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Abstract

This paper proposes a texture analysis technique that can effectively classify different types of 

human breast tissue imaged by Optical Coherence Microscopy (OCM). OCM is an emerging 

imaging modality for rapid tissue screening and has the potential to provide high resolution 

microscopic images that approach those of histology. OCM images, acquired without tissue 

staining, however, pose unique challenges to image analysis and pattern classification. We 

examined multiple types of texture features and found Local Binary Pattern (LBP) features to 

perform better in classifying tissues imaged by OCM. In order to improve classification accuracy, 

we propose novel variants of LBP features, namely average LBP (ALBP) and block based LBP 

(BLBP). Compared with the classic LBP feature, ALBP and BLBP features provide an enhanced 

encoding of the texture structure in a local neighborhood by looking at intensity differences among 

neighboring pixels and among certain blocks of pixels in the neighborhood. Fourty-six freshly 

excised human breast tissue samples, including 27 benign (e.g. fibroadenoma, fibrocystic disease 

and usual ductal hyperplasia) and 19 breast carcinoma (e.g. invasive ductal carcinoma, ductal 

carcinoma in situ and lobular carcinoma in situ) were imaged with large field OCM with an 

imaging area of 10×10mm2 (10, 000 × 10, 000 pixels) for each sample. Corresponding H&E 
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histology was obtained for each sample and used to provide ground truth diagnosis. 4310 small 

OCM image blocks (500 × 500 pixels) each paired with corresponding H&E histology was 

extracted from large-field OCM images and labeled with one of the five different classes: adipose 

tissue (n = 347), fibrous stroma (n = 2,065), breast lobules (n = 199), carcinomas (pooled from all 

sub-types, n = 1,127), and background (regions outside of the specimens, n = 572). Our 

experiments show that by integrating a selected set of LBP and the two new variant (ALBP and 

BLBP) features at multiple scales, the classification accuracy increased from 81.7% (using LBP 

features alone) to 93.8% using a neural network classifier. The integrated feature was also used to 

classify large-field OCM images for tumor detection. A receiver operating characteristic (ROC) 

curve was obtained with an area under the curve value of 0.959. A sensitivity level of 100% and 

specificity level of 85.2% was achieved to differentiate benign from malignant samples. Several 

other experiments also demonstrate the complementary nature of LBP and the two variants (ALBP 

and BLBP features) and the significance of integrating these texture features for classification. 

Using features from multiple scales and performing feature selection are also effective 

mechanisms to improve accuracy while maintaining computational efficiency.
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1. Introduction

Breast cancer is a high-incidence cancer in women worldwide. It accounted for an estimated 

40,000 deaths and 232,670 new cases in the United States in 2014 (American Cancer 

Society, 2014; Siegel et al., 2014). The survival rate of breast cancer improves with 

screening and early detection (Boyle et al., 2008). Biopsy is a frequently used medical test in 

which tissue samples are removed from a human subject and then examined by a pathologist 

under a microscope to determine the presence or extent of a disease. Traditionally, the tissue 

is processed to extremely thin slices and stained before being observed under a microscope. 

Optical coherence tomography (OCT) provides an alternative non-invasive optical imaging 

modality that can provide 3D, high-resolution images of biological tissue architectures 

without staining (Huang et al., 1991; Fujimoto, 2003; Fujimoto et al., 2000; Tearney et al., 

1997b). Optical coherence microscopy (OCM) combines the advantages of OCT and 

confocal microscopy using high numerical aperture objectives to provide cellular resolution 

images (Izatt et al., 1994; Aguirre et al., 2010b,a; Ahsen et al., 2013; Lee et al., 2013).
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There has been extensive research on using OCT/OCM images for analysis of human 

pathological samples, including skin (Gambichler et al., 2005, 2011), thyroid (Zhou et al., 

2010b), breast (Zhou et al., 2010a; Assayag et al., 2014), brain (Assayag et al., 2013), 

gastrointestinal (Aguirre et al., 2010a; Chen et al., 2007a) and urological tissues (Tearney et 

al., 1997a; Zagaynova et al., 2002; Lee et al., 2012; Chen et al., 2007b). OCT images of in 
vitro atherosclerotic plaques were proved to have high resolution for intracoronary 

diagnostics (Brezinski et al., 1996). In vivo imaging of human skin using OCT is used for 

skin examination (Gladkova et al., 2000). OCT also enables high resolution visualization of 

intraretinal morphologic features for macular pathology (Drexler et al., 2003; Ko et al., 

2005). High resolution imaging of transitional cell carcinoma with OCT also shows 

feasibility for the evaluation of bladder pathology (Jesser et al., 1999). Classifying tissue 

types in OCT/OCM images can also be used to help diagnose breast cancer (Zhou et al., 

2010a; Nguyen et al., 2009b), and assist with image-guided surgery (Boppart et al., 2004; 

Nguyen et al., 2009a; Zysk et al., 2015; Erickson-Bhatt et al., 2015). A recent study 

comparing OCT imaging and H&E histology of ex vivo breast specimens demonstrated a 

sensitivity of 91.7% and a specificity of 92.1% (Erickson-Bhatt et al., 2015).

Computer aided diagnosis methods based on OCT images have been proposed in previous 

works (Zysk and Boppart, 2006; Qi et al., 2006). Zysk et al. demonstrated the classification 

of tumor, stroma and adipose tissues in human breast OCT images based on spatial and 

frequency domain analysis (Zysk and Boppart, 2006). Qi et al used a center-symmetric auto-

correlation texture analysis method to distinguish different types of esophagus tissues in 

endoscopic OCT images (Qi et al., 2006). Another work (Gossage et al., 2003) proposed an 

automatic tissue classification method based on analyzing spectral textures in OCT images. 

In all these works, texture analysis is central to tissue classification, due to the characteristics 

of OCT/OCM images (see Figure 1, first row).

Texture analysis has also played a central role in tissue classification for other types of 

medical images (Ross et al., 2006; Yao et al., 2015; Wang et al., 2014; Toews et al., 2015). 

