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Abstract

The gynecological cancer mortality rate, including cervical, ovarian, vaginal and vulvar cancers, is 

more than 20,000 annually in the US alone. In many countries, including the US, external-beam 

radiotherapy followed by high dose rate brachytherapy is the standard-of-care. The superior ability 

of MR to visualize soft tissue has led to an increase in its usage in planning and delivering 

brachytherapy treatment. A technical challenge associated with the use of MRI imaging for 

brachytherapy, in contrast to that of CT imaging, is the visualization of catheters that are used to 

place radiation sources into cancerous tissue. We describe here a precise, accurate method for 

achieving catheter segmentation and visualization. The algorithm, with the assistance of manually 

provided tip locations, performs segmentation using image-features, and is guided by a catheter-

specific, estimated mechanical model. A final quality control step removes outliers or conflicting 

catheter trajectories. The mean Hausdorff error on a 54 patient, 760 catheter reference database 

was 1.49 mm; 51 of the outliers deviated more than two catheter widths (3.4 mm) from the gold 

standard, corresponding to catheter identification accuracy of 93% in a Syed-Neblett template. In a 

multi-user simulation experiment for evaluating RMS precision by simulating varying manually-

provided superior tip positions, 3σ maximum errors were 2.44 mm. The average segmentation 

time for a single catheter was 3 seconds on a standard PC. The segmentation time, accuracy and 

precision, are promising indicators of the value of this method for clinical translation of MR-

guidance in gynecologic brachytherapy and other catheter-based interventional procedures.
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1. Introduction

Gynecological malignancies, including those of the cervix, endometrium, ovaries, and 

external female genitalia, are a leading cause of mortality in women worldwide. In the 

United States, with an estimated 105,890 new cases and a mortality of 29%, gynecological 

malignancies continue to present a medical challenge (American Cancer Society, 2015). 

Chemoradiation, which consists of concurrent chemotherapy and external-beam radiation, 

followed by brachytherapy (Fig. 1) remains the standard-of-care for treatment of 

gynecologic cancers. Compared to external-beam radiation, brachytherapy allows for a 

higher total dose of radiation to a smaller area in less time, as the radiation sources are 

placed in direct contact with the cancerous tissue typically under CT- or X-ray-guidance 

(Han and Viswanathan, 2016). In high-dose-rate (HDR) interstitial brachytherapy, intersitial 

applicators with catheters that are approximately 20 cm long and 2 mm in diameter are 

inserted percutaneously through a standardized template surgically sutured to the patient’s 

perineum (Fig. 2). The catheters are used as channels for bringing radiation seeds in close 

proximity to the targeted tissue and delivering high-dose radiation to the cancer.

In a survey by the American Brachytherapy Society, the utilization of MRI increased from 

2% to 34% between 2007 and 2014 (Grover et al., 2016). This is not surprising, given the 

ability of MRI to provide better imaging of the tumor and adjacent soft tissues (compared to 

CT), and hence its routine use in the radiologic diagnosis of pelvic cancers (Jolesz, 2014). 

However, the artifacts created in MRI scans using typical brachytherapy catheters are 

considerably more difficult to interpret compared to CT (See Fig. 1a and 1b for CT imaging 

catheter artifacts, and Fig. 1c for MRI imaging catheter artifacts). Artifacts created by 

catheters used in pelvic brachytherapy are very distinct in X-ray or CT images and therefore, 

amenable to automatic segmentation using the standard image-processing techniques of 

commercial brachytherapy treatment planning products1,2. This observation is primarily 

because voxels on these catheters correspond to a narrow range of high Hounsfield values 

that are distinct from human tissue in CT images. In contrast, the grayscale range of 

catheters in MRI scans overlaps with that of human tissue, and one part of the catheter can 

appear to be substantially different from another part of the same catheter while being 

difficult to distinguish from surrounding tissue (Rafat Zand et al., 2007). Today, there are no 

automatic solutions for the segmentation of brachytherapy catheters from MRI images (Song 

et al., 2012; DiMaio et al., 2005). Even manual segmentations from MRI are time-

consuming, tedious, and error-prone because of the large numbers and high density of 

catheters in the images, and not used in clinical research or practice today.

We contribute to the state of research in the following ways:

1. An innovative, customized algorithm: Use of a mechanical catheter bending 

model to constrain an image-coupled segmentation process; an automatic error-

correction step to analyze intersecting catheters and automatically correct the 

results.

1Elekta, Stockholm, Sweden
2Varian Medical Systems, CA, USA
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2. A novel application area with a large database for medical image-analysis: 
Accuracy and precision of the proposed method are illustrated on a database of 

760 catheters in 54 patients including difficult cases with up to 40 catheters for 

MRI-guided high dose rate gynecologic brachytherapy, a novel and growing 

clinical application area. This is the first report using this database.

3. Performance accuracy and precision improvement using stronger model 
assumptions. We used a mechanical model to augment the Bezier-model 

(Pernelle et al., 2013).

4. Precision evaluation: A multiple user input simulation to estimate precision; 

also the first of its kind for MRI-guided high dose rate gynecological 

brachytherapy.

In summary, we present here a novel catheter segmentation method, with promising 

accuracy and precision numbers, that has been validated using a large MRI database 

containing hundreds of catheters.

2. State of the Art

Clinical Procedures: To the best of our knowledge, we are the first and only group to 

attempt segmentation of brachytherapy catheters from MRI images. The most plausible 

reason for this is that the use of MRI as a modality for planning and guiding the placement 

of high dose rate (HDR) gynecologic brachytherapy catheters, is a relatively recent 

development that was pioneered at our institution, Brigham and Women’s Hospital (BWH), 

Boston (Jolesz, 2014; Damato and Viswanathan, 2015). Between 2012 and 2016, nearly a 

hundred such procedures were performed in a 3-Tesla MR scanner in the Advanced 

Multimodality Image-Guided Operating (AMIGO) suite at BWH which was built with 

support from the National Institutes of Health with the purpose of advancing the usage of 

appropriate imaging to guide therapy (Tempany et al., 2015). More recently, a clinical trial 

has been launched at Johns Hopkins University to further investigate the impact of MRI in 

assessing the tumor at the time of brachytherapy MRI and in reducing the radiation dose 

received by the body during the process of treating the tumor (Viswanathan, Akila N, 2016).

