothed in a local neighborhood at 

different radii, as well as voxel coordinates in atlas space. The third level additionally uses 

the probabilities estimated in level 2, smoothed locally. Classifier hyperparameters were 

tuned using 5-fold cross-validation. Testing data is preprocessed similarly and the voxelwise 

probabilities are predicted by the classifier. A technique to select the threshold that optimizes 

the DC is presented and applied to the predicted probability map in order to obtain the final 

binary segmentation.

Appendix A.15.  DE-Ukf (Elias Kellner et al.)

In almost all cases of acute embolic anterior circulation stroke only one hemisphere is 

affected. We exploit this fact to (i) restrict the segmentation to only the affected hemisphere 

and (ii) to preselect the potential lesion by comparing local histograms of the affected side 

with the contralateral counter-part used as reference. Our approach is based on the 

evaluation of just the Tmax and ADC-maps. First, we automatically find the plane which 

separates the left and right hemisphere by co-registration with a mirrored Tmax-image, and 
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identify the affected hemisphere as the one with the higher median value. For each voxel at 

position , a normalized, regional histogram  is calculated in a 20 × 20 × 12mm3 

neighborhood with a bin-width of ti+1 − ti = 1.5s. The difference to the corresponding 

contralateral histogram , taken from the mirrored part of the brain is calculated via 

. The resulting map of histogram differences is 

thresholded by 0.5 to find the regions with unusual Tmax values. This pre-selection is 

thresholded with the generally accepted value of Tmax > 6s. The histogram neighborhood 

size and the morphological operation parameters are globally fine-tuned based on the 

training dataset. To clean the mask, morphological erosion and dilation is applied. Finally, 

the segmentation is multiplied with ADC > 1700mm2/s to remove CSF voxels.

Appendix A.16.  CH-Insel (Richard McKinley et al.)

The model is trained only using data from the SPES dataset is used. The method makes use 

of all seven imaging modalities. Before learning takes place, the following preprocessing 

steps are employed: TMax values are censored below zero and above 100, and all imaging 

modalities are then scaled to lie in the interval [0, 256]. Simple image texture features, based 

on those first used in Porz et al. (2014) are extracted from each imaging modality. The 

resulting data points are used to train a decision forest model which assigns to each volume 

element a label indicating if it should be considered part of the perfusion lesion. The training 

algorithm is a modification of RF (Breiman, 2001), in which bootstrapping of the training 

data is performed first at the patient level, and only then at the voxel level. This avoids the 

effects of patient-level clustering and leads to out-of-sample patients. This out-of-sample 

data is then used to empirically discover a threshold at which the DC of the segmentation is 

maximized, avoiding the need for holding out training data to tune the classifier. After 

segmenting with this threshold, no further postprocessing was applied. The method takes 

approximately six minutes to segment a new case.

Appendix B. Ranking schema

Our ranking system builds on the concept that a rank reveals only the direction of a 

relationship between two items (i.e. higher, lower, equal), but not its magnitude. After 

obtaining from each participating team the segmentation results for each case, the following 

steps are executed:

1. Compute the DC, ASSD & HD values for each case

2. Establish each team’s rank for DC, ASSD & HD separately for each case

3. Compute the mean rank over all three evaluation measures/case to obtain 

the team’s rank for the case

4. Compute the mean over all case-specific ranks to obtain the team’s final 

rank

Graphically, the schema looks like displayed in Fig. B.11. The outcome of the procedure is a 

final rank (real number) for each participant, which defines its standing in the leaderboard 
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relative to all others. For SISS, with two ground truth sets for the testing dataset, their 

respective final ranks are averaged. For SPES, only the DC and the ASSD were used.

This approach can be applied to any number of measures, independent of their range, type or 

direction. Its outcome denotes only the differences between algorithms and hence serves its 

purpose. For any interpretation of the results, the distinct evaluation measure values obtained 

have to be considered too.

A challenge with winners requires an absolute ranking; an ongoing benchmark does not. For 

the online, ongoing leaderboard, the rank is not computed. Rather, each user is invited to sort 

the result table according to their favorite evaluation measure.

Failed cases and resolving ties

In one step of our algorithm, we have to rank the performance of each team on one case 

regarding a single evaluation metric. Such a situation can lead to ties, which have to be 

handled specially. We chose to decorate both tied teams with the upper rank and leaving the 

following empty (see Table B.10 for an example).

Table B.10

Example of resolving ties for ISLES.

Team DC Rank Team

T-A 0.33 1 T-C

T-B 0.33 2 T-A, T-B, T-D

T-C 0.50 3

T-D 0.33 4

T-E 0.31 5 T-E

(a) Before… (b) …after

This behavior has an interesting effect for very difficult cases, where most teams fail to 

produce a valid segmentation, as can be seen in the example of Table B.11.

Table B.11

Tie resolving for difficult cases.

Team DC Rank Team

T-A 0.00 1 T-C

T-B 0.00 2 T-A, T-B, T-D, T-E

T-C 0.10 3

T-D 0.00 4

T-E 0.00 5
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Team DC Rank Team

(a) Before… (b) …after.