The methods used typically fall into one of two categories—structure based methods and 

statistical methods. Examples of structure based methods include filtering (Randen and 

Husoy, 1999; Jain and Farrokhnia, 1990; Chang and Kuo, 1993; Unser, 1995), textons 

(Varma and Zisserman, 2003), scale-invariant features such as SIFT (Toews et al., 2015), 

and models (Kashyap and Khotanzad, 1986; Haley and Manjunath, 1999). Examples of 

statistical methods include spectrum analysis (Wang and He, 1990) and feature distributions 

(Pietikäinen et al., 2000; Wang et al., 2014; Yao et al., 2015).

In structure based methods, typical texture patterns of an image are extracted and the 

frequencies of occurrence for different groups of patterns are used to represent the image. 

Different methods can be used to extract texture patterns. In filtering, the texture feature 

vectors are generated based on the local energy of filter responses. Varma et al. proposed a 

texton based method, which performs texture classification based on the joint distribution of 

intensity values over neighborhood blocks of the image (Varma and Zisserman, 2003). 

Toews et al. (Toews et al., 2015) proposed a framework in which distinctive scale-invariant 

features such as SIFT (Lowe, 2004) are indexed in an efficient way so that approximate 

nearest-neighbor(NN) feature matches can be identified in O(log N) time; the NN features 
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can then be used to assist with classification. Kashyap and Khotanzad proposed a rotation-

invariant model based method (Kashyap and Khotanzad, 1986); they used a circular 

symmetric autoregressive model, a roughness model and a directionality model to describe 

textures.

In statistical methods, certain types of texture features are extracted from images and the 

statistical distributions of feature values are calculated and used as feature vectors for texture 

representation. Different texture features are used in statistical methods, including gray-level 

co-occurrence matrix (Marceau et al., 1990), center-symmetric auto-correlation (Harwood et 

al., 1995), morphological features (Wang et al., 2014), geometrical and topological features 

(Yao et al., 2015), gray level difference (Ojala et al., 2001), local binary patterns (LBP) 

(Ojala et al., 2002). Compared with structure-based methods, statistical methods are more 

flexible since they do not require images to contain repetitive texture patterns, and they are 

more suitable for analysis of OCT/OCM images of tissue samples.

In this work, we propose a breast tissue classification and abnormality detection technique 

based on texture analysis of ex vivo breast specimen imaged using an OCM system. We are 

particularly interested in a statistical method consisting of both training and testing steps, 

utilizing the Local Binary Patterns (LBP) (Ojala et al., 2002) texture features extracted from 

images. In LBP, the frequencies of different local image intensity patterns are calculated and 

used as feature vectors (Pietikäinen et al., 2000). LBP features are rotation invariant and they 

have been applied in many applications, such as texture analysis (Mäenpää, 2003; Mäenpää 

and Pietikäinen, 2005; Ojala et al., 2000; Liao et al., 2009), face recognition (Ahonen et al., 

2006, 2004; Zhang et al., 2005a; Zhao and Pietikainen, 2007; Shan et al., 2009), and 

description of regions of interest (Heikkilä et al., 2009). On different texture image datasets, 

LBP features have been used to achieve high classification accuracy (Ojala et al., 2002). In 

our experiments, we have found that LBP is effective in representing and classifying textures 

in OCT/OCM images of human breast tissue.

We introduce two new variants of LBP, average LBP (ALBP) and block based LBP (BLBP), 

in order to enrich texture encoding and improve classification accuracy. In the original LBP, 

grayscale values of a certain number of neighbor pixels are compared with the grayscale 

value of a center pixel to generate a binary code pattern for a local image patch. The new 

ALBP feature compares the grayscale value of a neighbor pixel with the average grayscale 

value of all neighbors; in this way, ALBP can represent the intensity differences among 

neighbor pixels. The new BLBP feature compares the average intensity values of pixels in 

blocks of certain shape around the center pixel, thus can represent more global intensity 

difference information that is not captured by the original LBP features. We found that by 

integrating LBP features with the newly introduced two variants (ALBP and BLBP 

features), tissue classification accuracy can be significantly improved.

2. Image Acquisition and Preparation

2.1. High Speed OCM System

In this study, a high speed time-domain OCM system was used to image freshly excised 

human breast tissue based on time domain detection techniques. The details of the system 
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can be found in (Zhou et al., 2010a; Lee et al., 2012). Briefly, a femtosecond Nd:Glass laser 

was spectrally broadened to generate an output spectrum centered at 1060nm with a broad 

spectrum bandwidth of 200nm, providing an axial resolution of less than 4μm. A 40x water 

immersion IR-Achroplan objective (Carl Zeiss) was used to provide OCM images with a 

transverse resolution of 2μm. Individual OCM images each covering an imaging area of 

400μm×400μm (400 pixels ×400 pixels, X×Y) were acquired at a frame rate of 2 frames per 

second. A high precision three-dimensional translational stage (Newport Inc.) was used 

allowing rapid adjustment of focus position inside the tissue and also the imaging area over 

the tissue surface. The entire surface of the breast tissue specimen was imaged by translating 

the specimen horizontally.

2.2. Specimen Preparation and Imaging Protocol

The study protocol was approved by the institutional review boards at Beth Israel Deaconess 

Medical Center (BIDMC) and Massachusetts Institute of Technology (MIT). Discarded 

human tissue not used for routine pathologic examination was collected for the study. 

Freshly excised human breast tissue samples were selected based on gross pathological 

findings. Uninvolved, grossly normal breast tissue was also sampled. Twenty seven 

specimens with benign diagnosis include fibroadenoma (n = 1), benign fibrocystic disease (n 

= 20), and usual ductal hyperplasia (UDH, n = 6). Nineteen specimens were diagnosed as 

breast carcinoma including invasive ductal carcinoma (n = 16), ductal carcinoma in situ 

(DCIS, n = 3) and lobular carcinoma in situ (LCIS, n = 2). Note that two specimens contains 

both invasive ductal carcinoma and DCIS regions. Specimens (typically 

1.0cm×1.0cm×0.5cm) were preserved in RPMI 1640 medium (Invitrogen) prior to the 

imaging session and were typically imaged within 2 to 6 hours after surgical resection. A 

thin cover glass was gently placed over a specimen’s surface to create a flat imaging plane. 