Elongated Structure Segmentation: There is a significant body of medical image 

computing literature on the segmentation of elongated, tubular, or curvilinear structures. The 

vast majority of reported methods target highly tortuous and branched structures such as 

white matter tracts in diffusion MRI images (Hao et al., 2014; O’Donnell and Westin, 2007), 

blood vessels in angiographic images (Kerrien et al., 2017; Lesage et al., 2016; Schneider et 

al., 2015; Manniesing et al., 2010; Schaap et al., 2007; Wink et al., 2004; Aylward and 

Bullitt, 2002), or nerves in MRI images (Sultana et al., 2017). Compared to e.g. Bayesian 

tracking of elongated structures proposed in (Schaap et al., 2007), we are using strong 

mechanical bending constraints while tracking. Some of the various tracking methods 

surveyed here are much more flexible, may account for bifurcations and thus would 

probably go astray by allowing much more and catheter-atypical curvature changes than we 

do. Some methods focus on segmentation of interventional hardware such as guidewires in 

angiographic images, which are also tortuous because they are inserted into blood vessels 
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(Vandini et al., 2017; Honnorat, 2013; Honnorat et al., 2010), and other methods focus on 

segmentation of less flexible intervention hardware such as biopsy needles in ultrasound 

images (Hrinivich et al., 2017; Pourtaherian et al., 2016; Daoud et al., 2015; Qiu et al., 2013; 

Aboofazeli et al., 2009; Okazawa et al., 2006; Czerwinski et al., 1999). Compelling results 

for segmentation of elongated structures – blood vessels and surgical hardware-using 

artificial neural networks have also been recently reported 3, including for the segmentation 

of vessels from retinal images (Fu et al., 2016) and segmentation of surgical instruments 

from endoscopic images (Pakhomov et al., 2017).

We investigated two foundational ideas that have been applied in several of the articles 

mentioned above. In early work, we explored the vesselness metric (Frangi et al., 1998) 

which combines appearance and shape using Eigenvectors of local Hessian matrices, to 

enhance the tubular structure, but were unable to capture catheters with any level of success. 

It is possible that this was because the vesselness metric has been used most frequently in 

angiographic images where there is significant contrast between vessels and tissue. The 

contrast between catheters and tissue is not sharp in the T2-MRI scans of our application. 

More recently, we explored the use of Hough transform (Duda and Hart, 1972), a voting 

method which is used to find parametric shapes in an image. We implemented a 3D Hough 

transform and were able to detect up to two of the straightest and most prominent catheters 

in our images. Noise in the parameter space caused many false positive ”catheters” (line 

segments) to be detected in the image space (oversegmentation), which is why we believe 

that this method could not scale up to the tens of catheters in our images.

Our Previous Work: In 2013, we reported our first results in the literature for the 

segmentation of brachytherapy catheters from MRI (Pernelle et al., 2013). In this work, each 

catheter is represented as a Bezier curve, and the control points of each curve are 

automatically detected using a raycasting-based search for a specific gray-level pattern in a 

series of cones. Starting from a user click t0 (i = 0) on the superior catheter tip, the method 

searched for the best dark-line candidate inside conic volumes of radius rcone towards the 

base of the cone (Fig. 3 illustrates one search cone). The objective function integrated the 

visited voxels in the image along the current ray. Mathematically, the method seeks superior 

to inferior line integrals that minimize the image intensity value I (x), thus minimizing the 

line integral sum.

The optimal point cimg is computed as:

(1)

and the resulting optimal line segment is  (Fig. 3). The process is then repeated 

using the accepted point cimg as tip, ti+1 for the next segment. A Bezier curve with N control 

points is used to combine these accepted points – from the tip t0 and successive cimg from N 

3see (Litjens et al., 2017) for a survey on deep learning based neural network methods for medical image analysis
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− 1 search cones with increasing heights determined by a Fibonacci heuristic – into a 

trajectory for the catheter.

This method resulted in almost 90% identification accuracy in a database of 101 catheters. 

An analysis of the failure modes of this method indicated the need for stronger simulation 

models for capturing catheter deflections, the state of the art for which are described in the 

remainder of this section.

Mechanical Models for Needles: The field of virtual reality simulations of surgical 

procedures has a rich history of using mechanical modeling for needles (Fortmeier et al., 

2015, 2016; DiMaio and Salcudean, 2005). Our method leverages results reported in two 

papers from 2006–2009 that compared different mechanical models for needles and 

determined the model that is most suited for brachytherapy needles (Goksel et al., 2009; 

Dehghan et al., 2006). In particular, these papers observe that brachytherapy needles are 

typically inserted through measured holes in a template (or base), bend due to numerous 

forces acting on them, including the interactions between the catheter and the tissue it passes 

through, movement of the template, and deformation of the tissue. They compared three 

mechanical models against a physical experiment (Fig. 4a), two classical FEM-based 

approaches and an angular spring model for deflection accuracy in a physical experiment. 

They then determined that an angular spring model (Goksel et al., 2009), which consists of a 

series of rigid bars connected by three angular springs with three corresponding degrees of 

freedom, i.e., angles α, β and γ, (see Fig. 4b), best models brachytherapy needles. In this 

model, equal length rod elements are connected by rotational springs for every deflection 

direction. The deflection of the catheter results from forces acting on the springs. A simpler 

model with only one deflection direction, α, is shown in Fig. 4c.

Physical experiments in these papers measured actual bending in brachytherapy needles by 

attaching different weights to the catheter tip while keeping the base fixed (Fig. 4a illustrates 

one such experiment) were set up in (Goksel et al., 2009; Dehghan et al., 2006). The actual 

deflection was compared to the prediction of the two FEM and the angular spring model, 

and the angular spring model was demonstrated to be the most efficient and accurate. We 

adapted this angular spring model with an one-dimensional approximation (see Fig 4c) that 

was initially presented in a workshop paper (Mastmeyer et al., 2015). Details of this model 

are presented in Sec. 3.1.1.

3. Materials and Methods

The method in a nutshell: We model a catheter as a series of short rods attached to one 

another using torsion springs that become more angulated from the tip of the catheter toward 

its base. Catheter segmentation in an MRI image is initiated by the user providing the 

location of a catheter tip followed by a constrained image-appearance based search for each 

of these short, thin, dark rods. A rod is labeled as part of the segmented catheter with the 

stipulation that increasing bending between adjacent rods is permitted from the tip toward 

the base, until the full length of the catheter is segmented (Fig. 4a). Following individual 
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segmentation of all the catheters, those intersecting one another are automatically identified 

and corrected in a post-processing refinement step.

Key notation used in the paper is summarized in the appendix: see page 37.

3.1. Angular Spring Model Calculus

Our model is a set of equations working in a sequence of 2D subspaces in 3D that allows the 

calculation of the geometry of each successive rod, given an initialization and a coordinate 

system for the catheter. In such a 2D subspace, let us for now assume a simple two-

dimensional coordinate system with the catheter length extending in the x direction and 

deflection in the y direction. The insertion plane P is congruent to the y-axis at position 0 

and the reference direction of an unbent catheter aligns with the zero x-axis.

We call it a forward calculation of the model when the fixed end of the catheter is used for 

initialization (Fig. 5), and a backward calculation when the free end or the catheter tip is 

used for initialization of the model calculations (Fig. 6).

