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Abstract

Diffusion magnetic resonance imaging (dMRI) can be used for noninvasive imaging of white 

matter tracts. Using fiber tracking, which propagates fiber streamlines according to fiber 
orientations (FOs) computed from dMRI, white matter tracts can be reconstructed for investigation 

of brain diseases and the brain connectome. Because of image noise, probabilistic tractography has 

been proposed to characterize uncertainties in FO estimation. Bootstrap provides a nonparametric 

approach to the estimation of FO uncertainties and residual bootstrap has been used for developing 

probabilistic tractography. However, recently developed models have incorporated sparsity 

regularization to reduce the required number of gradient directions to resolve crossing FOs, and 

the residual bootstrap used in previous methods is not applicable to these models. In this work, we 

propose a probabilistic tractography algorithm named Lasso bootstrap tractography (LBT) for the 

models that incorporate sparsity. Using a fixed tensor basis and a sparsity assumption, diffusion 

signals are modeled using a Lasso formulation. With the residuals from the Lasso model, a 

distribution of diffusion signals is obtained according to a modified Lasso bootstrap strategy. FOs 

are then estimated from the synthesized diffusion signals by an algorithm that improves FO 

estimation by enforcing spatial consistency of FOs. Finally, streamlining fiber tracking is 

performed with the computed FOs. The LBT algorithm was evaluated on simulated and real dMRI 

data both qualitatively and quantitatively. Results demonstrate that LBT outperforms state-of-the-

art algorithms.
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) is currently the only tool for in vivo 
investigation of white matter tracts. It captures the anisotropy of water diffusion in tissue to 

extract information about fiber tract orientations, which enables the reconstruction of white 

matter tracts (Johansen-Berg and Behrens, 2013). Diffusion tensor imaging (DTI) was first 

invented to model the water diffusion using a Gaussian distribution (Basser et al., 1994). 

Due to the inability of DTI to model crossing fiber tracts, more advanced dMRI techniques, 

such as high angular resolution diffusion imaging (HARDI) (Tuch et al., 2002) and diffusion 
spectrum imaging (DSI) (Wedeen et al., 2005), have been developed.

Using dMRI, fiber tracking—also known as tractography—can be performed to reconstruct 

white matter tracts (Mori et al., 2005). It has been used to investigate pathological 

abnormalities of specific tracts in a variety of diseases such as multiple sclerosis (Vishwas et 

al., 2010), schizophrenia (Phillips et al., 2009), and Alzheimer’s disease (Catheline et al., 

2010). Fiber tracking has also been widely applied to study the human brain connectome, 

where a structural depiction of the human brain network can be provided (Wang et al., 2013; 

Horn et al., 2014).

Most fiber tracking algorithms use a streamlining strategy, where fiber streamlines are 

propagated according to fiber orientations (FOs) computed from dMRI (Mori et al., 1999; 

Basser et al., 2000; Wedeen et al., 2005; Malcolm et al., 2010; Descoteaux et al., 2009). 

Because of image noise in dMRI acquisitions, uncertainties are introduced in the FO 

computation (Aranda et al., 2014). Probabilistic tractography was developed to account for 

this uncertainty (Parker et al., 2003; Behrens et al., 2007; Jeurissen et al., 2011; Jones, 2008; 

Yap et al., 2014; Berman et al., 2008). In probabilistic tractography, instead of obtaining a 

single deterministic FO for the direction of streamline propagation at each step, a 

distribution of FOs is calculated and a random sample is drawn for the direction of the 

propagation. By repeating the fiber tracking process, a distribution of fiber streamlines is 

achieved.
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Among the existing probabilistic tractography algorithms, bootstrap (Efron, 1979) has been 

a popular approach to the estimation of the distribution of FOs (Lazar and Alexander, 2005; 

Jones, 2003; Whitcher et al., 2008; Jeurissen et al., 2011; Chung et al., 2006; Jones, 2008; 

Yap et al., 2014; Berman et al., 2008). It enables nonparametric estimation of the uncertainty 

of a statistic and does not require prior knowledge of the relationship between the diffusion 

profile and the FO uncertainty (Jeurissen et al., 2011). Some previous works have acquired 

repeated scans in each gradient direction to perform repetition bootstrap, where synthesized 

diffusion weighted images are generated by randomly drawing with replacement the 

diffusion signal in each gradient direction at each voxel (Lazar and Alexander, 2005; Jones, 

2003). Yap et al. (2014) improved this strategy by using nonlocal information from the same 

image to avoid the requirement of repeated acquisitions. Other works fit a linear DTI or 

HARDI model and use the residuals to perform bootstrap. For example, in Whitcher et al. 

