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Colorectal adenocarcinoma originating in intestinal glandular structures is
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the most common form of colon cancer. In clinical practice, the morphology
of intestinal glands, including architectural appearance and glandular for-
mation, is used by pathologists to inform prognosis and plan the treatment
of individual patients. However, achieving good inter-observer as well as
intra-observer reproducibility of cancer grading is still a major challenge in
modern pathology. An automated approach which quantifies the morphology
of glands is a solution to the problem.

This paper provides an overview to the Gland Segmentation in Colon
Histology Images Challenge Contest (GlaS) held at MICCAI’2015. Details
of the challenge, including organization, dataset and evaluation criteria, are
presented, along with the method descriptions and evaluation results from
the top performing methods.

Keywords: Histology Image Analysis, Segmentation, Colon Cancer,
Intestinal Gland, Digital Pathology

1. Introduction1

Cancer grading is the process of determining the extent of malignancy and2

is one of the primary criteria used in clinical practice to inform prognosis and3

plan the treatment of individual patients. However, achieving good repro-4

ducibility in grading most cancers remains one of the challenges in pathology5

practice (Cross et al., 2000; Komuta et al., 2004; Fanshawe et al., 2008). With6

digitized images of histology slides becoming increasingly ubiquitous, digital7

pathology offers a viable solution to this problem (May, 2010). Analysis of8

histology images enables extraction of quantitative morphological features,9

which can be used for computer-assisted grading of cancer making the grad-10

ing process more objective and reproducible than it currently is (Gurcan11

et al., 2009). This has led to the recent surge in development of algorithms12

for histology image analysis.13

In colorectal cancer, morphology of intestinal glands including architec-14

tural appearance and gland formation is a key criterion for cancer grading15

(Compton, 2000; Bosman et al., 2010; Washington et al., 2009). Glands are16

important histological structures that are present in most organ systems as17

the main mechanism for secreting proteins and carbohydrates. An intestinal18

gland (colonic crypt) found in the epithelial layer of the colon, is made up19

of a single sheet of columnar epithelium, forming a finger-like tubular struc-20

ture that extends from the inner surface of the colon into the underlying21
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connective tissue (Rubin et al., 2008; Humphries and Wright, 2008). There22

are millions of glands in the human colon. Intestinal glands are responsible23

for absorption of water and nutrients, secretion of mucus to protect the ep-24

ithelium from a hostile chemical and mechanical environment (Gibson et al.,25

1996), as well as being a niche for epithelial cells to regenerate (Shanmu-26

gathasan and Jothy, 2000; Humphries and Wright, 2008). Due to the hostile27

environment, the epithelial layer is continuously regenerating and is one of28

the fastest regenerating surface in human body (Crosnier et al., 2006; Barker,29

2014). This renewal process requires coordination between cell proliferation,30

differentiation, and apoptosis. The loss of integrity in the epithelial cell re-31

generation, through a mechanism that is not yet clearly understood, results32

in colorectal adenocarcinoma, the most common type of colon cancer.33

Manual segmentation of glands is a laborious process. Automated gland34

segmentation will allow extraction of quantitative features associated with35

gland morphology from digitized images of CRC tissue slides. Good quality36

gland segmentation will pave the way for computer-assisted grading of CRC37

and increase the reproducibility of cancer grading. However, consistent good38

quality gland segmentation for all the differentiation grades of cancer has39

remained a challenge. This was a main reason for organizing this challenge40

contest.41

The Gland Segmentation in Colon Histology Images (GlaS) challenge142

brought together computer vision and medical image computing researchers43

to solve the problem of gland segmentation in digitized images of Hema-44

toxylin and Eosin (H&E) stained tissue slides. Participants developed gland45

segmentation algorithms, which were applied to benign tissue and to colonic46

carcinomas. A training dataset was provided, together with ground truth47

annotations by an expert pathologist. The participants developed and op-48

timized their algorithms on this dataset. The results were judged on the49

performance of the algorithms on test datasets. Success was measured by50

how closely the automated segmentation matched the pathologist’s.51

2. Related Work52

Recent papers (Wu et al., 2005a,b; Gunduz-Demir et al., 2010; Fu et al.,53

2014; Sirinukunwattana et al., 2015; Cohen et al., 2015) indicate the increas-54

1http://www.warwick.ac.uk/bialab/GlaScontest
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ing interest in histology image analysis applied to intestinal gland segmenta-55

tion. In this section, we review some of these methods.56

Wu et al. (2005a) presented a region growing method, which first thresh-57

olds an image, in order to separate nuclei from other tissue components.58

Large empty regions, which potentially correspond to lumen found in the59

middle of glands, are then used to initialize the seed points for region grow-60

ing. The expanding process for each seed is terminated when a surround-61

ing chain of epithelial nuclei is reached, and subsequently false regions are62

removed. Although this method performs well in segmenting healthy and63

benign glands, it is less applicable to cancer cases, where the morphology of64

glands can be substantially deformed.65

In contrast to the above method, which mainly uses pixel-level informa-66

tion, Gunduz-Demir et al. (2010) represented each tissue component as a67

disk. Each disk is represented by a vertex of a graph, with nearby disks68

joined by an edge between the corresponding vertices. They proposed an al-69

gorithm, using graph connectivity to identify initial seeds for region growing.70

To avoid an excessive expansion beyond the glandular region, caused, for ex-71

ample, by large gaps in the surrounding epithelial boundary, edges between72

nuclear objects are used as a barrier to halt region growing. Those regions73

that do not show glandular characteristics are eliminated at the last step.74

The validation of this method was limited only to the dataset with healthy75

and benign cases.76

Fu et al. (2014) introduced a segmentation algorithm based on polar77

coordinates. A neighborhood of each gland and a center chosen inside the78

gland were considered. Using this center to define polar coordinates, the79

neighborhood is displayed in (r, θ) coordinates with the r-axis horizontal80

and the θ-axis vertical. One obtains a vertical strip, periodic with period81

2π in the vertical direction. As a result, the closed glandular boundary82

is transformed into an approximately vertical periodic path, allowing fast83

inference of the boundary through a conditional random field model. Support84

vector regression is later deployed to verify whether the estimated boundary85

corresponds to the true boundary. The algorithm performs well in both86

benign and malignant cases stained by Hematoxylin and DAB. However, the87

validation on routine H&E stained images was limited only to healthy cases.88

Sirinukunwattana et al. (2015) recently formulated a segmentation ap-89

proach based on Bayesian inference, which allows prior knowledge of the90

spatial connectivity and the arrangement of neighboring nuclei on the ep-91

ithelial boundary to be taken into account. This approach treats each glan-92
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Table 1: Details of the dataset.

