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Abstract12

This paper presents a new hybrid biomechanial model-based non-rigid image registra-

tion method for lung motion estimation. In the proposed method, a patient-specific

biomechanical modelling process captures major physically realistic deformations with

explicit physical modelling of sliding motion, whilst a subsequent non-rigid image regis-

tration process compensates for small residuals. The proposed algorithm was evaluated

with 10 4D CT datasets of lung cancer patients. The target registration error (TRE),

defined as the Euclidean distance of landmark pairs, was significantly lower with the

proposed method (TRE =1.37mm) than with biomechanical model (TRE =3.81mm)

and intensity-based image registration without specific considerations for sliding mo-

tion (TRE=4.57mm). The proposed method achieved a comparable accuracy as several

recently developed intensity-based registration algorithms with sliding handling on the

same datasets. A detailed comparison on the distributions of TREs with three non-rigid

intensity-based algorithms showed that the proposed method performed especially well

on estimating the displacement field of lung surface regions (mean TRE = 1.33mm,

maximum TRE = 5.3mm). The effects of biomechanical model parameters (such as

Poisson’s ratio, friction and tissue heterogeneity) on displacement estimation were in-

vestigated. The potential of the algorithm in optimising biomechanical models of lungs

through analysing the pattern of displacement compensation from the image registration

process has also been demonstrated.
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1. Introduction15

Respiratory motion can cause artefacts in images during thorax and abdomen imag-16

ing. Accurate estimation and correction for the effects of respiratory motion can poten-17

tially increase the applications of medical images in diagnosis, treatment planning and18

image-guided interventions etc. (McClelland et al., 2013). A wide range of different19

techniques including biomechanical models, intensity-based image registration or hybrid20

methods have been proposed for estimating lung motion (Murphy et al., 2011; Fuerst21

et al., 2015), but most research efforts are put on intensity-based image registration22

techniques.23

1.1. Intensity-based image registration methods for lung motion estimation24

One of the challenges for estimating lung motion with non-rigid intensity-based image25

registration techniques is to handle with the sliding motion of lungs against adjacent26

structures such as rib cage and diaphragm, which produces a non-smooth, discontinuous27

displacement field at sliding interfaces. The intensity-based image registration methods28

commonly incorporate smoothness conditions on the voxel displacement field in order29

to ensure deformation consistency. Such smoothing constraints are good approximations30

within deformable, soft tissue organs, but are strictly not valid at tissue boundaries where31

sliding occurs.32

One solution to this problem is to generate masks with image segmentation for sep-33

arating two anatomic regions in relative motion and register the two regions separately34

(Rietzel and Chen, 2006; Vandemeulebroucke et al., 2012). In this way, direct handling35

of sliding motion is avoided and standard (intensity-based) algorithms can be used with36

no or very little modification. However, one problem with this approach is that gaps37

∗Corresponding author
Email addresses: lhhan@tongji.edu.cn (Lianghao Han), donghua@tongji.edu.cn (Hua Dong),

l.han@mmu.ac.uk (L.X. Han), d.hawkes@ucl.ac.uk (David Hawkes), d.barratt@ucl.ac.uk> (Dean
Barratt)

Preprint submitted to Elsevier April 13, 2017



and overlaps between nearby voxels may appear near the sliding interfaces. To reduce38

or eliminate gaps between the independently registered regions, a boundary-matching39

penalty method has been proposed in which an artificial uniform band with a unique40

intensity value around the sub-regions is added (McClelland et al., 2006; Wu et al.,41

2008; Vandemeulebroucke et al., 2012). This has the effect of creating a strong spa-42

tial gradient around the sliding interface, which guides each registration, resulting in43

greater consistency at the interfaces. An alternative approach is to incorporate a spe-44

cific regularisation of sliding motion into the registration optimisation. Such schemes45

are mainly based on the consideration that the deformation components in the nor-46

mal and tangential directions near to sliding boundaries have different contributions to47

sliding motion; the sliding behaviour is mainly controlled by the tangential component.48

For example, Schemit-Richberg et al. (Schmidt-Richberg et al., 2012a,b) described a49

direction-dependent diffusion regularisation approach. In their method, the tangential50

component was smoothed separately for the two adjacent regions on either side of their51

common sliding interfaces, whilst the normal component was smoothed jointly across52

the two regions. This allows a discontinuous movement between the two sub-regions in53

the tangential direction but maintains smoothness in the normal direction to reduce gaps54

and overlaps. Similarly, Delmon et al. (Delmon et al., 2013) proposed a B-spline registra-55

tion method with direction-dependent B-spline decomposition for sliding regularisation.56

They used a B-spline transformation for each sub-region to capture the discontinuities57

of displacement due to sliding motion between two sub-regions. Pace et al. (Pace et al.,58

2011) presented an anisotropic diffusive regularisation method in which separate nonlin-59

ear anisotropic smoothing filters were applied to the normal and tangential deformation60

components of displacement. More recently, Riser et al. (Risser et al., 2013) proposed a61

direction-dependent regularisation within a diffeomorphic registration framework, similar62

to Schemit-Richberts methods. However, they decomposed the velocity field rather than63

the displacement field into normal and tangential components. To consider discontinu-64

ities of deformation existing in both normal and tangent directions around boundaries65

between lung lobe fissures, Yin et al. (Yin et al., 2010) used a diffusive regularisation with66

an additional distance weighting term increasing with the distance to the organ bound-67

ary. This ensures that the displacement discontinuity characteristics of sliding motion68
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near organ boundaries are not penalized.69

All the above methods require segmenting sliding structures in the images to be reg-70

istered. To address this pre-requisite, Schemit-Richberg et al. (Schmidt-Richberg et al.,71

2012b) extended their method, demonstrating that it was possible to automatically de-72

tect sliding organs, thus removing the requirement for prior image segmentation which73

may be impractical or overly time-consuming for some clinical applications. Several74

intensity-based image regularisation methods that do not require a prior segmentation75

have also been proposed to preserve sliding motion. Based on the decomposition of the76

displacement vector, Ruan et al. (Ruan et al., 2009), for instance, proposed a regular-77

isation energy function written as a combination of an L2 norm of the divergence of78

the displacement vector (i.e. the relative variation of the volume) and an L1 norm of79

a rotational vector (i.e. the curl of the displacement field). Penalizing the L2 norm80

conserves the volume change, whilst penalizing the L1 norm preserves large shear along81

the boundaries. Further, Heinrich et al. (Heinrich et al., 2010) showed that a non-82

quadratic regularisation using the Lp norm (p <= 1) can preserve the sliding motion83

of lungs within an optical flow based registration algorithm. More recently, Heinrich et84

al. (Heinrich et al., 2013) introduced an intensity-derived minimum-spanning tree into85

their Markov random field (MRF) based deformable registration method to represent the86

underlying structure of the anatomical connectivity of the image. A pair-wise regularisa-87

tion acts only on connections (edges) between two nodes of the tree. Using this method,88

the sliding motion is preserved. However, since sliding motion is not handled explicitly,89

all of these methods require large variations of image gradient at the sliding boundaries90

in order to preserve the sliding motion. Therefore, such regularisation approaches may be91

insufficient when the image intensities are similar near the interface between two sliding92

objects; for example, at the boundary between the chest wall and the liver in CT or MR93

images.94

1.2. Biomechanical model based methods for lung motion estimation95

Biomechanical modelling is another commonly used approach for estimating lung96

motion. In the biomechanical modelling techniques, the sliding motion between two97

anatomic structures is often treated as a frictional or frictionless contact problem, which98

then is solved using finite element (FE) methods. Zhang et al. (Zhang et al., 2004)99
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proposed a deformable lung FE model with pleural sliding using contact elements in the100

commercial FE package ANSYS (http://www.ansys.com). Lung expansion from the end101

exhalation to the end inhalation was simulated by applying a negative uniform pressure102

to the external lung surface until it fills the chest cavity; the interaction between the lungs103

and their surrounding body was modelled explicitly as a contact problem. The feasibility104

of this approach was demonstrated by using two 3D breathhold lung CT images, acquired105

from one patient at the exhalation phase and at the deep inspiration phase. Villard et106

al. (Villard et al., 2005) described a similar FE model for deformable lung registration.107

