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Abstract

Multi-modal deformable registration is important for many medical image analysis tasks such as 

atlas alignment, image fusion, and distortion correction. Whereas a conventional method would 

register images with different modalities using modality independent features or information 

theoretic metrics such as mutual information, this paper presents a new framework that addresses 

the problem using a two-channel registration algorithm capable of using mono-modal similarity 

measures such as sum of squared differences or cross-correlation. To make it possible to use these 

same-modality measures, image synthesis is used to create proxy images for the opposite modality 

as well as intensity-normalized images from each of the two available images. The new 

deformable registration framework was evaluated by performing intra-subject deformation 

recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using 

multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration 

algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable 

registration algorithm that is used. With a single exception, all results demonstrated improvements 

when compared against single channel registrations using the same algorithm with mutual 

information.
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1. Introduction

Multi-modal image registration is the task of performing spatial alignment between images 

acquired from different devices or imaging protocols. In recent years, this task has become 

increasingly important due to a growing interest in using multiple image modalities to 

perform more accurate and detailed medical image analysis (Bosc et al., 2003; Walhovd et 

al., 2010). In particular, there is an increasing number of pulse sequences that can be used in 

magnetic resonance (MR) imaging to generate different contrasts which provide 

complementary information. However, even within the same scanning session for a single 

subject, notable distortion and misalignment have been observed (Menuel et al., 2005; Li et 

al., 2010) between different MR contrasts. Cross contrast deformable image registration is 

often needed to correct these intra-subject distortions before the images can be used for 

multi-contrast analysis (van der Kouwe et al., 2008) or intra-operative planning (Archip et 

al., 2008; Risholm et al., 2011). Multi-modal image registration is also a key component for 

many image processing tools, such as atlas alignment (Toga et al., 2006), image fusion 

(Nishioka et al., 2002), and distortion correction (Kybic et al., 2000).

Over the past two decades, multi-modal registration algorithms have become very accurate 

at solving global (e.g., rigid, similarity, or affine) transformations, with many methods 

reporting sub-voxel accuracy (Maes et al., 1999; Holden et al., 2000; Roche et al., 2001). 

However, global transformations cannot correct for local misalignment that may be due to 

geometric distortion or inter-subject variability. In these cases, deformable multi-modal 

registration is required. This presents a more challenging problem because local 

correspondences are more difficult to find when the image modalities are different. Existing 

approaches for deformable multi-modal registration can be divided into three main 

categories—information theoretic approaches, feature-based approaches, and modality 

reduction approaches.

1.1. Information Theoretic Approaches

Information theoretic approaches use similarity measures based on an assumed, but 

unknown, probabilistic relationship between the image intensities to evaluate the 

misalignment between the images (Wells III et al., 1996; Maes et al., 1997; Roche et al., 

1998; Chen et al., 2003; Pluim et al., 2004; Karaçali, 2007; Heinrich et al., 2014). The most 
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popular of these measures is mutual information (MI) (Wells III et al., 1996; Maes et al., 

1997), which has been used with great success for global alignment. However, MI has 

several drawbacks that limit its performance in deformable registration. The primary 

disadvantage of the measure is that it, as commonly used, requires a global evaluation of the 

intensities to accurately establish their probabilistic relationships in the two different 

modalities. Often when used locally, MI can breakdown and produce false local minima 

during the optimization yielding inaccurate results (Andronache et al., 2008). To address this 

problem, researchers have used spatial information (Loeckx et al., 2010; Zhuang et al., 2011; 

Yi and Soatto, 2011; Rueckert et al., 2000), gradient information (Pluim et al., 2000), and 

structural information (Holden et al., 2004) to augment the basic MI measure. Others have 

proposed using a pointwise variant of MI, which yields a more local information theoretic 

measure (Rogelj et al., 2003). Another limitation of MI is that its value depends on the 

amount of overlap of the objects within the images and on the sizes of the two images. To 

address this problem, normalized variants of MI such as normalized mutual information 

(NMI) (Studholme et al., 1999; Cahill et al., 2008) are typically used. The final drawback of 

information theoretic measures is that they are difficult to optimize. Being probabilistic 

measures, local evaluations cannot be calculated as directly or efficiently as mono-modal 

measures such as sum of squared differences (SSD) or cross-correlation (CC) (Avants et al., 

2008; Klein et al., 2010a).

1.2. Feature-based Approaches

Feature-based approaches for multi-modal registration use modality independent features 

and structures as correspondences for the alignment. They rely on the premise that the 

underlying anatomy in the images must share physical features and structures that 

correspond in both modalities. Examples of these methods include the use of Gabor 

attributes (Ou et al., 2011), edge operators (Haber and Modersitzki, 2007), morphological 

features (Maintz et al., 2001; Droske and Rumpf, 2004), local phase (Mellor and Brady, 

2005; Liu et al., 2002) and frequency (Jian et al., 2005), patch descriptors (Heinrich et al., 

2012; Wachinger and Navab, 2012), and sparse keypoint features (Chen and Tian, 2009). 

The primary advantages of these approaches is that the feature and structural space are 

designed to be directly comparable. Hence, mono-modal measures such as SSD can be used 

for the optimization, which avoids many of the drawbacks of information theoretic 

approaches. The disadvantage of feature-based methods is that corresponding anatomic 

features are often difficult to find and quantify, particularly between different subjects. This 

makes choosing the feature space a challenging task that often forces the registration 

algorithm to be specialized for specific areas of the body and specific modalities. In 

addition, since such approaches only extract a very specific subset of the image features, 

potentially useful information may be unused by these algorithms.