Histologic Grade
Number of Images (Width x Height in Pixels)

Training Part Test Part A Test Part B

Benign 37


1 (574× 433)

1 (589× 453)

35 (775× 522)

33


1 (574× 433)

4 (589× 453)

28 (775× 522)

4 (775× 522)

Malignant 48


1 (567× 430)

3 (589× 453)

44 (775× 522)

27


1 (578× 433)

2 (581× 442)

24 (775× 522)

16 (775× 522)

dular structure as a polygon made of a random number of vertices. The93

idea is based on the observation that a glandular boundary is formed from94

closely arranged epithelial nuclei. Connecting edges between these epithelial95

nuclei gives a polygon that encapsulates the glandular structure. Inference of96

the polygon is made via Reversible-Jump Markov Chain Monte Carlo. The97

approach shows favorable segmentation results across all histologic grades98

(except for the undifferentiated grade) of colorectal cancers in H&E stained99

images. This method is slow but effective.100

Most of the works for intestinal gland segmentation have used differ-101

ent datasets and/or criteria to assess their algorithms, making it difficult to102

objectively compare their performance. There have been many previous ini-103

tiatives that provided common datasets and evaluation measures to validate104

algorithms on various medical imaging modalities (Murphy et al., 2011; Gur-105

can et al., 2010; Roux et al., 2013; Veta et al., 2015). This not only allows a106

meaningful comparison of different algorithms but also allows the algorithms107

to be implemented and configured thoroughly to obtain optimal performance108

(Murphy et al., 2011). Following these successful initiatives, we therefore or-109

ganized the Gland Segmentation in Colon Histology Images (GlaS) challenge.110

This challenge was a first attempt to address the issues of reproducibility and111

comparability of the results of intestinal gland segmentation algorithms. It112

was also aimed at speeding up even further the development of algorithms for113

gland segmentation. Note that none of above methods for intestinal gland114

segmentation participated in this competition.115
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Figure 1: Example images of different histologic grades in the dataset: (a) benign and (b)
malignant.
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3. Materials116

The dataset used in this challenge consists of 165 images derived from117

16 H&E stained histological sections of stage T3 or T42 colorectal adenocar-118

cinoma. Each section belongs to a different patient, and sections were pro-119

cessed in the laboratory on different occasions. Thus, the dataset exhibits120

high inter-subject variability in both stain distribution and tissue architec-121

ture. The digitization of these histological sections into whole-slide images122

(WSIs) was accomplished using a Zeiss MIRAX MIDI Slide Scanner with a123

pixel resolution of 0.465µm. The WSIs were subsequently rescaled to a pixel124

resolution of 0.620µm (equivalent to 20× objective magnification).125

A total of 52 visual fields from both malignant and benign areas across126

the entire set of the WSIs were selected in order to cover as wide a vari-127

ety of tissue architectures as possible. An expert pathologist (DRJS) then128

graded each visual field as either ‘benign’ or ‘malignant’, according to the129

overall glandular architecture. The pathologist also delineated the boundary130

of each individual glandular object on that visual field. We used this manual131

annotation as ground truth for automatic segmentation. Note that different132

glandular objects in an image may be part of the same gland. This is because133

a gland is a 3-dimensional structure that can appear as separated objects on134

a single tissue section. The visual fields were further separated into smaller,135

non-overlapping images, whose histologic grades (i.e. benign or malignant)136

were assigned the same value as the larger visual field. Representative exam-137

ple images of the two grades can be seen in Figure 1. This dataset was also138

previously used in the gland segmentation study by Sirinukunwattana et al.139

(2015).140

In the challenge, the dataset was separated into Training Part, Test141

Part A, and Test Part B. Note that the data were stratified according142

to the histologic grade and the visual field before splitting. This was done143

to ensure that none of the images from the same visual field appears in144

different parts of the dataset (i.e. Training, Test Part A, or Test Part B).145

However, since the data were not stratified based on patient, different visual146

2The T in TNM cancer staging refers to the spread of the primary tumour. In colorectal
cancer, stage T3 means the tumour has grown into the outer lining of the bowel wall,
whereas stage T4 means the tumour has grown through the outer lining of the bowel wall.
The cancer stage is different from the tumour histologic grade, as the latter indicates the
aggressiveness of the tumour.
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fields from the same slide can appear in different parts of the dataset. A147

breakdown of the details of the dataset is shown in Table 1. The ground148

truth as well as the histologic grade which reflects morphology of glandular149

structures were provided for every image in the Training Part at the time of150

release. We used Test Part A and Test Part B as off-site and on-site test151

datasets respectively. Furthermore, to ensure blindness of evaluation, the152

ground truth and histologic grade of each image in the test parts were not153

released to the participants.154

4. Challenge Organization155

The GlaS challenge contest was officially launched by the co-organizers156

(KS, JPWP, DRJS, NMR) on April 21st, 2015, and was widely publicized157

through several channels. At the same point, a challenge website3 was set up158

to disseminate challenge-related information and to serve as a site for reg-159

istration, submission of results, and communication between the organizers160

and contestants. The challenge involved 4 stages, as detailed below:161

Stage 1: Registration and Release of the Training Data. The registration162

was open for a period of about two months (April 21st to June 30th, 2015).163

Interested individuals or groups of up to 3 people that were affiliated with an164

academic institute or an industrial organization could register and download165

the training data (Training Part, see Section 3 for details) to start developing166

their gland segmentation algorithms. From this point forward, we will refer167

to a separate individual or a group of registrants as a ‘team’.168

Stage 2: Submission of a Short Paper. In order to gain access to the first169

part of the test data, each registered team was required to submit a 2-page170

document containing a general description of their segmentation algorithms171

and some preliminary results obtained from running each algorithm on the172

training data. Each team could submit up to 3 different methods. The173

intention of this requirement was for the organizers to identify teams who174

were serious about participating in the challenge. The organizers based their175

reviews on two criteria: clarity of the method description and soundness of176

the validation strategy. Segmentation performance was not considered in this177

review. The submission of this document was due by July 17th, 2015.178

3http://www.warwick.ac.uk/bialab/GlaScontest
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Stage 3: Release of the Test Data Part A and Submission of Segmentation179