Pleural sliding between the rib cage and lungs was modelled as a frictionless contact us-108

ing the open source FE software toolkit, Code Aster (www.code-aster.org). Following109

the ideas of Zhang and Villard on lung FE models, Werner et al. (Werner et al., 2009a)110

simulated the lung expansion under a negative pressure using the commercial FE soft-111

ware package, COMOSOL Multiphysics (http://www.comsol.ltd.uk), and provided112

a detailed quantitative evaluation of their lung model using CT datasets from 12 lung113

tumour patients. The results suggested that an FE modelling approach was adequate in114

predicting lung dynamics due to lung ventilation, even lung tissue was assumed to be an115

isotropic, homogeneous and linearly elastic material. More recently, Fuerst et al. (Fuerst116

et al., 2015) simulated the lung expansion from the end-exhale to the end-inspiration117

by applying different negative pressures on the pre-defined surface zones of thorax and118

diaphragm contacting with lungs, respectively. The applied pressures were then trans-119

formed to the lung surface through a lung/thorax/diaphragm interaction model, whose120

values were estimated through an optimisation procedure where the model-estimated121

lung change was compared to CT images at end-inspiration. The sliding between the122

lung and the surfaces of thorax cavity and diaphragm was simulated as a frictionless123

contact problem.124

Biomechanial modelling of lung respiration has also been treated as a compression125

process from inspiration to expiration. Using a frictionless contact model, Al-Mayah et126

al. (Al-Mayah et al., 2008) modelled the lung sliding against the chest cavity using the127

commercial FE software package, ABAQUS (http://www.3ds.com). In this case, they128

simulated lung respiration as a compression process from inspiration to expiration by ap-129

plying displacement boundary conditions to the inner surface of the chest cavity directly130
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in contact with the lung surface. They used the commercial mesh manipulation tool,131

Hypermorph (http://www.altairhyperworks.com), to deform the surface mesh of the132

chest cavity at end inhalation to match the surface mesh at end-exhalation, and obtain133

the displacements of each node on the surface mesh of the chest cavity at end inhala-134

tion. These nodal displacements were then used as displacement boundary conditions135

to deform the lungs in the FE models. Using similar FE models, they investigated the136

effects of friction near the interface (Al-Mayah et al., 2009), the heterogeneity of lung137

structures (Al-Mayah et al., 2010), linear/nonlinear material models (Al-Mayah et al.,138

2008) and material parameters of lung tissues (Al-Mayah et al., 2009).139

Compared to intensity-based image registration techniques, biomechanical modelling140

often has lower requirements for image quality and can work on noisy images, such as141

ultrasound, since the generation of biomechanical models in many applications only re-142

quires organ surface data from images. Another attractive feature is that biomechanical143

modelling can provide an integrated solution in one single model for physics and physiol-144

ogy based lung motion, including but not limited to, predicting the deformation/motion145

of tumours, evaluating the effect of gravity on respiratory physiology, simulating bio-146

physiological processes, such as respiratory motion, and providing physically realistic147

sliding motion, including explicitly information on physical properties and mechanical148

behaviour of anatomical structures, with or without pathology, if they are available. Un-149

der the framework of non-rigid intensity-based image registration, usually each specific150

regularization technique has to be developed for each individual physical or physiologic151

property in order to provide physically realistic deformation estimations, and developing152

an integrated solution for various properties is a challenging task. However, due to var-153

ious uncertainties, such as forces exerted by the beating heart, variable lung and blood154

pressure, and variable mechanical properties of in vivo tissues, which are in general155

very difficult to measure accurately, combined with limited tissue contrast in some image156

modalities and limited computational time and resources, a number of simplifications157

and assumptions are required when generating biomechanical models. Unlike image-158

intensity based image registration methods, it is also extremely difficult, if not impossi-159

ble, for biomechanical models to include very detailed internal tissue structures whose160

deformations may directly manifest as intensity changes in medical images. All of these161
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factors limit the accuracy of biomechanical models in predicting displacement distribu-162

tions of tissue structures. Previous lung motion studies show that biomechanical models163

only achieve equivalent prediction accuracy as intensity-based image registration meth-164

ods without sliding motion regularisation, but exhibit inferior registration performance165

compared with intensity-based image registration methods with sliding regularisation in166

terms of landmark-based TRE (Werner et al., 2009a,b). Therefore, intensity-based im-167

age registration methods and biomechanical modelling have their own advantages and168

disadvantages when applied to lung motion estimation involving interface sliding, but an169

important observation that underlies the work described in the present paper is that the170

advantages of these methods are potentially complementary.171

Previous studies (Li et al., 2008; Han et al., 2014b; Samavati et al., 2015; Hipwell172

et al., 2016) have shown that a combined method integrating intensity-based registra-173

tion with biomechanical modelling can compensate physically unrealistic estimated tissue174

motion (Li et al., 2008), reduce the uncertainty of biomechanical modelling ((Samavati175

et al., 2015)), compensate displacement residuals ((Han et al., 2014b)) due to the simpli-176

fication of biomechanical models, and improve the registration performance by increasing177

image overlap (Han et al., 2014b; Hipwell et al., 2016). Our recent preliminary studies on178

deformable registration of CT lung images have demonstrated a good registration perfor-179

mance using a combined method (Han et al., 2014a), in which an intensity-based image180

registration process provides a displacement compensation to displacement residues of181

biomechanical modelling. Since the displacement compensation reflects the distributions182

of the prediction errors of biomechanical modelling, which potentially could be used183

to provide directions for optimising model parameters and constructing more accurate184

predictive biomechanical models.185

In the present study, we propose a patient-specific, hybrid biomechanical model-186

based image registration method for lung motion estimation, as an extension of the work187

reported in (Han et al., 2014a). In this method, a biomechanical modelling process with188

an FE method estimates the major component of the deformation field from a source189

image to a target image which is then used to warping the source image to obtain an190

FE-estimated target image, and then the FE-estimated target image is registered to191

the target image in a subsequent non-rigid image registration process to compensate192
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relatively small displacement residuals due to simplifications and uncertainties in the193

model parameters that are inherent in the biomechanical models. This has the advantages194

that the deformation recovered by the image registration algorithm is relatively small,195

reducing the chance of creating physically unrealistic deformation. The accuracy of the196

proposed method was tested using publicly available annotated 4D CT datasets of 10197

lung cancer patients from the DIR-lab database (www.dir-lab.com) (Castillo et al., 2009).198

The effects of FE model parameters on the accuracy of biomechanical modelling in lung199

motion estimation and the potential of the pattern analysis of displacement compensation200

in optimising biomechanical models were also investigated.201

The main contributions of the study are in (1) having developed a biomechanical202

model based non-rigid image registration method that not only can have a comparable203

registration performance to the state-of-the-art non-rigid intensity-based image regis-204

tration methods but also can provide physically realistic deformation estimations with205

an integrated solution for various physical and physiological properties modelling of the206

lungs in one single FE model, and (2) having demonstrated that the proposed method has207

the potential to be used for guiding the improvement of biomechanical models through208

analysing the pattern of displacement compensation from the intensity-based non-rigid209

image registration process.210

2. Methods and Materials211

In this study, we demonstrated and evaluated the proposed registration method212

through estimating lung motion from the end-exhale to the end-inspiration, that is,213

determining the transformation/displacement between two images (a source image and214

a target image), which correspond to the two breath phases, respectively.215

2.1. Hybrid biomechanical model based image registration method216

Figure 1 illustrates the proposed image registration method, which includes two con-217

secutive processes: (1) patient-specific biomechanical modelling of lung motion with an218

FE model, and (2) intensity-based image registration.219

The biomechanical modelling process consists of two main steps: i) construct a220

patient-specific FE model based on the geometry models extracted from CT images; ii)221
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perform biomechanical modelling to estimate displacement fields of the anatomic struc-222

tures, and then use them to warp the source image to generate an FE-estimated target223

image. Immediately after the biomechanical modelling process, the intensity-based im-224

age registration process is then used to determine the transformations applied to the225

FE-estimated target image in order to align it with the target image. Since image regis-226

tration is between the FE-estimated target image and the target image, the transforma-227

tions obtained are essentially the displacement compensation to the initial FE-estimated228

displacement field. The estimated total displacement field relating the source image to229

the target image is now the sum of the FE-estimated displacements from the biomechan-230

ical modelling process and the displacements determined from the intensity-based image231

registration process.