1.3. Modality Reduction and Conversion Approaches

The final category of multi-modal registration consists of modality reduction (or modality 

conversion) methods. The goal of these algorithms is to convert the two different modalities 

into a single modality that has intensities that are directly comparable. This conversion can 

be into one of the existing modalities in the registration (Wein et al., 2008; Michel and 

Paragios, 2010; Iglesias et al., 2013; Roy et al., 2014a; Bhushan et al., 2015; Bogovic et al., 
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2016) or into a completely new modality (Andronache et al., 2008; Heinrich et al., 2012; 

Wachinger and Navab, 2012) or intensity space (Van Den Elsen et al., 1994). The main 

advantage of such techniques is that, after the conversion, the problem becomes entirely 

mono-modal, which allows for the use of mono-modal similarity measures and their 

associated highly optimized and fast deformable registration algorithms. However, a 

disadvantage of performing modality reduction is that information is lost when the 

conversion removes one (or both) of the modalities from the registration. Different 

modalities can exhibit the anatomy in different ways, and in some cases certain anatomical 

structures will only show up in one of the modalities. In such cases, these features can no 

longer be used to aid the registration after the conversion.

1.4. Proposed Approach

In this paper, we present a multi-modal registration framework that departs from the 

approaches that have been pursued to date. We propose that the multi-modal registration 

problem should be solved as a two-channel registration (multi-channel registration, in 

general) problem where each channel operates on a separate modality. Since we are given 

only two images to deformably register together (one from each of two modalities) we 

initially lack the opposing modality that would serve in this two-channel registration 

framework. To address this, we use proxy images that are created using an image synthesis 

approach to fill in these missing modalities. We refer to this multi-modal registration 

framework as PROXI which stands for Proxy Registration of Cross-modality Images. The 

main novelty of this approach is the use of image synthesis to enable existing multi-channel 

deformable registration (Avants et al., 2007; Forsberg et al., 2011; Park et al., 2003; Rohde 

et al., 2003b) algorithms to be used for aligning two images of different modalities. These 

algorithms are typically designed to register images in which both moving and target images 

have the same modality in each channel. Since PROXI produces images of the same 

modality in both the moving and target images, this permits the use of similarity measures 

such as sum of squared differences or cross-correlation, which are generally intended for 

mono-modal registration problems.

While the PROXI framework is designed and formulated as a general multi-modal 

registration algorithm, in this paper we focus specifically on its application for solving cross 

contrast magnetic resonance (MR) registration problems. In our experiments, we evaluate 

the advantages of the framework by performing inter- and intra-subject registrations using 

T1-weighted and T2-weight MR brain images. A subset of this work was presented in 

conference form (Chen et al., 2015), where we explored the capabilities of the framework 

with a limited set of experiments.

The remainder of this paper is structured as follows: In Section 2 we provide some 

background information on existing multi-channel registration and image synthesis methods 

which are related to our work. In Section 3, we describe the multi-channel registration and 

image synthesis approach we use in the PROXI framework. In Section 4, we present the data 

and our experimental results where we evaluate PROXI using intra-subject deformation 

recovery, intra-subject boundary alignment, and inter-subject label transfer experiments with 

three different multi-channel algorithms and their single channel counterparts. Lastly, in 
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Section 5 we conclude with a discussion of our experimental results, limitations of our 

framework, and possible future directions.

2. Background

2.1. Multi-channel Registration

Multi-channel registration algorithms are methods designed to register a set of (moving) 

multi-modal images of one subject to a set of (target) multi-modal images of a different 

subject. In general, the algorithms require the same modalities to be present in both the 

moving and target image sets. Most existing multi-channel methods (Chen et al., 2015; 

Avants et al., 2007; Forsberg et al., 2011) begin by pairing analogous modalities in the 

moving and target image sets into channels. A similarity measure is then evaluated on each 

channel individually, and the weighted sum of these values is used as the total similarity 

measure for the algorithm. One drawback of this approach is that it does not account for data 

that has highly correlated information across the channels which can be used in the 

registration. Several multi-channel approaches have been proposed for such cases. Rohde et 

al. (2003b) proposed an approach that uses the determinant of the joint covariance matrix 

between different channels to register diffusion tensor (DT) MR images. Similarly, Guimond 

et al. (2002) and Park et al. (2003) proposed a multi-channel adaptation of the Demons 

algorithm (Thirion, 1998) that uses the tensor information in DT images to adjust their 

orientations during the registration. Peyrat et al. (2010) then further adapted this approach 

for 4D cardiac CT images using trajectory constraints to maintain temporal consistency. 

Heinrich et al. (2014) proposed a general multi-spectral approach that uses canonical 

correlation analysis (CCA) to remap all the channels into two new bases for registration.

With the exception of the CCA approach, most existing multi-channel methods are 

unsuitable for multi-modal problems where the moving and target images each consist of a 

single image from different modalities. In such cases, one channel would be missing a target 

image, and the other channel would be missing a moving image in the framework. To 

address this limitation, we propose using a recently emerging image processing technique 

known as image synthesis.

2.2. Image Synthesis

The main goal of image synthesis is to use an image of one modality to estimate an image of 

the same subject in a different modality that was not acquired. Such techniques have 

received significant development in recent years, and a variety of approaches have been 

proposed. Examples include building a model based on MR imaging equations (Rousseau, 

2008), solving a sparse system based on local intensity information (Roy et al., 2011b, 

2013), and estimating directly the non-linear intensity transformation between the two 

modalities (Jog et al., 2013). Image synthesis has been successfully used for a number of 

medical image analysis purposes, such as anatomical labeling (Rousseau et al., 2011a,b), 

tissue segmentation (Roy et al., 2010b; Coupé et al., 2011; Roy et al., 2014b), super-

resolution (Rousseau, 2008, 2010; Roy et al., 2010a; Rousseau and Studholme, 2013; Jog et 

al., 2014b; Konukoglu et al., 2013), direct contrast synthesis (Jog et al., 2014a), 
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inhomogeneity correction (Roy et al., 2011a), and improving classification accuracy (van 

Tulder and de Bruijne, 2015).

Most relevant to our application, image synthesis has been shown to be directly applicable as 

a modality conversion technique for single channel multi-modal registration. Iglesias et al. 