Results. The first part of the test data (Test Part A, see Section 3 for de-180

tails) was released on August 14th, 2015 to those teams selected from the181

previous stage which also agreed to participate in the GlaS contest. The182

teams were given a month to further adjust and optimize their segmentation183

algorithms, and carry out segmentation on Part A of the test data. Each184

team could hand-in up to 3 sets of results per method submitted in Stage185

2. The submission of the segmentation results was due by September 14th,186

2015. Evaluation of the submitted results was not disclosed to the teams187

until after the challenge event.188

Stage 4: GlaS’2015 Challenge Event. The event was held in conjunction189

with MICCAI’2015 on October 5th, 2015. All teams were asked to produce190

segmentation results on the second part of the test data (Test Part B, see Sec-191

tion 3) within 45 minutes. The teams could either bring their own machines192

or conduct an experiment remotely. There was no restriction on the num-193

ber of machines that the teams could use to produce results. Those teams194

that could not be present at the event provided implementations of their195

algorithms with which the organizers carried out the segmentation on their196

behalf. Each team was also asked to give a short presentation, discussing197

their work. At the end of the event, the complete evaluation of segmentation198

results across both parts of the test data was announced, which included a199

final ranking of the submitted methods. This information is also available200

on the challenge website.201

4.1. Challenge Statistics202

By the end of Stage 1, a total of 110 teams from different academic and203

industrial institutes had registered. A total of 21 teams submitted the 2-page204

document for review in Stage 2, and 20 teams were invited to participate in205

the GlaS competition event. In Stage 3, only 13 teams submitted results206

on Part A of the test data in time. Late entries were neither evaluated nor207

considered in the next stage of the competition. On the day of the challenge208

event, 11 of the 13 teams that submitted the results on time in Stage 3209

attended the on-site competition and presented their work. The organizers210

carried out the segmentation on behalf of the other two teams that could not211

be present.212
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5. Evaluation213

The performance of each segmentation algorithm was evaluated based on214

three criteria: 1) accuracy of the detection of individual glands; 2) volume-215

based accuracy of the segmentation of individual glands; and 3) boundary-216

based similarity between glands and their corresponding segmentation. It217

may seem that volume-based segmentation accuracy would entail boundary-218

based segmentation accuracy between a gland and its segmentation. How-219

ever, in practice, this is not always the case. The volume-based metric for220

segmentation accuracy used in this challenge, was defined and calculated us-221

ing the label that the algorithm had assigned to each pixel, but the boundary-222

based metric used the position assigned by the algorithm to the boundary223

of each gland. Pixels labels may be fairly accurate, while the boundary224

curves are very different. The remainder of this section describes all metrics225

employed in the evaluation.226

We use the concept of a pair of corresponding segmented and ground227

truth objects as proposed in Sirinukunwattana et al. (2015). Let S denote a228

set of all segmented objects and G denote a set of all ground truth objects.229

We also include in each of these sets the empty object ∅. We define a function230

G∗ : S → G, by setting, for each segmented object S ∈ S, G∗(S) = G ∈ G231

where G has the largest possible overlapping area with S. Although there232

could be more than one G ∈ G that maximally overlaps S, this in practice233

is extremely rare, and it is good enough to consider one of these G as the234

value of G∗(S). If there is no overlapping G, we set G∗(S) = ∅. (However, in235

the context of Hausdorff distance – see Section 5.3 – G∗ will be extended in236

a different way.) Similarly, we define S∗ : G → S, by setting, for each G ∈ G,237

S∗(G) = S ∈ S, where S has the largest possible overlapping area with G.238

Note that G∗ and S∗ are, in general, neither injective, nor surjective. Nor239

are they inverse to each other, in general. They do, however, assign to each240

G an S = S∗(G), and to each S a G = G∗(S).241

5.1. Detection Accuracy242

The F1 score is employed to measure the detection accuracy of individual243

glandular objects. A segmented glandular object that intersects with at244

least 50% of its ground truth object is counted as true positive, otherwise it245

is counted as false positive. The number of false negatives is calculated as246

the difference between the number of ground truth objects and the number247
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of true positives. Given these definitions, the F1 score is defined by248

F1score =
2 · Precision · Recall
Precision + Recall

, (1)

where249

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (2)

and TP,FP, and FN denote respectively the number of true positives, false250

positives, and false negatives from all images in the dataset.251

5.2. Volume-Based Segmentation Accuracy252

5.2.1. Object-Level Dice Index253

The Dice index (Dice, 1945) is a measure of agreement or similarity be-254

tween two sets of samples. Given G, a set of pixels belonging to a ground255

truth object, and S, a set of pixels belonging to a segmented object, the Dice256

index is defined as follows:257

Dice(G,S) =
2|G ∩ S|
|G|+ |S|

, (3)

where | · | denotes set cardinality. The index ranges over the interval [0, 1],258

where the higher the value, the more concordant the segmentation result259

and the ground truth. A Dice index of 1 implies a perfect agreement. It260

is conventional that the segmentation accuracy on an image is calculated by261

Dice(Gall, Sall), where Gall denotes the set of pixels of all ground truth objects262

and Sall denotes the set of pixels of all segmented objects. The calculation263

made in this way measures the segmentation accuracy only at the pixel level,264

not at the gland level, which was the main focus of the competition.265

To take the notion of an individual gland into account, we employ the266

object-level Dice index (Sirinukunwattana et al., 2015). Let nG be the number267

of non-empty ground truth glands, as annotated by the expert pathologist.268

Similarly let nS be the number of glands segmented by the algorithm, that269

is the number of non-empty segmented objects. Let Gi ∈ G denote the ith270

ground truth object, and let Sj ∈ S denote the jth segmented object. The271

object-level Dice index is defined as272

Diceobj(G,S) =
1

2

[
nG∑
i=1

γiDice(Gi, S∗(Gi)) +

nS∑
j=1

σjDice(G∗(Sj), Sj)

]
, (4)

11



where273

γi = |Gi|/
nG∑
p=1

|Gp|, σj = |Sj|/
nS∑
q=1

|Sq| (5)

On the right hand side of (4), the first summation term reflects how well each274

ground truth object overlaps its segmented object, and the second summa-275

tion term reflects how well each segmented object overlaps its ground truth276

objects. Each term is weighted by the relative area of the object, giving less277

emphasis to small segmented and small ground truth objects.278

In the competition, the object-level Dice index of the whole test dataset279

was calculated by including all the ground truth objects from all images in280

G and all the segmented objects from all images in S.281

5.2.2. Adjusted Rand Index282

We also included the adjusted Rand index (Hubert and Arabie, 1985) as283

another evaluation measure of segmentation accuracy. This index was used284

for additional assessment of the algorithm performance in Section 8.3.285

The adjusted Rand index measures similarity between the set of all ground286

truth objects G and the set of all segmented objects S, based on how pixels287

in a pair are labeled. Two possible scenarios for the pair to be concordant288

are that (i) they are placed in the same ground truth object in G and the289

same segmented object in S, and (ii) they are placed in different ground290

truth objects in G and in different segmented objects in S. Define nij as the291

number of pixels that are common to both the ith ground truth object and292

the jth segmented object, ni,· as the total number of pixels in the ith ground293

truth object, n·,j as the total number of pixels in the jth segmented object,294

and n as the total number of pixels. Following a simple manipulation, it can295

be shown that the probability of agreement is equal to296

Pagreement =

[(
n

2

)
+ 2

nG∑
i=1

nS∑
j=1

(
nij

2

)
−

nG∑
i=1

(
ni,·

2

)
−

nS∑
j=1

(
n·,j

2

)]/(
n

2

)
.