(2008) and Jones (2008), wild bootstrap was applied to the DTI model to provide 

probabilistic representation of white matter tracts. In Ratnarajah et al. (2013) residual 

bootstrap was performed on a two-tensor model to estimate the distribution of FOs. Berman 

et al. (2008) resampled residuals in the q-ball model using spherical harmonics (Hess et al., 

2006) to quantify the uncertainties of FOs. Similarly, Jeurissen et al. (2011) proposed a 

probabilistic tractography algorithm where residual bootstrap was used in conjunction with 

the constrained spherical deconvolution (Tournier et al., 2007).

A sufficient number of gradient directions are usually required for successful resolution of 

crossing FOs, which could lead to acquisition times that are too long for clinical use (Bilgic 

et al., 2012). To reduce the number of gradient directions, sparsity regularization has been 

incorporated into the FO estimation problem (Ramirez-Manzanares et al., 2007; Daducci et 

al., 2014b; Landman et al., 2012; Ye et al., 2014; Rathi et al., 2014; Michailovich et al., 

2011). Accordingly, as proposed in Ramirez-Manzanares et al. (2007) and Landman et al. 

(2012), the FOs can be estimated by solving a Lasso problem (Tibshirani, 1996). Up to this 

point, however, probabilistic tractography based on bootstrapping the Lasso model has not 

been explored.

In this work, we propose a probabilistic fiber tracking method named Lasso boot strap 
tractography (LBT). Preliminary results were presented in a conference paper (Ye et al., 

2015a). Here, we describe improvements to the algorithm and present a comprehensive 

evaluation. The diffusion signals are modeled by a fixed tensor basis, where each basis 

tensor represents a possible FO given by its primary eigenvector (PEV). Using the sparsity 

assumption that the number of FOs is much smaller than the number of gradient directions, 

we formulate FO estimation as a Lasso problem (Landman et al., 2012). Then, we create a 

distribution of synthesized diffusion signals using the modified Lasso bootstrap method 

proposed in Chatterjee and Lahiri (2011). From the synthesized diffusion signals, FOs are 

estimated using a recently developed algorithm in Ye et al. (2015b) (a more comprehensive 

description and evaluation is found in Ye et al. (2016)), where FO estimation performance is 

improved by the incorporation of spatial consistency. Specifically, FOs in all voxels are 

simultaneously estimated using weighted ℓ1-norm regularization, where spatially consistent 

FO configurations are encouraged. Finally, streamlining fiber tracking is performed 

repeatedly with the bootstrap FOs to achieve a distribution of streamlines. We applied the 

LBT algorithm to a simulated dataset and two in vivo brain dMRI datasets for evaluation.
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The remainder of the paper proceeds as follows. In Section 2, the proposed probabilistic 

tractography is introduced. The experiments on simulated and real dMRI data are presented 

in Section 3. A discussion is provided in Section 4 and we conclude the paper in Section 5.

2. Methods

In this section, we first introduce the modeling of diffusion signals using a fixed tensor basis 

and show how the model relates to the Lasso problem. Then, we describe the Lasso 

bootstrap approach to synthesizing diffusion signals and the FO estimation based on the 

bootstrap signals. Finally, we present the fiber tracking strategy.

2.1. Signal modeling using a fixed tensor basis

We use a fixed tensor basis to model the diffusion weighted signals. The basis comprises N 

= 289 prolate tensors , each representing a possible FO given by its PEV υi. The 

PEVs of the basis tensors are approximately evenly distributed over the unit sphere. The 

eigenvalues λ1 ≥ λ2 ≥ λ3 > 0 of the basis tensors are determined by examining the diffusion 

tensors in a region of interest (ROI) containing noncrossing tracts (Landman et al., 2012). 

Note that we set λ2 = λ3 as in Landman et al. (2012).

Suppose the diffusion weighted signal Sk (k = 1, 2, …, K) is associated with a diffusion 

gradient direction gk and b-value bk. We have (Landman et al., 2012)

(1)

where S0 is the b0 (diffusion-free) signal, fi is the unknown nonnegative mixture fraction for 

Di where , and nk is noise. By defining yk = Sk/S0 and ηk = nk/S0, we rewrite Eq. 

(1) as

(2)

where y = (y1, y2, …, yK)T, G ∈ ℝK × N comprises the attenuation terms , f 
= (f1, f2, …, fN)T, and η = (η1, η2, …, ηK)T.