(2013) proposed using a K-nearest neighbor patch-based image synthesis approach to 

generate synthetic T1w MR images for registration. Guimond et al. (2001) presented a 

registration approach that uses synthesized MR (T1w, T2w, and PD) and CT images 

constructed by fitting a polynomial function to the joint intensity histogram and learning the 

intensity transformation between the modalities. Roy et al. (2014a) proposed a MR-CT 

registration approach that uses intensity patches with an EM framework to synthesize CT 

images from T1w MR images. All three approaches showed significant improvements in 

registration accuracy over MI based approaches.

3. Method

3.1. Multi-channel Registration Framework

Given a moving image (x) and target image (x), the goal of a single channel image 

registration algorithm is to find a transformation ν : ℝ3 → ℝ3, such that the transformed 

moving image, (  ∘ ν)(x), is registered to (x). This is generally performed by modeling ν 
as a regularized transformation and finding ν that either minimizes or maximizes an energy 

function

(1)

where C is either a similarity or dissimilarity measure defined on the two images. 

Commonly used measures include mutual information (MI) (which is maximized), cross-

correlation (CC) (which is also maximized), and sum of squared differences (SSD) (which is 

minimized) (Sotiras et al., 2013). For simplicity, in the following we will use the expression 

similarity measure when referring to either a similarity or dissimilarity measure; it can be 

understood from the nature of the function whether it is to be minimized or maximized.

In multi-channel registration, additional image modalities from both the moving and target 

domains are used together in the registration algorithm. A common implementation is to use 

a weighted sum of the similarity measure of each channel for the total energy function. 

Suppose we have a moving image set with M modalities of the same subject, { 1, 2, …,

M}, and a target image set with analogous modalities, { 1, 2, …, M}; then the multi-

channel energy function can be described by

(2)
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where wm is a weight that determines the contribution of each modality m to the final energy 

function, and Cm is the similarity measure for the channel associated with each modality.

3.2. PROXI Framework

The goal of the PROXI framework is to address the multi-modal deformable registration 

problem where the moving image is from a first modality—i.e.,  = 1—and the target 

image is from a second modality—i.e.,  = 2. When using the single channel registration 

framework in (1) to solve this problem, C is frequently chosen to be mutual information or a 

comparison of modality independent features in 1 and 2. In PROXI, however, we 

propose to use synthesized images 𝒯̂
1 and 𝒮̂

2 together with normalized images 1 and 2 

(both described in later sections) in the following multi-channel registration problem

(3)

where w1 and w2 are channel weights (which we set to unity) and CS is the measure used to 

evaluate the similarity of the image intensities in each of the two channels. Since each 

resulting channel in PROXI is mono-modal, CS can be selected freely among the existing 

single channel similarity measures. We show in our experiments in Section 4 that using a 

mono-modal similarity measure such as SSD or CC can produce more accurate results for 

certain registration algorithms.

Figure 1 shows a diagram of the PROXI framework, illustrating graphically where the 

normalized and synthesized images come from and how they are used together in multi-

channel registration. We note that all of our experiments in this paper convert the single 

channel multi-modal registration problem into a two-channel (M = 2) registration problem. 

However, more image channels can potentially be synthesized and different similarity 

measures can be used in separate channels of the resulting multi-channel registration 

problem, though we did not explore either possibility herein.

3.3. Image Synthesis

We use the image synthesis approach presented in Jog et al. (2013) to synthesize the missing 

modalities 𝒮̂
2 and 𝒯̂

1 shown in Figure 1, which are needed in (3). We briefly summarize the 

synthesis of 𝒮̂
2 from 1; an analogous process is used to synthesize 𝒯̂

1 from 2. Given an 

image 1 of modality m1 we want to synthesize an image 𝒮̂
2 of the same subject but having 

the tissue contrast of the second modality m2. The method requires that we have a pair of 

coregistered atlas images ( 1, 2) of the modalities m1 and m2 (generally) acquired from a 

different subject. Consider the position xi of the i-th voxel, i = 1, …, N and a surrounding 

neighborhood of d − 1 voxel locations η(xi), where N is the total number of voxels in the 

image. We define the i-th patch pi( 1) ∈ ℝd of image 1 to be the vector of all d voxel 

values (lexicographically rasterized) from the voxels locations xi and η (xi). The synthesis 

method in (Jog et al., 2013) trains a regression forest (see below) to learn a nonlinear 

mapping r21 : ℝd → ℝ from a patch in 1 to the corresponding image value in 2. The 

missing image having modality m2 is then estimated using
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(4)

where pi( 1) is the patch corresponding to the voxel xi in 1. In all of the experiments 

carried out here, the patch size at each voxel is d = 27, which is created from the image 

values at the voxel and its 26 neighbors.

The regression forest (RF) algorithm in Breiman (1996) is used to learn the image synthesis 

mapping r21 from the atlases 1 and 2. At each voxel xi, we have the patch pi( 1) at 

voxel xi in 1 and the corresponding image value in the second atlas image yi = 2(xi). We 

randomly select R = 106 voxels from among all (non-background) voxels for training a 

single regression tree. A single regression tree is trained by partitioning the d-dimensional 

patch space into regions based on a split at each node of the tree. At each node q, a set q 

comprising one third of the indices {1, …, d}, randomly selected, is formed. Considering 

only these elements (voxels) of the patches, we then follow a classical criterion of regression 

trees (Breiman et al., 1984) by choosing one of these elements and a threshold that will split 

the patches in this node into two child nodes such that a certain cost is minimized, as 

explained next.

Let Θq = {[p1( 1); y1], …, [pNq ( 1); yNq]} be the set of all Nq training sample pairs at 

node q of the tree (Nq = R for the first node in a tree). We can measure the spread sq of the 

dependent values {y1 … yNq} in node q by using the sum of squared differences from the 

mean

(5)

where

(6)

This is a sample variance computation except that it does not divide by the number of 

samples. We then find the index j ∈ q and threshold τj such that the sum of the spreads sqL 

+ sqR of the two disjoint subsets, ΘqL = {[pi( 1); yi] | ∀i, pi j( 1) ≤ τj} and ΘqR = 

{[pi( 1); yi] | ∀i, pi j( 1) > τj} is minimized. (A simple exhaustive search is used to find j 
and τj since there are not many indices and thresholds to check, especially at deeper nodes in 

the tree.) Here, the notation pi j( 1) stands for the j-th element of the vector pi( 1). The 

values j and τj are stored in this node and the above splitting process is repeated for the child 

nodes. In order to prevent overfitting during training, nodes should continue to be split (and 

the tree deepened) provided that five or more samples remain in each child node. When a 
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node cannot be split, it is declared to be a leaf node and the average of all remaining 

dependent values is stored.