(6)
Here, the numerator term corresponds to the total number of agreements,297

while the denominator term corresponds to the total number of all possi-298

ble pairs of pixels. Under the assumption that the partition of pixels into299

ground truth objects in G and segmented objects in S follows a generalized300

12



hypergeometric distribution, the adjusted Rand index can be formulated as301

ARI(G,S) =
∑nG

i=1

∑nS
j=1

(
ni,j

2

)
−

∑nG
i=1

(
ni

2

)∑nS
j=1

(
n·,j
2

)/(
n
2

)
1
2

[∑nG
i=1

(
ni,·
2

)
+
∑nS

j=1

(
n·,j
2

)]
−

∑nG
i=1

(
ni,·
2

)∑nS
j=1

(
n·,j
2

)/(
n
2

) . (7)

The adjusted Rand index is bounded above by 1, and it can be negative.302

5.3. Boundary-Based Segmentation Accuracy303

We measure the boundary-based segmentation accuracy between the seg-304

mented objects in S and the ground truth objects in G using the object-level305

Hausdorff distance. The usual definition of a Hausdorff distance between306

ground truth object G and segmented object S is307

H(G,S) = max{sup
x∈G

inf
y∈S

d(x, y), sup
y∈S

inf
x∈G

d(x, y)} (8)

where d(x, y) denotes the distance between pixels x ∈ G and y ∈ S. In this308

work, we use the Euclidean distance. According to (8), Hausdorff distance is309

the most extreme value from all distances between the pairs of nearest pixels310

on the boundaries of S and G. Thus, the smaller the value of the Hausdorff311

distance, the higher the similarity between the boundaries of S and G, and312

S = G if their Hausdorff distance is zero.313

To calculate the overall segmentation accuracy between a pair of corre-314

sponding segmented and ground truth objects, we now introduce object-level315

Hausdorff distance by imitating the definition of object-level Dice index (4).316

The object-level Hausdorff distance is defined as317

Hobj(G,S) =
1

2

[
nG∑
i=1

γiH(Gi, S∗(Gi)) +

nS∑
j=1

σjH(G∗(Sj), Sj)

]
, (9)

where the meaning of the mathematical notation is similar to that given in318

Section 5.2.1. In case a ground truth object G does not have a corresponding319

segmented object (i.e. S∗(G) = ∅), the Hausdorff distance is calculated320

between G and the nearest segmented object S ∈ S to G (in the Hausdorff321

distance) in that image instead. The same applies for a segmented object322

that does not have a corresponding ground truth object.323
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6. Ranking Scheme324

Each submitted entry was assigned one ranking score per evaluation met-325

ric and set of test data. Since there were 3 evaluation metrics (F1 score326

for gland detection, object-level Dice index for volume-based segmentation327

accuracy, and object-level Hausdorff index for boundary-based segmentation328

accuracy) and 2 sets of test data, the total number of ranking scores was329

6. The best performing entry was assigned ranking score 1, the second best330

was assigned ranking score 2, and so on. In care of a tie, the standard com-331

petition ranking was applied. For instance, F1 score 0.8, 0.7, 0.7, and 0.6332

would result in the ranking scores 1, 2, 2, and 4. The final ranking was then333

obtained by adding all 6 ranking scores (rank sum). The entry with smallest334

sum was placed top in the final ranking.335

7. Methods336

The top ranking methods are described in this section. They are selected337

from the total of 13 methods that participated in all stages of the challenge.338

The cut-off for the inclusion in this section was made where there was a339

substantial gap in the rank sums (see Appendix A, Figure A.5). Of the 7340

selected methods, only 6 preferred to have their methods described here.341

7.1. CUMedVision4
342

A novel deep contour-aware network (Chen et al., 2016) was presented.343

This method explored the multi-level feature representations with fully con-344

volutional networks (FCN) (Long et al., 2015). The network outputted seg-345

mentation probability maps and depicted the contours of gland objects simul-346

taneously. The network architecture consisted of two parts: a down-sampling347

path and an up-sampling path. The down-sampling path contained convo-348

lutional and max-pooling layers while the up-sampling path contained con-349

volutional and up-sampling layers, which increased the resolutions of feature350

maps and outputted the prediction masks. In total, there were 5 max-pooling351

layers and 3 up-sampling layers. Each layer with learned parameters was fol-352

lowed by a non-linear mapping layer (element-wise rectified linear activation).353

4Department of Computer Science and Engineering, The Chinese University of Hong
Kong.
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In order to separate touching glands, the feature maps from hierarchical354

layers were up-sampled with two different branches to output the segmented355

object and contour masks respectively. The parameters of the down-sampling356

path were shared and updated for these two kinds of masks. This could357

be viewed as a multi-task learning framework with feature representations,358

simultaneously encoding the information of segmented objects and contours.359

To alleviate the problem of insufficient training data (Chen et al., 2015),360

an off-the-shelf model from DeepLab (Chen et al., 2014), trained on the361

2012 PASCAL VOC dataset5, was used to initialize the weights for layers in362

the down-sampling path. The parameters of the network were obtained by363

minimizing the loss function with standard back-propagation 6.364

The team submitted two entries for evaluation. CUMedVision1 was365

produced by FCN with multi-level feature representations relying only on366

gland object masks, while CUMedVision2 was the results of the deep367

contour-aware network, which considers gland object and contour masks si-368

multaneously.369

7.2. CVML7
370

In the first, preprocessing, stage the images were corrected to compensate371

for variations in the appearance due to a variability of the tissue staining pro-372

cess. This was implemented through histogram matching, where the target373

histogram was calculated from the whole training data, and the individual374

image histograms were used as inputs. The main processing stage was based375

on two methods: a convolutional neural network (CNN) (Krizhevsky et al.,376

2012) for a supervised pixel classification, and a level set segmentation for377

grouping pixels into spatially coherent structures. The employed CNN used378

an architecture with two convolutional, pooling and fully connected layers.379

The network was trained with three target classes. The classes were designed380

to represent (1) the tubular interior of the glandular structure (inner class),381

(2) epithelial cells forming boundary of the glandular structure (boundary382

class) and (3) inter-gland tissue (outer class). The inputs to the CNN were383

19× 19 pixel patches sliding across the adjusted RGB input image. The two384

convolutional layers used 6×6 and 4×4 kernels with 16 and 36 feature maps385

5http://host.robots.ox.ac.uk:8080/pascal/VOC/voc2012/index.html
6More details will be available at: http://www.cse.cuhk.edu.hk/~hchen/research/