3.1.1. Forward Calculation of Angular Spring Model—In the forward calculation, 

the start deflection angle α0 is 0 and a given start force F0 represents the rod-orthogonal 

component of the force, i.e. Ftip at that moment (Fig. 5). At that moment, F0 equals Ftip. For 

the i + 1st rod, the following calculations are carried out: The deflection angle αi+1 is 

computed as:

(2)

the cumulative deflection  is computed as:

(3)

and the orthogonal force component Fi+1 as:

(4)

Based on the forward calculation, we define a continuous catheter model (Fig. 7) that maps a 

catheter tip location (characterized by a and d) into estimates of associated force at that tip 

location:

(5)

This allows estimation of catheter tip forces which are used in the next paragraphs as F0 in 

Eq. (6).
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3.1.2. Backward Calculation of Angular Spring Model—A backward calculation of 

the model has greater relevance to the problem at hand because we begin segmenting from 

the catheter tip. We need to estimate for the total deflection angle  and the orthogonal 

final rod force F0 derived from an estimate of the gravity direction force at the tip.

Using the terminology illustrated in Fig. 6, we perform the calculations as follows:

For the first rod (i = 1) we start with:

(6)

In subsequent rods, the steps are the reverse of the equations used in the forward calculation. 

The orthogonal force component is calculated as:

(7)

The angle between adjacent rods is:

(8)

The new cumulative angle between the reference axis and the i + 1st rod for re-iteration at 

Eq. (7) is calculated as:

(9)

To compare our simulations to the findings of (Goksel et al., 2009; Dehghan et al., 2006) we 

simulated the results for eight catheters back and forth and found congruent deflections 

(using the same catheter stiffness). The results, shown in Fig. 7a, show this consistency, 

thereby confirming that the adapted and simplified bending model used here is valid for 

multiple catheters observed in physical experiments (Mastmeyer et al., 2015).

For the proposed model backwards iterations, we need to estimate the orthogonal final rod 

force F0 and the total deflection angle  at the catheter tip.

3.2. Model Estimation

First, we assume that the location of the base insertion plane P is known and αref is the 

declination angle vs. the scanner system axis (Figs. 2c, 6). Methods for identifying this plane 

are described in Sections 3.5.

Second, we assume the existence of a reference catheter r⃗⊥P with zero forces acting on it.
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Then we use the image data and start to walk backwards by a big step first to estimate the 

model for each catheter independently, as follows:

1. Specify t0, the tip, manually by clicking on it in the MRI, once per catheter. 

Methods for automating this step are discussed in the Future Works section.

2. Use an image-based 3D ray-casting algorithm as described in Sec. 3.3.2 to 

compute a long vector L⃗
init, an approximate estimate of the direction of the first 

small step rod of the catheter.

3. Use r⃗ (with angle αref towards the scanner system-center-axis) and L⃗
init to 

estimate the rod deflection sum angle 

(10)

4. Compute the distance from the insertion plane a as the distance from the catheter 

grid base plane P.

5. Estimate the catheter deflection d from the tip to the reference catheter r⃗ in 

normal direction as

(11)

The values for F0 can be looked up using the computed values a and d in the model 

 from Sec. 3.2 and the lower part of Fig. 7. Summing up, these steps initialize the 

model and mount the first 2D (a, d)-subspace with a aligned to the system axis r⃗ and 

orthogonal to (r⃗, L⃗
init) (Fig. 6).

3.3. Combining Image-appearance of Catheters with Angular Spring Model Algorithm

We previously reported a cone search based method for catheter segmentation in which each 

catheter trajectory is represented as a Bezier curve, and the control points of each curve are 

automatically detected using an intensity-minimizing objective function that successfully 

captures the gray-level appearance of catheters in a small database with easy cases of 101 

catheters (Pernelle et al., 2013). Here, we describe improvements in the intensity-based 

objective function and provide a strategy for how to combine it with the proposed angular 

spring model.

3.3.1. Enhanced Cone Search Using a Circular Laplacian Mask—Catheters are 

shaped like tubes in 3D which have circular cross-sections in 2D axial images. Their 

appearance is dark (signal voids) surrounded by brighter tissue in T2-weighted MRI images. 

In our image acquisitions, the highest spatial resolution is in the axial plane. Therefore, we 

developed a 3D filter walking along piecewise linear rays through the axial cross-sections. 

Within each axial image, this 2D filter uses a Laplacian-like mask with a strong response at 

the center of a dark circular disk surrounded by brighter intensities. Fig. 8 illustrates the 

catheter artifact, the circular mask, and its response in an example image.
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(12)

The filter incorporates geometric information in 3D (being locally straight) and 2D (radius) 

about the used catheters. The three dots in the filter mask correspond to the radius of the 

catheters. This circular Laplacian mask has a peak response located with its center over an 

axial cross-section catheter artifact. Starting from a user click on the superior catheter tip, a 

ray search is performed for the best line candidate inside a small conic volume toward its 

base. The objective function integrates the results of convolving the axial 2D Laplacian-like 

filter Gcirc of Eq. 12 with the image along the current ray. Mathematically, when searching 

in conic regions by ray casting, we look for superior to inferior line integrals minimizing the 

image intensity value I (x) and taking the preferred gradient pattern into account. Once the 

best 3D line  with

(13)

is found, the process is repeated using the accepted point cimg as new tip ti+1 for the next 3D 

cone search. Similar to our previous work, a Bezier curve with N control points can be 

already used at this juncture to combine the accepted points cimg into a trajectory for the 

catheter (Pernelle et al., 2013).

3.3.2. Using Cone Search to Initialize the Angular Spring Model and 
Coordinate System—Both the analytical predictions of the angular spring model and an 

empirical analysis of the bending in manually segmented catheters show that most catheters 

are almost straight from the tip down to approximately halfway through their length (Fig. 

4a). Based on this observation, we detect the top half of each catheter as L⃗
init (referred to as 

superior half catheter) by using the method described in Sec. 3.3.1. The direction of the 

superior half is used to initialize the angular spring model in Sec. 3.2 for one catheter.

Superior Half Catheter Search: We define the very first large search cone for model 

initialization only, with the user provided tip t0 and height , where a is the distance between 

t0 and the base plane P that marks the inferior extent of the search space. Within this search 

cone with base point,

(14)
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and cone center axis vector  we compute the best long 3D line segment 

 that minimizes the 3D line integrals in Eq. (13). r⃗ is the unbent catheter 

reference direction described earlier. The resultant line L⃗
init is then used in the model 

estimation in Eq. (10).

First Small Search Cone Catheter Search: Again, starting from the tip t0, the cone base 

center point b0 of the first 3D small search cone is computed using the direction L⃗
init as

(15)

where ||..|| denotes a normalized vector.

The point cimg found using the small cone with axis  is later used as t1, the tip of the rod 

of the second small search cone. This step also defines the first 3D small rod vector

(16)

and allows the initialization of a local rod coordinate system for the subsequent small search 
cone steps guided by the angular spring model.