Thus, difficult cases do not alter the mean as they would do when simply averaging, e.g., the 

DC values over all cases. Instead, only the performance relative to all other algorithms is 

compared, resulting in a more expressive ranking.

Beside resolving ties, we decided to introduce a concept of failed cases: When faced with (1) 

a missing segmentation mask or (2) a DC value of 0.00 (i.e. no overlap at all), the concerned 

case was declared failed and all metric evaluation values subsequently set to infinity. 

Combined with the employed ranking approach and above described treatment of ties, this 

allows to incorporate missing segmentations in the ranking in a natural and fair manner. It 

could be argued that a DC of 0.00 could well mean that another part of the brain has been 

segmented. But the case has nevertheless to be considered a failed one, as the target structure 

has not been detected. Not declaring the case a failure would lead methods submitting a 

single random voxel segmentation to be ranked higher than an empty segmentation mask.

Figure B.11. 
Ranking schema as employed in the ISLES challenge.

References

Albers GW, Thijs VN, Wechsler LR, et al. Magnetic resonance imaging profiles predict clinical 
response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding 
stroke evolution (DEFUSE) study. Ann. Neurol. 2006; 60:508–17. [PubMed: 17066483] 

Maier et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Artzi M, Aizenstein O, Jonas-Kimchi T, et al. FLAIR lesion segmentation: application in patients with 
brain tumors and acute ischemic stroke. Eur. J. Radiol. 2013; 82:1512–8. [PubMed: 23796882] 

Avants BB, Epstein C, Grossman M, Gee J. Symmetric diffeomorphic image registration with cross-
correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image 
Anal. 2008; 12:26–41. [PubMed: 17659998] 

Bauer S, Fejes T, Reyes M. A Skull-Stripping Filter for ITK. Insight J. 2013

Breiman L. Random Forests. Mach. Learn. 2001; 45:5–32.

Christensen, S.; Campbell, BC.; de la Ossa, NP., et al. Optimal Perfusion Thresholds for Prediction of 
Tissue Destined for Infarction in the Combined EPITHET and DEFUSE Dataset; Int. Stroke Conf.; 
2010; 

Crimi, A.; Maier, O.; Menze, B.; Reyes, M.; Handels, H., editors. LNCS Brainlesion: Glioma, MS, 
Stroke and Traumatic Brain Injuries - First International BrainLes Workshop MICCAI 2015; 
Springer. 2016; 

Criminisi, A.; Shotton, J., editors. Decision forests for computer vision and medical image analysis. 
Springer; 2013. 

Dastidar P, Heinonen T, Ahonen JP, Jehkonen M, Molnár G. Volumetric measurements of right 
cerebral hemisphere infarction: use of a semi-automatic MRI segmentation technique. Comput. 
Biol. Med. 2000; 30:41–54. [PubMed: 10695814] 

Derntl, A.; Plant, C.; Gruber, P., et al. Stroke Lesion Segmentation using a Probabilistic Atlas of 
Cerebral Vascular Territories. In: Crimi, A.; Maier, O.; Menze, B.; Reyes, M.; Handels, H., editors. 
LNCS Brainlesion Glioma, MS, Stroke Trauma. Brain Inj. - First Int. BrainLes Work. MICCAI 
2015; Springer Berlin Heidelberg. 2015. p. 11

Feng, C.; Li, C.; Zhao, D.; Davatzikos, C.; Litt, H. Med. Image Comput. Comput. Interv. 2013. 
Segmentation of the left ventricle using distance regularized two-layer level set approach; p. 
477-84.

Fiez JA, Damasio H, Grabowski TJ. Lesion segmentation and manual warping to a reference brain: 
intra- and interobserver reliability. Hum. Brain Mapp. 2000; 9:192–211. [PubMed: 10770229] 

Forbes, F.; Doyle, S.; Garcia-Lorenzo, D.; Barillot, C.; Dojat, M. IEEE Int. Symp. Biomed. Imaging 
From Nano to Macro. IEEE; 2010. Adaptive weighted fusion of multiple MR sequences for brain 
lesion segmentation; p. 69-72.

Forkert ND, Kaesemann P, Treszl A, et al. Comparison of 10 TTP and Tmax estimation techniques for 
MR perfusion-diffusion mismatch quantification in acute stroke. Am. J. Neuroradiol. 2013; 
34:1697–703. [PubMed: 23538410] 

Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F. Dynamic classifier selection for One-vs-
One strategy: Avoiding non-competent classifiers. Pattern Recognit. 2013; 46:3412–3424.

Gao J, Li C, Feng C, et al. Non-locally regularized segmentation of multiple sclerosis lesion from 
multi-channel MRI data. Magn. Reson. Imaging. 2014; 32:1058–66. [PubMed: 24948583] 

Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach. Learn. 2006; 63:3–42.