2015miccai_gland.html
7School of Engineering, University of Central Lancashire, Preston, UK.
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respectively. The pooling layers, implementing the mean function, used 2×2386

receptive fields and 2× 2 stride. The first and second fully connected layers387

used the rectified linear unit and softmax functions respectively. The outputs388

from the CNN were two probability maps representing the probability of each389

image pixel belonging to the inner and boundary classes. These two prob-390

ability maps were normalized between -1 and 1 and used as a propagation391

term, along with an advection term and a curvature flow term. These terms392

were part of the hybrid level set model described in Zhang et al. (2008). In393

the post-processing stage, a sequence of morphological operations was per-394

formed to removed small objects, fill holes and disconnect weakly connected395

objects. Additionally, if an image boundary intersecting an object forms a396

hole, the corresponding pixels was labeled as part of that object. The team397

submitted a single entry for evaluation, henceforth referred to as CVML.398

7.3. ExB8
399

This method first preprocessed the data by performing per channel zero400

mean and unit variance normalization, where the mean and variance were401

computed from the training data. The method then exploited the local invari-402

ance properties of the task by applying a set of transformations to the data.403

At training time, the dataset was augmented by applying affine transforma-404

tions, Gaussian blur and warping. During testing, both image mirroring and405

rotation were applied.406

The main segmentation algorithm consisted of a multi-path convolutional407

neural network. Each path was equipped with a different set of convolutional408

layers and configured to capture features from different views in a local-global409

fashion. All the different paths were connected to a set of two fully connected410

layers. A leaky rectified linear unit was used as a default activation function411

between layers, and a softmax layer was used after the last fully connected412

layer. Every network was trained via stochastic gradient descent with mo-413

mentum, using a step-wise learning rate schedule (Krizhevsky et al., 2012).414

The network was randomly initialized such that unit variance was preserved415

across layers. It was found that using more than three paths led to heavy416

over-fitting – this was due to insufficient training data.417

Simple-path networks were trained to detect borders of glands. The418

ground truth for these networks was constructed using a band of width419

8ExB Research and Development.
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K ∈ [5, 10] pixels along a real gland border. These values of K were found420

to produce optimal and equivalent quantitative results, measured by the F1421

score and the object-Dice index. The output of these networks was used to422

better calibrate the final prediction.423

In the post-processing step, a simple method was applied to clean noise424

and fill holes in the structures. Thresholding was applied to remove spurious425

structures with diameter smaller than a certain epsilon. Filling-hole criteria426

based on diameter size was also used.427

Using the initial class discrimination (benign and malignant), a simple428

binary classifier constructed from a convolutional neural network with 2 con-429

volutional and 1 fully connected layers was trained. This binary classifier430

used the raw image pixels as input. The output of the classifier was used431

together with the border networks and the post-processing method to apply432

a different set of parameters/thresholds depending on the predicted class.433

The hyperparameters for the entire pipeline, including post-processing and434

border networks, were obtained through cross-validation.435

For this method, the team submitted 3 entries. ExB 1 was a two-path436

network including both the border network for detecting borders of glands437

and the binary classification to differentiate between the post-processing pa-438

rameters. ExB 2 was similar to ExB 1 without the use of the border network.439

ExB 3 used a two-path network without any post-processing.440

7.4. Image Analysis Lab Uni Freiburg9441

The authors applied a u-shaped deep convolutional network “u-net”10442

(Ronneberger et al., 2015) for the segmentation. The input was the raw443

RGB image and the output was a binary segmentation map (glands and444

background). The network consisted of an analysis-path constructed from a445

sequence of convolutional layers and max-pooling layers, followed by a synthe-446

sis path with a sequence of up-convolutional layers and convolutional layers,447

resulting in 23 layers in total. Additional shortcut-connections propagated448

the feature maps at all detail levels from the analysis to the synthesis path.449

The network was trained from scratch in an end-to-end fashion with only the450

9Computer Science Department and BIOSS Centre for Biological Signalling Studies,
University of Freiburg, Germany.

10The implementation of the u-net is freely available at http://lmb.informatik.

uni-freiburg.de/people/ronneber/u-net/.
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images and ground truth segmentation maps provided by the challenge orga-451

nizers. To teach the network the desired invariances and to avoid overfitting,452

the training data were augmented with randomly transformed images and453

the correspondingly transformed segmentation maps. The applied transfor-454

mations were random elastic deformations, rotations, shifts, flips, and blurs.455

The color transformations were random multiplications applied in the HSV456

color space. To avoid accidentally joining touching objects, a high pixel-wise457

loss weight was introduced for pixels in thin gaps between objects in the458

training dataset (see Ronneberger et al. (2015)). The exact same u-net lay-459

out with the same hyperparameters as in Ronneberger et al. (2015) was used460

for the challenge. The only difference were more training iterations and a461

slower decay of the learning rate.462

The team submitted two entries. The first entry Freiburg1 was a con-463

nected component labelling applied to the raw network output. The second464

entry Freiburg2 post-processed the segmentation maps with morphological465

hole-filling and deletion of segments smaller than 1000 pixels.466

7.5. LIB11
467

Intestinal glands were divided according to their appearance into three468

categories: hollow, bounded, and crowded. A hollow gland was composed of469

lumen and goblet cells and it could be a hole in the tissue surface. A bounded470

gland had the same composition, but in addition, it was surrounded by a thick471

epithelial layer. A crowded gland was composed of bunches of epithelial cells472

clustered together and it might have shown necrotic debris.473

The tissue was first classified into one of the above classes before beginning474

the segmentation. The classification relied on the characterization of the475

spatial distribution of cells and the topology of the tissue. Therefore, a476

closing map was generated with a cumulative sum of morphological closing477

by a disk of increasing radius (1 to 40 pixels) on the binary image of nuclear478

objects, which were segmented by the k-means algorithm in the RGB colour479

space. The topological features were calculated from a normalized closing480

map in MSER fashion (Maximally Stable Extremal Region, Matas et al.481

(2004)) as the number of regions below three different thresholds (25%, 50%482

and 62.5%) and above one threshold (90%), their sizes and the mean of483

11Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Biomedical Imaging
Laboratory (LIB), Paris, France.
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their corresponding values in the closing map. The first three thresholds484