Rod Coordinate Systems for the Angular Spring Model: As a replacement for 2 degrees 

of freedom (Goksel et al., 2009; Dehghan et al., 2006), we propose a zero-force rotational 

axial joint implicit in our local coordinate system definition. For efficiency reasons, we do 

not use more than one spring for the rod joints as proposed in (Goksel et al., 2009); however, 

our axial joint can rotate and provide the degrees of freedom needed to represent multiple 

bent catheters.

In the following iterations, using l⃗s from Eq. 16, each rod line search step is accompanied by 

a local right-handed rod coordinate system (LRCS) (n⃗loc, d⃗loc, a⃗loc) with

(17)

in LPI (left to right, posterior to anterior, inferior to superior) directions. There is the 

catheter deflection plane normal n⃗loc orthogonal to the 2D (a, d)-subspace (plane) for one 

step of the catheter bending simulation (Fig. 7). Then, a deflection direction d⃗loc (d) and a 

reference direction a⃗loc (cf. a, in Fig. 7) are defined. In each rod line search, they are defined 

anew. The adaptation of the LRCS and hence the (a⃗loc, d⃗loc) 2D subspace is triggered using 

the most recent rod vector l⃗s = ti − ti−1 with ti as the top of the current cone. It replaces a⃗loc 

in Eq. 17, with the resulting coordinate system definition:
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(18)

Therefore, the model catheter is able to simulate bending in more than one plane. This 

engineering approximation enables true 3D capability for the algorithm: stepwise, the LRCS 

and 2D subspace for the model iterations reorients slightly and allows the catheter to 

virtually bend in 3D.

3.3.3. Model-constraint-based Catheter Rod Search—With the top point of the cone 

ti, and the the base point as the center, the circular cone base (Fig. 9) can be reached using 

3D catheter model backward calculations using a sequence of 2D subspaces. Deflection 

backward simulation steps take place for each search cone; the LRCS-2D-subspace is 

continuously adapted (see Sec. 3.3.2). In the rest of this paper, all points and vectors are 3D.

Model-based Rods and Search Cone Definition: With an initialized and running catheter 

deflection model in the subsequent cone searches, we use the model proposed cone base 

points bmod (and rod proposals l⃗s) by adding a model-based step vector to the cone top ti:

(19)

The rod vector length dseg = a/(N − 1) corresponds to the model-based cone center axis resp. 

rod defined by  Now, we can begin the image-coupling based search for a rod 

proposal l⃗img (see Fig. 9) and trade off against the model-based rod proposal l⃗mod if so.

Constraint Fulfillment: In our current method, we use a distance constraint. Inside the 

model-proposed search cone, let the point cimg be found by the image-coupling described in 

Sec. 3.3.1. If the optimal point cimg is inside a pre-defined radial distance range dtol from the 

model-proposed cone base point:

(20)

we accept it as the next cone top ti+1 and catheter defining point cacc for the final catheter 

trajectory (see Fig. 9):

(21)

and the catheter rod  is accepted (see Figs. 3 vs. 9).

Constraint Violation and Trade-off: However, with a point cimg deviating too far, an 

acceptable compromise point cacc inside the constraint requirement is generated:
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(22)

and the resulting catheter rod  is accepted (Fig. 9).

In this manner, a catheter path becomes a hybrid set of points between those proposed by the 

model and those proposed by the image features. All finally generated points are within the 

model constraints.

3.4. Identifying Erroneous Catheter Segmentations Based on Physically Improbable 
Pairwise Configurations

To complement the previous steps in which each catheter is segmented as an independent 

entity, in this step, the notion of physically feasible configurations of catheter-pairs is 

introduced into the method. This step can also be thought of as a quality-control measure for 

eliminating improbable trajectories that do not make sense in a collection of gynecologic 

brachytherapy catheters, even though they may as independent entities.

Analyzing segmentations obtained using the steps described thus far in the proposed method 

indicated three scenarios, illustrated in Fig. 10, where two catheters are close enough to one 

another that the trajectory for one catheter is derailed because of the artifact for the other 

catheter. Fig. 10 shows three scenarios of incorrect segmentations. The common reason for 

two catheter detections in the same place is that the distance between the trajectories of 

catheters is small and the artifact of one catheter is strong enough to affect the search of 

another catheter and mislead it. The scenarios shown correspond to three typical, error-prone 

catheter configurations, which can be detected and corrected later on.

The essence of the error correction step is to encode heuristics that govern the pairwise 

configurations of catheters. In particular, catheters that touch one another at some point and 

share volume are physically impossible. This typically happens when the artifact of one 

catheter is more salient than another and included in the same search cones space of the 

previous segmentation steps. We first identify the problematic pairs, then identify which 

catheter in each problem pair is causing the other catheter to be incorrectly segmented. In 

order to address the problem, we conceptually create a bright repulsion artifact (Fig. 11) in 

the underlying image that directs all others away from the problematic artifact, and finally 

re-segment the collection. This is implemented in the following four steps:

Step 1: Compute three morphologic metrics on catheters and catheter pairs to aid in 

under-standing their relative geometry. The distance metric is used to detect 

conflicting catheters, while slope and curvature aim at finding the distracting catheter:

Distance metric (Da b). Using the Euclidean distance d(x, y) = |x − y| between 

two points x and y, the minimal pointwise symmetric distance between two 

dense point sets that comprise segmented catheters a and b is:
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(23)

Values of distance metric less than the radius of a catheter, i.e. Da b < rcat, 

indicate potential interaction between the two catheters, and the likelihood that 

one catheter’s search line is dragged into the artifact created by the other.

Slope metric (Sb). The difference between the direction measured by a vector b⃗ 

of superior to inferior point t0 − tN−1 of a segmented catheter b and the average 

direction vector a⃗ of the segmented catheter group from the previous step:

(24)

Catheters with higher Sb have higher probability of being incorrect.

Curvature metric (Cb). The curvature of an individual catheter b with N points 

and in between short line rod vectors l⃗i is estimated by:

(25)

Catheters with higher curvature have a higher probability of being incorrect.

Step 2. Investigate all catheter pairs where the distance Da b between them is less than 

the radius of a catheter rcat, and classify them into scenarios 1, 2, or 3 from Fig. 10. 

The heuristics we use are shown below. Let a and b denote two conflicting catheters 

under consideration.

• Scenario 1. If Sb ≫ Sa or Cb ≫ Ca, then the artifact from catheter a is 

causing the segmentation for b to be incorrect. This can be expressed as the 

following rule:

in which the four thresholds have been determined empirically and are 

provided later in the experiment setup section.