After the imaging session, the specimen was fixed in 10% neutral buffered formalin before 

standard histology processing. Specimens were sectioned along the en face plane and stained 

with hematoxylin and eosin (H&E). The histopathologic diagnosis of individual breast 

specimens was performed by an experienced staff pathologist. Digital pathology images 

(Aperio, Leica Biosystem) of individual breast specimens were acquired to allow correlation 

between the pathologic findings and the corresponding en face OCM images.

2.3. Image Preprocessing

The images utilized in our experiments in this work are en face OCM images of ex vivo 
human breast tissue. These images are contrast adjusted and displayed with an inverse 

grayscale color map. That means darker in OCM images represents increased reflectivity. 

These OCM images have an axial resolution of 4 μm and a transverse resolution of 2 μm 

respectively.

The OCM images are preprocessed for the purpose of training and testing. Figure 2 shows 

an overview diagram for the training and testing processes. In the training process, each 

large-field OCM image, which covers an image area of about 10 × 10mm2 (10, 000 × 10, 
000 pixels), is divided into small blocks (500 × 500 pixels in our experiment). Each such 

small block is paired with corresponding H&E histology and labeled with one of the five 

different classes: adipose tissue (n = 347), fibrous stroma (n = 2,065), breast lobules (n = 
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199), carcinomas (pooled from all sub-types, n = 1,127), and background (regions outside of 

the specimens, n = 572). These image blocks with class labels are used as examples for 

training. Blocks of different classes show distinctive texture patterns which can serve as 

features for training tissue classifiers.

The ground truth labels for OCM image blocks are collected based on histology images of 

the same tissue specimen. Registration is performed to align and map correspondences 

between an OCM image and its corresponding histology image. Therefore, the 

histopathology result for each small block in the OCM image is known based on the class 

label for the corresponding block in the histology image. The class labels for each small 

image block in the histology image are assigned manually by an experienced pathologist. 

Figure 1 shows sample OCM image blocks and their corresponding histology image blocks 

of human breast tissue.

For the purpose of testing, large field OCM images are divided into blocks of two different 

sizes. In a 10-fold cross-validation experiment, each large field OCM image is divided into 

blocks of 500 × 500 pixels. These blocks are separated into ten folds where nine folds are 

used for training and one fold for testing. In another experiment, in order to test the 

robustness of our method in classifying image blocks of different sizes, the large field OCM 

images are divided into blocks of 400×400 pixels. So image blocks of 500×500 pixels are 

used to train the classifier, which is then tested on image blocks of 400 × 400 pixels. By 

using different sized image blocks, we avoid generating the same blocks for training and 

testing, thus increase the reliability of our validation experiments.

3. Methodology

3.1. Feature Extraction

3.1.1. Local Binary Patterns—Features extracted from OCM images are utilized for 

automatic identification of different tissue types. In this work, local binary patterns (LBP) 

(Ojala et al., 1996, 2002) are used as features to describe textures in a grayscale OCM 

image. The LBP algorithm divides the image into cells. In each cell, the intensity of a center 

pixel is compared to the intensity values of its neighboring pixels. The LBP feature for a 

local neighborhood of radius R, with P number of neighbor pixels is defined as: (Ojala et al., 

2002):

(1)

where gc is the grayscale value of the center pixel, gp is the gray scale value of a neighbor 

pixel. Figure 3(a) shows an illustration of LBP8,4 in which 8 neighbor pixels are located on a 

circle of radius 4 around the center pixel. Suppose the center pixel is located at (0,0), then 

the pth neighbor pixel gp is located at ( ). Figure 3(b) shows an 

example of obtaining a LBP feature from a local neighborhood (or cell) of an OCM image. 
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The figure shows that the LBP feature is a pattern represented by the binary number 

“11100010”. For LBPP,R, there are 2P possible binary-number patterns. To achieve rotation 

invariance, a function U(LBPP,R) is defined as the number of 0/1 changes in a circular binary 

pattern:

(2)

So, the LBP feature shown in Figure 3(b) has U value of U(“11100010”) = 4.

Among all the LBP patterns, the most frequent patterns are the ones with limited 

discontinuity in the circular binary representation thus have small U values. These patterns 

with small U values are also called uniform patterns because they represent local 

neighborhoods with relatively uniform appearance. Based on the U values, a uniform 

rotation-invariant feature  is defined as:

(3)

Here the threshold on the U value is 2, and with this threshold, there are a total of P + 2 

possible values for . In our experiments, we have tried different thresholds for U 

value when generating features, which led to similar results. Thus we choose 2 as the 

threshold since  has the smallest number of possible values and gives the shortest 

feature length.

To extract the rotation-invariant LBP feature vector for an N ×N image, the  value is 

calculated with each pixel in the image as the center pixel. Excluding those pixels that have 

a distance less than R from the image boundary, we get a total of (N − 2R)2  values. 

The number of occurrences of each  value in an image is calculated and represented 

in a histogram. The histogram is then normalized and saved as the LBP feature vector for the 

image, as shown in Figure 5(c) Columns 1–9. By changing the parameters - the radius R and 

the number of neighbors P - a variety of LBP feature vectors can be generated for the image.

3.1.2. Proposed Novel Variants of Local Binary Patterns—In the literature, variants 

of LBP have been proposed to improve its performance in certain applications. Guo et al. 