characterized the holes and the fourth one characterized the thickness of485

nuclear objects. After classifying the tissue with a Naive Bayes classifier486

trained on these features, a specific segmentation algorithm was applied.487

Three segmentation algorithms were presented, one for each category.488

Hollow glands were delineated by morphological dilation on regions below489

50%. Bounded gland candidates were first detected as hollow glands, then490

the thickness of nuclear objects surrounding the region was evaluated by gen-491

erating a girth map and a solidity map (Ben Cheikh et al., 2016), then after492

classifying nuclear objects, the epithelial layer was added or the candidate493

was removed. Crowded glands were identified as populous regions (regions494

above 90%), and then morphological filtering was applied for refinement. The495

team submitted a single entry labeled as LIB for evaluation.496

7.6. vision4GlaS12
497

Given an H&E-stained RGB histopathological section, the gland segmen-498

tation method was based on a pixel-wise classification and an active contour499

model, and it proceeded in three steps (Kainz et al., 2015). In a first prepro-500

cessing step the image was rescaled to half the spatial resolution, and color501

deconvolution separated the stained tissue components. The red channel of502

the deconvolved RGB image represented the tissue structure best and was503

therefore considered for further processing. Next, two convolutional neu-504

ral networks (CNNs) (LeCun et al., 2010) of seven layers each were trained505

for pixel-wise classification on a set of image patches. Each network was506

trained with ReLU nonlinearities, and stochastic gradient descent with mo-507

mentum, weight decay, and dropout regularization to minimize a negative508

log-likelihood loss function. The first CNN, called Object-Net, was trained509

to distinguish four classes: (i) benign background, (ii) benign gland, (iii)510

malignant background, and (iv) malignant gland. For each image patch the511

probability distribution over the class labels was predicted, using a softmax512

function. The Object-Net consisted of three convolutional layers followed513

by max-pooling, a final convolutional layer and three fully connected layers.514

12Institute of Biophysics, Center for Physiological Medicine, Medical University of Graz,
Graz, Austria; Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich,
Switzerland; Institute for Computer Graphics and Vision, BioTechMed, Graz University
of Technology, Graz, Austria; Ludwig Boltzmann Institute for Clinical Forensic Imaging,
Graz, Austria.
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The second – architecturally similar – CNN called Separator-Net, learned to515

predict pixels of gland-separating structures in a binary classification task.516

Ground truth was generated by manually labeling image locations, close517

to two or more gland borders, as gland-separating structures. In the final518

step the segmentation result was obtained by combining the outputs of the519

two CNNs. Predictions for benign and malignant glands were merged, and520

predictions of gland-separating structures were subtracted to emphasize the521

foreground probabilities. Background classes were handled similarly. Using522

these refined foreground and background maps, a figure-ground segmentation523

based on weighted total variation was employed to find a globally optimal524

solution. This approach optimized a geodesic active contour energy, which525

minimized contour length while adhering to the refined CNN predictions526

(Bresson et al., 2007). The team submitted a single entry, referred to as527

vision4GlaS.528

8. Results and Discussion529

8.1. Summary of the Methods530

The methods described above take one of the following two approaches531

to segmentation: (a) they start by identifying pixels corresponding to glands532

which are then grouped together to form separated, spatially coherent ob-533

jects; (b) they begin with candidate objects that are then classified as glands534

or non-glands. All methods that are based on CNNs (CUMedVision, CVML,535

ExB, Freiburg, and vision4GlaS) follow the former approach. CVML, ExB,536

and vision4GlaS built CNN classifiers that assign a gland-related or non-537

gland-related label to every pixel in an image, by taking patch(es) centered538

at the pixel as input. ExB, in particular, use multi-path networks into which539

patches at different sizes are fed, in order to capture contextual informa-540

tion at multiple scales. CUMedVision and Freiburg, on the other hand, base541

their pixel classifier on a fully convolutional network architecture (Long et al.,542

2015), allowing simultaneous pixel-wise label assignment at multiple pixel lo-543

cations. To separate gland-related pixels into individual objects, CVML and544

vision4GlaS deploy contour based approaches. ExB trains additional net-545

works for glandular boundary, while CUMedVision and Freiburg explicitly546

include terms for boundary in the training loss function of their networks.547

The only method that follows the latter approach for object segmentation548

is LIB. In this method, candidate objects forming part of a gland (i.e., lu-549
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men, epithelial boundary) are first identified, and then classified into different550

types, followed by the final step of segmentation.551

A variety of data transformation and augmentation were employed to deal552

with variation within the data. In order to counter the effect of stain vari-553

ation, CVML and ExB performed transformations of the RGB color chan-554

nels, vision4GlaS used a stain deconvolution technique to obtain only the555

basophilic channel in their preprocessing step. By contrast, Freiburg tackled556

the issue of stain variability through data augmentation, which implicitly557

forces the networks to be robust to stain variation to some extent. As is558

common among methods using CNNs, spatial transformations, such as affine559

transformations (e.g. translation, rotation, flip), elastic deformations (e.g.560

pincushion and barrel distortions), and blurring, were also used in the data561

augmentation to teach the network to learn features that are spatially invari-562

ant. The other benefit of data augmentation is it provides, to some extent,563

avoidance of over-fitting.564

ExB, LIB, and vision4GlaS incorporated histologic grades of glands in565

their segmentation approach. In ExB, procedures and/or parameter values566

used in boundary detection and post-precessing steps were different, subject567

to the predicted histologic grade of an image. vision4GlaS classified pixels568

based on histological information. Although not explicit, LIB categorized569

candidate objects forming glands according to their appearance, related to570

histologic grades, before treating them in different ways.571

As a post-processing step, many segmentation algorithms employed sim-572

ple criteria and/or a sequence of morphological operations to improve their573

segmentation results. A common treatment was to eliminate small spurious574

segmented objects. Imperfections in pixel labelling can result in the appear-575

ance of one or more holes in the middle of an object. Filling such holes is often576

necessary. In addition to these operations, CVML performed morphological577

operations to separate accidentally joined objects.578

8.2. Evaluation Results579

Table 2 summarizes the overall evaluation scores and ranks achieved by580

each entry from each test part. We list the entries according to the order581

of their rank sum, which indicates the overall performance across evaluation582

measures and tasks of the entries. The lower the rank sum, the more favor-583

able the performance. The top three entries according to the overall rank584

sum in descending order are CUMedVision2, ExB1, and ExB3. However,585

21



Table 2: Summary results. The evaluation is carried out according to the challenge criteria
described in Section 6. A ranking score is assigned to each algorithm according to its
performance in each evaluation measure, obtained from each test part. The entries are
listed in a descending order based on their rank sum