• Scenario 2. If the distance between the intersection point x and tip for a 

shorter catheter a is smaller than the radius of catheter rcat, catheter b is 

incorrect and the shaft of catheter a is causing the error. This scenario means 

the shorter catheter a is overlapping with a part of b’s wrongly detected 
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shaft (a is contained in b), and b is the incorrect one. This can be expressed 

as the following rule:

• Scenario 3. Compute two line segments l⃗a and l⃗b between the intersection 

point x and tip of catheters a and b. The part of a catheter (yellow) that is 

more vertical corresponds to the incorrect one:

Step 3: De-emphasize the distracting catheter artifact from the underlying image by 

creating a repulsive artifact or constraint in the image as shown in Fig. 11.

Step 4: Repeat the segmentation of the erroneous catheter, detect errors, and iterate to 

convergence (no more changes).

In this way, the quality-control method described above iteratively resolves pair-wise 

conflicting catheter trajectories.

3.5. Study Parameters

In this section we describe the settings for parameters that have been mentioned in the 

algorithm described above.

The catheter model simulation and setup uses Nmax = 20 rod segments for full length 

catheters (20 cm); lesser rod segments are automatically used for shorter catheters.

The catheter grid (Fig. 2a) that is used for insertion has holes with minimum spacing of 10 

mm. Consistent with the definition of a critical maximum detection distance error below 

which a catheter can still be identified with the correct hole in the template base:

(26)

Assuming a known location of the plane P, we can determine the declination angle αref (cf. 

Figs. 2c, 6) to encode the relative angle of the obturator inside the patient. The pre-

processing method used to detect P is described below (Section 3.5) and from that AP 

declination for αref was calculated to be 22.5 degrees.

For the average insertion length of 74 mm, we used seven short rod search cones (one per 

cm) of equal height dseg = a/(N − 1) to allow for 3D bending and a number of N = 8 path 

points for Bezier approximation.

We choose k = 2050 μN/m as we used stiffer 16 Gauge catheters than described in (Goksel 

et al., 2009). The radius of the circular cone base rcone was set to 20 mm to account for 

significant bending and to evaluate the image coupling influence against the model. The 

tolerated deviation from the model dtol was chosen 1 mm.
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For the identification of errorneous catheter (Sec. 3.4) we use thS1 = 0.02, thS2 = 0.01, thC1 = 

0.015 and thC2 = 0.005 that have been determined empirically.

3.5.1. Identification of P in this Experiment—The field of view of the acquired MRI 

volumes was standardized such that (1) the center of the obturator was in line with the 

scanner system axis (template in the middle of the axial cross-sections), and (2) the template 

was included in the volume. In a pre-processing step, P was interactively identified in all 

MRI volumes, and an average location (center of the template) and orientation for P were 

derived relative to the inferior-most axial slice of the volume.

There are additional options for the detection of P that we considering concurrently and 

these are discussed in (Section 6.1).

3.6. MRI Data and Brachytherapy Hardware

Images: This segmentation method was evaluated on MRI scans of 54 gynecologic cancer 

patients who were treated using 760 HDR brachytherapy catheters. All catheter insertions 

and scans were performed in the AMIGO suite at Brigham and Women’s Hospital, Boston, 

USA, between 2011 and 2016. The MRI scans were acquired on a 3 Tesla “Magnetom 

Verio” scanner (Siemens Healthcare, Erlangen, Germany) using the three-dimensional 

T2/FSE protocol (Siemens SPACE, TR/TE=3000/160 ms, 0.4×0.4×1.0 mm3). The field of 

view of the volumes was standardized by guidelines with the center of the obturator in line 

with the scanner system axis and the template base included in the MRI images. Reference 

segmentations for all 760 catheters from 54 patients were manually performed by a 

physician using the 3D Slicer open source software.

Insertion Hardware: The Syed-Neblett template (shown in Fig. 2a) with 56 holes arranged 

in concentric circles, with 10 mm spacing between them, is used at our institution for this 

procedure and in this study (Viswanathan et al., 2011; Kapur et al., 2012). An obturator is 

firmly attached to the template base and sutured to the perineum of the patient. What is 

referred to as a “catheter” in this paper consists of a 1.6 mm (16G) diameter, radius rcat = 0.8 

mm, hollow plastic sheath with a tungsten-alloy stylet inside. The combination appears dark 

(signal void) on the MRI images. We measured a mean catheter insertion depth of 74 mm 

and an average number of catheters per patient of 14±7.

4. Accuracy and Precision Experiments

To quantify the performance of our segmentation method, we designed an in-silico 
experiment to measure its accuracy against a reference standard. This experiment consists of 

a simulated user interactively identifying the tips of all catheters in an MRI scan, the 

proposed method automatically segmenting the entire catheter trajectories, and a Hausdorff 

Distance based calculation of the accuracy of the automatic segmentation against the 

reference standard.

Since our segmentation method depends on user-interaction to obtain the tip, we designed a 

second in-silico experiment to measure the precision of the method. This experiment 

consists of a simulation of four users by randomly displacing the tip initialization by 0.8 mm 
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(radius of the catheter) from the optimally centered tip position used in the accuracy 

experiments. We then measure the percent coefficient of variation (%CV) per patient.

The concepts of accuracy and precision used in the context of this paper are an international 

ISO standard (ISO, International Organization for Standardization), and statistical analysis 

was carried out using the software package SPSS 23 (IBM, Armonk, NY, USA).

The aim of our segmentation method are outcomes with high user precision (small variation) 

and high accuracy (trueness). In the future, when we are able to eliminate the need for an 

interactive tip initialization, the need for high user precision will be less important.

4.1. Accuracy calculation using Hausdorff Distance

After manual initialization of each catheter tip, an automatic segmentation is performed, and 

the Hausdorff Distance (HD) is used as the metric for evaluating the accuracy of a catheter 

against its reference segmentation (Huttenlocher et al., 1993). Computed as shown below, it 

quantifies the two-sided maximal Euclidean distance between two catheter segmentations 

and, therefore, captures the maximum disagreement between them:

(27)

4.2. Precision calculation on Simulated Tip Clicks

We simulate four users by randomly displacing the tip initialization by 0.8 mm (radius of the 

catheter) from the optimal tip position used in the accuracy experiments. We then measure 

the percent coefficient of variation (%CV) for a patient p of NP patients comparing the users 

u results from the Hausdorff Distances for a catheter n HDp,u,n. The %CV concept describes 

standard deviations unrelated to their means, renders them comparable and is an accepted 

standard in precision studies (Gluer et al., 1995).

First, we calculate the mean Hausdorff error  summing up all catheter results. Next, 

integrating the user dimension, the dimensionless %CVp per patient with sample standard 

deviation indicated by :

(28)

Then, we estimate the average deviation in mm as:

(29)
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with  as the sample mean and X̃ as the sample standard deviation, 

eliminating the final patient dimension.

The results are expressed again using the more conservative root mean square (RMS) 

percent average coefficient of variation (Gluer et al., 1995):

(30)

These are restated as RMS mean deviation [mm] (precision error) in our four simulated user 

tries:

(31)

5. Results

In this section we present the accuracy and precision of our method, compare these results to 

previous work, and discuss limitations of the method as well as directions for future work.

