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Abstract

A difficult problem in quantitative MRI is the accurate determination of the proton density, which 

is an important quantity in measuring brain tissue organization. Recent progress in estimating 

proton density in vivo has been based on using the inverse linear relationship between the 

longitudinal relaxation rate T1 and proton density. In this study, the same type of relationship is 

being used, however, in a more general framework by constructing 3D basis functions to model 

the receiver bias field. The novelty of this method is that the basis functions developed are suitable 

to cover an entire range of inverse linearities between T1 and proton density. The method is 

applied by parcellating the human brain into small cubes with size 30mm × 30mm × 30mm. In 

each cube the optimal set of basis functions is determined to model the receiver coil sensitivities 

using multi-channel (32 element) coil data. For validation, we use arbitrary data from a numerical 

phantom where the data satisfy the conventional MR signal equations. Using added noise of 

different magnitude and realizations, we show that the proton densities obtained have a bias close 

to zero and also low noise sensitivity. The obtained root-mean-square-error rate is less than 0.2% 

for the estimated proton density in a realistic 3D simulation. As an application, the method is used 

in a small cohort of MS patients, and proton density values for specific brain structures are 

determined.
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1. Introduction

A difficult problem in quantitative MRI is the accurate determination of basic tissue 

parameters such as the longitudinal relaxation constant T1 (Stikov et al., 2015) and the 

proton density ρ (Volz et al., 2012a), which are sensitive quantities in measuring brain tissue 

organization in a number of debilitating conditions such as multiple sclerosis (MS). Using 

Inversion Recovery (IR) sequences, T1 can be estimated accurately (Stikov et al., 2015). The 

proton density, however, is more challenging to compute than T1 because the transmit and 

receiver coil sensitivities need to be known as well. The RF transmission inhomogeneities 

need to be determined to correct for systematic errors in the B1 excitation field where tissue 

in the center of the brain experiences increased excitation (higher than the nominal flip 

angle) compared to tissue in the periphery (Wang et al., 2006). The RF receive field needs to 

be estimated because it is influenced by the individual subject-specific coil loading, the 

distance of the coil element from the tissue, and other intensity modulating effects such as 

eddy currents and nonlinearities of the gradient field. At 3T, the reciprocity theorem, due to 

standing wave and RF penetration effects, is no longer valid and the receiver coil sensitivity 

cannot be modeled as identical to the transmission coil sensitivity for a coil operating in both 

transmission and receive mode (Volz et al., 2012a). Thus, knowledge of the transmission 

sensitivity does not accurately describe the receiver coil sensitivity, but it can be 

approximated by a slowly spatially varying bias field and, via post-processing algorithms, 

can be approximately removed. However, different modeling of the bias field depending on 

the frequency content will lead to different values of the coil sensitivities and proton 

densities.

Individual receiver coil images (32 images for each coil element for a 32-channel coil) can 

also be collected and used to determine each coil sensitivity (Mezer et al., 2013). Another 

related approach uses a radial basis function expansion for modeling the receiver coil 

sensitivities and solving the proton density problem using the non-negative least squares 

optimization algorithm with multi-channel coil data (Cordes et al., 2015).

One promising method for estimating the bias field uses the inverse linear relationship 

between T1 and ρ, as recently suggested (Abbas et al., 2014; Baudrexel et al., 2015; Mezer 

et al., 2016; Volz et al., 2012b). This relationship was derived from the fast exchange two-

state model (Fatouras et al., 1991) and experimentally verified (Fatouras and Marmarou, 

1999; Gelman et al., 2001).

Our study uses the same type of relationship in a more general framework by constructing 

3D basis functions to model the receiver bias field. The novelty of this method is that the 

basis functions developed are suitable to cover an entire range of inverse linearities between 

T1 and proton density. Rather than using this method in the entire brain or as was recently 

suggested to perform coil sensitivity estimation on small subsamples of the data (Baudrexel 
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et al., 2015), we partition the brain into small cubes. Using Principal Component Analysis 

(PCA), we obtain, in each cube, an optimal orthonormal set of basis functions derived from 

the data and a family of inverse linear T1, ρ relationships, and model the receiver coil 

sensitivities using individual receiver coil information. Using a second partition of the brain 

with different cubes, we repeat the analysis. From the two different partitions, we derive 

linear algebraic equations without the need for using iterative optimization routines to 

determine the proton densities in the entire brain simultaneously, in one step, rendering the 

process more accurate and efficient.

We provide efficient and unbiased algorithms to solve this problem purely algebraically 

without any assumptions on the smoothness of estimated parameters or orders of 

approximation. For validation we use arbitrary data from a numerical phantom where the 

data satisfy the conventional signal equations for spoiled gradient (SPGR) and inversion 

recovery spin-echo echoplanar (IR-SE-EPI) data. Using added noise of different magnitude 

and realizations, we show that the proton densities obtained have a bias close to zero and 

low noise sensitivity. In addition to simulated data we also apply our method on publicly 

available sample data (raw data and analyzed data) of a healthy adult subject (Mezer et al., 

2016). Finally, we compare our results with a recently published method by Mezer et al. 

(2016) and also with a bias correction method (Ashburner and Friston, 2005) that is 

available as a toolbox in SPM12 (Weiskopf et al., 2011).

We also apply our method to previously collected data in humans with multiple sclerosis 

(MS) (Mezer et al., 2013). Since this study is a proof- of-concept study introducing a novel 

algebraic analysis method and not a patient study, the MS data obtained should not provide a 

limitation in introducing our new method. The proposed method has been published as a 

proceeding at the annual ISMRM conference (Cordes et al., 2016).

2. Theory

Since the estimation of T1 and observed transmission coil sensitivity m is not the main focus 

of this study, we refer to the Appendix where we have outlined the details of computing 

these quantities from the conventional signal equations for IR-SE-EPI data and SPGR data. 

We use the same notation of variables and follow similar overall steps as originally proposed 

in the study by Mezer et al. (2013). Fig.1 shows in the top portion a flow chart of the 

necessary steps involved for T1 and m estimation. In the bottom portion of Fig.1, we provide 

another flow chart of the core contributions of this study, which we explain in more 

mathematical detail below. Even though our steps are similar to a previously published 

method, our algorithmic development contrasts strongly to the original study and recent 

study by Mezer et al. (2013, 2016), as will be explained in the Discussion section.

2.1 Receiver coil sensitivity

The signal amplitude M0 is related to the receiver coil sensitivity g and proton density ρ by

(1)
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where C is an arbitrary scaling constant related to the MR signal amplification factor. For a 

given M0(r⃗) (where r⃗ is the position vector to a brain voxel q) and constant C, Eq.(1) 

contains two unknown functions g(r⃗) and ρ(r⃗). If these functions would have different 

frequency information (for example if g(r⃗) contains only low frequency components and ρ(r⃗) 
only high-frequency components), the solution of Eq.(1) would be trivial since both 

functions could be extracted from Eq.(1) by low and high frequency filters used on the 

logarithmic transform of Eq.(1). Such an approach is, however, not possible, because both 

functions have common frequency dependencies.