(Guo et al., 2010) proposed a completed LBP model which takes into consideration the 

magnitude of intensity difference between the center pixel and its neighbors. In this 

completed LBP model, the local intensity difference is divided into two complementary 

components: the sign and the magnitude. Experimental results in their work show that the 

sign component is more important than the magnitude component in representing the local 

features, which explains why simple LBP features have good performance. By using the 
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integrated feature which combines the sign and magnitude components, better texture 

classification accuracy was reported. Tan et al. (Tan and Triggs, 2007) proposed an enhanced 

LBP feature which uses three states to describe the similarity of intensity values for the 

purpose of face recognition. In their work, local ternary patterns (LTP), a generalization of 

the LBP, is proposed. In LTP, the difference in local image intensity is represented as three 

different states. This results in a series of ternary numbers that represent local image 

features. LTP is tested for face recognition under different lighting conditions. Experimental 

results in their work show that LTP is more discriminant and more robust to noise than the 

original LBP feature. ul Hussian et al. (ul Hussain and Triggs, 2012) proposed Local 

Quantized Patterns (LQP), which is a generalization of LBP and LTP that uses lookup-table 

based vector quantization instead of hand-specified codings, in order to code larger or 

deeper patterns. The LQP features were shown to perform very well on object detection and 

texture classification problems because of its run-time efficiency. Zhang et al. (Zhang et al., 

2007) extended the local binary pattern operator to represent rectangular regions’ intensities 

and the resulting binary patterns are used to describe diverse local structures of images for 

the purpose of face detection. Wang et al. (Wang et al., 2009) proposed to use an integrated 

Histogram of Oriented Gradients (HOG) and LBP features to handle partial occlusion in 

human detections. By constructing an integrated detector with HOG and LBP features, their 

experiments show better detection performance than the original LBP features on the INRIA 

pedestrian dataset. Zhang et al. (Zhang et al., 2005b) proposed to integrate multi-scale and 

multi-orientation Gabor filters with LBP features for face representation. In their work, 

multi-scale and multi-orientation Gabor filters are applied on the original image to generate 

a set of Gabor Magnitude Pictures (GMP). Local binary patterns are then extracted based on 

GMPs instead of original images. The combination of Gabor filtering with LBP increased 

the robustness of the feature to illumination changes and noise. Zhang et al. (Zhang et al., 

2010) proposed to use local derivative patterns (LDP) which use the local derivative 

direction variation instead of local intensity variation as the feature. In LBP, the first order 

local derivatives are used in describing local intensity variations; while in LDP, higher order 

local derivatives are used to capture more details of the local image patterns. The 

“nonuniform” local binary pattern is used in (Zhou et al., 2008) to improve the performance 

in texture analysis. The original rotation-invariant LBP feature uses “uniform” patterns 

hence loses some information about non-uniform local neighborhoods. The work (Zhou et 

al., 2008) also analyzes the structures of “nonuniform” local binary patterns and combines 

them with “uniform” patterns to improve texture representation. Most recently, Liu et al. 

(Liu et al., 2016) developed a robust LBP variant called the Median Robust Extended Local 

Binary Pattern (MRELBP). In order to make LBP less sensitive to image noise, the authors 

proposed MRELBP that compares regional image medians rather than raw image intensities, 

and adopted a multiscale strategy with a novel sampling scheme to capture both 

microstructure and macrostructure texture information.

3.1.3. Average Local Binary Patterns—In this work, we propose a new variant of LBP 

feature, namely the average LBP (ALBP) feature. Instead of comparing the intensity of a 

center pixel with those of its neighbors like in LBP, ALBP compares the intensity value of 

each neighbor pixel with the average intensity value of all neighbors:
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(4)

Note that ge is the average intensity value of all P neighbor pixels located on a circle in a 

local neighborhood.

We calculate the rotation-invariant ALBP features  by applying the same 

operations that are used to transform LBPP,R to :

(5)

By varying the parameters P and R, a variety of ALBP feature vectors can be generated for 

an image.

ALBP features are complementary to LBP features in describing local texture structure. A 

LBP feature can reveal the relationship between the center pixel and its neighbors, whereas 

an ALBP feature reveals more specific relations and intensity variation among the 

neighbors. Figure 4 shows two different OCM image blocks that have the same LBP feature 

but different ALBP features in a neighborhood. Figure 4(a)–(b) show that the two different 

images both have the same LBP pattern that is represented by the binary number 

“11111111”; Figure 4(c)–(d) show that the two images have different ALBP features, which 

are represented by the binary numbers “10000111” and “10110011”, respectively.

Because of their complementary nature, LBP and ALBP features can be integrated to 

provide a richer texture feature. Figure 5(c) shows the integrated feature of  and 

 for two different OCM images shown in Figure 5(a) and (b), respectively. In the 

integrated feature vector (Figure 5(c)), Columns 1–9 represent  and columns 10–18 

represent . From the figure one can see that the two OCM images have similar 

LBP features, but significantly different ALBP features.

3.1.4. Block-based LBP: Spoke-LBP and Ring-LBP—In addition to ALBP, to further 

increase the discriminatory power of LBP texture features, we propose yet another new 

variant of LBP, namely the block based LBP (BLBP) features. BLBP compares the average 

intensity value of pixels in blocks of a certain shape in a neighborhood around the center 

pixel. Two different shapes of pixel blocks, namely Spoke and Ring, are used in our work, as 

shown in Figure 6(a) and (b).
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The Spoke-shaped BLBP compares the intensity of the center pixel with the average 

intensities of neighbor pixels along P different directions, as demonstrated in Figure 6(a). It 

can be represented as:

(6)

where gp,r is the gray scale value of the pth neighbor pixel on the circle with radius r, gp,s is 

the average intensity value of all the pixels along the pth neighbor’s direction for all radii in 

[0, R]. We calculate the rotation-invariant features  by applying the following 

transformation:

(7)

There are a total of P + 2 different binary-number patterns for .

The Ring-shaped BLBP compares the intensity of the center pixel with the average 

intensities of neighbors in ring shaped areas around the center pixel, as demonstrated in 

Figure 6(b). It can be represented as:

where i is the index of the ith ring between radius i * R and radius (i + 1) * R around the 

center pixel, R is the difference of radius between two adjacent rings, N is the number of 

rings around the center pixel. The number of different patterns for RBLBP is 2N.