Our regression forest is made of 100 trees trained independently as described above. We use 

the regression forest by passing a subject patch pi( 1) to each tree and moving the patch 

through the branches of the tree according to the stored indices and thresholds until reaching 

a leaf node. The single (average) value contained in the leaf node represents the output of the 

tree. The output of the regression forest, representing the learned nonlinear regression 

function r21, is the average of all 100 regression trees, which yields the estimated missing 

modality 𝒮̂
2(xi) as in (4).

The same (regression forest) approach is used to train a second nonlinear mapping r12 : ℝd 

→ ℝ using patches in 2 to predict voxel values in 1. This mapping is then used to 

synthesize 𝒯̂
1 from 2 as follows

(7)

where pi( 2) is the patch at the i-th voxel in 2. Figure 1 shows an example of both 𝒮̂
2 and 

𝒯 ̂
1 generated using this approach on MR brain data. In each of our experiments, we used a 

single image of each MR contrast from the same subject as our atlas images for training the 

regression forest. While additional images (and patches) from different subjects can be 

added as atlases, Jog et al. (2017) found that a single image of each modality was sufficient 

for training the regression forest. Their experiments (in the supplemental materials) showed 

that adding more images as atlases provided marginal gains in the final image synthesis 

result, with the majority of the evaluated metrics found to be statistically insignificant. In 

addition, they showed that switching to a different subject for the atlases also resulted in 

insignificant differences in the majority of the final synthesized results. Since each of the 

atlas images tested was corrupted by different intensity inhomogeneities and had different 

brain structures, this suggests that the synthesis method is robust to these variations in the 

atlas images.

3.4. Image Normalization Using Image Synthesis

Synthetic images are different from real images because their intensities are derived from the 

atlas, and because averaging is a part of the regression process. As a result, synthetic images 

often have a subtly different intensity scale and are typically less noisy. To provide a better 

matching image in the multi-channel registration task, we carry out a normalization process 

on the original images.

Suppose the regression forests r21 and r12 have already been learned as described above. 

Then it is possible to use these mappings to synthesize the alternate modalities 𝒜̂
1 and 𝒜̂

2 

from the opposing atlas images, 2 and 1, respectively. The image 𝒜̂
1 should look like 

1, and 𝒜̂
2 should look like 2, but both images are subtly different in intensity scale and 

smoothness than the original atlas images. To capture this subtle difference, we train two 

more regression forests r11 and r22 using the same training method described in Section 3.3. 
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We refer to these as normalization regression forests, where r11 is trained to predict 𝒜̂
1 from 

1 and r22 is trained to predict 𝒜̂
2 from 2.

These normalization regression forests can be applied to both the original moving and target 

image in order to produce normalized images that have characteristics similar to the 

synthetic images. In particular, the normalized subject image is given by

(8)

and the normalized target image is given by

(9)

While this normalization is not necessary for the PROXI framework, we show in our 

experiments in Section 4 that using these normalized images in place of the original images 

can allow mono-modal similarity measures such as SSD or CC to perform more accurate 

registrations. Figure 1 shows an example of the 1 and 2 images created using this 

approach. We see that the contrast in the normalized images better match the synthesized 

images, particularly in the ventricles and subcortical regions.

3.5. Registration Algorithm

Any multi-channel registration algorithm can potentially be used with the PROXI 

framework. However, each registration algorithm can be expected to perform differently due 

to their generic capabilities (including their choices for similarity measure and spatial 

transformation function) and their response to using synthesized images. To demonstrate the 

differences in performance, we evaluated PROXI using three different openly available 

deformable multi-channel registration algorithms and their single channel counterparts. In 

particular, we evaluated the adaptive bases algorithm (ABA) (Rohde et al., 2003a), the 

symmetric normalization (SyN) algorithm (Avants et al., 2008, 2007), and the Elastix 

algorithm (Klein et al., 2010b). For SyN and Elastix we used software implemented by the 

inventors and openly distributed on their websites. For ABA, we used our own 

implementation, which is enhanced to incorporate multi-channel capabilities and allows for 

the use of either normalized mutual information or sum of squared differences as the 

similarity measure. Our implementation, known as Vector Adaptive Bases Registration 

Algorithm (VABRA) is available at https://www.nitrc.org/projects/jist as part of the Java 

Image Science Toolkit (JIST). For each algorithm, we used the default parameters 

recommended by the authors in their respective paper or website.
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4. Experimental Methods and Results

4.1. Intra-subject Deformation Recovery on Phantom Brain Data

One application of cross contrast registration between MR images is to correct for 

distortions and misalignment between different MR acquisitions of the same subject (Archip 

et al., 2008; Risholm et al., 2011). In general, these intra-subject misalignment between 

different MR contrasts are very small (Menuel et al., 2005; Li et al., 2010). Hence, it is 

difficult to establish a ground truth for evaluation. For our first experiment, we attempt to 

model this problem by using simulated MR brain phantoms to provide a controlled situation 

for recovering the small deformations we would expect to see in such registrations.

To perform these experiments we used the 1 mm isotropic T1-weighted (T1w) and T2-

weighted (T2w) MR brain images from the Brainweb MR simulator (Collins et al., 1998). 