Using the SPGR sequence with a 32-channel head coil, we obtained for each channel 

individual coil images for the same signal amplification factor. In this case, the scaling 

constant C can be neglected. In the following, we set C = 1 and refer to ρ as the 

unnormalized proton density. For the i-th coil with signal S(i) and nominal flip angle αn we 

obtain M0 values, indexed by i, from the signal equation Eq.(A12) in the Appendix:

(2a)

Then,

(2b)

To reduce measurement errors, we average over all four flip angles and obtain 

 for voxel q at position r⃗. Then, proton density and i-th coil sensitivity 

need to be simultaneously estimated from

(3)

2.2 Basis functions

Since the coil sensitivities are slowly varying functions, we partition the brain in non-

overlapping cubes of size 30mm × 30mm × 30mm. Within each cube the coil sensitivities 

are modeled as a superposition of spatial basis functions fj(r⃗), for j = {1, …, J}, according to

(4)
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where the constants  are unknown expansion coefficients for the j-th basis function 

corresponding to the i-th coil element.

2.3 Optimized basis functions

The relationship between T1 and proton density ρ is given by

(5)

where A and B are constants which are slightly different for gray and white matter. At 3 

Tesla, typical values are A = 0.879 and B = 503ms (Gelman et al., 2001) and A = 0.858 and 

B = 522ms (Volz et al., 2012b) for gray and white matter combined. Substituting Eq.(5) into 

Eq.(3), gives for the i-th coil sensitivity the expresion

(6)

where

(7)

Note that the const. term in Eq.(6) can be set to 1 because scaling and normalization of 

proton density is carried out separately in a later step. Since B̃ is of magnitude 572ms and 

608ms (see above the values for A,B for the two references), we define a uniformly random 

variable B̃ in the interval [500, 700]ms and create a family of functions g(i)(r⃗) from which 

we generate orthonormal basis functions fj(r⃗) using principal component analysis (PCA). 

PCA diagonalizes the covariance matrix of the set of functions g(i)(r⃗) and determines the 

corresponding eigenvalues and eigenvectors of the function space.

In the following we outline a practical algorithm to obtain the optimized spatial basis 

functions for a particular cube with Q voxels (for example Q = 303 = 27000). For B̃ we 

choose the values B̃
l = 500ms + (l − 1)10 ms, l = 1, …, 21. For the number of nearest coils 

we choose the value I, i.e. i = 1, …, I (for example I = 4). The functions that describe the 

coil sensitivities are then given by . Next, we define the N 
× (I * 21) matrix X consisting of all coil sensitivity functions to be
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where  indicates the position vectors of all voxels in the particular cube. We 

remove the column mean from X and solve the eigenvalue problem XTX V = VΛ where V 
and Λ are the eigenvector and eigenvalue matrices, respectively. If the eigenvectors are 

arranged so that the first eigenvector corresponds to the largest eigenvalue, the second 

eigenvector to the second largest eigenvalue, and so on, we choose the first n columns of the 

eigenvectors that explain at least 99.99% of the variance in matrix X. The optimized n + 1 

basis functions for this cube are then given by the columns of the matrix 

, where we added as the first function a constant function.

PCA has been extensively used in classification, function approximation, and linear 

dimensionality reduction applications (Jolliffe, 2002). The PCA decomposition is done for 

each cube to obtain optimized orthogonal 3D basis functions that can represent a broad 

range of coil sensitivities and satisfy the inverse linear relationships (Eq.(5)) for an entire 

range of A and B values. Figure 2 illustrates the linear inverse relationship for our novel 

basis and the spatial appearance of the associated 3D basis functions for brain data of a 

typical cube in white matter.

2.4 Determination of the receiver coil sensitivities and proton densities

Using the compact notation , the equations to solve become

(8)

where  and fqj ≔ fj(r⃗(q)) for all voxels q = {1, …, Q} that constitute each 

cube and i = {1, …, I} with max(I) = 32 for a 32-channel head coil. We normalize the 

so that  for all i ∈ {1, I}. A reasonable approach to find solutions of Eq.(8) 

is to minimize the variance of  over the i-th coil estimates leading to the objective 

function

(9)

The notation  means that the variance of the argument is taken with respect to the 

individual coils i so that each coil has a weight factor associated by the value pi.
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2.5 Equivalence to multimodal Canonical Correlation Analysis

We would like to point out that the solution for minimizing h0 is equivalent to solving a 

multiset of equations arising in multimodal Canonical Correlation Analysis (mCCA) 

approaches. To see this equivalence, we can express Eq.(8) in vector notation with Q 
elements by

(10)

where matrix F(i) is defined by

(11)

An equivalent objective function to be minimized is then given by

(12)

where the sum of terms within the norm symbol define a system of mCCA problems of the 

form

(13)

In this form the mCCA problem defines an eigenvalue CCA problem when I = 2. For I > 2 

the mCCA problem is not an eigenvalue problem anymore and can only be solved iteratively 

(Kettenring, 1971; Li et al., 2009).

2.6 Algebraic Solution of the Proton Density Problem

We show that the minimization of h0 (Eq.(9) can be obtained by purely linear algebraic 

(non-iterative) methods using matrix inversion without any optimization techniques that are 

based on gradient descent algorithms or methods that involve penalty parameters. This fact 

leads to a fast approach in solving the proton density problem. As shown in the Appendix, 

the solutions for minimizing h0 satisfy the equations:

(14)
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where . Applying the transformations

(15)

Eq.(10) transforms to the system of equations

(16)

where ,  and s = {1, …, I * J}. Since Eq.(16) is 

homogeneous, det(F̃) = 0 due to linear dependencies of the equations for different s. 

Therefore, we can leave out one of the dependent equations and convert Eq.(16) into a 

nonhomogeneous system of equations by setting A1 = 1. The minimum norm solution vector 

is then given by the generalized (Moore-Penrose) inverse (+) according to

(17)

2.7 Simultaneous scaling of proton density values in all cubes

With Eqs. (17) and (4) we obtain the receiver coil sensitivities, and via Eq.(8) the unscaled 
proton densities ρk in each cube k for the selected partition of the brain into a set of cubes 

which we call set A. To scale the proton density for each cube so that the partition of all 

cubes have consistent proton density across the entire image, the proton density in each cube 

needs to be scaled by an unknown factor xk, i.e. ρk → xkρk. This scaling factor xk is 

different for each cube k, because each cube was solved independently by Eq.(17). Note that 

this scaling step across all cubes does not normalize the proton density of CSF to 1 but 

provides only a proper scaling of all proton density values in the brain.

We repeat this rescaling process for a second partition of cubes (set B) that have been 

displaced to the first partition (set A) by one half of the cube length in all 3 dimensions. 

Then, the maximal intersection volume of a cube from set A and a cube from set B is equal 

to . The outcome of this process is that each voxel is a member of a cube ∈ A and a 

member of a cube ∈ B, and has associated scaled proton densities  for cube i ∈ A 

and  for cube j ∈ B, where  and  are the unknown scaling factors of each 

cube i ∈ A and each cube j ∈ B, respectively. Since this is the same voxel, the proton 

densities must be the same in theory or equivalently, because of noise, the difference in 
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proton densities must be minimal. Then, the best scaling factors  and  can be 

determined so that the difference in proton densities for all voxels in the intersection volume 

of cube A and B is minimal.