Ghosh N, Sun Y, Bhanu B, Ashwal S, Obenaus A. Automated detection of brain abnormalities in 
neonatal hypoxia ischemic injury from MR images. Med. Image Anal. 2014; 18:1059–69. 
[PubMed: 25000294] 

Goetz M, Weber C, Binczyk F, et al. DALSA: Domain Adaptation for Supervised Learning From 
Sparsely Annotated MR Images. IEEE Trans. Med. Imaging. 2016; 35:184–96. [PubMed: 
26259241] 

Goldstein T, Bresson X, Osher S. Geometric Applications of the Split Bregman Method: Segmentation 
and Surface Reconstruction. J. Sci. Comput. 2009; 45:272–293.

González, RG.; Hirsch, JA.; Lev, MH.; Schaefer, PW.; Schwamm, LH., editors. Acute Ischemic Stroke 
- Imaging and Intervention. 2 edition. Springer; Berlin Heidelberg: 2011. 

Han X, Jovicich J, Salat D, et al. Reliability of MRI-derived measurements of human cerebral cortical 
thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage. 2006; 
32:180–94. [PubMed: 16651008] 

Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift 1502.03167. 2015

Maier et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Išgum I, Benders MJNL, Avants BB, et al. Evaluation of automatic neonatal brain segmentation 
algorithms: the NeoBrainS12 challenge. Med. Image Anal. 2015; 20:135–51. [PubMed: 
25487610] 

Islam A, Reza SMS, Iftekharuddin KM. Multifractal texture estimation for detection and segmentation 
of brain tumors. IEEE Trans. Biomed. Eng. 2013; 60:3204–15. [PubMed: 23807424] 

James JR, Yoder KK, Osuntokun O, et al. A supervised method for calculating perfusion/diffusion 
mismatch volume in acute ischemic stroke. Comput. Biol. Med. 2006; 36:1268–87. [PubMed: 
16125689] 

Jenkinson, M.; Pechaud, M.; Smith, S. BET2: MR-Based Estimation of Brain, Skull and Scalp 
Surfaces. Eleventh Annual Meeting of the Organization for Human Brain Mapping; 2005; p. 167

Jovicich J, Czanner S, Han X, et al. MRI-derived measurements of human subcortical, ventricular and 
intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data 
analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage. 2009; 46:177–92. 
[PubMed: 19233293] 

Kabir, Y.; Dojat, M.; Scherrer, B.; Forbes, F.; Garbay, C. IEEE Eng. Med. Biol. Soc. IEEE; 2007. 
Multimodal MRI segmentation of ischemic stroke lesions; p. 1595-8.

Kemmling A, Flottmann F, Forkert ND, et al. Multivariate dynamic prediction of ischemic infarction 
and tissue salvage as a function of time and degree of recanalization. J. Cereb. Blood Flow Metab. 
2015; 35:1397–405. [PubMed: 26154867] 

Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Büchler P. The virtual skeleton database: an open access 
repository for biomedical research and collaboration. J. Med. Internet Res. 2013; 15:e245. 
[PubMed: 24220210] 

Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: a toolbox for intensity-based 
medical image registration. IEEE Trans. Med. Imaging. 2010; 29:196–205. [PubMed: 19923044] 

Konukoglu E, Glocker B, Zikic D, Criminisi A. Neighbourhood approximation using randomized 
forests. Med. Image Anal. 2013; 17:790–804. [PubMed: 23725639] 

Krähenbuhl, P.; Koltun, V. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials 
1210.5644. 2012. 

Langerak TR, Van Der Heide UA, Kotte ANTJ, et al. Label fusion in atlas-based segmentation using a 
selective and iterative method for performance level estimation (SIMPLE). Med. Imaging, IEEE 
Trans. 2010; 29:2000–2008.

Lansberg MG, Straka M, Kemp S, et al. MRI profile and response to endovascular reperfusion after 
stroke (DEFUSE 2): a prospective cohort study. Lancet. Neurol. 2012; 11:860–7. [PubMed: 
22954705] 

Li W, Tian J, Li E, Dai J. Robust unsupervised segmentation of infarct lesion from diffusion tensor MR 
images using multiscale statistical classification and partial volume voxel reclassification. 
Neuroimage. 2004; 23:1507–18. [PubMed: 15589114] 

Litjens G, Toth R, van de Ven W, et al. Evaluation of prostate segmentation algorithms for MRI: the 
PROMISE12 challenge. Med. Image Anal. 2014; 18:359–73. [PubMed: 24418598] 

Mah YH, Jager R, Kennard C, Husain M, Nachev P. A new method for automated high-dimensional 
lesion segmentation evaluated in vascular injury and applied to the human occipital lobe. Cortex. 
2014; 56:51–63. [PubMed: 23347558] 

Maier, O. MedPy - Medical image processing in Python. 2016. 

Maier, O.; Reyes, M.; Menze, B.; Handels, H., editors. ISLES 2015: Ischemic Stroke Lesion 
Segmentation - Proceedings. 2015a. 