Figure 1: Biomechanical-model based image registration framework

232

2.2. Biophysical process of lung respiratory motion233

As shown in Fig. 2, the human lungs are situated in the thoracic cavity, with each lung234

is surrounded by a pleural cavity consisting of two pleurae: the parietal pleura attached235

to the internal walls of the thoracic cavity (i.e. rib cage), and the visceral pleura covering236

the surfaces of the lungs. The pleural cavity contains a thin film of pleural fluid, providing237

lubrication to the parietal and visceral pleurae and allowing them to slide smoothly over238

one another during respiration.239
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Figure 2: (a) Schematic diagram of lung anatomy; (b) lung contours at full expiration
and full inspiration, superimposed on a coronal slice of a 3D CT volume (Case1); (c)
lung lobes segmented from the CT volume. The dashed lines in red and the solid lines
in blue shown in Fig. 2(b) correspond to the lung contours at the full expiration and full
inspiration, respectively.

The lung is connected to the heart and the trachea by the root of the lung, which240

is surrounded by pleurae and connects the medial surface of each lung to the heart and241

trachea (Gray, 1918). The lower end and the bifurcation of the trachea are displaced242

downwards during inspiration, and the lung expands in a downward and forward direc-243

tion. The roots of the lungs descend to facilitate this motion. Fig. 2(b) illustrates that244

the lung roots at full expiration are higher than their positions at full inspiration.245

During inspiration, the contraction and the downward movement of the diaphragm246

cause an increase in thoracic volume and a decrease in pleural and alveolar pressures;247

consequently, the lungs expand and air is drawn in. During expiration, the relaxation248

and the upward movement of the diaphragm result in the decrease of thoracic volume and249

the increase of pleural pressure, the lungs spring back to their original positions and air250

flows out. The pleural pressure is always negative during normal breathing (Gray, 1918),251

and the visceral pleura slides against the parietal pleura. Therefore, the respiratory252

motion of the lung could be modelled by applying a negative pressure to the lung, and253

the interaction between the lungs and the pleural cavity could be considered as a contact254

problem (Zhang et al., 2004; Villard et al., 2005; Werner et al., 2009a).255

2.3. Patient-specific biomechanical modelling of lung motion256

Biomechanical modelling for lung motion estimation starts from simulating the lung257

deformation between two respiratory phases. Under a negative pressure, a deformable258
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lung model at its initial state, corresponding to the first respiratory phase, is expanded259

to its target volume corresponding to the second respiratory phase. The surfaces of the260

target volume limit the final deformation of the lung model. To generate a patient-specific261

biomechanical model of a lung, its 3D geometries at the two phases are required. In this262

study, they were extracted from 4D CT data using a four-step segmentation process as263

follows:264

Step 1. Extract lung regions (including the trachea and airways) using a semi-automatic265

segmentation method consisting of region competition and level set snake evolu-266

tion (Yushkevich et al., 2005).267

Step 2. Extract the masks of trachea and large airways using the same segmentation268

process.269

Step 3. Remove the masks of trachea and airways from the lung segmentation masks270

obtained in Step 1 to separate the left and right lungs.271

Step 4. Generate closed lung segmentation masks with opening and closing operation.272

Normally, the masks of left and right lungs can be separated automatically after Step273

3. If the junctions between them are thin and have weak intensity contrast within the274

images, the separation of the left and right lungs can be performed manually. This is the275

case for Case 2 and Case 8. The lung volumes following segmentation are summarized276

in Table 1.277

After lungs have been segmented, an automatic FE model generation process (Han278

et al., 2012) is used to generate an FE model. A previous study (Amelon, 2012) has shown279

that the accuracy of FE simulations was not affected by including intra-lobar sliding for280

4D CT image registration due to relatively small volume changes of the lungs during281

free breathing. Therefore, in this study, we only consider the sliding motion between the282

entire lung and the chest wall. The FE model of the lungs (Han et al., 2014a) includes283

the deformable lungs extracted from the lung segmentation of 3D CT images at end284

exhale, and the rigid surfaces extracted from the lung segmentation of 3D CT images at285

full-inspiration. First-order linear interpolation tetrahedral and second-order quadratic286

elements are two basic types of elements commonly used for lung motion modelling, a287

previous study (Al-Mayah et al., 2011) has shown little difference between the models288

of the two types of tetrahedral elements on lung motion simulations. In this study, the289
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Table 1: Lung Volumes of 10 Patients (in litre)

Subject
No

Volume at full
expiration(l)

Volume at full
inspiration(l)

Volume
ratio(%)

left right left right left right

Case 1 0.95 1.26 1.00 1.37 5.46 9.15

Case 2 2.32 2.68 2.58 2.96 10.91 10.33

Case 3 1.73 1.98 1.94 2.25 11.97 13.14

Case 4 1.14 1.53 1.32 1.74 16.02 13.65

Case 5 1.41 1.72 1.55 1.93 9.94 12.60

Case 6 1.12 1.36 1.40 1.76 24.31 29.96

Case 7 1.40 1.70 1.73 2.07 23.23 21.38

Case 8 2.25 2.46 2.66 3.02 18.00 22.43

Case 9 0.76 0.93 0.90 1.08 17.41 16.27

Case 10 1.16 1.76 1.36 2.04 17.71 15.89

Mean(SD) 1.42(0.5) 1.74(0.5) 1.64(0.6) 2.02(0.6) 15.5(5.9) 16.5(6.4)

deformable lungs are meshed with 4-node tetrahedron elements and the rigid surfaces are290

meshed with 3-node triangular shell elements. The rigid surfaces are used as constraints291

to limit the deformation of the deformable lungs, and all 6 degrees of freedoms (DOFs) of292

the nodes on the rigid surfaces are fixed to prevent rigid-body motions. To simulate the293

sliding motion of the pleurae against the chest wall, contact pairs are defined between294

the surface of the deformable lungs and the rigid surfaces, with or without friction.295

The lung parenchyma is assumed to be a compressible, non-linearly elastic, homo-296

geneous continuum, modelled with a two-parameter Neo-Hookean model. The strain297

energy function for describing the Neo-Hookean model, W , is defined as298

W = C10(Ī1 − 3) +
1

D1
(Jel − 1)2 (1)

where Ī1 is the first deviatoric strain invariant associated with deviatoric stretches, Jel
299

is the elastic Jacobian, and C10 and D1 are two material parameters which are related to300

initial shear modulus, µ0, and initial bulk modulus, K0, at small strain, by the relations:301
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302

µ0 = 2C10,K0 =
2

D1
(2)

where µ0, and K0 are related to two commonly used infinitesimal elasticity parame-303

ters,Young’s modulus, E , and Poisson’s ratio, υ , through the relations:304

µ0 =
E

2(1 + υ)
(3)

305

K0 =
E

3(1 − 2υ)
(4)

Thus, the NeoHookean hyperelastic model can be defined by Young’s modulus and Pois-306

son’s ratio. Due to a lack of in vivo data on mechanical properties of lungs, different307

values ranging from 0.1 kPa to 7.8 kPa for Young’s modulus, and from 0.2 to 0.45 for308

the Poisson’s ratio, based on in vitro experimental data from dog or human or arbitrary309

choices, have been used in previous lung studies (Werner et al., 2009a).310

In this study, we assume that lungs are homogeneous in the sense that there is no311

difference in mechanical properties between different lobes (unless otherwise specifically312

stated). Because of the final shape constraint and the homogeneity assumption, the313

changes of material parameters (Young’s modulus and Poisson’s ratio) have little effect314

on displacement distribution after the lung is expanded to its target volume (Werner315

et al., 2009a); they only affect the value of pleural pressure required to fully inflate the316

lung to the target volume. A stiffer lung tissue and a higher value of Poisson’s ratio317

require a higher pleural pressure and a longer computation time if implicit integration318

schemes are used in the FE modelling. Based on literature values, a reference value of 5319

kPa and 0.2 are chosen for Young’s modulus and Poisson’s ratio, respectively.320

With the specified material parameters, the minimum pleural pressure required to321

expand a lung to its target volume could be estimated from the definition of bulk modulus322