In the following we provide a novel solution to this problem by simultaneously obtaining all 

scaling factors for all cubes in one step. This solution is achieved by minimizing the variance 

of the two estimates involving the same voxel in set A and B and integrating (summing) over 

all possible voxels: More formally using matrix notation, let  be the unscaled proton 

density of cube i ∈ set A for voxel q. Similarly, let  be the unscaled proton density of 

cube j ∈ set B for voxel q. Let the total number of cubes be I and J for set A and set B, 

respectively. We can then form the concatenated proton density matrix C = [C(A) C(B)] with 

dimension of total number of voxels multiplied with the total number of cubes, i.e. Q × (I + 

J). This matrix has for each voxel q two nonzero column entries and thus is highly sparse. 

Since each cluster (i.e. column of matrix C) has an unknown scaling factor xk, the scaled 

proton density matrix has the form

(18)

where the X matrix is a diagonal matrix that contains the unknown scaling factors {x1, …, 

xI, xI+1, …, xI+J} on the diagonal line. Note that {x1, …, xI} are the I scaling factors for all 

the I cubes of partition (set) A and similarly {xI+1, …, xI+J} are the J scaling factors for all 

the J cubes of partition B. A suitable objective function to be minimized is then given by

(19)

As shown in the Appendix, differentiation of this expression with respect to the diagonal 

components of X is similar to the problem in Eq.(9) and leads to the homogeneous matrix 

equation Mx = 0, where the components of M are given by

(20)

and x = [x1, …, xI, xI+1, …, xI+J]T. Setting x1 = 1 and defining

(21.a)
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(21.b)

(21.c)

leads to the inhomogeneous matrix equation

(22)

so that the solution vector is obtained by

(23)

2.8 Overall normalization to proton density of CSF

The final step of proton density normalization across the brain is by defining the proton 

density of CSF in the lateral ventricles to have the value ρ = 1. Since CSF is not uniform, it 

is common to use the mean value of ρ in the lateral ventricles for this normalization. 

However, the mean value of ρ in the ventricles may depend on the volume of the ventricles 

leading to small changes in the normalization. To arrive at a more reliable quantity, we use 

additional T1 information and assign a proton density to be 1 for those voxels in CSF 

(obtained by SPM12 segmentation) that belong to the 98 percentile or larger in CSF proton 

density and have a T1 value of 3700ms or larger. This value for T1 is also consistent with Eq.

(5) and yields ρ = 1.0009 for the given recent literature value of A = 0.858 and B = 522ms 

(Volz et al., 2012b).

3. Materials and Methods

3.1 Experimental Data

3.1.1 MR data acquisition—We used a limited data set made available from Mezer et al. 

(2013) containing 9 MS patients and 1 healthy control to demonstrate the novel algebraic 

approach to model the receiver coil sensitivities and determine the proton density. The 

acquisition protocol has been fully described in Mezer et al.(2013). Briefly the data were 

acquired on a GE scanner using 2D SE-IR EPI and 3D SPGR sequences with a 32-channel 

head coil. In particular, the SE-IR EPI sequence had a slab-inversion pulse and spatial-

spectral fat suppression pulse. It was run with 4 different inversion times (TI 50ms, 400ms, 

1200ms, 2400ms), TR 3s, resolution 1.9mm × 1.9mm × 4mm, TE minimum full (47ms), 

parallel imaging factor 2, same amplification settings, and the SPGR T1 sequence with 4 

different flip angles (FA 4deg, 10deg, 20deg, 30deg, TR14ms, resolution 0.94mm × 0.94 

mm × 1mm, TE 2ms, no parallel imaging). For the SPGR data, images were obtained for 
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each of the 32 channels. All data collected and obtained were in accordance with local IRB 

regulations. Total scanning time for these pulse sequences was about 22 min.

3.1.2 Preprocessing—All data were co-registered using affine transformation in SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/) to the 20deg 3D SPGR data. Segmentation was carried 

out in SPM12 using standard (default) parameters on the SPGR data. Masks for white 

matter, gray matter and CSF were combined to perform skull stripping. Possible distortions 

of the EPI data were significantly reduced using parallel imaging with factor 2, and no 

distortion correction was carried out.

3.1.3 Proton density estimation—For details of the steps involved in proton density 

estimation, we refer to the Theory section and the Appendix. A flow chart is given in Fig.1. 

Briefly voxel-specific T1 values were calculated by minimizing Eq.(A4) from the SE-IR EPI 

images. Using the MR signal equation for the SPGR images with the known values for T1, 

the observed transmission coil sensitivity was determined using Eqs.(A13-A14). After 

correcting the values of the flip angles in the signal equation for the SPGR, the signal 

amplitude  was computed for each coil i (1 to 32) by Eq.(2). The receiver coil sensitivity 

and proton density have been simultaneously computed using Eq.(17) for different cubes and 

normalized using Eq.(23). Finally, an overall normalization of proton density to CSF and T1 

was carried out as described above. The only spatial filter used was applied for the estimated 

transmission and receiver coil sensitivities. In particular, to improve noise sensitivity for 

these two quantities, voxel-neighborhood averaging using the adjacent 26-voxels (or less 

voxels where the sensitivities are zero) was used.

3.2 Simulation

3.2.1 Toy Example in 2D—To show proof of concept of our method, we use a 3-coil two-

dimensional toy example where we define the three coil receiver sensitivities on a 64×64 

pixel grid to be a superposition of polynomial functions up to 2nd order and an additional 

slowly varying Gaussian function according to

The Gaussian function G(x,y) is defined by  with σ = 40. 

The logic behind these definitions is that we want to simulate coil sensitivities that are 

slowly varying but do not purely behave as low-order polynomial functions. This behavior is 

achieved by the addition of the Gaussian function that has a maximum in the center of the 

image at x = y = 32 and a large parameter σ. Note G(32,32) = 1 and G(0,0) = 0.527; thus the 

contribution of G(x,y) to the coil sensitivities is almost unnoticeable by visual inspection of 

the image (see Fig.3, top row). The proton density ρ(x,y) is simulated as a 64×64 uniform 

random image with values 0.5 < ρ(x,y) < 1. Using Eq.(3), we calculate the corresponding 
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signal amplitudes  with q = (x,y) for each coil. We also compute a hypothetical 

T1(x,y) image that satisfies the inverse T1,ρ relationship defined here by . 

No noise is added for simplicity. The analysis compares 3 different methods used to estimate 

the coil sensitivities and proton density using Eq.(17). The first method uses as basis 

functions for fqj ≔ fj(x,y) the polynomial set of functions {const, x, y, xy, x2, y2}, which is 

identical with the polynomial set of functions of the ground truth. The second method uses 

an expanded set of polynomial functions up to 3rd order given by {const, x, y, xy, x2, y2, x3, 

y3}. The third method uses the proposed optimized basis functions as outlined in section 2.3. 

The obtained basis functions are similar to the ones in Fig. 2 except for the 2D case.

3.2.2 3D Brain Simulation—To show the accuracy of our method for a more realistic 

scenario, we carried out simulations using the ideal signal equations and generated pseudo 

SE-IR EPI and SPGR data. The SE-IR EPI data were simulated with 4 different inversion 

times (TI 50ms, 400ms, 1200ms, 2400ms), TR 3s and TE 47ms. The SPGR T1 data were 

simulated with 4 different flip angles (FA 4deg, 10deg, 20deg, 30deg), TR14ms and TE 2ms. 