Using the assumption that the number of FOs is usually small with respect to the number of 

gradient directions, the mixture fractions f can be estimated by solving the sparse 

reconstruction problem

(3)
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To solve Eq. (3), we relax the constraint of  and replace the ℓ0-norm with the ℓ1-

norm, which leads to a nonnegative Lasso problem (Landman et al., 2012; Ramirez-

Manzanares et al., 2007)

(4)

Finally, the mixture fractions are normalized so that they sum to one

(5)

and basis directions υi associated with nonzero f̂i (or f̂i greater than a threshold) are 

interpreted as FOs.

2.2. Uncertainty estimation using Lasso bootstrap

Because of image noise, uncertainty is inherent in FO estimation. Bootstrap provides a 

nonparametric approach to uncertainty characterization that does not require prior 

knowledge on noise properties. However, due to the ℓ1-norm introduced by the sparsity 

assumption in Eq. (4), FO estimation is not a nonregularized linear regression problem as in 

Whitcher et al. (2008), Berman et al. (2008), and Jeurissen et al. (2011). Therefore, the 

residual bootstrap or wild bootstrap strategy used in these works is not applicable to the 

sparse reconstruction formulation in Eq. (4), and a Lasso bootstrap strategy (Knight and Fu, 

2000; Chatterjee and Lahiri, 2011) should be used.

We use the modified Lasso bootstrap strategy proposed in Chatterjee and Lahiri (2011). It 

improves the standard Lasso bootstrap strategy (Knight and Fu, 2000), which could fail to 

provide a valid estimate of an unknown distribution (Chatterjee and Lahiri, 2010). The 

detailed bootstrap procedure is presented below.

First, we obtain a modified Lasso estimator f̌ = (f̌1, f̌2, …, f̌N)T (Chatterjee and Lahiri, 2011) 

from the normalized estimate of the mixture fractions as follows

(6)

where 𝟙 is an indicator function, and aK satisfies

(7)

As discussed in Chatterjee and Lahiri (2011), because small entries in f̂ that are close to zero 

cause inconsistencies in the standard bootstrap approach (Knight and Fu, 2000), Eq. (6) 

forces these small entries to be exactly zero to solve the inconsistency. The threshold should 
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satisfy Eq. (7), and it is motivated by the fact that the original bootstrap estimator is root-K 
consistent and the values of the Lasso estimator will lie in a neighborhood of order greater 

than K−1/2 around the true value with high probability (Chatterjee and Lahiri, 2011). For 

more details about the design of Eqs. (6) and (7), we refer the readers to Chatterjee and 

Lahiri (2011). We follow the choice of aK given by Chatterjee and Lahiri (2011): aK = cK−δ 

(c ∈ (0, ∞) and δ ∈ (0, 2−1)), and empirically set c = 0.02 and δ = 0.25.

Then, using the modified estimate f̌, we compute the residuals r = (r1, r2, …, rK)T as

(8)

and the centered residuals  as

(9)

where . For each yk, we randomly sample with replacement a centered 

residual  from  and synthesize

(10)

The bootstrap signal is given by . These synthetic observations 

represent alternative measurements that have the correct noise properties with respect to the 

residuals observed in a Lasso FO estimation approach.

2.3. FO estimation

FOs are estimated from the synthesized signals y**. We use the FORNI algorithm presented 

in Ye et al. (2015b, 2016), where spatial coherence of FOs is combined with sparsity to 

improve the estimation accuracy. Given M voxels and an image of bootstrap diffusion 

signals , it estimates all the mixture fractions  (and thus the FOs) 

simultaneously by solving the following minimization problem

(11)

where g̃m is the estimate of fm, and Cm is a diagonal weighting matrix that encodes the 

interaction between neighbors. The final estimate ĝm of fm is computed by normalizing g̃m:

(12)
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The FOs at each voxel m are then determined as

(13)

where tmf is a threshold. This threshold is used because small elements of ĝm are likely to 

correspond to either noise or an isotropic component of diffusion. We set tmf = 0.1 

(Landman et al., 2012; Ye et al., 2016), which works well in practice. The collection 

 forms a bootstrap FO image. Note that there is no limit on the number of FOs at 

each voxels; it is determined by the number of mixture fractions larger than the threshold 

tmf.

The design of Cm is given as follows. To encourage spatial coherence of FOs, Cm places 

higher penalties on basis directions that are not consistent with the FO configurations in the 

neighbors. Specifically, a set of likely FOs is first computed for m from the FOs in its 

neighbors (the procedure can be found in Ye et al. (2015b, 2016)), which indicates the 

desired FO configurations. Denote the set of likely FOs at m by , where Um 

is the cardinality of m. Then, the diagonal entries of Cm are

(14)

where α is a constant that controls the influence of neighbor information. In this way, basis 

directions closer to likely FOs are less penalized.