For the target subject image, we used the “Normal” T2w Brainweb image. For the moving 

subject images, we started with the “Normal” T1w Brainweb image and then deformed it 

using a simulated deformation field consisting of a 1 mm × 1 mm × 1 mm amplitude 

sinusoid spatially oriented along the cardinal axes. The magnitude of this deformation was 

chosen to match previously reported (Li et al., 2010) distortions found between different MR 

contrasts. This was repeated with eight different sinusoidal deformations (each with different 

spatial shifts) to form eight different moving subject images. For the image synthesis atlas, 

we used the simulated multiple sclerosis (MS) T1w and T2w Brainweb images. These were 

used to create the regression forests needed to generate the synthetic and normalized images 

in the PROXI registration experiments. For all the images, we started with the noise-free and 

intensity inhomogeneity-free Brainweb images, and then added 3% Rician noise to each 

image. For the eight moving subject images, this noise was added after each deformation.

The moving subject images were registered to the target subject image using four 

registration setups (described below). For each setup, we evaluated the registration 

performance using the average deformation error between the deformation fields recovered 

by the registration and the known deformation fields. This measure is computed by 

subtracting the two deformation fields, and then averaging the absolute lengths of the 

difference field over the non-background region of the image. A lower value of the 

deformation error indicates better performance.

Figure 2 shows an example of this process. The synthesis atlas images 1 and 2 are 

shown in (a) and (b), respectively, and a moving image S1 and target image T2 are shown in 

(c) and (d), respectively. The x-component (left-right direction) of the true deformation field 

is shown in (e), where the zero deformation is shown as green, negative (left) deformations 

are shown using a blue color scale, and positive (right) deformations are shown using a red 

color scale. The maximum deformations are ±1 mm. An estimate of the deformation field 

using single-channel VABRA and the NMI similarity measure applied to 1 and 2 is 

shown in (f). An estimate of the deformation field using multi-channel VABRA with the 

NMI similarity measure in each channel for ( 1, 𝒯̂
1) in the first channel and (𝒮̂

2, 2) in the 

second channel is shown in (g). An estimate of the deformation field using multi-channel 

VABRA with the NMI similarity measure in each channel for ( 1, 𝒯̂
1) in the first channel 

and (𝒮̂
2, 2) in the second channel is shown in (h). Qualitatively, the best deformation 
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recovery in this case is observed in (h), which is obtained using both the synthetic and the 

normalized images in the PROXI framework.

Given the moving and target images previously described, we computed the deformation 

recovery error for the VABRA, Elastix, and SyN registration algorithms in four registration 

scenarios each. Each algorithm was ran using 1) the single channel mutual information 

registration, 2) the PROXI multi-channel approach with only synthetic images, 3) the 

PROXI multi-channel approach with both synthetic and normalized images, and 4) the 

multi-channel approach using the true T1w and T2w images. Table 1 shows the average 

deformation recovery error and its standard deviation (both in voxels) in these four scenarios 

when using VABRA, Elastix, and SyN with different similarity measures. The notation 

follows that presented in Section 3.2, where , and  stand for synthetic 

T1w, synthetic T2w, normalized T1w, and normalized T2w, respectively.

We make several observations from Table 1. First we observe the behavior of the VABRA 

registration algorithm (top sub-table). When the two MR contrast images are used directly 

with SSD, performance is very poor in comparison to the use of NMI; this is as expected 

since SSD is not designed for evaluating between different contrasts or modalities. When 

synthesis is used, multi-channel SSD can be used, and its performance improved over the 

single channel NMI result. The best performance is achieved using NMI and both synthesis 

and normalization; the use of the true T1w and T2w images does not achieve better 

performance over the PROXI result. The overall behavior of SyN in Table 1 is very similar 

to that of VABRA except that the use of the true T1w and T2w images in a multi-channel 

framework achieves the best performance.

The Elastix results in Table 1 are different in character to those of VABRA and SyN. In 

particular, the Elastix MI result using the original two MR contrast images is slightly better 

than the PROXI results. Therefore, with this registration algorithm, this deformation field, 

and this performance criterion, PROXI is no better than the original single-channel result 

with MI. We also observe that, like the SyN results, the use of the true T1w and T2w in the 

multi-channel Elastix framework achieves the best performance.

4.2. Intra-subject Boundary Validation on Real Data

In our second experiment, we performed an analysis of intra-subject registration between 

real T1w and T2w MR images from the Kirby 21 (K21) database (Landman et al., 2011). 

The K21 dataset is a publicly available scan-rescan reproducibility study of 21 healthy 

volunteers (11 male and 10 female, 22–61 years of age) imaged on a 3T MR scanner 

(Achieva, Philips Healthcare, Best, The Netherlands). The T1w images were acquired using 

a Magnetization Prepared Gradient Echo (MPRAGE) 3D inversion recovery sequence with 

TR, TE, and TI of 6.7 ms, 3.1 ms, and 842 ms, respectively. The images were acquired in the 

axial orientation with a resolution of 1.0 mm × 1.0 mm × 1.2 mm over a 240 mm × 204 mm 

× 256 mm field of view and with a flip angle of 8°. The T2w images are the second echo of 

a double echo sequence, with TR, TE1, and TE2 of 6653 ms, 30 ms, and 80 ms, respectively. 

The images were acquired axially with a resolution of 1.5 mm × 1.5 mm × 1.5 mm over a 

212 mm × 212 mm × 143 mm field of view. All 21 subjects were scanned twice with each 
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protocol in the dataset, however the re-scans for each subject were omitted from our 

experiments. Each image used in our experiments was preprocessed by correcting the bias 

field inhomogeneity (Sled et al., 1998) and skullstripped (Carass et al., 2011) to remove non-

brain structures from the image.

Using ten subjects from the K21 dataset, we performed four intra-subject registrations 

between the T1w and T2w image from each subject. First we used a rigid registration 

(FLIRT (Jenkinson et al., 2002)) with NMI, which is standard practice for intra-subject 

registration and serves as our baseline. We then applied deformable registrations (seven 

varieties, as in Table 1) to align the T1w to the target T2w images. Lastly, we applied 

PROXI with and without normalization and used multi-channel registrations (seven varieties, 

as in Table 1) to align the two images. For the PROXI experiments, one subject was 

randomly selected from the remaining 11 unused datasets to serve as the atlas images for 

training the regression forests in the image synthesis and normalization.