Both the data were generated with a resolution 0.94mm × 0.94 mm × 1mm. For the SPGR 

data, images were simulated for each of the 32 channels. Specifically, for a given T1 map 

and given maps for ra and rb obtained from real data (see Appendix (Eq.(A3)) for a 

definition of ra and rb), we calculated the signal map according to Eq.(A6) under the 

necessary condition that  is monotonically increasing for increasing TI. Then, 

using an assumed transmission coil sensitivity m as well as receiver coil sensitivities g(i) 

obtained from maps of a different study, we created coil-specific SPGR images according to 

Eq.(8.a,b) by using  and by using the inverse linear relationship for ρ and T1, i.e. 

, according to Eq.(19) with A = 0.858 and B = 522ms. The transmission coil 

sensitivity used follows an approximate Gaussian distribution m∼N(1,0.16) where we limit 

the transmission coil sensitivity to be in the interval m ∈ [0.4,1.6]. To estimate the 

significance of a hypothetical deviation from this ideal equation, we investigated 

relationships up to second order according to the model . To use a 

realistic noise model for the simulation, we determined σ using the Rayleigh distribution of 

real data for regions outside of the brain with no signal for both SE-IR EPI and SPGR data 

(see Eq.(A2)), and then generated an approximate Gaussian distribution for regions with 

signal S ≫ σ that follow the model  (Gudbjartsson and Patz, 1995). 

Mean signal amplitude and noise for SE-IR EPI (TI=50ms) were S̄ = 1063 and σ = 5.3, 

whereas for SPGR (FA=4deg) we determined S̄ = 731 and σ = 41.5.

3.3 Comparison with other methods

Mezer et al. (2016) recently proposed a new method to estimate proton density using data 

collected with the same acquisition protocol as in Mezer et al. (2013). The proton density 

analysis is carried out using polynomial modeling of the receiver coil inhomogeneities 

together with an iterative optimization approach where the inverse linear relationship (Eq.5) 
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is being implemented as a penalty term. The penalty parameter is obtained using a cross 

validation approach. We performed three different comparisons. (a) Comparison of results 

using a 3D numerical brain phantom and (b) Comparison of results using real subject sample 

data (Mezer et al., 2016) and (c) Comparison of the CSF normalization step. We also 

compared our results for the 3D numerical brain phantom data and real subject sample data 

with results obtained using a bias correction method (Ashburner and Friston, 2005) that is 

available as a toolbox in SPM12 (Weiskopf et al., 2011).

4. Results

4.1 Toy Example in 2D

Figure 3 (top row, A) shows the simulated receiver coil sensitivities for coil 1 to 3 and 

proton density. Note that it is not possible to see the centered Gaussian function G(x,y) 

contributing to the coil sensitivities because of the large σ = 30 used. Analysis using the 

same polynomial basis set as in the ground truth setup shows a small error in the obtained 

coil sensitivities and proton density with mean(|Δρ(x,y)|) =1.18% and max(|Δρ(x,y)|) = 4.7% 

(see Fig.3 2nd top row, B). If the number of basis functions is increased to include two more 

polynomial functions of 3rd order, the error increases significantly for all coil sensitivities 

and proton density (see Fig.3, 3rd top row, C). Specifically, we obtain error rates of mean(|

Δρ(x,y)|) = 5.0% and max(|Δρ(x,y)|) = 12.8%. Using the proposed optimized basis functions 

(see Fig.3, last row, D), we obtain a very low error rate with mean(|Δρ(x,y)|) = 0.93% and 

max(|Δρ(x,y)|) = 2.0%.

4.2 3D Brain Simulation

Figure 4 shows images of the ground truth of the simulated data and estimated parameters 

(T1, observed transmission coil sensitivity m, receiver coil sensitivity g, proton density ρ) 

using the methods described before. The structure of the basis functions obtained are similar 

to Fig. 2 because we used numerical phantom data derived from actual human subject data. 

For most voxels, only the first 4 basis functions contribute significantly. However, to obtain 

minimum error rate we used 41 functions for each cube. Minor differences between ground 

truth and estimated parameters can be seen for the observed transmission coil sensitivity and 

receiver coil sensitivity.

A more quantitative comparison is shown as scatter plots in Fig.5. T1-estimation shows that 

the error slightly increases with the magnitude of T1 up to 3000ms. Similarly, the error in the 

estimation of the observed transmission coil sensitivity increases with the magnitude of m. 

The receiver coil sensitivity has a more constant error behavior across the range of g. The 

proton density has a very small error rate which is nearly constant for values of ρ > 0.7.

An overall comparison of the error rate as a function of noise level is provided in Fig.6. It is 

shown that T1 estimation has a root-mean-squared error (RMSE) of 0.4%, observed 

transmission coil sensitivity 0.8%, receiver coil sensitivity 0.7%, and proton density <0.2%. 

The noise sensitivity of the estimated proton density is by a factor of about 2 smaller than 

the noise sensitivity of the estimated T1 values because the chosen basis functions 

incorporate the inverse linear relationship between T1 and proton density (Eq.(5)). Even if 
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the data were generated using constants A = 0.858, B = 422ms giving B̃ = 492ms, which are 

not part of the optimized basis functions interval for [B̃] ∈ [500,700]ms, the RMSE for the 

proton density increases only to 1.2%. Finally, using a hypothetical quadratic model 

according to  as described above, the RMSE for the proton density 

increases to 2.0%. Table 1 summarizes these findings.

4.3 Comparison with a recently published method by Mezer et al. (2016)

4.3.1 Comparison using the 3D numerical brain phantom—In the first comparison 

(Fig.7), we analyzed simulated data from our 3D numerical brain phantom using the 

publicly available code by Mezer et al. (2016) with default options. Fig.7A shows 3 slices of 

the proton density ground truth. Fig.7B shows the results obtained according to Mezer et al. 

(2016) We rescaled the images in Fig.7B so that the mean value for the proton density is the 

same as in the ground truth images to avoid overall scaling differences that arise from the 

last step where the proton density is normalized to CSF in the ventricles (see section 

“Overall normalization to proton density of CSF”), because this normalization step is 

usually implemented slightly different by different authors. Fig.7C shows the difference map 

for ρ(Mezer et al) – ρ(ground truth) in percent. The RMSE error and median error are 3.7% 

and 2.0%, respectively. For comparison with our method we show in Fig.7D the difference 

map for ρ(this research) – ρ(ground truth). Here, the RMSE and median error are 0.13% and 

0.08%, respectively.

Of particular interest is the bias obtained for estimation of ρ in gray matter and white matter 

for our method. To reduce partial volume effects involving CSF, we created 95 percentile 

masks of gray matter and white matter. We obtained a median difference of ρ(our method) – 

ρ(ground truth) in gray matter and white matter to be -0.0064% (RMSE 0.08%) and -0.11% 

(RMSE 0.14%), respectively. Thus, the estimation of gray matter is practically unbiased 

(very close to zero) and white matter is slightly underestimated by our method.