(Villard et al., 2005). Bulk modulus, K, is a measure of the substance’s resistance to323

uniform compression defined as the ratio of the infinitesimal pressure increase to the324

resulting relative decrease of the volume.325

K = −V0 ×
dP

dV
(5)
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where V0 is the initial volume of the lung, dP and dV are the difference in pleural pressure326

and the difference in lung volume at two different breathing phases, respectively. The327

inverse of the bulk modulus gives the lung’s compressibility, which can be expressed as:328

1

K
= − 1

V0
× dV

dP
(6)

where dV/dP is known as the pulmonary compliance - a measure of how easy it is329

to inflate, which can be obtained by analysing the pressure-volume curve of the lung.330

Low compliance indicates a stiff lung and means extra work is required to bring in331

a normal volume of air. This occurs as the lungs in this case become fibrotic, lose332

their dispensability and become stiffer. On the other hand, patients with a high lung333

compliance due to the poor elastic recoil have no problem inflating the lung but have334

difficulty exhaling air (Galetke et al., 2007). Combining Eqs.(4) and (6), we have335

dP

E
= − 1

3(1 − 2υ)

dV

V0
(7)

where the initial lung volume, V0 , and its volume change, dP , can be obtained from336

4D CT segmentation summarised in Table 1. However, Eq. (7) is only valid for a free337

expansion of the lungs under a uniform pressure, which may underestimate the mini-338

mum required pleural pressure (Werner et al., 2009a). Because of the effect of contact339

interaction between the deformable lung and the rib cage, the minimum required value340

of pleural pressure could be much higher. As can be observed in Table 1, Case 6 has the341

maximum volume change ratio of 0.3, thus the minimum pleural pressure estimated from342

Eq.(7) is 0.83 kPa. If we define the success criteria for FE simulations as the volume of343

the deformed lung is > 99.5% of its final target volume, then this value is too small for344

FE simulations. In this study, we found a pressure load of 3 kPa was large enough to345

deform a lung to 99.5% of its target volume in FE simulations for all 10 cases. All sim-346

ulations were performed with a nonlinear implicit procedure available in the commercial347

nonlinear implicit FE solver, ABAQUS/standard, with geometrical nonlinearity included348

for large deformation analyses.349

2.4. Intensity-based non-rigid image registration350

In principle, any non-rigid image registration can be integrated into the proposed reg-351

istration scheme. Many different transformation models are available and we refer inter-352
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ested readers to extensive reviews on medical image registration (Maintz and Viergever,353

1998; Holden, 2008; Sotiras et al., 2013) for further information. The choice of registra-354

tion method depends on anatomic structures of interest, as well as clinical applications355

and constraints. In this study, we attempt to make full use of intensity information in356

medical images to provide an accurate registration for internal structures and features.357

Therefore, we chose to focus on intensity-based, non-rigid registration schemes, imple-358

mented using popular B-spline transformation models (Rueckert et al., 1999; Klein et al.,359

2010) (see details in Section 3).360

2.5. Evaluation of the proposed algorithm361

Dynamic lung images in particular have been used widely for evaluating deformable362

image registration algorithms. To evaluate the proposed method and facilitate the com-363

parison with other registration methods in the literature, we performed intra-patient364

non-rigid registration of 3D CT data drawn from lung cancer patient 4D CT datasets in365

the DIR-Lab database (www.dir-lab.com)(Castillo et al., 2010). These datasets have366

already been used for validating and evaluating different registration methods of slid-367

ing objects in several publications (Schmidt-Richberg et al., 2012b; Delmon et al., 2013;368

Heinrich et al., 2013; Fuerst et al., 2015). In these datasets, each 4D CT scan includes369

ten 3D CT images obtained over a breathing cycle. The slice thickness of each 3D CT370

image is 2.5mm and the in-plane spatial resolution ranges from 0.97mm × 0.97mm to371

1.16mm × 1.16mm. Each 3D CT scan comes with a set of 300 inner-lung landmarks,372

carefully annotated by experts. Thus, a total of 3000 internal landmarks are available.373

The intraobserver variants of the 10 cases range from 0.70(0.99)mm to 1.13(1.27)mm,374

with an average of 0.88(1.3)mm. The uncertainty in the landmark selection is within375

the voxel size of the images. The lung volumes of the 10 patients estimated from the376

lung segmentation process described in Section 2.3 are listed in Table 1. These values377

indicate that the volumes and the expansion rates of lungs during a full breathing cycle378

vary significantly between individuals, from 5.5% to 30% (Note also that the left lung is379

slightly smaller than the right lung in each case).380

In this study, we used image pairs consisting of 3D CT images of lungs at the end381

of inspiration and their corresponding images at the end of expiration to evaluate the382

registration accuracy, in terms of an anatomical-landmark-based target registration error383
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(TRE). We particularly analysed the registration error distributions of those landmarks384

within an inner region of 10mm near lung surfaces, where the accuracy of intensity-based385

image registration methods is mostly affected by sliding motion. The effects of parameters386

in biomechanical models on displacement estimation have also been investigated.387

3. Results388

To quantify the registration accuracy of the proposed method and investigate the389

effects of model parameters, we calculated the target registration error (TRE) defined390

as the Euclidean distance between 300 pairs of internal anatomical landmarks which are391

provided with the DIR-lab dataset and identified in the target image and transformed392

source image space for each case. Furthermore, we compared the proposed method,393

referred here to as FE+B-spline, with a biomechanical simulation method, a conven-394

tional non-rigid B-spline registration without a consideration of sliding motion (Klein395

et al., 2010), and two alternative non-rigid intensity-based image registration methods396

with a specific handling of sliding motion.397

The four methods used for the purposes of comparison are summarised as follows398

• Method 1: Biomechanical simulation (Werner et al., 2009a,b), (identical to that399

used in the first process of the proposed method).400

• Method 2: Separate image registration of the lungs and other anatomy using401

conventional B-spline registration and lung masks (Wu et al., 2008).402

• Method 3: Image registration with sliding regularisation based on direction-403

dependent B-spline decompositions (Vandemeulebroucke et al., 2012; Delmon et al.,404

2013).405

• Method 4: Conventional B-spline registration without special considerations for406

sliding motion (Klein et al., 2010).407

Since the Elastix toolbox for intensity-based image registration (Klein et al., 2010)408

(http:/elastix.isi.uu.nl), has implemented conventional B-spline transformation409

models being used for Method 2 and Method 4, and sliding motion regularisation scheme410

used in Method 3, it was used in this study. To ensure a fair comparison, the same411
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B-spline transformation models and parameters were chosen whenever B-spline registra-412

tion was used. The following settings were used for the B-spline registration algorithm,413

described in (Delmon et al., 2013): (1) Third order B-spline transformations were op-414

timised with up to 16000 iterations using the adaptive stochastic gradient descent to415

guarantee convergence; (2) The spacing between B-spline control points was 32mm in416

each direction (which is large enough to impose spatially smooth deformations without417

additional regularization); (3) The Mattes mutual information metric was used, and the418

moving image was interpolated using third order B-spline; and (4) A multi-resolution419

strategy with a Gaussian smoothing kernel and three resolution levels was used.

Figure 3: Displacement field estimation for Case 1 from two consecutive processes of
the proposed method during registration: (a) FE estimated displacement field (b) dis-
placement compensation from the subsequent B-spline registration (c) final displacement
field. In the FE simulations, the lungs were assumed to be homogeneous and frictionless
against the chest wall. The displacement magnitude ranges from 0.28mm to 13.6mm.