5.1. Accuracy

Qualitative accuracy results of the proposed method are presented in Fig. 12 for visual 

inspection. The top two rows show excellent agreement between segmentation (green) and 

reference segmentations (cyan) of a catheter group in a representative patient. The bottom 

row in the same figure illustrates the value of combining both image and model information 

in the segmentation process; a particular catheter that showed poor agreement with the 

reference segmentation when only image or only model constraints are used, is segmented 

accurately when both model and image information are combined.

Quantitative accuracy results for 760 catheters are shown in Table 1. Accuracy is measured 

as the Hausdorff Distance (HD) between the output of the proposed segmentation method 

and the expert-provided reference segmentations of the catheters. 709 out of 760 (or 93%) 

catheters are segmented with a clinically acceptable accuracy of HD ≤ 3.4 mm (Eq. 26), and 

the overall mean HD is 1.49 mm with a standard deviation of 2.04 mm.

5.2. Precision

Precision measurements are shown in Table 2. The mean HD errors of the experiments and 

user tries are shown in the left most column, . The RMS-%CV (18.66%) projects to a 

RMS deviation, i.e. ”precision error”, of ±0.29 mm, and a majority of segmentation errors 

are below HDcrit = 3.4 mm, i.e., 1.57 + 3 · 0.29 = 2.44.
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5.3. Speed

The average segmentation time for a single catheter was 3 seconds4 on a standard personal 

computer with a single i7 3 Ghz processor and 4 GB RAM.

5.4. Comparison

As noted in Section 2, to the best of our knowledge, the state of the art for catheter 

segmentation from MRI is our previous work, which was performed on a much smaller set 

of images and does not contain an angular spring model for catheters (Pernelle et al., 2013). 

Below, we present a quantitative comparison of the accuracy and precision of the proposed 

method to the previous work.

Accuracy Comparison with (Pernelle et al., 2013) is shown in Table 3 and Fig. 13. In Table 

3, the proposed method shows a consistent improvement in accuracy mean and standard 

deviation over the comparison method. It shows an improvement in identification of 

catheters within the critical distance of 3.4 mm (Eq. 26) from 88% to 93%which 

corresponds to a reduction in outliers (HD > 4 mm) from 95 to 51. The differences are 

convincing as shown by a Wilcoxon Signed Rank Test (p < 0.062).

Precision comparison demonstrates consistently more precise results than the comparison 

method, as shown in Table 4 and Fig. 14. The %CV differences are statistically significant as 

shown by a paired t-test (p < 0.006). Fig. 14 shows HD darts charts for 760 catheters on 

radial lines displaying the errors on a logarithmic scale where the outer ring corresponds to 

100 mm and the middle ring to 10 mm, from four simulated user tries. Visual inspection of 

this figure indicates that the proposed method has a ”tighter” spread of accuracy around the 

mean than the comparison method, and hence a higher precision.

6. Discussion

In this work, we used unique data, a new methodology, and evaluation to address the 

increasingly important problem of needle localization or catheter segmentation in MRI 

images. This work is timely because the use of MRI for placement of therapy delivery 

catheters is leading to improved outcomes for patients, especially in gynecologic cancer 

(Damato and Viswanathan, 2015). To the best of our knowledge, this is the first 

comprehensive accuracy and precision study on catheter detection on patient MRI images. 

The results are promising and facilitate intraoperative or postoperative identification.

6.1. Identification of P

The identification of the plane P is currently a research project using the embedding of 

special material markers inside the template hardware that are highlighted in MRI and can 

be segmented by simple thresholding followed by a plane regression. These markers were 

not consistently available for this work, and a standard average plane P based on our patient 

population was used.

4Python implementation
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Thus, the experiments are independent from an optimized identification of P. We plan to 

complete the work on this topic and use the advanced identification method together with 

the method shown here.

6.2. Robustness

In Section 3.5, we have listed the key parameters of the proposed method, provided an 

intuition for their usage, and their default values. The default values serve well the en-

countered situation of a mean 7.4 cm catheter insertion length in this application. These 

parameters have shown robustness for three different imaging protocols in a previous 

publication (Mastmeyer et al., 2015).

While attention was paid to not overfit the data while selecting individual parameter settings, 

a formal study of the robustness of the system to different MRI sequences and insertion 

hardware (catheters, templates) has not been performed yet. In the future, as MR-guided 

HDR brachytherapy of gynecologic cancer gains wider clinical acceptance, we hope to test 

our algorithm on data from additional sites to demonstrate robustness.

6.3. Clinical Performance Requirements

Our long-term goal for this research project is for the resultant method to be as easy to use, 

robust, and accurate as what is available commercially for use with CT images. In the 

presented study, we have demonstrated the feasibility of performing this task based on 

criteria that were developed in discussions with clinical partners:

• fast and easy: The method should take up to 2–3 seconds per catheter, and up to 

1–2 ”easy” mouse clicks from the user.

• manual override: An easy to use interactive option should exist to override 

incorrect automatic segmentations.

• 90%: The automated method should result in segmentations comparable to 

human segmentation over 90% of the time.

In the future, as we move this work closer to prospective clinical deployment, the 

segmentation accuracy requirements will be refined and stated in terms of the impact on 

radiation dose to the tumor and adjacent normal tissue. In order to do this, dose-calculation 

studies will be performed, in partnership with radiation physicists, to relate deviations in 

segmentation of the catheter to the resultant uncertainties in dose calculation. That will allow 

us to determine realistic clinical performance requirements.

6.4. Alternative Technologies

As of today, clinical research that leverages MRI for brachytherapy catheter insertion or 

treatment planning, does not rely on MRI for catheter segmentation (Kamran et al., 2017). It 

acquires a CT scan which is then registered to the MRI, but segmentation of the catheters is 

performed in the CT. Completely different technology has also been explored to circumvent 

the need for image-based segmentation of catheters by using custom tracking hardware 

embedded in each catheter to enhance its signal in the MRI image (Wang et al., 2015a,b).) 

The goal of this work is provide a robust catheter segmenter from MRI images to the HDR 
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brachytherapy community so that it can make their workflow more effective and efficient, 

and in the long term ultimately eliminate the need for a CT scan or tracking hardware simply 

for the purpose of segmenting catheters.

6.5. Generalizability

The proposed catheter model is readily generalizable to include different types of locally 

straight catheters or needles that are introduced percutaneously into the body through a rigid 

base or template, and may bend and cross each other deeper into the body. It is 

straightforward to generalize the image-coupling component of the method to other 

volumetric (MR and CT) images. Preliminary results indicate promise in applying it to MR-

guided prostate biopsy needle segmentation, a procedure which uses different imaging 

protocols and insertion hardware (Ziaei et al., 2017).