4.3.2 Comparison using real subject data—Fig.8A shows the scaled proton density 

results for 3 slices according to Mezer. Fig.8B shows the results obtained according to our 

method. To facilitate better comparison, the images in A were scaled so that the mean proton 

density is the same for A and B. The re-scaling avoids any bias according to the different 

normalization step chosen by the authors to adjust for proton density values of CSF. Fig.8C 

shows the difference map for ρ(Mezer et al., 2016) – ρ(this research) in percent. The RMSE 

difference and median difference are 5.0% and 2.6%, respectively. For this comparison we 

created a mask from the images in B and eroded from the border in B voxels in a cube with 

edge length of 3 voxels so that border and registration effects are negligible. This mask was 

then applied to the images in A.

4.3.3 Comparison of the CSF normalization step—Mezer et al. (2016) chooses for 

the overall CSF normalization step voxels in the central portion of the lateral ventricles so 

that ρ = 1 for T1 = 4.3s. Our approach to normalization is slightly different (see section 

“Overall normalization to proton density of CSF”). To show this difference between both 

methods, we calculated the empirical cumulative density distribution of the proton density 

Cordes et al. Page 14

Med Image Anal. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



values in the lateral ventricles. Fig.8D shows the results obtained. Note that our method does 

not have proton density values larger than 1 within the lateral ventricles whereas with the 

method by Mezer et al. (2016), 20% of voxels in the lateral ventricles have values larger than 

1. Due to the different normalization step, the mean (and median) proton densities in gray 

matter and white matter are also different by about 3% to 4%. According to the method of 

Mezer et al. (2016) ρ(GM) = 0.845 ± 0.046, median ρ(GM) = 0.845, ρ(WM) = 0.740 

± 0.055, median ρ(WM) = 0.725, whereas with the proposed method (this study) we obtain 

ρ(GM) = 0.809 ± 0.052, median ρ(GM) = 0.806, ρ(WM) = 0.712 ± 0.052, median ρ(WM) = 

0.702.

4.4 Comparison with a standard bias field correction method

Table 2 shows results using a standard bias field correction method as implemented in 

SPM12. This method was used as a standard comparison in a previous publication; however, 

the authors only used default parameters (Volz et al., 2012b). We applied this method to the 

same simulated data used before where  and B̃ = 608ms. The M0 map was 

treated as a structural image and segmented with the toolbox in SPM12 (Ashburner and 

Friston, 2005). Rather than using default parameters (FWHM 60mm, regularization 0.001), 

we performed segmentations over the 2D grid parameter space with FWHM ∈ [40, 50, …, 

130] mm and regularization ∈ [0, 10−5, 10−4, 10−3, 10−2] to find the best combination of 

parameters. The obtained bias field was inverted to obtain the combined coil sensitivity map 

g. Then, using Eq.(1), the unnormalized proton density map was obtained and normalized to 

CSF in the ventricles, as outlined before. Values of the proton density and corresponding 

RMSE were computed. A search over the entire parameter space gave a minimum error of 

4.1% relative to the ground truth for the proton density. It is obvious that such a grid search 

cannot be performed when the ground truth is unknown, and from our simulation it is 

expected that the relative error of the proton density is about 4% or larger.

4.5 Effect of Grid size

With a grid size of 30mm, we parcellated the brain into cubes containing 303 voxels We 

found this parcellation size to be optimal in terms of anatomical coverage of all slices and 

computational efficiency. We re-ran our analysis with other sizes such as 10mm, 15mm, 

20mm, 25mm, 30mm, 35mm and 40mm and did not find differences in terms of the final 

accuracy for the proton density. With 35 and 40mm sizes, the last slice could not be covered 

fully.

4.6 Accuracy as a function of the number of coils

We also ran the proton density estimation as a function of the number of nearest coils 

included to the cube in question. Using only the 2 nearest coils gave good results, and using 

more than 4 nearest coils did not provide any advantages in terms of accuracy. We thus used 

for each cube the 4 nearest coils in the estimation of the proton density. For the toy example 

in 2D, excellent results with a maximum error less than 2% could be achieved with 3 coils 

but not with 2 coils. For a single coil element, the proton density problem is not solvable 

with high accuracy. However, combining multiple coil elements (or all 32 coil elements) into 
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a single image which can then be used for proton density estimation is promising (Mezer et 

al., 2016).

In Eq.(9), it is possible to assign different weight factors pi for each coil. The notion for 

using different weight factors is that whether the i-th coil is close or further away, a different 

value for pi may be used to obtain optimal results. To determine optimum weight factors, we 

used a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (see for example Nocedal and 

Wright, 1999). Interestingly, once  in Eq.(9) was normalized to a mean of 1 for all coils, 

the optimal weight factors were found to be pi = 1 (or very close to 1) for all coils.

4.7 Real data

Figure 9 shows results obtained for a representative subject (subject #1). We calculated T1 

maps and estimated the transmission coil sensitivity m. Then, we estimated the SPGR signal 

amplitude M0 using Eq.(1), and calculated receiver coil sensitivity maps and proton density 

maps. This proton density is normalized as calculated by Eq.(23). A final overall 

normalization was obtained using information from CSF and T1. Table 4 lists estimated A 
and B values for all subjects in gray matter, lesion-free white matter, whole brain, and MS 

lesions. Table 5 lists individual T1 and ρ values in selected regions of the brain, i.e. in gray 

matter, lesion-free white matter, MS lesion, left and right caudate and left and right putamen. 

Finally, Table 6 shows a comparison of obtained proton density results with values from 

literature.

5. Discussion

5.1 Novel 3D basis set

The purpose of this research project was to simultaneously estimate the receiver coil 

sensitivity and the proton density using data from individual multi-channel coil images. We 

developed a novel basis set that can represent with high accuracy the receiver coil 

sensitivities of the individual coil images. Rather than relying on a fixed value of parameters 

A and B of the inverse linear relationship between T1 and ρ (Eq.5), our basis set includes an 

entire interval of {A, B} parameters and is data-driven because we determine the coils 

sensitivities from the data itself (using M0) and weight the sensitivities by a family of 

functions that satisfy the inverse T1, ρ relationship over a large parameter space. We then use 

PCA to obtain a compact orthonormal 3D basis functions set for each cube and retain the 

most significant basis functions. The compact orthonormalization step leads to excellent 

stability in solving the linear equations.

5.2 Comparison to other basis sets

If uninformed (no relationship to Eq.(5)) basis functions are used, such as polynomial 

functions up to second or third order, we could not obtain an accurate estimate of the 

receiver coil sensitivities and proton densities for the 3D case using algebraic solutions. We 

have shown that this behavior also occurs for a 2D toy example where we simulated coil 

sensitivities as a superposition of polynomial functions up to 2nd order and a Gaussian 

function. When the basis set matched the basis of the coil sensitivities, the modeled subspace 

is optimal and gives a very low error rate in the estimation of coil sensitivities and proton 
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density. However, when the basis is extended to include higher order terms which do not 

match the ground truth in modeling of the coil sensitivities, the error rate increases. On the 

other hand, using our optimized basis function approach for the modeling of the coil 

sensitivities, the obtained error for the estimated coil sensitivities and proton density is very 

low due to better modeling of the subspace of coil sensitivities with the additional T1 

information. Furthermore, if simulations are designed with coil sensitivities that can be 

perfectly described by second or third order functions, then a second or third order 

polynomial basis set will provide exact solutions. For the more realistic 3D brain simulation, 

we could not obtain a RMSE of the proton density less than 10% using polynomial basis 

functions up to third order, as described in the results section.