Note that Cm is a function of the FOs of the neighbors of m, and since the FO information in 

the neighbors is also to be estimated,  and  in Eq. (11) are determined by 

iterative optimization, where a block coordinate descent strategy is used. At iteration t each 

fm is solved sequentially,

(15)

(16)

where  is computed from FOs at iteration t or t − 1 in the neighborhood using Eq. (14). 

 is then normalized as  using Eq. (12) so that the entries sum to one, and FOs at m at 

iteration t are determined using Eq. (13), which are basis directions with mixture fractions 

larger than 0.1.
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We follow the default parameters used in Ye et al. (2016), where α = 0.8 and β = 0.5.

2.4. Fiber tracking

For each bootstrap FO image estimated from the synthesized signals, fiber tracking can be 

applied. Here we use a streamlining strategy that is similar to Descoteaux et al. (2009) and 

Yeh et al. (2010). Starting from a seed voxel, the FO that propagates the streamline at each 

location is computed from trilinear interpolation using the FOs at grid points. In the 

interpolation, because multiple FOs can exist at a grid point, only the FO that is most 

aligned with the propagation direction in the previous step is considered. After computing 

the interpolated FOs, the streamline is propagated accordingly by a fixed step size s. The 

propagation is terminated if the fractional anisotropy (FA) is lower than a threshold tFA or 

the angle between the current and previous propagation directions is larger than a threshold 

θt. In this work, the parameters are determined as follows: s = 0.5 mm, tFA = 0.2, and θt = 

45°, which are common settings in tractography (de Schotten et al., 2011).

By combining the streamlines generated from all synthesized FO images, the set  of all 

streamlines is obtained. Specifically, let Si,j be the j-th streamline generated from the i-th 

bootstrap FO image, Ni be the number of streamlines generated from the i-th bootstrap FO 

image, and Nbs be the total number of bootstrap FO images. Then, we have

(17)

These streamlines provide a probabilistic representation of fiber tracts.

3. Results

3.1. Digital crossing phantom

We applied LBT on a 3D digital crossing phantom (see the 3D rendering in Figure 1), where 

60 gradient directions with b = 1000 s/mm2 were used to simulate the dMRI acquisition. The 

phantom consists of five tracts, including four tracts (two straight and two curved ones) in 

the x-y plane and one tract in the z-direction. In the crossing region with two/three tracts, a 

two-tensor/three-tensor model was used to simulate the diffusion signals. A Rician noise 

model was used to create the final simulated diffusion weighted images (DWIs). The signal-

to-noise ratio (SNR) on the b0 image (the image without diffusion weighting) is 20, which is 

a moderate level for simulation (Daducci et al., 2014a) and is close to the SNR in real brain 

dMRI data. LBT was compared with wild bootstrap (WB) based on the DTI model 

(Whitcher et al., 2008; Jones, 2008) and the residual bootstrap combined with constrained 

spherical deconvolution (CSD-boot) (Jeurissen et al., 2011). These two methods were 

selected for comparison because they are both probabilistic tractography methods based on 

bootstrap where residuals are resampled, like the proposed method.

We first qualitatively evaluated the LBT method and compared it with WB and CSD-boot. 

For each tract, a seed was placed in a noncrossing region (see Figure 1). One hundred 

bootstrap FO images were generated for each method, and thus 100 streamlines were 
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generated for each seed in each method. The fiber tracking results are overlaid on the 3D 

rendering of the tracts in Figure 1. Deterministic fiber tracking results using FOs estimated 

by FORNI are also shown for a reference of tract shapes. Each segment of each streamline is 

color-coded with the standard DTI color scheme—red: left–right (x-axis); green: front–back 

(y-axis); and blue: up–down (z-axis) (Pajevic and Pierpaoli, 1999). It can be seen that WB 

cannot propagate streamlines through the crossing region; this is because it is based on the 

DTI model, which is unable to handle crossing FOs. Both CSD-boot and LBT are able to 

track the crossing fibers; however, CSD-boot has also generated many streamlines that go 

into undesired pathways. The streamlines produced by LBT are consistent with the FORNI 

deterministic tracking, and LBT provides a visualization of tracking uncertainty. Note that 

LBT tracks streamlines through the regions with three crossing tracts, indicating its ability to 

resolve crossing with more than two fibers.