420

3.1. Displacement evolution during registration421

Figure 3 illustrates a typical example of displacement evolution during the two-process422

registration of our method. The deformed lung models are overlaid on the original CT423

image at full inspiration. Both the displacement magnitudes and the directions are plot-424

ted. Fig. 3(a) shows a 2D displacement distribution from biomechanical modelling in425
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the coronal plane for Case 1. In the biomechanical simulations, we assumed that the426

two lungs were homogeneous and the interaction between the lungs and the chest wall427

was frictionless. Fig. 3(b) is the displacement compensation to biomechanical modelling428

by the subsequent non-rigid B-spline registration process, and Fig. 3(c) is the total dis-429

placement distribution after the two-process registration. As can be seen in Fig. 3(a),430

the FE model captures a substantial part of the lung deformation, and the subsequent431

B-spline registration compensates for relatively small residuals (< 5.0mm) distributed in432

the right lower lobe (Fig. 3(b)).433

3.2. Influence of material parameters434

To investigate the effect of Poisson’s ratio, we used Case 1 as an exemplar and plotted435

the volume ratio between the deformed volume and its target volume against the applied436

dimensionless pleural pressure, represented as, dP/dE, for different values of Poisson’s437

ratio υ =(0.1, 0.2, 0.3, 0.4 and 0.45) (see Fig. 4). Inspection of Fig. 4 reveals that the438

higher the value of Poisson’s ratio, the higher the pleural pressure required to deform439

the initial lung volume to its target volume. When different values of Poisson’s ratio are440

assigned, the volume change follows different paths before finally reaching a plateau close441

to 1.0. Therefore, we may conclude that the choice for the value of Poisson’s ratio does442

affect biomechanical modelling process of lung motion.443

In addition, we investigated the effect of Poisson’s ratio on the final deformation field444

following a successful FE simulation, that is, when the plateau shown in Fig. 4 is reached.445

Figure 5 illustrates the displacement distributions during the registration processes for446

different values of Poisson’s ratio. Both FE simulation results and final registration447

results using the proposed method are presented. The pattern of the final displacement448

fields does not show significant difference between the four FE models with different449

values of Poisson’s ratio. After FE simulations, the mean (the standard deviation (SD))450

of the target registration errors (TRE) of 300 lung landmarks for the four FE models were451

1.80(0.95)mm, 1.79(0.99)mm, 1.77(0.92)mm, 1.81(1.13)mm, respectively. After final452

registration using the proposed method, the final mean (SD) of the TRE was reduced to453

1.06(0.54)mm, 1.08(0.54)mm, 1.08(0.55)mm and 1.09(0.54)mm, respectively. Therefore,454

in terms of TREs of landmarks, the choice of Poisson’s ratio does not have an obvious455

impact on either the final FE simulation results after the lungs are expanded above 99.5%456
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Figure 4: Relationships between the increase of pleural pressure and the ratio of the
deformed lung volume to its target volume for different values of Poisson’s ratio of lung
tissues.

of their target volumes or on the final registration results.457

3.3. Effect of friction458

For a normal lung, it is expected that the lung and the pleural cavity slide against459

each other smoothly. However, there may exist small friction on the sliding interface due460

to the existence of lung diseases or tumours near lung surfaces. To investigate the fric-461

tion effect on FE simulations and final registration accuracy, a frictional contact model is462

used for patient-specific biomechanical modelling. We used a default setting of ABAQUS463

with a penalty friction formulation for contact analysis, and chose four different values464

α =(0.05, 0.1, 0.2 and 0.3) for the friction coefficient, α. For the sake of simplicity,465

the same parameters were used for both the left and the right lung models. The effect466

of friction on displacement distributions during the proposed registration processes was467

analysed. Figure 6 shows a comparison of displacement distributions during the registra-468

tion processes between a frictionless model and four frictional models. The displacements469

obtained from FE simulations, the displacement compensations of B-spline registration,470

and the combined results are presented as well.471

As shown in Fig. 6 (first row), FE simulation results of displacement distribution472
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Figure 5: Displacement field distributions of the lungs from FE simulations using four
different values of Poisson’s ratio after the lung models are expanded to their target.
The first row shows FE simulation results; the second row shows final registration results
using the proposed method. The colour denotes the displacement magnitude increasing
from blue to red.

Figure 6: Friction effect on finite element simulation results of displacement distribution
and final registration accuracy for Case 1. The distributions of displacement magnitude
are superimposed on the 2D coronal slice of CT images at full inspiration. The results of
a frictionless FE model (a) are compared with those of frictional FE models with different
values of friction coefficient (b) 0.05, (c) 0.1 (d) 0.2 and (e) 0.3 . The colour denotes the
displacement magnitude increasing from blue to red.
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are different when different friction coefficients are used in FE models. The pattern473

of displacement distributions shows that the motion of the upper lobes of the lungs is474

reduced with the increase in the coefficient of friction. The mean (SD) TREs of 300475

landmarks are also affected: 1.77(0.99)mm for frictionless case, 1.67(0.71)mm for α =476

0.05 , 1.42(0.67)mm for α = 0.1, 1.49(0.77)mm for α = 0.2 and 2.18(1.14)mm for α =477

0.3), respectively. The FE model with a friction coefficient of 0.1 gives the best prediction478

on the displacements of the landmarks, although other choices on friction coefficient479

below α = 0.3 produce similar accuracies. The final registration results are presented480

on the third row of Fig. 6. The distribution of total displacements shows no difference481

when different frictional models are used, this is further confirmed by very small TRE482

differences of the landmarks with the combined method. The mean (SD) TREs of the483

300 landmarks are 1.08(0.5)mm (frictionless), 1.05(0.55)mm (α = 0.05), 1.04(0.54)mm484

(α = 0.1), 1.06(0.53)mm (α = 0.2) and 1.07(0.54)mm (α = 0.3), respectively.485

Although FE models with different friction coefficient values produce different dis-486

placement estimations, the proposed registration method provides the same registration487

accuracy for all models, thanks to the displacement compensation to FE simulations488

in the subsequent intensity-based registration. The displacement compensations to FE489

models are plotted on the second row of Fig. 6. The larger displacement compensations490

to the FE simulations on the right lower lobes close to the chest wall indicate that the491

frictionless model may overestimate the displacement of right lower lobes. By introduc-492

ing a frictional contact model to limit the motion of the lower lobe near to the chest493

wall, the overestimated displacement could be partially compensated. For instance, the494

mean TRE was reduced from 1.77mm to 1.42mm by introducing a small amount of fric-495

tion (e.g. α = 0.1, Fig. 6(c)). However, introducing too much friction (e.g. α = 0.3,496

Fig. 6(d) may significantly over-constrain the deformation of the upper lobes, causing an497

underestimation of the amount of deformation.498

3.4. Effect of tissue heterogeneity499

In reality, the tissue distributions of lungs are not homogeneous, but utilising a het-500

erogeneous tissue model can significantly increase the complexity of modelling. To in-501

vestigate the effect of tissue homogeneity assumption on FE simulations and registration502

accuracy, we performed an experiment on Case 8, which has the highest mean TRE er-503
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ror of 15mm for 300 landmarks among all 10 datasets before registration, as shown in504

Table 2.505

3D CT images of Case 8 revealed a small tumour in the left upper lobe, as shown506

in the coronal slice on the second column of Fig. 7, which might severely increase the507

stiffness in this region and in turn affects the deformation characteristics. Therefore, we508

proposed a heterogeneous FE model to account for the difference in stiffness for each lobe.509

The lobes of both lungs were segmented manually using the same process described in510

(Han et al., 2014b) and different Young’s moduli were assigned to different lobes. For the511

purposes of testing, we assumed that the right lower lobe was softer than both the right512

middle and right upper lobes, whilst the left upper lobe was harder than the left lower513

lobe due to the existence of a tumour. In the FE model, the right lower lobe was assigned514

with a Young’s modulus of 2.5 kPa; the left upper lobe was assigned with a larger value of515