For our brain simulation, we used actual receiver coil sensitivities of individual coils 

obtained from a previous bias estimation procedure using SPM12. The bias field cannot be 

described accurately by a combination of low-order polynomials. We also experimented 

with radial basis functions of the form  with center  and parameter 

σ for each coil i. By including up to 200 radial basis function for each cube, we could not 

get a RMSE of ρ with less than 8%.

5.3 Combination of different basis sets

We also tried basis functions using low-order polynomial functions in combination with the 

optimal 3D basis functions as described in the Methods section. Improvements were 

marginal. In addition, instabilities arose in a few of the 100 cubes when mixed basis sets 

were used and proper expansion coefficients could not be determined even after 

orthonormalization of the combined basis. Similar results were obtained when we tried basis 

functions consisting of second order polynomials in combination with radial basis functions.

5.4 Error sensitivity

With our method we obtained a high accuracy in proton density using a realistic 3D 

simulation with RMSE less than 0.2%. From Eq. (5) it follows by differentiation that the 

relative noise sensitivity of the proton density is always smaller than the relative noise 

sensitivity of T1 since it can be shown that

(24)

where the term  is about 0.3 for brain tissue. Since the basis functions needed to model 

the individual coil images are unknown, the use of Eq.(5) provides a method to generate 

optimized basis functions with low noise sensitivity according to Eq.(6). Thus, there is no 

noise amplification using our new method because Eq.(5) acts as a form of constraint for the 

estimated proton density values with low error sensitivity. This fact explains the almost 

constant error sensitivity of the estimated proton density.
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5.5 Real data

For real data, we found A and B values concordant with literature. We also determined 

values for A and B for gray matter, lesion-free white matter and MS lesions. We found small 

deviations in the parameters for lesions and lesion-free white matter. Thus, lesion detection 

may benefit from using the difference in estimated values for A and B. For all subject data 

analyzed, we found that all determined B̃ values were in the interior region of the assumed 

interval range as proposed according to Fig.2.

5.6 Fine structure of the estimated transmission sensitivity

We would like to make the distinction that in this study, we have only estimated the observed 
but not the usually-defined transmission sensitivity because we estimate all quantities from 

actual brain data. Usually, it is expected to obtain a true low-frequency spatially smooth 

transmission sensitivity when homogeneous phantoms are used. In our case using only 

subject data, the observed transmission sensitivity has some fine structure which may 

indicate an incomplete model for the signal equation used in the estimation process. There 

also could be potential magnetic interactions from different tissue compartments which will 

not produce a low frequency spatially smooth transmission sensitivity. Furthermore, using 

simulated data of arbitrary nature (whether spatially smooth or not), we have shown that the 

transmission sensitivity is the most difficult parameter to compute and has the largest error 

rate (0.9%) among all estimated parameters. Some of these deficiencies can be attributed to 

the fact that we neglected T2* effects and incomplete spoiling effects of the transverse 

magnetization by the SPGR sequence (see for example Preibisch and Deichmann, 2009). A 

potential modification to obtain smoother maps would be by using a spatial Gaussian 

smoothing kernel on the observed transmission sensitivity. We have refrained from such an 

ad-hoc solution (except the immediate-neighboring-voxel-averaging as mentioned before in 

section Data analysis) because the required smoothing kernel is unknown and cannot be 

estimated from the obtained subject data. However, we have carried out simulations where 

we incorporated Gaussian spatial smoothing with different FWHMs in the estimation 

process but were not successful to lower the error rate for more spatially extended FWHM 

>1cm.

5.7 Comparison to the study by Mezer et al. (2016)

The method by Mezer et al. (2016) uses low-order polynomial functions that acts as 

smoothness constraints to model the receiver coil sensitivities. Polynomial functions have 

been proposed before for this purpose (see for example Baudrexel et al., 2015, Mezer et al., 

2013; Volz et al., 2012). After determining T1 and estimating the true flip angle using 

nonlinear least square optimization, the proton density problem is formulated as an iterative 

least square optimization problem that uses the inverse T1, ρ relationship as an additional 

penalty term with unknown penalty parameter strength λ. The penalty parameter strength is 

then determined in a secondary step using a cross-validation approach. The penalty term acts 

as a regularization of the proton density by penalizing deviations from the inverse T1, ρ 
relationship. Also, the code available does not use multi-channel coil data since it is stated 

that the combined single channel coil data leads to equivalent results.
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Our approach to model the receiver coil sensitivities is very different. We propose a novel 

algebraic approach that does not involve regularizations, low-order polynomial fittings, 

penalty terms, cross validations and iterative optimizations. We also emphasize that 

modeling of the receiver coil sensitivities can be directly derived from the data and a family 

of inverse linear T1,ρ relationship by PCA. Using the dominant PCA components, the basis 

functions are automatically orthonormal and satisfy the inverse T1,ρ relationship over an 

entire interval rather than using a specific value for this relationship. To solve the proton 

density problem, we use standard matrix inversion routines only, and the advantage of a 

purely algebraic method is improved speed and accuracy. Since our method is purely 

algebraic, it is fast and accurate. Using multi-coil data, our simulation showed that 

polynomial functions may lead to unstable solutions of the proton density estimation 

problem whereas instabilities do not arise with our proposed PCA method.

We also would like to point out the different registration methods. Mezer et al. (2016) uses 

ANTs (http://stnava.github.io/ANTs/), whereas we use standard SPM12 functions for 

registration. The use of different registration techniques may lead to differences in intensity 

borders and a different smoothness due to different interpolation strategies. In our 

comparison (see Results section), the outer borders are truly effected, when comparing the 

same data with different registration methods. To exclude border effects in the comparison, 

we calculated the median proton density value which is a more robust quantity. Our results 

on simulated data showed better agreement to the ground truth than the method by Mezer et 

al. (2016).

We obtained a practically unbiased proton density estimation in gray matter and a very small 

bias in white matter. The slightly underestimated proton density in white matter (bias = 

-0.11 %) may be explained by the fact that it is more difficult to determine the transmission 

coil sensitivity in the interior region of the brain that constitutes mostly CSF plus white 

matter than in the region near the outer boundary that constitutes most of the cortical gray 

matter. In Fig.4B, the transmission coil sensitivity is on average larger in white matter than 

in gray matter. Fig.5B shows that for all quantities determined, the uncertainty in 

determining the transmission coil sensitivity is largest for large values of the transmission 

coil sensitivity (m > 1 in Fig.5B). Since values for m > 1 occur on average more frequently 

in white matter, we obtain a larger uncertainty in estimating the proton density in white 

matter. This also explains the slightly larger RMSE obtained for white matter than for gray 

matter. However, the bias obtained is very small when compared to other methods and could 

also be partially due to differences in the noise realizations together with partial volume 

errors introduced by coregistration of all generated images using SPM12.

For real subject data, we obtain proton density values that are 3% to 4% less compared to the 

results of Mezer et al. (2016). However, due to different overall normalization strategies, 

small differences in results are to be expected.