To quantitatively compare CSD-boot and LBT (WB is not included for comparison because 

its model cannot handle crossing fibers), we use the error measure proposed in Ye et al. 

(2016). The means and standard deviations of the average FO error in each bootstrap FO 

image are 5.56° ± 0.05° and 4.42° ± 0.01° for CSD-boot and LBT, respectively, and LBT 

produces more accurate FOs. These average FO errors were compared using a Student’s t-
test, where the errors of LBT are highly significantly smaller than those of CSD-boot (p < 

0.001).

Next, we studied the effect of parameters c and δ used in the bootstrap procedure. Because δ 
is also related to the number of gradient directions, we added two cases of simulation where 

1) 90 gradient directions with b = 1000 s/mm2 (K = 90) and 2) 90 gradient directions each 

with b = 1000, 2000, 3000 s/mm2 (K = 270) were used. For each parameter combination of c 
∈ {0, 0.01, 0.02, 0.03} and δ ∈ {0.125, 0.25, 0.375}, 100 bootstrap FO images were 

generated for each simulated phantom, resulting in 300 FO images. The average FO errors 

over these 300 FO images are plotted in Figure 2. Note that c = 0 corresponds to the 

standard Lasso bootstrap procedure (Knight and Fu, 2000). Overall, the FO errors are robust 

to the choice of parameters, and we can see that our choice of parameters (c = 0.02 and δ = 

0.25) is among the top three in accuracy.

3.2. In vivo brain dMRI dataset one

Next, LBT was applied to the dMRI data of a human subject. The DWIs were acquired on a 

3T MR scanner (Magnetom Trio, Siemens, Erlangen, Germany). The DWIs have 30 gradient 

directions with b = 1000 s/mm2, and 48 axial slices were acquired for each DWI. The 

resolution of the DWIs is 2.7 mm isotropic and the matrix size is 84 × 84.

We first demonstrate the samples of FOs generated from LBT in a region that contains the 

crossing of the corpus callosum (CC) and the corticospinal tract (CST) (see the highlighted 

region on the FA map in Figure 3). The FOs in the crossing area from three randomly 

selected bootstrap FO images computed by LBT are shown in Figure 3, and they are color-

coded with the standard DTI colormap (red: left–right; green: front–back; and blue: up–

down) (Pajevic and Pierpaoli, 1999). In all three FO images, the crossing of the CC and CST 

is reconstructed; we can also observe that at each voxel the FOs from different bootstrap FO 
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images indicate consistent yet slightly different directions, which characterizes the 

uncertainty of FO estimation.

We then demonstrate our results by placing seeds in three characteristic white matter tracts: 

the CC, the CST, and the uncinate fasciculus (UNC). Seeds were placed in two voxels in the 

CC and one voxel each in the CST and UNC. For each seed, 100 streamlines were generated 

by each of the WB, CSD-boot, and LBT methods. The results of LBT are shown and 

compared with WB and CSD-boot in Figures 4–6 (the visualization was created in TrackVis 

(Wang et al., 2007)). The streamlines are overlaid on the FA map. Deterministic tracking 

results using FORNI FOs are also shown for a reference of tract shapes.

In Figure 4, the CC streamlines are shown in the coronal view. The upper and lower seeds 

correspond to the superior and lateral CC, respectively. WB fails to track the lateral CC 

because of its DTI model, which cannot propagate streamlines through the crossing of the 

CC and CST. In the CSD-boot result, part of the lateral CC streamlines are diverted into the 

pathway of the superior CC. In the LBT result, the superior CC is tracked with the upper 

seed and the lateral CC is tracked with the lower seed, as it should be.

In Figure 5, the CST streamlines are shown in the coronal view. In the WB result, some 

streamlines are diverted into the pathway of the middle cerebellar peduncles (the red 

streamlines). In both CSD-boot and LBT, the CST streamlines are propagated correctly to 

the cortical area.

In Figure 6, the UNC streamlines are shown in the sagittal view. Compared with the WB and 

CSD-boot results, LBT generates longer UNC streamlines that reach more anterior regions. 

In addition, in the CSD-boot result, we can see false streamlines reaching the posterior part 

of the brain.

In Figures 4–6, the LBT results are consistent with the deterministic FORNI results, and 

LBT provides a probabilistic representation of the tracked streamlines.