Maier O, Schröder C, Forkert ND, Martinetz T, Handels H. Classifiers for Ischemic Stroke Lesion 
Segmentation: A Comparison Study. PLoS One. 2015b; 10:e0145118. [PubMed: 26672989] 

Maier, O.; Wilms, M.; von der Gablentz, J.; Kr̈amer, UM.; Handels, H. Ischemic stroke lesion 
segmentation in multi-spectral MR images with support vector machine classifiers. In: Aylward, 
S.; Hadjiiski, LM., editors. SPIE Med. Imaging, International Society for Optics and Photonics. 
2014. p. 903504

Maier O, Wilms M, von der Gablentz J, et al. Extra tree forests for sub-acute ischemic stroke lesion 
segmentation in MR sequences. J. Neurosci. Methods. 2015c; 240:89–100. [PubMed: 25448384] 

Maier et al. Page 30

Med Image Anal. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Maier, O.; Wilms, M.; Handels, H. Image Features for Brain Lesion Segmentation Using Random 
Forests. In: Crimi, A.; Maier, O.; Menze, B.; Reyes, M.; Handels, H., editors. LNCS Brainlesion 
Glioma, MS, Stroke Trauma. Brain Inj. - First Int. BrainLes Work. MICCAI 2015. Springer; 
Berlin Heidelberg: 2016. 

Martel, AL.; Allder, SJ.; Delay, GS.; Morgan, PS.; Moody, AR. Measurement of Infarct Volume in 
Stroke Patients Using Adaptive Segmentation of Diffusion Weighted MR Images. In: Taylor, C.; 
Colchester, A., editors. Med. Image Comput. Comput. Interv. Springer; Berlin Heidelberg, Berlin, 
Heidelberg.: 1999. p. 22-31.

Menze BH, Jakab A, Bauer S, et al. The Multimodal Brain Tumor Image Segmentation Benchmark 
(BRATS). IEEE Trans. Med. Imaging. 2015; 34:1993–2024. [PubMed: 25494501] 

Muda AF, Saad NM, Abu-Bakar SAR, Muda AS, Abdullah AR. Brain lesion segmentation using fuzzy 
C-means on diffusion-weighted imaging. ARPN J. Eng. Appl. Sci. 2015:10.

Mujumdar, S.; Varma, R.; Kishore, LT. A novel framework for segmentation of stroke lesions in 
Diffusion Weighted MRI using multiple b-value data; Int. Conf. Pattern Recognit.; IEEE. 2012; p. 
3762-3765.

Murphy, K. Development and evaluation of automated image analysis techniques in thoracic CT. 
Utrecht University; 2011. Ph.D. thesis

Murphy K, van Ginneken B, Reinhardt JM, et al. Evaluation of registration methods on thoracic CT: 
the EMPIRE10 challenge. IEEE Trans. Med. Imaging. 2011; 30:1901–20. [PubMed: 21632295] 

Nabizadeh N, John NM, Wright C. Histogram-based gravitational optimization algorithm on single 
MR modality for automatic brain lesion detection and segmentation. Expert Syst. Appl. 2014; 
41:7820–7836.

Neumann AB, Jonsdottir KY, Mouridsen K, et al. Interrater agreement for final infarct MRI lesion 
delineation. Stroke. 2009; 40:3768–71. [PubMed: 19797188] 

Olivot JM, Mlynash M, Thijs VN, et al. Optimal Tmax threshold for predicting penumbral tissue in 
acute stroke. Stroke. 2009a; 40:469–75. [PubMed: 19109547] 

Olivot JM, Mlynash M, Zaharchuk G, et al. Perfusion MRI (Tmax and MTT) correlation with xenon 
CT cerebral blood flow in stroke patients. Neurology. 2009b; 72:1140–5. [PubMed: 19332690] 

Petitjean C, Zuluaga MA, Bai W, et al. Right ventricle segmentation from cardiac MRI: a collation 
study. Med. Image Anal. 2015; 19:187–202. [PubMed: 25461337] 

Porz N, Bauer S, Pica A, et al. Multi-modal glioblastoma segmentation: man versus machine. PLoS 
One. 2014; 9:e96873. [PubMed: 24804720] 

Prakash KNB, Gupta V, Bilello M, Beauchamp NJ, Nowinski WL. Identification, segmentation, and 
image property study of acute infarcts in diffusion-weighted images by using a probabilistic neural 
network and adaptive Gaussian mixture model. Acad. Radiol. 2006; 13:1474–84. [PubMed: 
17138115] 

Rekik I, Allassonnière S, Carpenter TK, Wardlaw JM. Medical image analysis methods in MR/CT-
imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic 
evolution simulation models. A critical appraisal. NeuroImage Clin. 2012; 1:164–78. [PubMed: 
24179749] 

Reza, SMS.; Iftekharuddin, KM. Multi-fractal texture features for brain tumor and edema 
segmentation. In: Aylward, S.; Hadjiiski, LM., editors. SPIE Med. Imaging, International Society 
for Optics and Photonics. 2014. p. 903503

Robben, D.; Christiaens, D.; Rangarajan, JR., et al. A Voxel-wise, Cascaded Classification Approach 
to Ischemic Stroke Lesion Segmentation. In: Crimi, A.; Maier, O.; Menze, B.; Reyes, M.; Handels, 
H., editors. LNCS Brainlesion Glioma, MS, Stroke Trauma. Brain Inj. - First Int. BrainLes Work. 
MICCAI 2015. Springer; 2016. accepted.