5.8 Comparison with a standard bias-field correction method

The standard bias-field correction method implemented in SPM was used previously by Volz 

et al. (2012) for modeling of the receiver coil sensitivities using default parameters 

(FWHM=60mm, regularization=0.001). With default parameters, we obtain a fairly large 
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error (RMSE=6.6%) in proton density estimation using our numerical phantom. Even after 

numerical optimization of the parameters, we were not able to obtain an error less than 

4.1%. For real data, the optimal parameters of the bias correction method are still unknown 

because of the missing ground truth.

For our MS data another potential concern is that larger lesions may change the estimation 

of the bias-field which could alter the value of the proton density at and near lesions. With 

our method, however, it is more conceivable that the coil sensitivities are better modeled 

because of the data-driven nature and inclusion of the larger subspace using a family of 

inverse T1, ρ relationships. Furthermore, as pointed out by Volz et al. (2012), anatomical 

variability such as increased CSF spaces due to enlarged ventricles may lead to an increased 

error in proton density using the standard bias-field correction method. Our proposed 

method does not depend on anatomical variability.

5.9 Future potential studies and shortcomings of the current methodology

Regarding pathologies where, for example, local deposits of iron leads to shortening of T1, 

the inverse linear relationship between T1 and ρ is invalid and it may be more suitable to add 

basis functions to the optimized set that approximately describes this relationship. However, 

more detailed studies of this nature addressing pathologies with T1 shortening are beyond 

the scope of this research project.

5.10 Computational considerations

All calculations were performed in MATLAB (The Mathworks, Inc., version R2015b) on a 

Dell-workstation with Intel Xeon E5-2687W architecture running at a clock speed of 

3.4GHz and equipped with 96GB of memory. We employed vectorization for the T1 grid and 

parallelization with 8 workers for the T1 estimations of all voxels. The time necessary to 

determine T1 and observed transmission coil sensitivity m was 4.8 min, for receiver coil 

sensitivity g and unscaled proton density ρ estimation 7.3 min and for proton density ρ 
scaling and normalization 2.5 min. The entire process after coregistration and segmentation 

by SPM12 from start to finish took 15 min for one subject.

5.11 Clinical applications

The novel method introduced for quantitative measurement of the proton density is not 

limited to using the 32-channel head coil with axial acquisitions. It will work for any surface 

coil device where multi-channel data can be acquired in any spatial geometry. Potential 

clinical applications involve quantitative water content mapping in multiple sclerosis to 

determine demyelination tissue properties of white and gray matter lesions (Laule et al., 

2004, 2006; Mezer et al., 2013). Other applications include quantitative imaging of edema 

that frequently arise in head trauma, stroke, brain tumors and other brain diseases such as 

hepatic encephalopathy (Ajata and Robber, 2002, Andersen, 1997; Neeb and Shah, 2006; 

Neeb et al., 2006; Oros-Peusquens et al., 2014; Shah et al., 2003, 2008).
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6. Conclusions

We proposed a new algorithm to more accurately model the receiver coil sensitivities to 

produce nearly unbiased proton density maps with low noise sensitivity. Using optimized 

basis functions for the modeling of the individual receiver coil sensitivities allows an 

accurate estimation of inhomogeneities of the signal due to receiver coil bias. The final 

images of the computed proton densities and individual receiver coil sensitivities are 

solutions of the MR signal equations. Our method is particularly suitable for quantitative 

diagnostic assessment of brain tissue because of its low bias and low noise sensitivity.
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Appendix A

A.1 T1 estimation

We follow the approach as originally suggested by Barral et al. (2010) with some minor 

modifications. Due to collection of magnitude MR data, the noise in the MR images has a 

Rician distribution. We reduce the bias associated with magnitude images by calculating an 

adjusted magnitude amplitude S given by

(A1)

where M is the magnitude image value (Gudbjartsson and Patz, 1995). The noise σ is 

estimated from the Raleigh distribution of the noise in an image region where there is no 

NMR signal using the relationship

(A2)

where M̄
air is the mean signal in an image region outside the brain.

The signal equation for magnitude IR data has the form

(A3)
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where ra and rb are functions of M0, TR, T1, TE, θ1, θ2, θ3 for a SE-IR 

 sequence under the usual assumptions that 

the RF pulses are instantaneous, the spoiling of Mxy after each echo acquisition is perfect 

and there are no off-resonance effects. The term TIn in Eq.(A3) labels the different inversion 

times and T1 is the unknown longitudinal relaxation time. There are no other approximations 

done and Eq.(A3) is valid for any TR, T1 and T2 [Barral et al., 2010]. Using least-square 

minimization with polarity restoration (12) gives the objective function

(A4)

where n counts the number of different inversion times TIn (in our case N = 4),

(A5)

is the polarity restauration function, y(TIn) is the magnitude signal corresponding to 

inversion time TIn, and τ is the zero-crossing point of Eq.(A5). Since the function 

 is monotonically increasing for rb < 0 (Barral et al., 2010), i.e.

(A6)

there are only 5 possibilities for γτ(TIn) given TI1 < TI2 < TI3 < TI4. These are

(A7)

Partial differentiation with respect to the unknowns in Eq.(A4) and substitution results in a 

1-dimensional equation for T1 which can be solved over a grid for T1 ∈ [1,5000]ms with 

spacing 1ms for the scenarios in Eq.(A7). The solution is obtained for the T1 that minimizes 

Eq.(A4). Using the notation
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(A8.a)

(A8.b)

(A8.C)

(A8.d)

(A8.e)

(A8.f)

(A8.g)

the partial derivatives of the objective function become:

(A9.a)

(A9.b)

(A9.c)
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At the minimum of Jτ all derivatives must vanish. Then, ra and rb can be isolated from Eqs.

(A2a,b) resulting in

(A10.a)

(A10.b)

The value for T1 is estimated by substituting Eq.(A3a) and Eq.(A3b) in the objective 

function Jτ (see Eq.(A4)) and searching for the minimum value of Jτ over all T1. This 

method is fast because the grid search can be vectorized.

A.2 Observed transmission coil sensitivity

The true flip angle α is related to the nominal flip angle αn that is prescribed at the scanner 

console by

(A11)

where m is called the observed transmission coil sensitivity. We estimate m from obtained 

SPGR images in steady states with four different flip angles using combined 32-channel 

image data. Using Eq.(A11), the SPGR signal equation is given by

(A12)

where TR is the repetition time and M0 a constant that is proportional to the proton density 

and the receiver coil sensitivity. In Eq.(A12) we have neglected the T2* decay factor 

because our echo time is small (2ms). We determine the two unknowns (M0, m) by a novel 

approach based on least square minimization over all four flip angles, i.e.

(A13)
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Since M0 is a scaling factor, partial differentiation of Eq.(A13) with respect to M0 and 

setting the result to zero leads to

(A14)

We can now substitute M0 in Eq. (A13) and obtain a 1-dim minimization problem for the 

unknown m which we solve efficiently by a vectorized grid search using all m ∈ [0,2] with 

step size 0.001. After the solution for m is obtained, we use Eq.(A14) and compute M0. Our 

approach provides the global minimum with respect to the variables m and M0. This 

approach to determine M0 (Eq. (A14)) has not been published before to the best of our 

knowledge.