By calculating the frequency of each pattern with every pixel in the image as a center pixel, 

we can get SBLBP and RBLBP feature vectors which are normalized histograms of pattern 

occurence. The overall BLBP feature vector is the concatenation of the SBLBP and RBLBP 

feature vectors as shown in Figure 6(c):

Comparing BLBP with LBP, a BLBP feature encodes richer information about the intensity 

distribution in blocks of different shape and scale in a neighborhood, whereas a LBP feature 

reveals more about the intensity differences between the center pixel and surrounding 

neighbor pixels. The BLBP feature is also more robust to noise than the LBP feature. Figure 
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7 shows BLBP feature vectors for the lobule and fat tissue OCM images shown in Figure 5. 

We can see that the OCM images have similar LBP features (Figure 5(c)), but significantly 

different BLBP features.

3.2. Integrated Multi-scale Feature

Texture patterns of different scales appear in human breast tissue OCM images. LBP and its 

new ALBP and BLBP variants with different radius parameters can be used as features to 

capture the characteristics of texture patterns at different scales. In our work, we construct a 

multi-scale feature by integrating LBP, ALBP and BLBP features obtained with different 

radius parameters. Figure 8 shows an integrated multi-scale feature vector for an OCM 

image of carcinoma (tumor) tissue.

3.3. Classification Algorithm

Different classification methods can be used to classify the OCM images based on LBP 

features. Since our focus in this paper is to introduce and integrate the new LBP features and 

evaluate their effects on OCM image classification, we aim to use a chosen classifier to 

perform many experiments employing different subsets of integrated LBP features. In order 

to determine which classifier to use for these tasks, we first conduct a preliminary 

experiment with different classifiers to classify OCM image blocks using the LBP8,8 feature; 

the classifier giving the best performance in this experiment will be chosen to evaluate 

various subsets of integrated LBP features in Section 4.

We tested the performance of K-nearest neighbors, Naive Bayes, C4.5 decision trees, and 

neural network classifiers in this experiment. K-nearest neighbors (KNN) is an extensively 

studied classification method. It has promising performance in a variety of classification 

applications including image based classification (Blitzer et al., 2005). Since the features in 

our application are numeric features, Euclidean distance is used as the distance metric when 

applying the KNN classification method. Naive Bayes (NB) is a probabilistic classifier 

based on Bayes’ theorem. C4.5 is a decision tree based classifier; it builds a predictive 

model that maps a feature value to an output class. Neural network (NN) classifiers are 

especially useful in problems that are hard to solve by rule-based classification methods, 

such as image classification (Giacinto and Roli, 2001). In our experiment, we used a three-

layer neural network as the NN classification model. Table 1 shows the results of comparing 

the performance of different classification methods. From the table, one can see that the 

neural network classifier gives the best overall performance in this experiment. Therefore, in 

all our following experiments presented in Section 4, we choose to use the three-layer neural 

network as the classifier.

4. Experiments and Results

To evaluate the performance of the proposed integrated LBP features, we conducted 

experiments using two sets of images: (1) texture images from commonly used datasets; and 

(2) human breast tissue OCM images. Experiments performed on six commonly used texture 

image datasets, UIUCTex, CUReT, UMD, ALOT, KTHTIPS2b and Outex, are used to 

demonstrate the performance of the new texture features in general texture classification 
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tasks. We compare the classification accuracy using our proposed new integrated features 

with that using the state-of-the-art feature, Median Robust Extended Local Binary Pattern 

(MRELBP) (Liu et al., 2016). The experiments performed on human breast tissue OCM 

images show the benefits of using the new texture features for classifying human tissue 

OCM images. We also compare the classification performance using the proposed integrated 

features with that using the LTP (Tan and Triggs, 2007), and complete local binary patterns 

(CLBP)(Guo et al., 2010).

4.1. Experiments on Texture Images

The UIUCTex texture image database includes 25 textures (Lazebnik et al., 2005). Each 

texture has 40 images with different scales and viewpoints. Figure 9 shows some examples 

from the UIUCTex texture image database.

The CUReT texture image database includes 61 textures (Dana et al., 1999). Each texture 

has 92 images with different viewpoints and illuminations. Figure 10 shows some examples 

from the CUReT texture image dataset.

The UMD high resolution image database (Xu et al., 2010) contains 25 texture classes, each 

with 40 images.

The ALOT database (Burghouts and Geusebroek, 2009) consists of 250 texture classes, with 

100 images in each class.

The KTHTIPS2b database (Mallikarjuna et al., 2006) contains images of 11 kinds of 

materials, each of which has 432 images.

Classification results are evaluated by comparing the predicted class label with the ground 

truth class label. The evaluation process follows a 10-fold cross-validation scheme. For each 

dataset, all the images are randomly divided into 10 subsets of roughly equal size. The 

classification is run 10 times. In each run, a different subset is selected as test data and the 

remaining 9 subsets are used as training data. The final evaluation result is obtained by 

averaging the results over the 10 runs. The performance measurement we use is the 

classification accuracy:

(8)

Table 2 and Table 3 compare the average classification accuracy using the proposed 

integrated LBP features and the MRELBP feature (Liu et al., 2016) and with different 

classifiers (KNN vs SVM). For most datasets (except for CUReT and OutexTC23s), the 

proposed integrated features can achieve similar or improved accuracy compared to 

MRELBP.

4.2. Classification of OCM Image Blocks of Human Breast Tissue

In order to test the performance of our proposed new features on classifying tissue types in 

OCM images of human breast tissue, we perform classification on small OCM image blocks 
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(500 × 500 pixels in size) obtained from the image preprocessing step (Section 2.3), using 

different combinations of features. Each image block is classified into one of five categories: 

Lobule, Stroma, Carcinoma, Adipose and Background. We used 4310 OCM image blocks 

for the experiments (199 lobule, 2065 stroma, 1127 carcinoma, 347 adipose, 572 

background). The classifier used was a three-layer neural network classifier (see Section 

3.3). In a 10-fold 10-round cross validation, the classification accuracy values given by 

different feature combinations are shown in Table 4.