Young’s modulus, 10 kPa; and all the other lobes were assigned with a Young’s modulus516

of 5 kPa. The choice of Young’s moduli for soft/hard lobes was arbitrary and only for517

the purpose of demonstrating the effect of tissue heterogeneity.518

Figure 7 shows the change in displacement distribution during registration when a519

homogeneous tissue model is replaced by a heterogeneous tissue model in the biomechan-520

ical modelling process. Frictionless contact is assumed for both models. The distribution521

of displacement compensation (the second column in Fig. 7) shows that the homogeneous522

tissue model may underestimate the deformations of both the left upper lobe and the523

right lower lobe. This may be caused by the difference of each lobe in mechanical prop-524

erties or the non-uniform pleural pressure between different lobes (Permutt et al., 1962;525

West et al., 1964). In particular, the 3D CT images of Case 8 revealed a small tumour in526

the left upper lobe (coronal slice on the second column of Fig. 7), which might severely527

increase the stiffness in this region and in turn affects the deformation characteristics.528

Therefore, we proposed a heterogeneous FE model to account for the difference in stiff-529

ness for each lobe. The lobes of both lungs were segmented manually using the same530

process described in (Han et al., 2014b) and different Young’s moduli were assigned to531

different lobes. Figure 7(b) shows the result of displacement distribution when an FE532

model with a heterogeneous distribution of tissues is used. For the purposes of testing,533

we assumed that the right lower lobe was softer than both the right middle and right534
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upper lobes, whilst the left upper lobe was harder than the left lower lobe due to the535

existence of a tumour. In the FE model, the right lower lobe was assigned with a Young’s536

modulus of 2.5 kPa; the left upper lobe was assigned with a larger value of Young’s mod-537

ulus, 10 kPa; and all the other lobes were assigned with a Young’s modulus of 5 kPa.538

The choice of Young’s moduli for soft/hard lobes was arbitrary and only for the purpose539

of demonstrating the effect of tissue heterogeneity. As shown in Fig. 7, the amount of540

displacement compensation from intensity-based registration is much smaller when the541

heterogeneous model is used. When the homogeneous model is replaced with the het-542

erogeneous model, the mean (SD) TRE of 300 landmarks is reduced from 6.95(3.61)mm543

to 4.41(2.22)mm after FE simulations, showing an improvement in prediction accuracy544

of FE modelling on lung motion. However, the final displacement distribution after the545

displacement compensation from intensity-based registration does not show visually ob-546

vious difference, and the proposed method gave the same registration accuracy, with a547

mean (SD) TRE of 1.48(1.05)mm for the homogeneous model versus 1.48(1.10)mm for548

the heterogeneous model, respectively.

Figure 7: A comparison of displacement distributions during the two-process registra-
tion between (a) a homogeneous model and (b) a heterogeneous model.

549

Since biomechanical models can explicitly include physical properties (such as stiff-550

ness) of tumours and characterise their motion behaviour during respiration, it is ex-551
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pected that introducing the tissue heterogeneity in the biomechanical modelling process552

could improve the performance of the hybrid registration method on physically realistic553

deformation/motion estimation of tumours. For example, there exists a tumour located554

in the lower lobe of the Patient’s left lung in Case 6, as shown in Fig. 8(a). The volume of555

the tumour does not show an observable change on 4D CT images. Therefore, in the FE556

model, we assume that the tumour has a Young’s modulus of 25 kPa, five times stiffer557

than its surrounding tissues. In such a way, we expect that the final volume change of558

the tumour in the proposed registration method is small. Our method was compared559

with two non-rigid B-spline registrations with a specific consideration of sliding motion:560

Method 2 (Wu et al., 2008) and Method 3 (Delmon et al., 2013), outlined above. Figure 8561

presents the maps of estimated lung volume changes with the three methods for Case562

6. It shows that the two intensity-based B-spline transformations fail to preserve the563

volume of the tumour, although all three methods produce the same pattern of volume564

change and the similar registration errors for Case 6. Another non-rigid image registra-565

tion method that can cope with the sliding motion, MRF-based deformable registration566

(Heinrich et al., 2013), also did not provide sufficient volume preservation of the tumour567

for Case 6 (see Fig.3 in the reference (Heinrich et al., 2013)). Although the volume preser-568

vation can be kept under the framework of intensity-based image registration methods,569

e.g. with a tissue-dependent filtering method (Staring et al., 2007), it is much easier for570

our method to preserve the tumour volume by directly including tumour-specific phys-571

ical data, such as stiffness which may be measured from elasticity imaging/biopsy, into572

biomechanical models. The results demonstrates that the proposed registration method573

has an advantage in volume preservation relevant to the scenario where a hard tumour574

exists.575

3.5. Quantitative comparison and evaluation576

As stated above, the proposed algorithm was evaluated quantitatively by calculating577

the TREs for 300 internal lung landmarks for each case. Our method, FE+B-spline,578

was compared with four methods, Methods 1-4 outlined above. Table 2 summarises the579

mean(SD) TREs over 300 landmarks for each lung cancer patient and for each of the580

five registration methods. The results show that biomechanical modelling (Method 1),581

could achieve better registration accuracy (mean TRE= 3.81mm) than Method 4 (mean582
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Figure 8: A comparison of volume change ratio for Case 6 with three methods: (b)
Method 2: Separate image registration based on B-splie and lung masks, (c) Method
3: B-spline image registration with sliding regularisation, and (d) our method (FE+B-
spline). Fig. 8(a) is a 2D coronal slice superimposed with a contour of a hard tumour
and the contours of lung lobes. Although all of the three methods produce the same
pattern of volume increase, our method can explicitly include the stiffness information
of the tumour to ensure volume preservation.

TRE= 4.57mm), even if a simple homogeneous FE model is used. Our method has583

achieved a registration accuracy comparable to Method 2 and Method 3, both of them584

consider the effect of sliding motion.585

To compare the five registration methods in terms of registration error distribution, we586

calculated both accumulated and frequency distributions of TRE for all 3000 landmarks587

of 10 cases (300 landmarks per patient) for each method. In addition, we evaluated588

the registration error distribution, using the landmarks near the surface of the lungs589

where sliding occurs, defined as the landmarks lying within an inner region of 10 mm590

near the surface. Accurate registration on surface regions is particularly important for591

the accurate dose accumulation in the radiotherapy and HIFU (high intensity focused592

ultrasound) ablation of tumours, such as non-small cell lung cancer, adenocarcinoma,593

large cell carcinoma, and pleural mesothelioma covering on the lung surface (Muers,594

2003). Of the 3000 internal landmarks available, 554 were located in the near-surface595

region. The corresponding registration results are presented in Figs. 9.596

As shown in Fig. 9, our method produces the lowest registration error in terms of cu-597

mulative distributions of the TREs. When all the landmarks are taken into account,598

numerically, the proposed method is superior to Method 3 and slightly better than599

Method 2. The mean (SD) TREs of Methods 1-5 are 3.81(2.65)mm, 1.45(0.99)mm,600

1.71(1.31)mm, 4.57(5.32)mm and 1.37(0.89)mm, as listed in Table 2.601
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Table 2: Registration Results of Five Registration Methods (Mean TRE(SD) in mm).
The five methods are Method 1: Biomechanical simulation; Method 2: Separate im-
age registration based on B-spline and lung masks; Method 3: B-spline image registra-
tion with sliding regularisation; Method 4: Conventional B-spline registration; and Our
Method (FE+B-Spline), respectively. The calculation of mean TRE(SD) uses all 300
landmarks for each subject.