3.3. In vivo brain dMRI dataset two: A reproducibility study

We randomly selected five subjects from the Kirby21 data set (Landman et al., 2011) 

(https://www.nitrc.org/projects/multimodal/) to evaluate the scan-rescan reproducibility of 

the proposed method. Specifically, two dMRI scans with the same protocol were acquired 

for each subject on a 3T MR scanner (Achieva, Philips Healthcare, Best, Netherlands). Each 

dMRI scan contains one b0 image and 32 gradient directions (b = 700 s/mm2), and has 65 

axial slices. The data matrix size is 96 × 96 and was reconstructed to 256 × 256 by the 

scanner, resulting in an in-plane digital resolution of 0.828 mm × 0.828 mm. The slice 

thickness is 2.2 mm. Detailed description of the dMRI protocol can be found in Landman et 

al. (2011). We resampled the DWIs so that the resolution is 2.2 mm isotropic. For each 

subject the second scan was aligned with the first scan by rigidly registering the b0 image, 

and the gradient table of the second scan was rotated accordingly.

LBT was performed on each dMRI scan. We first qualitatively evaluated the results by 

focusing on the CC. On each dMRI scan of the first subject, the results of which are 

representative, we placed a seeding ROI in the CC (see Figure 7) and compared LBT with 
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WB and CSD-boot in Figure 7, where the deterministic fiber tracking results using FOs 

reconstructed by FORNI are also shown as references. For each seed voxel, 100 streamlines 

were generated for each probabilistic fiber tracking method. LBT produced both superior 

and lateral CC, and the shapes of the tracts from the two scans resemble each other. The CC 

produced by LBT is also consistent with the deterministic tracking results using FOs 

estimated by FORNI. WB does not always track the lateral CC because its inability to model 

the crossing CC and CST fibers. Compared with CSD-boot, LBT produces fewer false 

streamlines that propagate downward; the lateral CC streamlines of LBT are also denser 

than those of CSD-boot.

On the remaining four subjects, the qualitative comparison is focused between CSD-boot 

and LBT, because WB cannot handle crossing fibers. A seeding ROI was placed in the CC 

on each dMRI scan (see Figure 8), where 100 streamlines were generated for each seeding 

voxel for each method. For each subject, the CC streamlines produced by LBT are consistent 

between the two scans, and the superior and lateral CC are properly tracked. Compare with 

CSD-boot, LBT better tracks the lateral CC (for example, see the region highlighted by the 

red circle on Subject 3 in Figure 8). We also observe that the uncertainty of the streamlines 

tracked by LBT is smaller compared with CSD-boot, which is characterized by the thinner 

yet dense fiber bundles (for example, see the region highlighted by the white circle on 

Subject 5 in Figure 8).

To quantitatively evaluate the reproducibility, for each subject we investigated the 

dissimilarity between the bootstrap FOs generated from the two scans in ROIs containing the 

crossing of the CC and CST (see Figure 9(a) for example). Because WB cannot resolve 

crossing fibers, we focus on the comparison between LBT and CSD-boot.

First, for each voxel in the selected ROIs, we compute the difference of the histograms of the 

FOs computed from the two scans. For each FO represented by (ωx, ωy, ωz), it is converted 

to the spherical coordinate (r, θ, ϕ). Since (ωx, ωy, ωz) is a unit vector, r = 1; we also have 0 

≤ θ ≤ π and 0 ≤ ϕ < 2π. We can compute the 2D histograms of FOs by partitioning θ and ϕ 
into n and 2n bins, respectively (here we choose n = 10). We denote the histogram by ℋ1 

and ℋ2 for the first and second scan, respectively. Note that because of the bi-directionality 

of the FOs ((ωx, ωy, ωz) and (−ωx, −ωy, −ωz) represent the same FO), for each (ωx, ωy, ωz), 

(−ωx, −ωy, −ωz) is also used for computing the FO histogram. Suppose the count of bin i is 

hi,1 and hi,2 for the first and second scan, respectively. We can compute their relative 

difference dH(hi,1, hi,2) by

(18)

(Then, the histogram dissimilarity DH(ℋ1, ℋ2) is measured by the mean of the relative 

difference of each bin
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(19)

where B is the number of bootstrap iterations and I is the total number of bins. Smaller 

DH(ℋ1, ℋ2) indicates more reproducible FO histograms.

Second, at each voxel we compute the differences of the sets of all bootstrap FO 

configurations computed from the two scans. Suppose the sets of FO configurations for the 

two scans are ℱ1 and ℱ2, respectively. For each bootstrap FO configuration Ω1 ∈ ℱ1 in the 

first scan and Ω2 ∈ ℱ2 in the second scan, we can compute their dissimilarity dFO(Ω1, Ω2). 