Rudyanto RD, Kerkstra S, van Rikxoort EM, et al. Comparing algorithms for automated vessel 
segmentation in computed tomography scans of the lung: the VESSEL12 study. Med. Image Anal. 
2014; 18:1217–32. [PubMed: 25113321] 

Saad, NM.; Abu-Bakar, SAR.; Muda, S.; Mokji, MM.; Salahuddin, L. Brain lesion segmentation of 
Diffusion-weighted MRI using gray level co-occurrence matrix; IEEE Int. Conf. Imaging Syst. 
Tech.; IEEE.. 2011; p. 284-289.

Maier et al. Page 31

Med Image Anal. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Salli E, Aronen HJ, Savolainen S, Korvenoja A, Visa A. Contextual clustering for analysis of 
functional MRI data. IEEE Trans. Med. Imaging. 2001; 20:403–14. [PubMed: 11403199] 

Seghier ML, Ramlackhansingh A, Crinion J, Le AP, Price CJ. Lesion identification using unified 
segmentation-normalisation models and fuzzy clustering. Neuroimage. 2008; 41:1253–66. 
[PubMed: 18482850] 

Shattuck DW, Prasad G, Mirza M, Narr KL, Toga AW. Online resource for validation of brain 
segmentation methods. Neuroimage. 2009; 45:431–9. [PubMed: 19073267] 

Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity 
nonuniformity in MRI data. IEEE Trans. Med. Imaging. 1998; 17:87–97. [PubMed: 9617910] 

Soltanian-Zadeh H, Bagher-Ebadian H, Ewing JR, et al. Multiparametric iterative self-organizing data 
analysis of ischemic lesions using pre- or post-Gd T1 MRI. Cerebrovasc. Dis. 2007; 23:91–102. 
[PubMed: 17124388] 

Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J. 
Magn. Reson. Imaging. 2010; 32:1024–37. [PubMed: 21031505] 

Styner M, Lee J, Chin B, et al. 3D Segmentation in the Clinic: A Grand Challenge II: MS lesion 
segmentation. Midas J. 2008

Takasawa M, Jones PS, Guadagno JV, et al. How reliable is per- fusion MR in acute stroke? Validation 
and determination of the penumbra threshold against quantitative PET. Stroke. 2008; 39:870–7. 
[PubMed: 18258831] 

Tobon-Gomez C, De Craene M, McLeod K, et al. Benchmarking framework for myocardial tracking 
and deformation algorithms: an open access database. Med. Image Anal. 2013; 17:632–48. 
[PubMed: 23708255] 

Tsai JZ, Peng SJ, Chen YW, et al. Automatic detection and quantification of acute cerebral infarct by 
fuzzy clustering and histographic characterization on diffusion weighted MR imaging and apparent 
diffusion coefficient map. Biomed Res. Int. 20142014:13.

Urban, G.; Bendszus, M.; Hamprecht, FA.; Kleesiek, J. MICCAI BraTS (Brain Tumor Segmentation) 
Challenge. Proceedings, Win. Contrib. 2014. Multi-modal Brain Tumor Segmentation using Deep 
Convolutional Neural Networks; p. 31-35.

Wang CW, Budiman Gosno E, Li YS. Fully automatic and robust 3D registration of serial-section 
microscopic images. Sci. Rep. 2015; 5:15051. [PubMed: 26449756] 

Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): an 
algorithm for the validation of image segmentation. Med. Imaging, IEEE Trans. 2004; 23:903–
921.

Wheeler HM, Mlynash M, Inoue M, et al. Early diffusion-weighted imaging and perfusion-weighted 
imaging lesion volumes forecast final infarct size in DEFUSE 2. Stroke. 2013; 44:681–5. 
[PubMed: 23390119] 

WHO. Technical Report. 2012. Cause-specific mortality - estimates for 2000-2012. 

Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bulletin. 1945; 1:80–83.

Woloszynski T, Kurzynski M. A probabilistic model of classifier competence for dynamic ensemble 
selection. Pattern Recognit. 2011; 44:2656–2668.

Xu L, Krzyzak A, Suen CY. Methods of combining multiple classifiers and their applications to 
handwriting recognition. Syst. Man Cybern. IEEE Trans. 1992; 22:418–435.