Method

F1score Diceobj Hobj

Rank SumPart A Part B Part A Part B Part A Part B

Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank

CUMedVision2 0.912 1 0.716 3 0.897 1 0.781 5 45.418 1 160.347 6 17

ExB1 0.891 4 0.703 4 0.882 4 0.786 2 57.413 6 145.575 1 21

ExB3 0.896 2 0.719 2 0.886 2 0.765 6 57.350 5 159.873 5 22

Freiburg2 0.870 5 0.695 5 0.876 5 0.786 3 57.093 3 148.463 3 24

CUMedVision1 0.868 6 0.769 1 0.867 7 0.800 1 74.596 7 153.646 4 26

ExB2 0.892 3 0.686 6 0.884 3 0.754 7 54.785 2 187.442 8 29

Freiburg1 0.834 7 0.605 7 0.875 6 0.783 4 57.194 4 146.607 2 30

CVML 0.652 9 0.541 8 0.644 10 0.654 8 155.433 10 176.244 7 52

LIB 0.777 8 0.306 10 0.781 8 0.617 9 112.706 9 190.447 9 53

vision4GlaS 0.635 10 0.527 9 0.737 9 0.610 10 107.491 8 210.105 10 56

if rank sum is considered with respect to the test part, the three best en-586

tries are CUMedVision2, ExB2, and ExB3 for part A; whereas in part B,587

CUMedVision1, ExB1, and Freiburg2 come at the top. A summary of the588

ranking results from the competition can be found in Appendix A. Some seg-589

mentation results and their corresponding evaluation scores are illustrated in590

Figure 2 to give a better idea of how the evaluation scores correlate with the591

quality of the segmentation.592

8.3. Additional Experiments593

In the challenge, the split of the test data into two parts – Part A (60594

images) for off-site test and Part B (20 images) for on-site test – to some595

extent introduces bias into the performance evaluation of the segmentation596

algorithms due to equal weight given to performance on the two test parts.597

The algorithms that perform particularly well on Test Part B would therefore598

get a better evaluation score even though they may not have performed as599

well on Test Part A, where the majority of the test dataset is to be found.600

In addition, the imbalance between the benign and malignant classes in Test601

Part B, only 4 benign (20%) and 16 malignant (80%) images, would also favor602

algorithms that perform well on the malignant class. In order to alleviate603

these issues, we merged the two test parts and re-evaluated the performance604

of all the entries. In addition, as suggested by one of the participating teams,605
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F1score = 1.000
Diceobj = 0.969
Hobj = 10.322

F1score = 0.546
Diceobj = 0.661
Hobj = 107.580

F1score = 0.875
Diceobj = 0.961
Hobj = 11.480

F1score = 0.615
Diceobj = 0.715
Hobj = 183.726

Figure 2: Example images showing segmentation results from some submitted entries. In
each row, (left) ground truth, (middle) the best segmentation result, and (right) the worst
segmentation result. For each image, the corresponding set of evaluation scores for the
segmentation result is reported underneath the image.
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Figure 3: Performance scores achieved by different entries on the combined test data.
Evaluation is conducted on three subsets of the data: (1st row) the whole test data, (2nd
row) benign, and (3rd row) malignant.
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Table 3: Ranking results of the entries when the two parts of test data are combined.
Two set of ranking scheme are considered: a) F1score + Diceobj+Hobj and b) F1score +
ARI + Hobj. In addition to the evaluation on the whole test data (overall), the entries
are evaluated on a subset of the data according to the histologic labels, i.e. benign and
malignant.

Entry

Final Ranking

F1score + Diceobj+Hobj F1score + ARI + Hobj

Overall Benign Malignant Overall Benign Malignant

CUMedVision1 7 7 3 4 6 3

CUMedVision2 1 1 1 1 2 2

CVML 10 10 10 10 10 10

ExB1 2 6 2 2 7 1

ExB2 6 3 7 7 1 7

ExB3 3 5 4 3 3 4

Freiburg1 4 4 6 6 5 6

Freiburg2 5 2 5 5 4 5

LIB 8 8 9 8 8 9

vision4GlaS 9 9 8 9 9 8

the adjusted Rand index is included as another performance measurement606

for segmentation.607

The evaluation scores calculated from the combined two test parts are608

presented as bar chart in Figure 3. The final rankings based on the rank609

sums of evaluation scores calculated from the combined two test parts are610

reported in Table 3. Here, two set of rank sums are considered: one calculated611

according to the criteria of the competition (i.e., F1score+Diceobj+Hobj), and612

the other where the adjusted Rand index is used instead of the object-level613

Dice index to evaluate segmentation accuracy (i.e., F1score + ARI + Hobj).614

For both sets of rank sums, the new ranking orders are largely similar to615

those reported in Section 8.2, with a few swaps in the order, while the top616

three entries remaining the same, namely CUMedVision2, ExB1, ExB3.617

The main factors that negatively affect the performance of the methods618

are a number of challenges presented by the dataset. Firstly, large white619

empty areas corresponding to the lumen of the gastrointestinal tract which620

are not in the interior of intestinal glands can easily confuse the segmentation621

algorithms (Figure 4a). Secondly, characteristics of non-glandular tissue can622
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sometimes resemble that of the glandular tissue. For instance, connective tis-623

sue in muscularis mucosa or sub-mucosa layers of the colon is stained white624

and pinkish and has less dense nuclei, thus resembling the inner part of glands625

(Figure 4b). In the case where there is less stain contrast between nuclei and626

cytoplasm due to elevated levels of Hematoxylin stain, non-glandular tissue627

with dense nuclei can look similar to malignant epithelial tissue (Figure 4c).628

Thirdly, small glandular objects are blended into the surrounding tissue and629

can be easily mis-detected (Figure 4d). A careful inspection of the segmenta-630

tion results generated by each entry showed that methods by CUMedVision,631

ExB, and Freiburg better avoid over-segmentation or under-segmentation632

when facing the above-mentioned pitfalls.633

The performance of each entry with respect to the histologic grade of634

cancer was also examined. Their evaluation scores based on benign and635

malignant samples are reported in the second and the third rows of Figure636

3 respectively, and the ranking orders derived from the rank sums of the637

scores are shown in Table 3. Based on these results, one can get a better638

contrast between the performance of the entries that enforce border separa-639

tion and those that do not. By applying a predicted border mask to separate640

clumped segmented objects, CUMedVision2 performs better than CUMedVi-641

sion1, which tends to produce segmentation results that merge neighboring642

glands together, in both benign and malignant cases. Similarly, ExB1 is643

able to segment malignant glands better than ExB2 and ExB3 that do not644

utilize border separation. However, this can have an adverse effect if the al-645

gorithm already yields segmentation results that separate individual objects646

well, such as in the case of ExB1 which under-segments benign glandular647

objects as compared to its counterparts ExB2 and ExB3.648

8.4. General Discussion649

The objectives of this challenge were to raise the research community’s650

awareness of the existence of the intestinal gland segmentation problem in651

routine stained histology images, and at the same time to provide a plat-652

form for a standardized comparison of the performance of automatic and653

semi-automatic algorithms. The challenge attracted a lot of attention from654

researchers, as can be seen from the number of registered teams/individuals655

and the number of submissions at each stage of the competition. Interest-656

ingly, some of the teams had no experience in working with histology images657

before. We would like to emphasize that finding the best performing ap-658

proach is not the main objective of the competition, but rather pushing the659

26



(a)