Note that each FO configuration can include multiple FOs when fibers cross. Because the 

FO error computation in Section 3.1 actually measures the difference between estimated and 

ground truth FOs, we can use the same computation to measure dFO(Ω1, Ω2) by replacing the 

estimated and ground truth FOs with Ω1 and Ω2. Then, to compute the dissimilarity between 

the two sets ℱ1 and ℱ2 of FO configurations, we use a mean FO dissimilarity DFOM(ℱ1, 

ℱ2) and a Hausdorff FO dissimilarity DFOH(ℱ1, ℱ2) defined as

(20)

(21)

where |ℱ1| and |ℱ2| are the cardinality of ℱ1 and ℱ2, respectively. If ℱ1 and ℱ2 are similar, 

their dissimilarity dFOM(ℱ1, ℱ2) and dFOH(ℱ1, ℱ2) should be small.

For each dMRI scan, 100 bootstrap FO images were generated using CSD-boot and LBT. 

On the first representative subject, we placed four ROIs (see Figure 9(a) in regions where the 

CC and CST cross. The means and standard deviations of the dissimilarity between the 

bootstrap FOs of the two scans in each ROI are shown in Figure 9(b) and 9(c). For each ROI, 

the CSD-boot and LBT results were also compared using a paired Student’s t-test. We can 

see that the dissimilarity between the FOs produced by LBT is significantly smaller than that 

produced by CSD-boot in all four ROIs, which indicates that LBT produces more 

reproducible results.

Similar ROIs were also placed on the remaining four subjects. For each subject the 

reproducibility results using all selected voxels are shown in Figure 10, where CSD-boot and 

LBT were compared using a paired Student’s t-test. We can see that LBT produces more 

reproducible FOs with statistical significance.
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4. Discussion

In this work, we use a multi-tensor model with a fixed tensor basis and a sparsity assumption 

to represent the diffusion signals. In addition to reducing the required gradient directions by 

using sparsity regularization, this signal model permits the incorporation of FO spatial 

smoothness for improved FO estimation. Such smoothness is made possible by the explicit 

relationship between the basis tensors and the FOs, where each PEV of the tensor represents 

an FO (Ye et al., 2015b, 2016). An important issue in the model is to achieve reasonable 

estimates of eigenvalues of the basis tensors. Here we have followed the commonly used 

principles of examining the tensors in regions with high FA (Landman et al., 2012; Tournier 

et al., 2004), and the procedure can be implemented using publicly available toolboxes, such 

as Dipy (Garyfallidis et al., 2014).

The Lasso bootstrap provides an approach to estimating the distribution of the diffusion 

weighted signals. Then, from these synthesized diffusion signals, we use the FORNI 

algorithm (Ye et al., 2016) to estimate FOs and obtain their distribution, which are then used 

for fiber tracking. Thus, it is reasonable to consider LBT to be a probabilistic version of 

FORNI, where uncertainty in fiber tracking is quantified. In the fiber tracking results, we 

have observed the consistency between the probabilistic LBT and deterministic FORNI 

results. Furthermore, LBT provides additional information about the uncertainty of the 

tracked streamlines.

The major difference between the conventional residual bootstrap, such as the one used in 

Jeurissen et al. (2011), and the Lasso bootstrap is the centering of residuals. As discussed in 

Chatterjee and Lahiri (2011), the residuals must be centered for the validity of the residual 

bootstrap. In the conventional bootstrap settings, the condition automatically holds; however, 

due to the incorporation of an ℓ1-norm penalty, the residuals are not centered in the Lasso 

model. Thus, the conventional residual bootstrap without centering the residuals is 

inappropriate and a Lasso bootstrap strategy that centers the residuals is needed.

As discussed in Chatterjee and Lahiri (2011), the residual bootstrap is consistent for the 

Lasso model without scaling, and the rescaling effect is asymptotically negligible. 

Therefore, in this work the residuals are not corrected for leverage, and we believe the 

correction would produce similar results.

We assume that the noise in each gradient direction is independent and identically 

distributed, which is a common and sensible assumption (Jian and Vemuri, 2007). Thus, we 

only deal with homoscedastic noise, as does the modified Lasso bootstrap in Chatterjee and 

Lahiri (2011). For Lasso models with heteroscedastic noise, it is possible to use other 

bootstrap strategies such as Camponovo (2015) and Wagener and Dette (2012).