Maier et al. Page 32

Med Image Anal. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Evaluation framework for automatic stroke lesion segmentation from 

MRI

• Public multi-center, multi-vendor, multi-protocol databases released

• Ongoing fair and automated benchmark with expert created ground 

truth sets

• Comparison of 14+7 groups who responded to an open challenge in 

MICCAI

• Segmentation feasible in acute and unsolved in sub-acute cases
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Figure 1. 
Increasing count of publications over the years as returned by Google scholar for the search 

terms ischemic stroke segmentation on 2016-05-17.
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Figure 2. 
Increasing count of challenges over the years as collected on http://grand-challenge.org on 

2016-05-17.
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Figure 3. 
Significant differences between the 14 participating methods’ case ranks according to a two-

sided Wilcoxon signed-rank test (p < 0.025). Each node represents a team, each edge a 

significant difference of the tail side team over the head side team. Therefore, the less 

outgoing and the more incoming edges a team has (denoted by numbers in brackets (#out/
#in) for easier interpretation), the weaker its method compared to the others. The saturation 

of the node colors indicates the strength of a method, where better methods are highlighted 

with more saturated colors. Note that all teams with the same number of incoming and 

outgoing edges perform, statistically spoken, equally well. A higher importance of incoming 

over outgoing edges or vice-versa cannot be readily established.
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Figure 4. 
Adaptation to the data from the second medical center. The graph shows each method’s 

average DC scores on the 28 cases from the first and the eight cases from the second medical 

center. The methods are color coded.
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Figure 5. 
Differences in performance on the two ground truth sets. The graph shows each methods 

average DC scores on the 36 testing dataset cases broken down by ground truth set. A star 

(*) before a team’s name denotes statistical significant difference according to a paired 

Student’s t-test with p < 0.05. The methods are color coded.
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Figure 6. 
Box plots of the 14 teams’ DC results on all testing dataset cases, i.e., the first box was 

computed from all teams’ results on the first case. The band in the box denotes the median, 

the upper and lower limits the first and third quartile. Outliers are plotted as diamonds.
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Figure 7. 
Visual results for selected difficult (10, 17, 23), easy (2, 5, 13), and second center (29, 32) 

cases from the SISS testing dataset. The first row shows the distribution of all 14 submitted 

results on a slice of the FLAIR volume. The second row shows the same image with the 

ground truth (GT01) outlined in red. And the third row shows the corresponding DWI 

sequence. Please refer to the online version for colors.
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Figure 8. 
Visualization of significant differences between the 7 participating methods’ case ranks. 

Each node represents a team, each edge a significant difference of the tail side team over the 

head side team according to a two-sided Wilcoxon signed-rank test (p < 0.025). Therefore, 

the less outgoing and the more incoming edges a team has (denoted by numbers in brackets 

(#out/#in) for easier interpretation), the weaker its method compared to the others. The 

saturation of the node colors roughly denotes the strength of a method, where better methods 

are depicted with stronger colors. Note that all teams with the same number of incoming and 

outgoing edges perform, statistically spoken, equally well.
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Figure 9. 
DC score result of all 7 SPES teams for each of the testing dataset cases. Most methods 

show a similar pattern. Please refer to the online version for color.
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Figure 10. 
Sequences of some cases with a low (05 and 11) and high (15) average DC score over all 7 

teams participating in SPES. The ground truth is painted red into the DWI sequence slices in 

the first column. The last column shows the distribution of the resulting segmentations on 

the gray-scale version of the TTP. All perfusion maps are windowed equally for direct 

comparison. Please refer to the online version for colors.
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Table 1

Listing of publications describing non-chronic stroke lesion segmentation in MRI with evaluation on human 

image data since Rekik et al. (2012). Column A denotes the lesion phase, i.e., (A)cute, (S)ub-acute or 

(C)hronic. Column T denotes the method type, i.e., (A)utomatic or (S)emi-automatic. Column N denotes the 

number of testing cases (mostly leave-one-out evaluation scheme is employed). Column Sequences denotes 

the used MRI sequences. Column DC denotes the reported Dice’s coefficient score if available. Column 

Metrics denotes the metrics used in the evaluation.

Method A T N Sequences DC Metrics

Prakash et al. (2006) A A 57 DWI 0.72 DC,+

Soltanian-Zadeh et al. (2007) ASC A 2 T1,T2,DWI,PD +

Seghier et al. (2008) SC A 8 T1 0.64 DC

Forbes et al. (2010) ? A 3 T2,FLAIR,DWI 0.63 DC

Saad et al. (2011) AC A ? DWI V

Mujumdar et al. (2012) A S 41 DWI,ADC 0.81 DC

Artzi et al. (2013) AS S 10 FLAIR,DWI ASSD,HD,VE

Maier et al. (2014) S A 8 T1,T2,FLAIR,DWI,ADC 0.74 DC,ASSD,HD

Tsai et al. (2014) AS A 22 DWI,ADC 0.9 DC,PPV

Mah et al. (2014) S A 38 T2,DWI 0.73 DC
m

,+

Nabizadeh et al. (2014) AS S 6 DWI 0.80 DC,+

Ghosh et al. (2014) S A 2 ADC VE

Maier et al. (2015c) S A 37 T1,T2,FLAIR,DWI,ADC 0.63 DC,ASSD,HD

Muda et al. (2015) AC A 20 DWI 0.73 DC

Derntl et al. (2015) S A 13 T1,T1c,T2,FLAIR 0.42 DC

Menze et al. (2015) AS A 18 T1,T1c,T2,FLAIR,DWI 0.78 DC

Maier et al. (2015b) S A 37 FLAIR 0.44-0.67 DC,ASSD,HD

Maier et al. (2015b) S A 37 T1,T2,FLAIR,DWI,ADC 0.54-0.73 DC,ASSD,HD

Abbreviations are: V=visual evaluation, VE=volume error, PPV=positive prediction value,

Note that the lesion phases were adapted to our definition if sufficient information was available.