The feature combinations being compared in the table are:

•

•

• CLBP : CLBP_Sign + CLBP_Magnitude + CLBP_Center

• BLBP : SBLBP8,9 + RBLBP8,3,3

• MBLBP : SBLBP8,3+SBLBP8,6+SBLBP8,12+SBLBP8,18+RBLBP8,1,3+ 

RBLBP8,2,3 + RBLBP8,4,3 + RBLBP8,6,3

• Integrated: MLBP +MALBP +MBLBP

The results shown in the column “Total” in Table 4 is the overall classification accuracy for 

all the image-block samples. One can see that, the multi-scale integrated feature (MLBP 
+MALBP +MBLBP ) gives the best result. Since the ALBP and BLBP features are more 

robust to image noise and can extract richer, more distinctive information from images based 

on intensity variance, they demonstrated superior performance in distinguishing image 

blocks of different types of tissue, when integrated with original LBP. Using multi-scale 

features improves performance because OCM images of different tissue types exhibit 

different texture features at multiple scales. Our results showed that multi-scale integrated 

features incorporating the newly proposed ALBP and BLBP features outperformed other 

features in distinguishing different types of breast tissue in OCM images.

To further give a detailed depiction of the classification accuracy using the multi-scale 

integrated feature and three-layer neural network classifier, we show in Table 5 the 

confusion matrix of the classification result. One can see that very few mistakes were made 

on the Adipose and Background classes, whereas there were low percentages of confusion 

among the Lobule, Stroma and Carcinoma classes. The accuracies for all classes are above 

90% except for the Lobule class (see Table 4).

4.3. Classification of Large-field OCM Images and Tumor Detection

In another experiment, we classify 46 large-field OCM images into one of two classes: all 

benign tissue, or tissue containing tumor. The classification of a large-field image is based 

on the fine-grain categorization of its subdivided blocks. In our experiment, we subdivided 

each large image into 400 × 400-pixel blocks. Then the fine-grain categorization process as 

in Section 4.2 is carried out to label each block as in one of five categories: Adipose, Stroma, 

Lobule, Carcinoma (pooled from all sub-types), and Background. Each category 

corresponds to one output value in the neural network classifier. If a large-field OCM image 
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contains blocks that are classified as Carcinoma (i.e. cancerous tumor), the whole image is 

classified as tissue containing tumor; otherwise, the whole image is classified as benign.

To improve robustness of the algorithm, any isolated block (0.4mm*0.4mm in physical size) 

that is classified as Carcinoma is considered as noise and not taken into account during 

image classification. Further, since the areas in the OCM image that represent regions of 

cancerous tissue (i.e. Carcinoma) are determined by setting a threshold θ to the output value 

corresponding to Carcinoma in the neural network classifier, we can obtain a receiver 

operating characteristic (ROC) curve by adjusting the threshold value θ, see Figure 11. The 

ROC curve can be used to characterize the performance of the large-field OCM image 

classification algorithm using our multi-scale integrated texture feature. The area under the 

curve (AUC) value is found to be 0.959. The best classification accuracy is obtained at a 

sensitivity level of 100% and specificity level of 85.2% (marked by red circle in Figure 11).

For comparison, the classification accuracies using different texture features are shown in 

Table 6. The best performance is achieved using the integrated feature, as well as MBLBP 

feature, on the two-class large-field OCM image classification task. The confusion matrix 

for the classification result using integrated feature (MLBP + MALBP + MBLBP ) is shown 

in Table 7.

Figure 12 shows some of the results of breast tissue OCM image classification using multi-

scale integrated feature (LBP + ALBP + BLBP ). The first column is the histology images 

that are used as the ground truth to evaluate the classification accuracy. The second column 

is the corresponding OCM images used as test data. The third column in Figure 12(c) shows 

the color map of the classification result, with each color representing a tissue type (white: 

background, blue: carcinoma, red: lobules, green: stroma, grey: adipose). Based on the 

classification results, we also generate heat maps that indicate tumor regions as shown in the 

last column, Figure 12(d); the purple overlay indicates high-probability tumor regions.

5. Discussion

5.1. Algorithm Limitation

Using integrated imaging features, our algorithm demonstrated over 90% overall accuracy in 

differentiating benign and malignant specimens (Table 6). Four benign specimens were 

falsely diagnosed as malignant based on large-field OCM images (Table 7). Two of these 

specimens were obtained from previous biopsy sites and one was a specimen containing 

usual ductal hyperplasia (UDH). A closer look of Table 5 shows that many of the mis-

classified cases are misclassifying lobules as carcinomas. The algorithm’s accuracy on 

classifying lobules is lower than classifying other categories of tissues. We speculate that the 

reason is because in OCM images, lobules are visually more similar to carcinomas than 

other types of tissues. Our texture features were not able to extract enough information from 

the OCM images to clearly separate normal lobules or lobules with inflammation from 

carcinomas. Another type of mis-classification is between carcinomas and stromas. In some 

tumor specimens, cancer cells are sparsely distributed within the stromas; our features give 

lower classification accuracy on these sparsely distributed carcinoma tissues than dense 

carcinoma tissues.
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5.2. Attribute Selection

In order to increase the speed of the classification algorithm, the integrated feature can be 

evaluated in an attribute selection phase, so that only the most representative attributes in the 

integrated feature are selected to be used to construct the classifier. During an attribute 

selection step, attributes that can represent distinctive characteristics of different types of 

tissues should be kept while less relevant attributes are eliminated, in order to lower the 

dimension of the feature vector and reduce computational complexity for both training and 

testing. Attribute selection typically consists of two components: a search method that 

extracts a new subset of attributes from the original attribute space, and an evaluation 

method that assigns a score to any attribute subset. Commonly used search methods include 

greedy forward selection, simulated annealing, genetic algorithm (Yang and Honavar, 1998), 

among others. Commonly used evaluation methods include information gain, Chi-square, 

among others.