Most of the parameters in this work are determined using the default parameters of existing 

algorithms (e.g., the parameters in FO estimation) or commonly used values (e.g., fiber 

tracking parameters). In particular, α and β in the FO estimation step control the spatial 

consistency and sparsity of FOs, respectively. Increasing α leads to better spatial consistency 

of FOs. Larger β encourages a smaller number of FOs, and smaller β may prefer crossing 

FOs to a single FO. In the bootstrap procedure, we have shown in the phantom experiments 
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that the results are robust to the selection of parameters c and δ and our choice achieves 

good accuracy. A larger number of bootstrap samples could provide a more accurate 

estimation of the uncertainty but increases the computational burden. Here we followed Yap 

et al. (2014) to use 100 bootstrap samples for each seed to demonstrate the results. It may be 

fruitful to explore the optimal number of bootstrap samples in a data-driven way that reaches 

a balance between speed and accuracy.

The experiments were performed using a 16-core Linux machine. For the brain dMRI 

datasets in Sections 3.2 and 3.3, where the resolution is between 2 mm and 3 mm, 100 

bootstrap iterations took around 40 hours. Note that the process of generating each bootstrap 

FO image is parallelizable, and it is possible to explore the use of distributed computing, 

such as computer clusters, for acceleration.

5. Summary and Conclusion

In this work, we have presented a probabilistic tractography method LBT based on a Lasso 

bootstrap scheme. A fixed tensor basis is used to model the diffusion signals in a Lasso 

formulation. The modified Lasso bootstrap (Chatterjee and Lahiri, 2011) is then used to 

synthesize diffusion signals, from which the FOs can be estimated using an improved 

estimation algorithm (Ye et al., 2015b, 2016) that incorporates spatial consistency of FOs. 

Probabilistic streamlining fiber tracking is performed with these FOs. The LBT algorithm 

was evaluated on simulated and real dMRI data, where it outperforms other state-of-the-art 

methods.
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Highlights

• We propose a probabilistic tractography method named Lasso bootstrap 

tractography.

• The distribution of diffusion signals is estimated using modified Lasso 

bootstrap.

• We compute fiber orientations (FOs) using an algorithm incorporating 

FO smoothness.

• Qualitative and quantitative evaluation was performed on simulated and 

real data.
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Figure 1. 
3D renderings of the phantom and probabilistic tractography results. The seed is indicated 

by the red box. The visualization was created in TrackVis (Wang et al., 2007). (a) 

Probabilistic tracking results of WB, CSD-boot, and LBT. (b) Deterministic tracking results 

using FORNI FOs as a tract shape reference.
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Figure 2. 
LBT FO errors with different parameter settings of c and δ.
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Figure 3. 
Bootstrap FOs computed by LBT in the crossing region of the CC and CST, which is 

highlighted by the red dashes on the FA map.
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Figure 4. 
Tractography results seeded in the CC in the coronal view. A deterministic fiber tracking 

result using FORNI FOs is also shown for a tract shape reference. The upper and lower 

seeding voxels are represented together by the green rectangle within the LBT and FORNI 

results in the second row. Note the highlighted zoomed region for comparison.
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Figure 5. 
Tractography results seeded in the CST in the coronal view. A deterministic fiber tracking 

result using FORNI FOs is also shown for a tract shape reference. The seeding voxel is 

represented by the green square within the LBT and FORNI results in the second row. Note 

the highlighted zoomed region for comparison.
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Figure 6. 
Tractography results seeded in the UNC in the sagittal view. A deterministic fiber tracking 

result using FORNI FOs is also shown for a tract shape reference. The seeding voxel is 

represented by the green square within the LBT and FORNI results in the second row. Note 

the highlighted zoomed region for comparison.
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Figure 7. 
Fiber tracking results computed from the two scans of Subject 1 overlaid on the FA map. 

Deterministic tracking results using FORNI are also shown for tract shape references.
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Figure 8. 
CSD-boot and LBT fiber tracking results on Subjects 2–5 (eight scans).
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Figure 9. 
FO reproducibility for Subject 1: (a) ROIs replaced in the crossing regions of the CC and 

CST for FO dissimilarity evaluation, (b) means and standard deviations of the histogram 

dissimilarity of FOs in each ROI, and (c) means and standard deviations of the FO 

dissimilarity in each ROI. Asterisks indicate that the difference between the CSD-boot and 

LBT results is significant using a paired Student’s t-test (*p < 0.05, ***p < 0.001).
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Figure 10. 
Means and standard deviations of FO dissimilarity in regions containing the crossing of the 

CC and CST for Subjects 2–5: (a) histogram dissimilarity, (b) mean FO dissimilarity, and (c) 

Hausdorff FO dissimilarity. Asterisks indicate that the difference between the CSD-boot and 

LBT results is significant using a paired Student’s t-test (***p < 0.001).
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