Evaluation of intra-subject alignment is a difficult task, because T1w and T2w images from 

the same MRI scan session tend to only exhibit subtle distortions due to movement or 

susceptibility. As a result, there is no ground truth for such deformations. In order to 

evaluate the accuracy of each registration, we performed a Canny edge detection (Canny, 

1986) on the registered T1w results, and evaluated how closely these boundaries overlapped 

the Canny edges for the T2w target. Due to inconsistency of edge detection between the two 

MR contrasts, we only evaluated edges found near the ventricles.

Figure 3 shows an example of ventricle edges of the registered T1w results (from SyN using 

MI in both single-channel and multi-channel results) overlaid on the T2w target. We see that 

overall PROXI aligned the boundaries in the T1w images closer to the T2w target than the 

rigid or single channel MI result. This was particularly evident in areas of the posterior 

ventricles, where the rigid and single channel results have boundaries that clearly protrude 

into the white matter.

A quantitative comparison was carried out on the intra-subject boundary alignment (near the 

ventricles) by computing the average minimum boundary distance (both directions) and the 

99 percentile Hausdorff distance. Figure 4(a) and 4(b) show the box plots for these 

measurements, respectively. From these plots we see that single channel MI registration is 

overall a poor choice for intra-subject registration, with all three algorithms producing worse 

results than rigid registration. In addition, we see that in general both PROXI results 

produced boundaries with lower average boundary distance and Hausdorff distances. The 

only two exceptions where PROXI did not produce a better result than rigid registration is 

when using Elastix or VABRA with the (N)MI similarity measure. Running PROXI with 

normalization followed a similar trend, except Elastix using MSE was also not an 

improvement over using rigid registration.

A statistical comparison using paired t-tests (at α < 0.05) was performed comparing between 

the PROXI, single MI channel, and rigid registration boundary distance results. Every 

PROXI result (regardless of algorithm, similarity measure, or use of normalization) and the 

rigid results were found to have significantly lower ventricle boundary errors than the single 
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channel MI results. Three of the PROXI result (SyN-MI with and without normalization, and 

VABRA-SSD with normalization) were found to have significant improvements over the 

rigid results. Two other PROXI results (SyN-CC with normalization and VABRA-SSD 

without normalization) showed a trend towards significance (p = 0.051 and p = 0.055, 

respectively) when compared to the rigid results.

4.3. Inter-subject Label Transfer Validation

In our final experiment, we analyzed the inter-subject label transfer capabilities of the 

PROXI framework using two datasets containing anatomical labels of the brain structures in 

the K21 images. The first set of labels, the Mindboggle 101 dataset (Klein and Tourville, 

2012), consists of manual labels of the brain cortex using the Desikan-Killiany-Tourville 

protocol (Klein and Tourville, 2012; Desikan et al., 2006). The second set of labels were 

generated automatically using the TOADS algorithm (Bazin and Pham, 2007) (software 

available www.nitrc.org/projects/toads-cruise). TOADS labels consist of the sulcal 

cerebrospinal fluid (CSF), ventricles, gray matter, caudate, thalamus, putamen, and white 

matter tissues.

The 21 datasets were randomly divided into ten moving datasets and ten target datasets and 

the remaining dataset served as the atlas images for training the regression forest in the 

image synthesis and normalization. Registrations were carried out for each registration 

algorithm (VABRA, Elastix, and SyN) and for all available similarity measures (MI, NMI, 

MSE, CC, and SSD, which are algorithm dependent), and the labels were transferred from 

each moving to each target image space. This process resulted in a total of 3,200 3D 

intersubject registration experiments. Figure 5 shows examples of both single-channel and 

PROXI registration and label transfer using the Elastix algorithm with the MI similarity 

criterion. We see, qualitatively from the figure, that when using PROXI both the registration 

result and the transferred labels become much better registered to the true target T1w and 

labels. This is particularly noticeable for the thalamus and putamen.

For each registration experiment we used the Dice overlap coefficient (Dice, 1945) of the 

labels to evaluate the registration performance. The Dice coefficient is defined as,

(10)

where A and B are the sets of voxels corresponding to the two regions being compared. The 

coefficient has a range of [0, 1] and larger coefficients correspond to better registration 

performance. The same deformation fields were used to transfer the Mindboggle and 

TOADS labels, which permitted two separate average Dice coefficient statistics. In addition, 

the individual Mindboggle labels were merged into a whole cortex mask and transferred 

separately, which provided a third Dice coefficient statistic.

Figure 6 shows box plots of the computed Dice coefficient for the label transfer experiments. 

Figure 6(a) contains the results for the average Dice of all the transferred TOADS labels, 
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Figure 6(b) contains the Dice result for the transferred whole cortex mask from merging the 

Mindboggle labels, and Figure 6(c) contains the results for the average Dice of all the 

individual transferred Mindboggle labels. The average of the individual Mindboggle Dice 

coefficients are much lower overall than those of the TOADS and whole cortex labels (note 

that the vertical scales of these three plots are different) because the individual Mindboggle 

labels contain much smaller regions (primarily the gyral labels in the cortex). Each plot is 

arranged into five groups corresponding to the type of registration experiment carried out. 

Going left to right on the horizontal axis we first see the single-channel results, then the 

results of PROXI using only synthetic images, then the results of PROXI using both 

synthetic and normalized images. The last two groups represent the single channel (using 

T1w) and multi-channel ideal case, where both MR contrasts are available as inputs for both 

moving and target domains. We compare against these two ideal cases to observe the 

difference between using the synthetic images in PROXI and using the true images.

Several key observations can be made from Figure 6(a). First, statistical comparisons using 

paired t-tests (at α < 0.01) reveal that, with the exception of Elastix (MSE), the 

performances of each PROXI result is significantly better than the single-channel MI result 

for the same algorithm. Second, as expected, complete knowledge of both MR contrasts for 

both the moving and target images yields the best label transfer results and is statistically 

better (α < 0.01) than both PROXI and single-channel results, when using the best similarity 

metric for the algorithm. Lastly, all three registration algorithms have the same general trend 

in improvements in the experiment, and the same trends are also present regardless of 

whether the TOADS labels, whole cortex mask, or individual Mindboggle labels were used 

in the experiment.