+
=other metrics,

m
=median reported.
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Table 2

List of all participants in the ISLES challenge. All teams are color coded for easier reference in all further 

listings. The ML column denotes whether the submitted algorithm is based on machine learning. Refer to the 

SISS and SPES columns for the sub-challenges each team participated in. Additionally, a very short summary 

of each method is provided. For a detailed description of each algorithm and used abbreviations see Appendix 

A.

Team FN SN ML SISS SPES

 UK-Imp1 Liang Chen Y Y

Regional RFs (dorsal, medial, ventral)

 DE-Dkfz Michael Goetz Y Y

Image selector RF + online lesion ET

 FI-Hus Hanna Halme Y Y

RF (deviation from global average) + Contextual Clustering (CC)

 CA-McGill Andrew Jesson Y Y

Local classifiers (554 GMM) + regional RF

 UK-Imp2 Konstantinos Kamnitsas Y Y

2-path 3D CNN + CRF

 US-Jhu John Muschelli Y Y

RF (e.g. SD, skew, kurtosis)

 SE-Cth Qaiser Mahmood Y Y

RF (e.g. gradient, entropy)

 US-Odu Syed Reza Y Y

RF (many features, e.g., texture)

 TW-Ntust Ching-Wei Wang Y Y

RF (many features, e.g., edge)

 CN-Neu Chaolu Feng N Y Y

Bias-correcting Fuzzy C-Means + Level Set

 BE-Kul1 Tom Haeck N Y Y

Tissue priors + EM-opt MRF + Level Set on sequence subset

 CA-USher Francis Dutil Y Y Y

2-path 2D CNN

 DE-UzL Oskar Maier Y Y Y

RF (anatomically and appearance motivated features)

 BE-Kul2 David Robben Y Y Y

Cascaded ETs

 DE-Ukf Elias Kellner N Y

Rule-based hemisphere-comparing approach

 CH-Insel Richard McKinley Y Y

RF (case bootstrapped forest of forests)
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Table 3

Stroke lesion characteristics of the 64 SISS cases. The strong diversity is representative for stroke lesions and 

emphasizes the difficulty of the task. μ denotes the mean value, [min, max] the interval and n the total count. 

Abbreviations are: anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery 

(PCA) and basilar artery (BA).

Lesion count μ = 2.46
[1, 14]

Lesion volume μ = 17.59 ml
[1.00, 346.06]

Haemorrhage present n1 = 12
0=no, 1=yes

Non-stroke WMH load μ = 1.34
0=none, 1=small, 2=medium, 3=large

Lesion localization (lobes) n1 = 11 , n2 = 24, n3 = 42, n4 = 17, n5 = 2, n6 = 6
1=frontal, 2=temporal, 3=parietal, 4=occipital, 5=midbrain, 6=cerebellum

Lesion localization n1 = 36, n2 = 49
1 =cortical, 2=subcortical

Affected artery n1 = 6, n2 = 45, n3 = 11 , n4 = 5, n5 = 0
1 =ACA, 2=MCA, 3=PCA, 4=BA, 5=other

Midline shift n0 = 51, n1 = 5, n2 = 0
0=none, 1=slight, 2=strong

Ventricular enhancement n0 = 38, n1 = 15, n2 = 3
0=none, 1=slight, 2=strong

Laterality n1 = 18, n2 = 35, n3 = 3
1=left, 2=right, 3=both
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Table 4

Details of the SISS data.

number of cases 28 training and 36 testing

number of medical centres 1 (train), 2 (test)

number of expert segmentations for
each case

1 (train), 2 (test)

MRI sequences FLAIR, T2 TSE, T1 TFE/TSE,
DWI
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Table 5

Details of the SPES data.

number of cases 30 training and 20 testing

number of medical centres 1

number of expert segmentations for
each case

1

MRI sequences T1c, T2, DWI, CBF, CBV, TTP,
Tmax
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Table 6

Stroke lesion characteristics of the 50 SPES cases. The cases are restricted to MCA stroke eligible for 

cerebrovascular treatment. μ denotes the mean value, [min, max] the interval and n the total count.

Lesion count μ = 1
Not always connected, but single occlusion as source.

Lesion volume μ = 133.21 ml
[45.62, 252.20]

Affected artery all MCA

Laterality n1 = 22, n2 = 28, n3 = 0
1=left, 2=right, 3=both
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Table 7

SISS challenge leaderboard after evaluating the 14 participating methods on the testing dataset. The rank is the 

final measure for ordering the algorithms’ performances relative to each other. The cases column denotes the 

number of successfully (i.e., all DC> 0) segmented cases. All evaluation measures are given in mean±STD. 