However, generalizing the method for use with ultrasound and fluoroscopic images, 

extremely important clinical workhorse modalities for percutaneous needle-based 

interventions, will involve incorporation of modality-specific image-coupling objective 

functions to capture the grayscale appearance of needles in each case (Hrinivich et al., 2017; 

Wang et al., 2010).

Within the gynecologic HDR brachytherapy application, the quantitative results of this study 

are applicable to the Syed-Neblett template which has a minimum 10 mm spacing between 

holes, and generalization for different templates with more closely spaced holes (such as the 

MUPIT template (Bansal et al., 2016)) will need dedicated experiments.

6.6. Future Work

Our near-term plans include a multi-user study with four physicians providing tip 

initialization rather than a simulation. The true user clicks then can be used to determine 

realistic tip click displacements distributions - which then could be used for exhaustive 

Monte-Carlo-Simulations. Right now, two simulated clicks can be separated at most by 1.6 

mm, i.e. 4 voxels in the axial plane, and are placed on the border of the catheter artifacts, 

which is a variation borderline to clearly wrong clicks and quite challenges our method in 

the evaluation. A knowledgeable user would click more in the middle of the artifact, not on 

the border.

Since completing the work reported in this paper where features to encode catheter artifacts 

were ”hand crafted” based on the authors’ observations of several examples, we have begun 

investigating the training of deep convolutional neural networks (CNN) to the task by 

leveraging insights from (Ghafoorian et al., 2017; Mehrtash et al., 2017). This initiative 

covers tip detection which could be used to seed the presented method, as well as an 

alternative catheter detection method.

6.7. Conclusion

We have proposed a novel method that applies a mechanically augmented, image-based, 

catheter model to deliver efficient, accurate, and precise catheter segmentation in a 

feasibility study for MRI-guided, high dose rate brachytherapy treatments for gynecologic 
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cancer. This method is the first to be evaluated on a large database of clinical MRI scans 

containing 760 catheters and demonstrates favorable 93% accuracy and statistically highly 

significant improvement in precision over previous work.
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Appendix

Notation Used in the Paper

A mean value from multiple HD measurements.

, D̃ A deviation joined to a HD mean value: standard deviation 

or precision error.

★ Image template mask folding operator.

|..| Length of a vector.

||..|| A normalized vector.

αref The assumed angle between the reference catheter r⃗ and the 

scanner system z-axis.

αi The deflection angle between the ith rod and the previous 

one.

Gcirc Circular Laplacian-based mask for catheter artifacts.

Total deflection angle of the ith rod from a reference 

direction of a non-bent catheter with zero force at the tip.

a Orthogonal distance from clicked tip to base plane P.

a⃗ Average vector of a segmented catheter group.

a⃗loc Insertion oriented base vector of the LRCS.

b⃗ Vector of superior to inferior point t0 − tN−1 of a segmented 

catheter b.

binit Base point of a large search cone for half catheter search 

(model initialization).

bi ith rod base point of the sequence of small search cones.

bmod Catheter model proposed base point of a small search cone.

Ca Curvature metric of a catheter.

cimg Next search cone top found by image-coupling.

cacc Accepted (trade-off) rod end point (next search cone top).

CV Coefficient of variation.

%CV Coefficient of variation, i.e. precision error in %.

d Deflection of the catheter.

d...(a, b) A distance metric (min or HD) between two catheters a, b.
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d⃗loc Deflection oriented base vector of the LRCS.

dseg Height of a small search cone.

dtol Tolerance for an image-based rod end point to deviate from 

the model-proposed end point.

D̃
CVRMS RMS precision error in mm.

Da b Minimal distance between two point sets, e.g. catheters.

Fi Orthogonal end point forces on the ith rod.

Model based orthogonal force on the most superior rod.

Ftip Gravity end point forces on the superior rod.

HD Hausdorff distance.

HDa b Bidirectional Hausdorff distance between two point sets, 

e.g. catheters.

i Current rod index (i=0: rod at tip).

I(x) The image under work.

k The physical angular spring stiffness coefficient of a single 

joint in the catheter.

L⃗
init First large medial axis of search cone.

l⃗... Calculated line segment.

l⃗l First large medial axis of search cone (model initialization).

l⃗acc Accepted (trade-off) rod vector.

l⃗img Image-coupling proposed rod vector.

l⃗mod Model-bases proposed rod vector, cf. l⃗s.

l⃗s Small rod vector (medial axis of search cone).

l⃗i The ith small rod vector (medial axis of search cone).

LRCS Local rod coordinate system (right-handed).

n⃗loc Base vector of the LRCS normal to the others.

N The number of small search cones or rods.

Nmax The number of rods or search cones for a maximum length 

catheter.

NP The number of patients used in the study.
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P The plane of the fixture through which the catheters are 

inserted into the body.

r⃗ The reference direction of an unbent catheter r⃗⊥P.

rcat Radius of a catheter.

rcone Radius of a search cone.

RMS Root mean squared.

Sa Slope metric of a catheter.

ti ith rod tip point of the sequence of small search cones.

tipa The tip of a catheter a, i.e. t0 of it.

thS1 Threshold for the slope metric S.

thS2 Threshold for the slope metric.

thC1 Threshold for the curvature metric C.

thC2 Threshold for the curvature metric.

x The most superior interaction point of a catheter pair.
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Figure 1. 
Typical image examples with catheters and obturator: (a, b) Examples of an axial (a) and 

sagittal (b) CT images with distinct bright obturator area and bright catheter artifacts caused 

by the metallic catheter inlay. Some catheters in (a) touch each other. In (b) the leftmost 

catheter also shows it’s easily identifiable tip artifact as a bright spot. (c) Example of an 

axial MRI image with dark obturator area and eight dark catheter artifacts [R1.3]. They are 

hard to spot and are our target in a stack of axial slices. (d) A 3D display (anterior) of a 

patient with many (up to 40) colored catheters inserted.
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Figure 2. 
[R1.3,R2.1,R3.5] This figure illustrates HDR brachytherapy insertion hardware, gynecologic 

anatomy, and MRI images. The template grid is shown in (a). The thick cylindrical obturator 

and three catheters inserted through the template are shown in (b). Patient anatomy with 

inserted hardware is shown in (c) – perineum where the template is attached (7), cervix (3), 

target lesion (4), uterus (5), anus (2), and insertion hardware (6 and 1 – in blue). A sagittal 

MRI image with dark obturator in the middle and colored catheter artifacts is shown in (d). 