5. Discussion and Conclusions

5.1. Improvements to Registration Accuracy

In our experiments we show that the PROXI framework can offer an overall improvement to 

multi-contrast registration accuracy for both intra- and inter-subject MR registration tasks. 

We see from the results shown in Figure 6 that, with the exception of Elastix (MSE), both 

the normalized and non-normalized synthesized multi-channel registration consistently 

performed better than the single channel multi-contrast registration using mutual 

information. This remained true for both the individual and merged Mindboggle cortical 

labels, and the cerebrum structural labels from TOADS. Likewise, we see the same 

advantages provided by PROXI in the intra-subject deformation recovery results in Table 1 

and the ventricle edge comparison results in Figure 3.

In addition, we see from our label transfer experiments that switching to a mono-modal 

similarity measure in the multi-channel PROXI setup often provided the best results for a 

given algorithm and label set. For VABRA, using multi-channel with SSD produced the best 

result for both label sets. For SyN, using multi-channel with CC gave the best result for the 

Mindboggle labels and using multi-channel with MSE gave the best result for the TOADS 

labels. However, the differences between the CC and MSE results were marginal relative to 

their improvement on using MI. For Elastix, using mutual information with the multi-

channel PROXI setup remained the best choice. By using PROXI, we allow the best 
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implementation of each algorithm to be used for registration, even if the best implementation 

is using a mono-modal similarity measure.

5.2. Impact of Intensity Normalization

When using a mono-modal similarity measure, intensity normalization becomes a very 

important step to ensure that the intensities in the moving and target images are comparable. 

In this work, we have presented a normalization approach where image synthesis is used to 

transform the image intensities to match a set of atlases. The primary reason we propose 

using our synthesis based normalization over a traditional normalization approach is because 

in PROXI we are normalizing to a synthesized image. One characteristic of synthetic images 

is that their intensity profile are very consistent when produced using the same method and 

atlas. By using the same process to normalize the original image, we can ensure that its 

intensity profile will be almost identical to the synthetic images. This allows registration 

methods which use similarity measures that rely on intensity differences (i.e. SSD and MSE) 

to run more accurately with PROXI.

From our real image results, we see that the benefit of using image synthesis for 

normalization depends heavily on the algorithm and similarity measure used in the 

registration. For the VABRA algorithm, it is clear that normalization greatly improved the 

results for both the inter-subject and intra-subject experiments. However for the SyN and 

Elastix algorithms, normalization provided only marginal improvements for the inter-subject 

experiments and can be detrimental for the intra-subject experiments. One possible reason 

for this is that the VABRA algorithm does not use any form of default intensity 

normalization as part of its registration; hence, it is able to benefit from this external 

normalization. On the other hand, our experiments have shown that the SyN and Elastix 

algorithms are generally very robust to linear intensity shifts, which suggests some form of 

internal intensity normalization that can potentially conflict with the normalization provided 

by PROXI.

One final observation is that all of the Brainweb images have a consistent intensity range 

since they are simulated phantoms. As a result, normalizing such images is typically 

unnecessary and has primarily a smoothing effect on the images. This is one possible 

explanation why normalization was overall ineffective in the Brainweb experiments. The 

only method that benefited from the normalization was VABRA-NMI, while its effect on the 

other methods ranged from marginal improvements (VABRA-SSD) to a decrease in 

performance (SyN and Elastix).

5.3. PROXI as a Pre-processing Step

An advantage of the PROXI framework is that its benefits are largely independent of the 

registration algorithm used. All three algorithms (VABRA, SyN, and Elastix) benefited (with 

the exception of Elastix in the deformation recovery scenario) by using PROXI when 

compared to their single channel MI registration. Effectively, the framework can serve as a 

pre-processing step that can enable mono-modal and multi-channel solutions for multi-

modal problems. This offers a high degree of flexibility, since it allows the user to select the 

registration algorithm that is best suited for a particular anatomy or image type.
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5.4. Limitations and Future Directions

In this paper, our experiments have been focused on showing the impact of the PROXI 

framework on MR image registration accuracy. To do this, we evaluated several registration 

algorithms and similarity measures while keeping the image synthesis component of PROXI 

static. However, the PROXI framework is not restricted to the particular image synthesis 

technique we evaluated in this work. Similar to the choice of the registration algorithm, the 

framework is designed to be easily adapted to use the image synthesis approach that is best 

suited for the task at hand.

Our choice of image synthesis technique imposed two main limitations in our evaluation. 

First, while our patch based approach has been well validated for synthesizing MR contrasts 

(Jog et al., 2014b), there has been limited evaluation for using it to synthesize other imaging 

modalities, such as CT or ultrasound (US). Naturally, it will be important to expand this 

study to other common multi-modal registration problems such as MR-CT and MR-US. For 

these cases, techniques such as those presented by Roy et al. (2014a) and Wein et al. (2008) 

have shown to work well for synthesizing CT and US images, and may provide a superior 

alternative to our proposed method when used in PROXI.

Second, our image synthesis approach is currently limited in the types of anatomy that may 

be synthesized. For more complex structures (e.g. whole body MR scans), our small patch 

size may not be sufficient to resolve possible ambiguities between tissues with similar patch 

appearances. For these cases, more features and multi-scale patches will need to be included 

in the regression forest framework to provide information regarding the anatomical location 

of each voxel.

5.5. Conclusion

In this paper we have introduced the PROXI framework, which is designed to perform 

multimodal registration by using image synthesis with a multi-channel registration. Our 

results showed that the approach can be used to produce more accurate intra-subject and 

intersubject cross contrast MR registrations relative to a standard single channel registration 

using mutual information. In addition, we’ve shown that this improvement is largely 

independent of the registration algorithm that is used.