Patient
Before

RegistrationMethod 1 Method 2 Method 3 Method 4
Our Method

(FE+B-Spline)

1 3.89(2.78) 1.77(0.92) 1.14(0.64) 1.21(0.52) 1.63(1.09) 1.08(0.55)

2 4.34(3.90) 2.14(1.28) 1.03(0.50) 1.06(0.52) 1.85(1.88) 0.99(0.49)

3 6.94(4.05) 3.90(2.10) 1.28(0.67) 1.83(1.02) 3.26(2.47) 1.22(0.65)

4 9.83(4.85) 4.04(2.21) 1.50(1.01) 1.71(1.09) 3.34(2.85) 1.49(0.99)

5 7.48(5.50) 3.39(2.17) 1.88(1.41) 1.94(1.54) 4.18(3.80) 1.73(1.38)

6 10.9(6.96) 3.54(2.23) 1.52(0.87) 1.70(0.94) 5.10(4.46) 1.48(0.86)

7 11.0(7.42) 4.22(2.91) 1.61(1.09) 1.98(1.30) 7.07(6.42) 1.50(0.85)

8 15.0(9.00) 6.95(3.61) 1.49(1.13) 2.41(2.45) 10.88(9.63) 1.48(1.05)

9 7.9(3.97) 4.26(1.91) 1.40(0.76) 1.56(0.86) 4.32(2.94) 1.38(0.71)

10 7.3(6.34) 3.89(2.46) 1.51(1.08) 1.71(1.22) 4.07(4.66) 1.41(0.84)

Mean(SD) 8.46(5.62) 3.81(2.65) 1.45(0.99) 1.71(1.31) 4.57(5.32) 1.37(0.89)
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Figure 9: Cumulative distributions of the TRE of landmarks for 10 subjects (Case1-
Case10): (a) all of 3000 landmarks (2) 554 landmarks near the lung surface within
a 10mm depth. Five registration methods are compared, including (A) Our method:
FE+B-spline, (B) Method 2: Separate image registraiton based on B-spline and lung
masks, (C) Method 3: B-spline with sliding regularisation, (D) Method 4: Conventional
B-spline, and (E) Method 1: Biomechanical simulation.

When only the landmarks near the lung surface are considered, our method also per-602

forms better than any other methods(see Fig.9(b)). The mean (SD) TREs with the five603

registration methods are 3.35(2.4)mm, 1.60(2.14)mm, 1.96(1.35)mm, 4.9(6.21mm) and604

1.33(0.79)mm, respectively. The maximum errors corresponding to the five methods are605

20.7mm, 19.1mm, 15.7mm, 24.9mm and 5.3mm, respectively. The number of landmarks606

with a TRE> 5mm is 98, 8, 28, 86 and 2 for the four methods, respectively. These re-607

sults suggest that the proposed method provides a better registration accuracy on the608

near-surface regions in terms of the landmarks.609

4. Discussion610

4.1. Registration accuracy611

Compared to intensity-based image registration methods, biomechanical models for612

4D CT lung motion estimation can explicitly model certain breathing dynamics and613

provide physically realistic results. However its registration accuracy in terms of land-614

mark errors is overshadowed by intensity-based image registration methods due to a lack615

of considering the anatomic details. To improve the registration performance and best616
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preserve the desired properties of biomechanical modelling, we introduced an intensity-617

based image registration process to compensate the displacement residuals of biomechan-618

ical modelling. The results presented in Section 3 show that the proposed method can619

significantly reduce the mean TREs of the 10 cases, dropping from 3.81mm to 1.37mm.620

The accuracy of the proposed approach compared well with the results of previ-621

ously published methods on the same datasets, for example, our method (mean TRE=622

1.37mm); non-rigid diffusion registration with direction-dependent regularization for slid-623

ing motion (Schmidt-Richberg et al., 2012b) (mean TRE=2.13mm, improved to 1.55mm624

in (Schmidt-Richberg et al., 2012a)); B-spline registration with direction dependent B-625

splines decomposition for sliding motion (mean TRE=1.71mm (Delmon et al., 2013))626

and Markov random field (MRF)-based deformable registration (mean TRE=1.52mm,627

and 1.43mm with a hyper-label for intensity correction and measurement of the density628

change (Heinrich et al., 2013)). Particularly we evaluated the registration performance629

of our method on the near-surface regions where the accuracy of intensity-based image630

registration methods often suffers from the difficulty in handling with the sliding motion631

of lungs against rib cage and diaphragm. We compared our method with a conventional632

B-spline based image registration method without a regularisation on sliding motion, and633

two B-spline based image registration methods with a specific consideration of sliding634

motion. It was found that our method provided better registration performance, which635

may be due to explicit modelling on lung sliding with FE models. The performance im-636

provement may be especially important for the cases when there is a need for an accuracy637

localization of mobile, superficial tumour.638

Although our methods performed the best in the accuracy evaluation of algorithms639

on the 4D CT datasets of 10 lung cancer patients publicly available, we do not expect640

that the combined approach would definitely result in better results than other recently641

developed intensity-based image registration algorithms with a specific consideration of642

sliding motion. Rather, we feel that the combination of both approaches facilitates the643

handling of various physical and physiological properties modelling through an integrated644

biomechanical model, helps to improve the registration accuracy near the surface regions,645

and potentially provides a guide for improving predictive biomechanical models through646

analysing the pattern of displacement compensation from the intensity-based image reg-647
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istration process.648

4.2. Biomechanical model and parameters649

In the proposed method, a nonlinear hyperelastic material model was chosen for650

biomechanical modelling due to large deformation of the lungs. Previous studies (Al-651

Mayah et al., 2009; Werner et al., 2009a) showed that a hyper-elastic material model652

produced slightly better prediction results on displacement than a linear model, but the653

difference between the two models was small if a contact model was included to simulate654

the pleural sliding. In this study, we found that the change of Poisson’s ratio did not655

show a significant impact on the displacement distribution of FE models after the lung656

was expanded to more than 99.5% of its target volume, but it did affect the deformation657

states of lungs during the loading process. As shown in Fig. 4, the volume change of658

lungs follows different paths with increasing loading for different values of Poisson’s ratio.659

Therefore, it is critical to choose an optimal value for the Poisson’s ratio if biomechanical660

models are used for the purpose of predicting the motion in all phases of the respiratory661

cycle rather than only finding the absolute difference in deformation between two phases.662

Like most of studies of lung motion with biomechanical modelling, we only consid-663

ered the sliding motion between the entire lung and the chest wall, and ignored the664

intra-lobar sliding. This treatment was based on the consideration that the significance665

of intralobar sliding in the FE model may be limited during free breathing 4D CT imag-666

ing. Amelon’s PhD study (Amelon, 2012) indicated that the registration accuracy of FE667

simulations, based on 4D CT lung images, were not improved after introducing friction-668

less lobar sliding. Moreover, the lobar segmentations on 4D CT images are difficult due669

to unclear/incomplete fissures on CT images. To our best knowledge, an automatic lobar670

segmentation of 4D CT lung images does not exist, and the lung lobar segmentation has671

to be performed manually. Different interpretation of fissure location may have a more672

significant impact on the FE solution than considering lobar sliding in the FE model.673

However, lobar sliding may need to be explicitly modelled if volume changes of lungs are674

large, e.g. during a breath-hold CT scanning, or when understanding the regional lung675

function is important (Amelon et al., 2014). In contrast to the difficulty of lobar segmen-676

tation, the segmentation of entire lungs are relatively easier. In this study, we adopted677

a semi-automatic method. It is understandable that the segmentation inconsistency will678
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affect the accuracy of FE simulations, but its impact is not significant considering that679

the volume change of an FE model due to segmentation inconsistency is small, com-680

pared with the entire volume of a lung. However, the segmentation inconsistency may681

result in inaccuracy along the boundary of the lungs in image registration, since the682

image intensity-based cost function will drive the boundaries of the lung segmentations683

obtained from the two images to match (Wu et al., 2008).684

In the hybrid method, biomechanical models facilitate the simulations of lung’s inter-685

actions with the chest wall, which is a big challenge for intensity-based non-rigid image686

registration methods. For example, during respiratory, pleural integrity and pleural fluid687

provide a very low friction between the lungs and the chest wall, thus, a frictionless688

contact may be sufficient to model the sliding motion, as we did in this study. If the689

lubrication condition in the pleural cavity changes due to a lung disease, such as pleural690

adhesion or pleural effusion, a frictional contact could be defined for the contact pairs691

of the FE model to model the lung sliding and investigate the disease-induced change of692