In our work, we did an experiment to perform attribute selection on the attributes of the 

integrated multi-scale LBP+ALBP+BLBP feature vector. We used information gain as the 

evaluation method and attribute subsets were ranked according to their individual evaluation 

scores in order to achieve fast and accurate subset selection. As a result of the selection, the 

dimension of the feature set for training and testing was reduced from 140 to 24. Figure 13 

shows the average value for each of the 140-dimensional features of four different types of 

tissues and background; the average values for consecutive features of the same tissue class 

are connected to form one line per class. All together, the five colored lines for the five 

classes (i.e. lobule, stroma, carcinoma, adipose, and background) form a line graph from 

which one can visually see which features exhibit different values for different classes. Our 

attribute selection algorithm based on information gain evaluation selected 24 top features 

which are marked by red squares along the horizontal axis of the graph in Figure 13. From 

the figure, one can see that 7 of the selected features are from LBP features, 2 selected 

features are from ALBP features and the rest 15 selected features are from BLBP features.

In this experiment, by attribute selection and reducing the dimension of the feature vector 

from 140 to 24, the running time for training a classifier was reduced by 4.8%. The 

classification accuracy dropped slightly though, after attribute selection; without attribute 

selection and using the full 140-dimensional feature vector, classification accuracy was 

93.8% whereas accuracy was 87.0% using the 24-dimensional feature vector of selected 

attributes.

5.3. Application of ALBP and BLBP to other types of images

The proposed ALBP and BLBP methods extract texture features based on comparison of 

relative pixel intensity in an image, and they are not limited to any specific imaging 

modality, such as OCM. ALBP and BLBP could also be used for H&E stain image analysis. 

As a future direction, we plan to perform experiments that use ALBP and BLBP for 

classifying H&E images and also compare the performance of classification based on multi-

modal images (e.g. OCM and H&E together) vs. that of classification using a single 

modality image.
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5.4. Potential of Deep Features

Convolutional neural networks (CNN) and deep features have become very popular in recent 

research and are increasingly used in a wide range of applications for recognition and 

segmentation. Deep features have been successfully applied to texture recognition (Cimpoi 

et al., 2015) and to improving the performance of various computer-aided diagnosis 

applications such as classifying skin lesion images (Kawahara et al., 2015), lung diseases 

and colonic polyps (Roth et al., 2016). Cimpoi et al. (Cimpoi et al., 2015) proposed a new 

texture descriptor, FV-CNN, which is obtained by Fish Vector Pooling of a CNN filter bank, 

and used it to achieve state-of-the-art performance in recognizing material texture on Flickr 

material dataset and in scene recognition on MIT indoor scenes dataset. Kawahara et al. 

(Kawahara et al., 2015) investigated whether filters and deep features learned in a CNN 

trained on natural images would generalize well to classifying skin lesion images; their 

conclusion was that such deep features do provide performance improvement over published 

results that did not use deep features. They further improved the standard CNN as a feature 

extractor approach by using normalization, a multi-scale scheme and pooling across an 

augmented feature space. Roth et al. (Roth et al., 2016) address the training data issue for 

CNN in medical imaging by generating novel 2D or 2.5D image views via sampling through 

scale transformations, random translations and rotations. In testing, the trained CNN assigns 

class (e.g. lesion, pathology) probabilities for a new set of random views that are then 

averaged to compute a final classification probability. As these research studies have shown, 

CNN and deep features generalize well to different medical image classification applications 

and can scale to data sets of various sizes. In our future work, we plan to investigate the 

potential application of deep features for classifying OCT/OCM images of tissue samples. 

We foresee the main challenges to be collecting a sufficient amount of training data to fine 

tune pre-trained deep features and providing accurate semantic labels to texture patches that 

appear in OCT/OCM tissue images.

6. Conclusions

This paper introduces texture analysis techniques applied on OCM images to achieve 

automatic classification of human breast tissues. New variants of LBP features, ALBP and 

BLBP, are proposed. The new variants are more robust to image noise and extract richer 

texture information from images than the original LBP features. Thus by integrating these 

new variants with the original LBP features, we were able to achieve more accurate image 

classification in our experiments. The promising results from our work suggest the potential 

of using texture analysis of OCM images to assist with diagnosis of breast cancer.
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Highlights

• Texture analysis is applied on OCM images for human breast tissue 

classification.

• New variants of local binary pattern (LBP) are proposed to extract texture 

features.

• Using multi-scale and integrated image features improves classification 

accuracy.

• Achieved high sensitivity (100%) and specificity (85.2%) for cancer 

detection.
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Figure 1. 
Sample OCM images (first row) and corresponding histology images (second row) of human 

breast tissue. The ground truth labels for the tissue type of these images are: (a) carcinoma, 

(b) lobule, (c) stroma, (d) adipose.
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Figure 2. 
Overview diagram for the training and testing processes.
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Figure 3. 
Demonstration of LBP feature in a local neighborhood of an OCM image.
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Figure 4. 
Two OCM images with the same LBP feature but different ALBP features. (a),(c) are image 

1; (b),(d) are image 2; (a),(b) show LBP features; (c),(d) show ALBP features.
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Figure 5. 
Integrated LBP and ALBP feature vectors for OCM images of two types of tissue. In (c), 

columns 1–9 represent LBP feature and columns 10–18 represent ALBP feature.
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Figure 6. 
Demonstrated of Block based LBP (BLBP) feature.

Wan et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
BLBP feature vectors of the lubule and fat tissue shown in 5.
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Figure 8. 

Integrated multi-scale LBP+ALBP+BLBP feature vector: columns 1–9: , columns 

10–18: , columns 19–27: , columns 28–36: , columns 37–45: 

, columns 46–54: , columns 55–63: , columns 64–72: 

, columns 73–81: SBLBP8,3,, columns 82–90: SBLBP8,6, columns 91–99: 

SBLBP8,12, columns 100–108: SBLBP8,18, columns 109–116: RBLBP8,1,3, columns 117–

124: RBLBP8,2,3, columns 125–132: RBLBP8,4,3, columns 133–140: RBLBP8,6,3.
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Figure 9. 
Examples from UIUCTex texture image database.
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Figure 10. 
Examples from CUReT texture image database.
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Figure 11. 
ROC curve for tumor tissue detection in large-field OCM images.
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Figure 12. 
Breast tissue OCM image classification results. The results include two classes of images: 

image of tissue with tumor (image 1 and 3), and image of tissue without tumor (image 2). (a) 

histology image; (b) OCM image; (c) classification result; (d) probability distribution (i.e. 

heat map) of tumor tissue.