A major difference between PROXI and existing multi-modal approaches is that our 

framework can take better advantage of modality dependent information that are often 

ignored in the registration. For example, if a structure has very weak contrast in one 

modality, but strong contrast in the other, the use of image synthesis and multi-channel 

registration would allow the stronger contrast to drive the registration. For MI based 

methods, such structures would often be ignored because the weak contrast would have a 

minimal effect on the probability estimation, causing those areas to simply be driven by the 

regularization.

In addition, PROXI provides two other potential advantages over existing algorithms. First, 

it removes the need to use a multi-modal similarity measure when it does not offer the best 

performance. Since both modalities become available on both sides of the registration, we 

can use mono-modal similarity measures such as SSD or CC to solve the problem. This 
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grants us potentially more accurate registrations, while lowering the computation cost and 

complexity during the optimization. Second, the algorithm gains the benefit of using features 

from both modalities to aid the registration. Our results reflect previous studies (Avants et 

al., 2007; Forsberg et al., 2011) which have shown that, when available, using such features 

in a multi-channel framework can significantly improve registration accuracy and 

robustness.

While in this paper we have focused our analysis on cross contrast problems, the PROXI 

framework opens up a number of directions for multi-modal registration. The framework 

generalizes standard multi-channel registrations by allowing such algorithms to be used even 

when the channels are incomplete due to missing data. This can lead to other potential 

applications, such as using image synthesis to generate and use modalities that are not 

present in either the moving or target images. This would allow external information and 

features to be directly embedded into the framework to further improve the registration.
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Highlights

• We present a new approach for registering images with 

different modalities.

• Image synthesis is used to generate the missing 

modalities in a two-channel registration framework.

• Enables the use of mono-modal similarity measures with 

existing multi-channel algorithms.

• Validated using deformation recovery, boundary 

alignment, and label transfer experiments.

• Produced significant improvements over single channel 

counterparts using mutual information.
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Figure 1. 
Shown is a diagram for the PROXI framework, where a single channel multi-contrast 

registration between a moving T1-weighted ( 1) and a target T2-weighted ( 2) magnetic 

resonance image (top row) is converted into a multi-channel registration using normalized 

( 1, 2) and synthetic ( ) images (bottom row) created from the original images.
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Figure 2. 
Example of a deformation recovery between a deformed moving image and the original 

target image. The atlas images used for synthesis are shown in (a) and (b) while the moving 

and target images are shown in (c) and (d). The x component of the true deformation field is 

shown in (e) where red indicates a +1 mm x displacement while blue indicates a −1 mm x 
displacement and the recovered fields are shown for (f) single-channel VABRA with MI, (g) 

PROXI with ( 1, 𝒯̂
1) in the first channel and (𝒮̂

2, 2) in the second channel, and (h) 

PROXI with ( 1, 𝒯̂
1) in the first channel and (𝒮̂

2, 2) in the second channel.
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Figure 3. 
Shown is a visual comparison between ventricle boundaries of a target T2w image and that 

of registered T1 results from (a) rigid registration using FLIRT with MI, (b) single channel 

registration using SyN with MI, (c) PROXI registration using multi-channel SyN with MI, 

and (d) PROXI registration with normalization, using multi-channel SyN with MI. Top and 

bottom rows show the same subject at different slices. Cyan shows the sections where the 

registration result boundaries and the T2w target boundaries are exactly aligned. Red shows 

the sections where the registration result boundaries do not agree with the T2w boundaries 

(blue).
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Figure 4. 
Boundary comparisons between ventricle edge maps of T1w registration results and the T2w 

target image using (a) average minimum distance between the edges from both directions, 

and (b) 99 percentile Hausdorff distance between the edges. Shown are the rigid, single 

channel MI, and PROXI results using three deformable registration algorithms and their 

different similarity measures.
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Figure 5. 
Example of label transfer using the Elastix algorithm with the MI similarity criterion. (a) 

The moving T1w image and its TOADS and Mindboggle labels. (b) The registration result 

using single-channel registration and the transferred labels. (c) The PROXI registration 

result (without using normalized images) and the transferred labels. (d) The PROXI 

registration result (using both synthetic and normalized images) and the transferred labels. 

(e) The target T2w image, the true T1w image of the target and the true target labels. Red 

arrows indicate areas with qualitative improvements in structural and label alignment when 

using PROXI over the single channel registration.
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Figure 6. 
Dice results from the label transfer experiments of (a) the average of all TOADS labels, (b) 

the cortex mask from merging the Mindboggle labels, and (c) the average of all individual 

Mindboggle labels. Each color represents the result using one of the three registration 

algorithms [Elastix, SyN, and VABRA] with one of their similarity measures [(N)MI–

(Normalize Mutual Information, CC–Cross Correlation, MSE–Mean Squared Error, SSD–

Sum of Squared Difference].
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Table 1

The mean and standard deviation of the deformation recovery error (in voxels) when using sinusoidal 

simulated deformation spatially oriented along the cardinal axes. MI=mutual information, NMI=normalized 

mutual information, SSD=sum of squared difference, MSE=mean squared error, and CC=cross-correlation.

VABRA NMI SSD

T1w→T2w 0.223(0.366) 22.654(32.058)

0.210(0.342) 0.150(0.243)

0.112(0.187) 0.142(0.248)

[T1w, T2w]⇒[T1w, T2w] 0.222(0.366) 0.124(0.205)

Elastix MI MSE

T1w→T2w 0.135(0.229) 15.896(22.551)

0.132(0.216) 0.185(0.321)

0.144(0.244) 0.196(0.333)

[T1w, T2w]⇒[T1w, T2w] 0.105(0.220) 0.122(0.171)

SyN MI MSE CC

T1w→T2w 0.179(0.299) 1.851(2.969) 0.577(0.962)

0.138(0.232) 0.167(0.277) 0.147(0.246)

0.145(0.248) 0.221(0.359) 0.160(0.271)

[T1w, T2w]⇒[T1w, T2w] 0.134(0.229) 0.150(0.256) 0.126(0.215)
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