Please note that the ASSD and HD values were computed excluding the failed cases (they do, however, incur 

the lowest vacant rank for these cases). The three next-to-last rows display the results obtained with different 

fusion approaches. The last row shows the inter-observer results for comparison.

Rank Method Cases ASSD (mm) DC [0,1] HD (mm)

3.25  UK-Imp2 34/36 05.96 ± 09.38 0.59 ± 0.31 37.88 ± 30.06

3.82  CN-Neu 32/36 03.27 ± 03.62 0.55 ± 0.30 19.78 ± 15.65

5.63  FI-Hus 31/36 08.05 ± 09.57 0.47 ± 0.32 40.23 ± 33.17

6.40  US-Odu 33/36 06.24 ± 05.21 0.43 ± 0.27 41.76 ± 25.11

6.67  BE-Kul2 33/36 11.27 ± 10.17 0.43 ± 0.30 60.79 ± 31.14

6.70  DE-UzL 31/36 10.21 ± 09.44 0.42 ± 0.33 49.17 ± 29.6

7.07  US-Jhu 33/36 11.54 ± 11.14 0.42 ± 0.32 62.43 ± 28.64

7.54  UK-Imp 1 34/36 11.71 ± 10.12 0.44 ± 0.30 70.61 ± 24.59

7.66  CA-USher 27/36 09.25 ± 09.79 0.35 ± 0.32 44.91 ± 32.53

7.92  BE-Kul1 30/36 12.24 ± 13.49 0.37 ± 0.33 58.65 ± 29.99

7.97  CA-McGill 31/36 11.04 ± 13.68 0.32 ± 0.26 40.42 ± 26.98

9.18  SE-Cth 30/36 10.00 ± 06.61 0.38 ± 0.28 72.16 ± 17.32

9.21  DE-Dkfz 35/36 14.20 ± 10.41 0.33 ± 0.28 77.95 ± 22.13

10.99  TW-Ntust 15/36 07.59 ± 06.24 0.16 ± 0.26 38.54 ± 20.36

majority vote 34/36 11.47 ± 19.89 0.51 ± 0.30 38.11 ± 30.45

STAPLE 36/36 12.90 ± 10.64 0.44 ± 0.32 71.08 ± 25.03

SIMPLE 34/36 07.83 ± 14.97 0.57 ± 0.29 29.40 ± 28.11

inter-observer 36/36 02.02 ± 02.17 0.70 ± 0.20 15.46 ± 13.56
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Table 8

Correlation between the SISS case characteristics and the average DC values over all teams. A ρ denotes a 

Spearman correlation, a t a Student’s t-test. All p-values are two tailed (p2). Significant results according to a 

95% confidence interval are denoted by a *. Secondary tests appearing in the table were performed against the 

lesion volume rather than the average DC values.

Characteristic Test p 2

Lesion count ρ = −0.21 0.23

Lesion volume ρ = +0.76 0.00*

Haemorrhage present t = +2.29 0.03*

  vs. lesion volume t = +4.33 0.00*

Non-stroke WMH load ρ = −0.01 0.97

Midline shift t = +0.51 0.62

Ventricular enhancement t = +1.56 0.13

Laterality t = +2.66 0.01*

  vs. lesion volume t = +2.12 0.03*

Movement artifacts ρ = −0.30 0.08

Imaging artifacts ρ = +0.24 0.15
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Table 9

SPES challenge leaderboard after evaluating the 7 participating methods on the testing dataset. The rank is the 

final measure for ordering the algorithms’ performances relative to each other. The cases column denotes the 

number of successfully (i.e., all DC> 0) segmented cases. All evaluation measures are given in mean±STD. 

Since no method failed completely on a single case, the reported ASSD values are suitable for a direct 

comparison between methods. The three next-to-last rows display the results obtained with different fusion 

approaches. The last two rows denote thresholding methods employed in clinical studies.

rank method cases ASSD (mm) DC [0,1]

2.02  CH-Insel 20/20 1.65 ± 1.40 0.82 ± 0.08

2.20  DE-UzL 20/20 1.36 ± 0.74 0.81 ± 0.09

3.92  BE-Kul2 20/20 2.77 ± 3.27 0.78 ± 0.09

4.05  CN-Neu 20/20 2.29 ± 1.76 0.76 ± 0.09

4.60  DE-Ukf 20/20 2.44 ± 1.93 0.73 ± 0.13

5.15  BE-Kul1 20/20 4.00 ± 3.39 0.67 ± 0.24

6.05  CA-USher 20/20 5.53 ± 7.59 0.54 ± 0.26

majority vote 20/20 1.75 ± 0.39 0.82 ± 0.08

STAPLE 20/20 2.40 ± 1.22 0.82 ± 0.06

SIMPLE 20/20 1.69 ± 0.50 0.83 ± 0.07

Tmax> 6s (Christensen et al., 2010) 20/20 13.02 ± 4.15 0.27 ± 0.10

Tmax> 6s & size> 3 ml (Straka et al., 2010) 20/20 7.04 ± 4.99 0.32 ± 0.13
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