lung sliding motion. As shown in Fig. 6, the effect of different friction conditions on lung693

deformation could be simulated through adjusting friction coefficients. If a more seri-694

ous lung disease occurs, such as pleural invasion by peripheral lung cancer or chest wall695

invasion (Sakuma et al., 2017), local lung sliding motion can be completely restricted,696

often requiring surgical correction. In such a case, the cohesive interaction behaviour697

can be defined for the contact pair between a tumour and the chest wall to model the698

attachment of the tumor with the chest wall in the FE model.699

The results presented in Section 3 show that the accuracy of FE simulations is affected700

by model parameters, such as Poisson’s ratio, friction coefficient and tissue heterogeneity,701

but a simple biomechanical model with a homogeneous frictionless model can provide a702

fairly good registration results, an average TRE of 3.8 mm, as shown in Table 2, which703

is ensured by the success criteria of FE simulations, deforming an FE model to 99.5%704

of its target volume. In general, it is difficult to accurately measure or estimate these705

parameters. However, the effects of their uncertainties on image registration accuracy can706

be reduced in the proposed method by adding an image registration step to compensate707

for displacement residuals of an initial biomechanical simulation using estimated model708

parameters. With the proposed method, the changes of these model parameters did not709
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show a significant impact on the registration accuracy in terms of final TRE. Therefore,710

introducing this step makes it possible to reduce the complexity and the computational711

time of the biomechanical modelling in the first step by employing a simple homogeneous712

biomechanical model without compromising the overall registration performance. To713

further speed up the algorithm, the parallel implementation of finite element methods714

on GPU (Han et al., 2014b) could be adopted. The registration accuracy of the hybrid715

method can also be improved. Following the method by Zhong et al (Zhong et al., 2012),716

the estimated displacement fields from the hybrid method may be used to improve the717

registration accuracy in low-contrast regions, where one expects that the deformation718

estimation is less accurate due to homogeneous image intensity. More specifically, we719

can remesh and re-run the FE model by only applying the displacements estimated from720

the hybrid method to those nodes of the FE model lying outside of low-contrast region721

as displacement boundary conditions, and recalculate the displacement distributions of722

these low-contrast regions. Thus, the execution time and registration accuracy of the723

hybrid method could be further improved in the future.724

4.3. Potential applications and ongoing work725

The hybrid method has provided a good registration accuracy comparable to some726

state-of-the-art intensity-based image registrations, meanwhile introducing biomechani-727

cal models facilitates various physical and physiological properties modelling of the lungs,728

such as sliding motion, heterogeneity of tissue stiffness, friction, pressure difference etc.,729

within one single FE model, such an integrated solution is unknown for intensity-based730

image registration methods. In the proposed method, biomechanical modelling in the731

first step estimates most of physically realistic deformations of the lungs, and only a732

relatively small deformation residual need to be recovered with intensity-based image733

registration in the second step, thus reducing the chance of creating physically unre-734

alistic deformation. This advantage of the hybrid method over intensity-based image735

registration methods needs to be further investigated and confirmed with phantom tests736

(Kim et al., 2016) in which a ground truth can be generated.737

Since the displacement compensation in the intensity-based image registration pro-738

cess reflects the distributions of the prediction errors of biomechanical modelling, it has739

a potential to be used for analysing the factors affecting the accuracy of biomechanical740
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modelling. For example, as indicated in Section 3, based on the analysis of displace-741

ment compensation patterns, the simulation accuracy of biomechanical models can be742

improved by introducing a small amount of friction for Case 1 or considering the tissue743

heterogeneity for Case 8.744

In the framework of the proposed method, we can also estimate model parameters,745

such as friction coefficient, Young’s modulus and Poisson’s ratio, with an optimisation746

process through perturbation within realistic reported ranges determined from in vivo/in747

vitro experiments or experience values (Han et al., 2012; Amelon, 2012; Li et al., 2013),748

and minimising the required displacement compensation from intensity-based image reg-749

istration could be an ideal objective function. The estimations of model parameters750

can potentially be used for the diagnosis and assessment of lung diseases. For example,751

pleural effusion, a condition in which excess fluid accumulated within the pleural space,752

and pleural adhesion and pleural invasion by peripheral lung cancer, all of these diseases753

can cause the change of lubrication within the pleural cavity locally or globally. The754

assessment on the friction/sliding condition of the lung surfaces can provide aids for755

physicians in deciding whether a tumour has invaded into the chest wall, and whether756

extensive surgery is necessary in the treatment planning (Sakuma et al., 2017). This757

potential application needs to be explored.758

Due to the predictive capacity of biomechanical models, the developed method has a759

potential to be used in adaptive radiotherapy. For example, accurate margins for tumour760

motion are very important for accurate tumour targeting and sparing healthy tissues from761

radiation. However, tumours and healthy tissues may change in shape, location and762

stiffness during the course of treatment, which may affect the deformation and motion of763

tumours and the lungs. Moreover, patient’s breathing pattern changes from time to time.764

Therefore, the estimated margin in the treatment planning, based on non-rigid intensity-765

based image registration on 4D CT data, may not represent the real margin for the766

delivery; there is a risk of missing the target or causing unnecessary radiation exposure767

on normal tissues. Although the motion models based on non-rigid intensity-based image768

registration, incorporating with surrogates, are capable of predicting the lung motion over769

a complete normal breathing cycle, its prediction capacity on the motion and deformation770

of tumours and inner lung tissues is limited, when subjected to breathing irregularity771
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and the changes of tumours and healthy tissues. However, physics and physiology based772

biomechanical models of the lungs can address this limitation. Through assessing the773

impacts of these changes on motion and deformation of the tumours and the lungs,774

a new modified FE model incorporating these changes can be constructed and used775

to generate an FE-estimated motion model. Then, the FE-estimated motion model is776

refined with the image registration process of the hybrid method using the FE-estimated777

CT image and a treatment CT image (e.g. cone-beam CT), to provide a revised motion778

model and tumour trajectory, thus helping radiation oncologists to adjust the radiation779

treatment plan adaptively in order to prevent insufficient radiation dose to the tumours780

and excessive radiation dose to the healthy tissues during the course of treatment.781

In future work, we plan to investigate extending our method to incorporate informa-782

tion on displacement compensation from image registration into an optimisation scheme783

for model parameters extraction (e.g. heterogeneous tissue distribution/tissue mechan-784

ical properties, friction, non-uniform pleural pressure distribution (Fuerst et al., 2015),785

boundary constraints et al), with the aim of determining a more accurate physically re-786

alistic biomechanical motion model of the lung and the distribution of stiffness of lung787

tissues and pressure distribution which may be directly related with the respiratory func-788

tion of lungs (Li et al., 2013; Fuerst et al., 2015).789

5. Conclusion790

In this paper, we have proposed a hybrid biomechanical-model based image regis-791

tration method for lung motion estimation in which sliding motion could be explicitly792

modelled. The proposed method consists of two consecutive processes: patient-specific793

biomechanical modelling followed by intensity-based image registration. Patient-specific794

biomechanical modelling simulates biomechanical behaviour of tissues and captures phys-795

ically plausible deformation, while image-registration process is used for displacement796

compensation to biomechanical modelling by making full use of intensity patterns of797

medical images. The proposed method has been evaluated on lung motion estimation. A798

quantitative comparison to three representative registration approaches for lung motion799

estimation shows that the hybrid method could provide good registration accuracy when800

recovering lung deformation, especially in the near-surface regions, which is particularly801
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relevant to radiotherapy applications involving the treatment of mobile, superficial tu-802

mours. The preliminary study on the effect of parameters in biomechanical models to803

deformation fields has found that model parameters (Poisson’s ratio, friction) and the804

tissue heterogeneity affect the accuracy of biomechanical modelling in the first process805

of the proposed registration method, although they have no obvious impact on final806

registration performance of the proposed method. It has also demonstrated that the807

proposed method has the potential in optimising patient-specific biomechanical models808

through analysing the pattern of displacement compensation from the image-registration809

process, if the purpose of applications is to develop more accurate, predictable, physical810

models.811
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