(b)

(c)

(d)

Figure 4: Example images showing some challenging features in the dataset: (a) lumen
of the gastrointestinal tract, (b) sub-mucosa layer, (c) area with dense nuclei in mucosa
layer, and (d) small glands. Each example is shown with (left) the original image and
(right) the overlaid image highlighting the area with challenging characteristic.
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boundaries of the-state-of-the-art approaches. Already, we have seen quite660

interesting developments from many participating teams and the leading al-661

gorithms have produced excellent results, both qualitatively and quantita-662

tively.663

As noted in the Introduction, morphometric analysis of the appearance664

of cells and tissues, especially those forming glands from which tumors origi-665

nate, is one of the key components towards precision medicine, and segmen-666

tation is the first step to attain morphological information. Some may have667

argued that there is no need to perform segmentation, but instead, to fol-668

low conventional pattern recognition approaches by extracting mathematical669

features which normally capture local and/or global tissue architecture and670

then identifying features that are most suited to the objective of the study.671

It is true that there are a number of successful works that follow such an672

approach (Jafari-Khouzani and Soltanian-Zadeh, 2003; Tabesh et al., 2007;673

Altunbay et al., 2010; Basavanhally et al., 2010; Ozdemir and Gunduz-Demir,674

2013; Gultekin et al., 2015). However, because these extracted features are675

often physically less interpretable in the eyes of practitioners, it is difficult to676

adopt such an approach in clinical settings. On the other hand, the appear-677

ance of glands such as size and shape obtained through segmentation is easy678

to interpret. Segmentation also helps to localize other type of information679

(e.g., texture, spatial arrangement of cells) that is specific to the glandular680

areas.681

Even though the dataset used in the challenge included images of different682

histologic grades taken from several patients, it lacked other aspects. First of683

all, inter-observer variability was not taken into account as the ground truth684

was generated by a single expert. This is because the intricate and arduous685

nature of the problem makes it difficult to find several volunteer experts to686

perform manual segmentation. Considerable experience is required in order687

to delineate boundaries of malignant glands, which are not so well-defined688

as those of the benign ones. Moreover, a single image can contain a large689

number of glands to be segmented, making the task very laborious. Sec-690

ondly, digitization variability was also not considered in this dataset. It is, in691

fact, very important to evaluate the robustness of algorithms when the data692

are scanned by different instruments. As whole-slide scanners are becoming693

increasingly available, this type of real-world problem should be expected.694

The choice of evaluation measures would also affect the comparative re-695

sults. In this challenge, we emphasized object segmentation and accordingly696

defined the object-level Dice index and the object-level Hausdorff distance to697
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measure segmentation accuracy at the object level rather than at the pixel698

level. Nonetheless, it has been suggested that these measures are too strict,699

as they put a severe penalty on mismatch of the objects. One could replace700

these measures by less conservative ones, for example, adjusted Rand in-701

dex (Hubert and Arabie, 1985) or a topology preserving warping error (Jain702

et al., 2010) for a volume-based metric and elastic distance (Younes, 1998;703

Joshi et al., 2007) for a boundary-based metric. For this reason, we included704

adjusted rand index as an alternative to object-level Dice index in Section705

8.3. As we have already pointed out, this results in only a minor change in the706

ranking order of the entries. Another aspect that was not explicitly included707

in the evaluation was execution times. Nevertheless, all the algorithms were708

capable of completing the segmentation task on the on-site test data (Part709

B) in the given amount of time with or without limitation of resources. Time710

efficiency is required to process large scale data, such as whole-slide images,711

whose volume is growing by the day as slides are routinely scanned. Still, in712

medical practice, accuracy is far more important than speed.713

It is worth noting that the used evaluation metrics used here are clini-714

cally relevant. As mentioned in the Introduction, morphology of intestinal715

glands is the key criterion for colorectal cancer grading. This includes shape,716

size, and formation of the glands. Thus, in terms of clinical relevance, the717

object-Hausdorff distance is used in accessing the shape similarity between718

the segmentation results and the ground truth. The object-Dice index is used719

in assessing the closeness between the volume of the segmentation results and720

that of the ground truth, which is important in estimating the size of individ-721

ual glands. Although not directly clinically relevant, F1 score is important722

in assessing the accuracy of the identified glands. Since the morphological723

assessment is done on the basis of tissue slide including several thousands of724

glands, an algorithm with high value of F1 score is more preferable as it can725

detect a larger number of glands.726

Gland segmentation algorithms presented here are not ready for deploy-727

ment into clinic in their present form. Although some of the top algorithms728

produce good segmentation results for the contest dataset and will probably729

fare well in the real world, there needs to be a large-scale validation involving730

data from multiple centers annotated by multiple pathologists before any of731

these algorithms can be deployed in a diagnostic application.732

The challenge is now completed, but the dataset will remain available733

for research purposes so as to continually attract newcomers to the problem734

and to encourage development of state-of-the-art methods. Extension of the735
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dataset to address inter-observer and inter-scanner variability seems to be the736

most achievable aim in the near future. Beyond the scope of segmentation,737

there lie various extremely interesting future research directions. Previous738

studies have shown the strong association between the survival of colorectal739

cancer patients and tumor-related characteristics, including lymphocytic in-740

filtration (Galon et al., 2006; Fridman et al., 2012), desmoplasia (Tommelein741

et al., 2015), tumor budding (Mitrovic et al., 2012), and necrosis (Richards742

et al., 2012). A systematic analysis of these characteristics with the help743

of gland segmentation as part of automatic image analysis framework could744

lead to a better understanding of the relevant cancer biology as well as bring745

precision and accuracy into assessment and prediction of the outcome of the746

cancer.747

9. Conclusions748

This paper presented a summary of the Gland Segmentation in Colon749

Histology Images (GlaS) Challenge Contest which was held in conjunction750

with the 18th International Conference on Medical Image Computing and751

Computer Assisted Interventions (MICCAI’2015). The goal of the challenge752

was to bring together researchers interested in the gland segmentation prob-753

lem, to validate the performance of their existing or newly invented algo-754

rithms on the same standard dataset. In the final round, the total num-755

ber of submitted entries for evaluation was 19, and we presented here in756

this paper 10 of the leading entries. The dataset used in the challenge has757

been made publicly available and can be accessed at the challenge website758

(http://www.warwick.ac.uk/bialab/GlasContest/). Those who are in-759

terested in developing or improving their own approaches are encouraged to760

use this dataset for quantitative evaluation.761
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Appendix A. The Complete Contest Results777

A summary of the ranking results from the contest is given in Figure A.5.778
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