Wan et al. Page 34

Med Image Anal. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13. 
Average feature values for five different classes of OCM image blocks and demonstration of 

attribute selection. The total dimension of a feature vector is 140. 24 attributes are selected 

by the information gain based attribute selection algorithm. The selected 24 are marked by 

red squares along the horizontal axis. Dimension 1–9: , dimension 10–18: , 

dimension 19–27: , dimension 28–36: , dimension 37–45: , 

dimension 46–54: , dimension 55–63: , dimension 64–72: , 

dimension 73–81:SBLBP8,3, dimension 82–90:SBLBP8,6, dimension 91–99:SBLBP8,12, 

dimension 100–108:SBLBP8,18, dimension 109–116:RBLBP8,1,3, dimension 117–

124:RBLBP8,2,3, dimension 125–132:RBLBP8,4,3, dimension 133–140:RBLBP8,6,3.
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Table 1

Classification accuracy (%) using the same texture feature (LBP8,8) and different classifiers. The best result for 

each tissue class (row-wise) is highlighted in bold. Note that the neural network classifier gives the best overall 

performance.

Tissue type KNN Naive Bayes C4.5 Neural Network

Lobules 39.7 12.1 26.8 29.3

Stroma 83.6 74.2 84.0 86.2

Carcinomas 71.3 86.0 73.3 78.0

Adipose 81 55.9 78.1 80.1

Background 90.2 65.9 91.3 92.1

Total 78.9 71.8 79.1 81.7
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Table 2

Classification accuracy on ALOT, KTHTIPS2b, UIUCTex, CUReT and UMD datasets using different 

combinations of features and classifiers.

Method Integrated Features MRELBP

Datasets KNN SVM KNN SVM

ALOT 0.960000 0.983160 *0.9728 -

KTHTIPS2b 0.865951 0.883838 *0.7791 *0.6913

UIUCTex 0.937 0.97 - -

CUReT 0.769331 0.883704 *0.9710 *0.9902

UMD 0.987 0.993 *0.9866 *0.9941

*
: quoted number from (Liu et al., 2016);

-
: the result is unavailable.
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Table 3

Classification accuracy on OutexTC10, OutexTC12000, OutexTC12001, Out-exTC36tl84, 

OutexTC36horizon, OutexTC11[b, c, n, s] and OutexTC23[b, c, n, s] datasets using different combinations of 

features and classifiers.

Method Integrated Features MRELBP

Datasets KNN SVM KNN SVM

OutexTC10 0.999768 0.999768 *0.9984 -

OutexTC12000 1.0 0.99875 *0.9949 -

OutexTC12001 0.999583 0.998541 *0.9977 -

OutexTC36tl84 0.956897 0.934863 *0.9255 -

OutexTC36horizon 0.960449 0.931632 *0.9155 -

OutexTC11b 0.998958 1 *0.9577 -

OutexTC11c 0.996875 1 *0.9472 -

OutexTC11n 0.99375 0.996875 *0.877 -

OutexTC11s 0.983333 0.997916 *0.9984 -

OutexTC23b 0.809559 0.917647 *0.8797 -

OutexTC23c 0.803308 0.892279 *0.8036 -

OutexTC23n 0.816911 0.861397 *0.664 -

OutexTC23s 0.759926 0.792279 *0.9436 -

*
: quoted number from (Liu et al., 2016);

-
: the result is unavailable.

Med Image Anal. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wan et al. Page 39

Table 4

Classification accuracy (%) using different combinations of features. The best result for each tissue class 

(column-wise) is highlighted in bold.

Features Lobule Stroma Carcinoma Adipose Background Total

LBP2,8 7.1 81.5 73.4 30.5 58.7 68.8

LBP4,8 23.2 82.2 75.7 69.2 77.1 76.1

LBP8,2 53.5 86.0 72.8 46.7 88.3 78.2

LBP8,4 39.9 86.3 77.7 79.5 87.4 81.6

LBP8,8 29.3 86.2 78.0 80.1 92.1 81.7

LBP8,16 25.3 81.6 60.5 69.7 87.6 73.4

LBP8,8, ALBP8,8 31.8 86.9 79.8 87.9 97.7 84.0

MLBP, MALBP 61.1 92.3 85.4 94.2 99.3 90.2

BLBP 59.3 88.2 84.6 88.8 99.1 87.4

MBLBP 77.4 96.2 83.2 95.9 100 92.4

Integrated 68.3 94.0 93.5 97.1 100 93.8

LT P8,8 10.6 86.4 81.4 90.5 93.9 82.9

CLBP 57.3 89.6 73.8 81.8 99.0 84.6
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Table 5

Confusion matrix of the classification result obtained by multi-scale integrated feature and neural network 

classifier.

Predicted class

Lobule Stroma Carcinoma Adipose Background

Actual class

Lobules 136 20 40 3 0

Stroma 2 1942 121 0 0

Carcinoma 3 70 1054 0 0

Adipose 3 7 0 337 0

Background 0 0 0 0 572

Med Image Anal. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wan et al. Page 41

Table 6

Accuracy (%) of large-field OCM image classification using different features. MBLBP: Multi-scale BLBP; 

MALBP: Multi-scale ALBP (Wan et al., 2014).

Feature Type

Integrated MBLBP MALBP LBP CLBP

Image

Containing Tumor 100 100 94.7 57.9 73.7

All Benign 85.2 85.2 85.2 74.1 81.5

Total 91.3 91.3 89.1 67.4 78.2
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Table 7

Confusion matrix of large-field OCM image classification obtained by multi-scale integrated feature.

Predicted class

Containing Tumor All Benign

Actual image class
Containing Tumor 19 0

All Benign 4 23
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