A.3 Proton density estimation

The objective function is given by Eq.(9), i.e.

(A15)

Using the relationship

(A16)

where E labels the expectation value and v is some random variable, we obtain

(A17.a)

Cordes et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where . Then, the derivative with respect to  is given by

(A17.b)

Since the matrix F is symmetric, i.e. , we can interchange i with i′ and j with j
′ resulting in

(A18)

Since the derivative must vanish, after using the symmetry property of F we obtain:

(A19)

which completes the proof of Eq.(10). Eqs. (A15-19) have not been published before to the 

best of our knowledge.

A.4 Scaling of proton density values for all cubes

The objective function is given by Eq.(15):

(A20)
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where Ek[vk] is the expectation value of the random variable vk. Since the matrix C contains 

only two non-zero values for each row q, we obtain explicitly

(A21)

Differentiation with respect to xl yields

(A22)

Since the derivative must vanish, we obtain the system of equations

(A23)

Defining the matrix M with elements

(A24)

gives the equation

(A25)

Since one of the unknowns can be specified to be one, i.e. x1 = 1, the system of equations 

can be solved for the remaining unknowns by matrix inversion leading to the results in Eq.

(19). This approach (Eqs. (A20-A25)) has not been published before to the best of our 

knowledge.
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Highlights

• Proton density is computed using multi-channel coil data.

• New basis functions are developed using a family of functions whose proton 

density have an inverse linear relationship to the T1 value.

• The proton density problem is solved using purely linear algebraic equations.
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Fig.1. 
Flow chart showing the proposed analysis steps. The novelty of our approach is how the 

transmission coil sensitivity is estimated, the spatial basis functions are created and used to 

model the receiver coil sensitivities, the spatial expansion coefficients of g are calculated, 

and the scaling factors of the proton density are determined simultaneously for all cubes in 

one step.

Cordes et al. Page 32

Med Image Anal. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.2. 
Top: Inverse linear relationship between proton density ρ and T1 for a single parameter {A, 

B} (blue line) and for a family of parameters from which the novel basis functions are 

derived (green lines covering an entire area). Bottom: First nine spatial basis functions 

derived after PCA orthonormalization for a cube (30mm × 30mm × 30mm) in white matter. 

A 3D view of each basis function is shown as well as five 2D-slices of each basis function at 

indicated distances from the right front face. The first basis function represents a constant. 

All the other basis functions are orthonormal over the cube. For the nearest coil (coil 1), 

dominant contributions are from functions 1, 2, 3 and 4 whereas for the other more distant 

Cordes et al. Page 33

Med Image Anal. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coils, main contributions are from functions 1, 2, 3. Functions 5 to 9 also contribute but have 

a weight that is about one magnitude smaller.
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Fig.3. 
2D noiseless toy example involving 3 coils on a 64×64 pixel grid and error obtained in 

recovering the images from the signal equation (Eq.(3)) for three different methods. The coil 

sensitivities contain a mixture of polynomials up to 2nd order using 6 functions {const, x, y, 

xy, x2, y2} and an additional 2D Gaussian function (amplitude 30, centered at x = y = 32, 

standard deviation σ = 40). The proton density is a uniform random image with values 0.5 < 

ρ(x, y) < 1. A corresponding T1 image satisfying the inverse linear relationship 

 was also generated. The signal amplitudes for all coils were computed 

according to Eq.(3). A. Simulated coil sensitivities g(1,2,3)(x,y) and proton density ρ(x,y). B. 

Error Δg(1,2,3) = g(1,2,3)(ground truth) − g(1,2,3)(estimated) and Δρ = ρ(ground truth) − 

ρ(estimated) obtained using a polynomial basis up to 2nd order {const, x, y, xy, x2, y2} in the 

modeling of the coil sensitivities. C. Error Δg(1,2,3) = g(1,2,3)(ground truth) – 

g(1,2,3)(estimated) and Δρ = ρ(ground truth) − ρ(estimated) obtained using a polynomial 

basis up to 3rd order with 8 functions {const, x, y, xy, x2, y2, x3, y3}. D. Error Δg(1,2,3) = 

g(1,2,3)(ground truth) − g(1,2,3)(estimated) and Δρ = ρ(ground truth) − ρ(estimated) obtained 

using the proposed optimized basis set similar to the ones in Fig.2 except for the 2D case.
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Fig.4. 
Images of simulated (left) and estimated (right) MR quantities. From top to bottom: A. 

longitudinal relaxation rate T1 (units are ms), B. observed transmission coil sensitivity m, C. 

receiver coil sensitivity g(i) of one arbitrary chosen coil element, D. proton density ρ.
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Fig.5. 
Estimation accuracy of simulation: A. longitudinal relaxation rate T1 (in ms), B. observed 

transmission coil sensitivity m, C. receiver coil sensitivity g(i) averaged over all coil 

elements, D. proton density ρ.
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Fig.6. 
Root-mean-square error (RMSE) in % of the estimation accuracy for longitudinal relaxation 

rate T1, transmission coil sensitivity m, signal amplitude M0, receiver coil sensitivity g(i) 

(averaged over all 32 coil elements) and proton density ρ, using simulated data with different 

noise fractions. A noise fraction of 0 indicates no noise added and a noise fraction of 1 

indicates the same noise level as estimated from real MRI data. The overall error for all 

estimated quantities is less than 1 %. The small bias at zero noise fraction is due to partial 

volume effects introduced by the coregistration step of all generated images. Note that the 

noise sensitivity of ρ is by a factor of about 0.4 smaller than the noise sensitivity of T1.
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Fig.7. 
Comparison of proton density results using a numerical brain phantom. A. Ground truth 

images of proton density. B. Results obtained using the method by Mezer et al. (2016) 

rescaled so that the mean proton density is the same as in the ground truth images. C. 

Difference map ρ(B) – ρ(A) in percent. D. Percent difference map between the images 

obtained by the proposed method (this research) and the ground truth in A. Note the 

difference in scale between C and D.
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Fig.8. 
Proton density results using public data for a normal subject from Mezer et al. (2016). A. 

Scaled proton density map results according to Mezer et al. (2016) B. Proton density map 

obtained using the proposed method (this study). The images in A were scaled so that the 

mean proton density is the same as in B. C. Difference map ρ(A) − ρ(B) in percent. D. 

Effect of CSF normalization using the final proton density images with no scaling involved 

for the images obtained by the method of Mezer et al. (2016) and the proposed method. 

Here, none of the proton density images were mean adjusted. The vertical axis shows the 
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empirical cumulative density function (CDF) for the proton density in the lateral ventricles 

segmented by FreeSurfer. Note that 20% of voxels have a ρ > 1 using the method by Mezer 

et al. (blue curve) whereas for the proposed method max(ρ) = 1 (red curve).
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Fig. 9. 
Estimated images of a representative subject (subject 1): A. longitudinal relaxation time T1, 

B. observed transmission coil sensitivity m, C. kernel-density estimate of the distribution of 

the observed transmission coil sensitivity m, D. signal amplitude M0, E. receiver coil 

sensitivity g(i) of one arbitrary chosen coil element, F final proton density ρ after 

normalization.
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