It is important to note that while catheters maintain the grid pattern of the template close to 

the patient’s perineum, they lose the pattern due to bending and crossing as they get closer to 

the uterus. This complicates the segmentation problem, and is addressed by our method 

which starts from the distal end of each catheter and tracks it to the base of the template.
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Figure 3. 
Search cone initialized with ti as the tip and point cimg found by minimization of the line 

integral described in Eq. 1. rcone is the radius of the cone and is a parameter of the search 

algorithm.
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Figure 4. 
(a) Example of a deflected catheter with a weight at the catheter tip. The left end is fixed in a 

grid (Goksel et al., 2009). (b) Three deflection angles α, β and γ describe the bending 

around the axes of a local joint coordinate system (Goksel et al., 2009). (c) A one degree of 

freedom fixed base catheter configuration for one angle α and a force acting on the catheter 

tip that propagates through the rods and springs (Dehghan et al., 2006).
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Figure 5. 
In forward calculation the fixed end of the catheter is provided as initialization. P is the base 

insertion plane, r⃗ is the geometry of the unbent reference catheter, d is the deflection of the 

tip from catheter r⃗,  is the angle between the third rod (counting from the base) of the 

angular spring and r⃗, and Ftip is a known gravity force acting on the tip.
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Figure 6. 
In backward calculation, the free end of the catheter is provided as initialization. The 

distance [mm] from the catheter tip to the base insertion plane P is a; r⃗ is the geometry of the 

unbent catheter; d is the linear deflection of the tip from catheter r⃗;  is the angle 

between the first (starting at the tip) rod; and r⃗ and Ftip is a known gravity force acting on the 

tip. l⃗l and l⃗s are central search cone axes spanning search cones in the image. αref is the 

angle from r⃗ to the scanner system z-axis.
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Figure 7. 
Illustration of simulated continuous catheter models (grey surface) and individual catheter 

instances (horizontal lines of same color, e.g., red: Ftip = 113 mN): (a) Consistency of our 

simulation (Mastmeyer et al., 2015) with (Goksel et al., 2009; Dehghan et al., 2006) [R1.5]. 

(b) With estimated deflection d [mm] and distance from the base template plane a [mm] we 

can identify the catheter model parameters. (c) With given d and a we can also estimate F0 

from the model  and yield parameter estimates for every catheter covered by the model.
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Figure 8. 
(a) Catheter image artifact, (b) circular mask matching the characteristics of the artifact and 

(c) applied mask to MRI image data.
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Figure 9. 
Search cone with cimg from Fig. 3. The point bmod is proposed by the angular spring model. 

cacc is the compromise between them if the distance constraint is violated.
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Figure 10. 
Three scenarios to illustrate how two catheters close to each other can lead to one being 

segmented erroneously. Scenario 1: (left) catheters A and B are close to each other and 

roughly parallel; (middle left) catheter A is segmented correctly, the result is labeled ”a” and 

colored yellow; (middle right) catheter B segmentation, labeled ”b” and colored red, starts 

off with a good tip location but gets pulled towards the artifact of catheter A; (right) Both 

segmented catheters together. Scenario 2: (left) catheters A and B slope towards one another, 

and A does not reach as deeply into the patient as B does; (right) Both segmented catheters 

together, ”a” is correct and ”b” is wrong. Scenario 3: (left) this is a combination of problems 

from the first two scenarios; (middle left) catheter B is segmented correctly, the result is 

labeled ”b” and colored yellow; (right) Both segmented catheters together. ”b” is correct 

and ”a” is wrong.
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Figure 11. 
Modify Step: De-emphasizing, in the context of dark catheter artifacts means artificially 

creating a bright artifact along a supposedly incorrect trajectory.
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Figure 12. 
Two case examples. Upper row: (left) axial view, (right) sagittal view. Middle row: 3D 

rendering with cross-section. Segmentations of catheters (light blue) from a T2-weighted 

MR scan of a GYN brachytherapy patient vs. manual segmentations (green). Lower row: A 

selected difficult catheter: (left) Outlier segmentation results if the method ignores image 

features (red); (middle) It also fails if the model is ignored (red); (right) In the success case, 

the hybrid method mode is used (light blue).
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Figure 13. 
Accuracy Comparison Boxplots of the two methods with 760 catheters: Barcharts, mean and 

standard deviations (error bars) of Hausdorff distances (HD) [mm] (HD>2 mm, lowest green 

line; HD>3 mm, middle green line; HD>3.4 mm, solid red line; HD>4 mm, top red line).
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Figure 14. 
Hausdorff Distance darts charts for 760 catheters on radial lines displaying the errors on a 

logarithmic scale (outer ring: 100 mm, middle ring: 10 mm) from four simulated user tries 

(colored points): (a) The maximum deviation is with the method compared to (Pernelle et 

al., 2013). (b) Our new method moves a lot of outliers towards the lower errors, which is 

good. These figures indicate how our new method (b) enhances the precision of catheter 

segmentation.
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	Clinical Procedures: To the best of our knowledge, we are the first and only group to attempt segmentation of brachytherapy catheters from MRI images. The most plausible reason for this is that the use of MRI as a modality for planning and guiding the placement of high dose rate (HDR) gynecologic brachytherapy catheters, is a relatively recent development that was pioneered at our institution, Brigham and Women’s Hospital (BWH), Boston (Jolesz, 2014; Damato and Viswanathan, 2015). Between 2012 and 2016, nearly a hundred such procedures were performed in a 3-Tesla MR scanner in the Advanced Multimodality Image-Guided Operating (AMIGO) suite at BWH which was built with support from the National Institutes of Health with the purpose of advancing the usage of appropriate imaging to guide therapy (Tempany et al., 2015). More recently, a clinical trial has been launched at Johns Hopkins University to further investigate the impact of MRI in assessing the tumor at the time of brachytherapy MRI and in reducing the radiation dose received by the body during the process of treating the tumor (Viswanathan, Akila N, 2016).Elongated Structure Segmentation: There is a significant body of medical image computing literature on the segmentation of elongated, tubular, or curvilinear structures. The vast majority of reported methods target highly tortuous and branched structures such as white matter tracts in diffusion MRI images (Hao et al., 2014; O’Donnell and Westin, 2007), blood vessels in angiographic images (Kerrien et al., 2017; Lesage et al., 2016; Schneider et al., 2015; Manniesing et al., 2010; Schaap et al., 2007; Wink et al., 2004; Aylward and Bullitt, 2002), or nerves in MRI images (Sultana et al., 2017). Compared to e.g. Bayesian tracking of elongated structures proposed in (Schaap et al., 2007), we are using strong mechanical bending constraints while tracking. Some of the various tracking methods surveyed here are much more flexible, may account for bifurcations and thus would probably go astray by allowing much more and catheter-atypical curvature changes than we do. Some methods focus on segmentation of interventional hardware such as guidewires in angiographic images, which are also tortuous because they are inserted into blood vessels (Vandini et al., 2017; Honnorat, 2013; Honnorat et al., 2010), and other methods focus on segmentation of less flexible intervention hardware such as biopsy needles in ultrasound images (Hrinivich et al., 2017; Pourtaherian et al., 2016; Daoud et al., 2015; Qiu et al., 2013; Aboofazeli et al., 2009; Okazawa et al., 2006; Czerwinski et al., 1999). Compelling results for segmentation of elongated structures – blood vessels and surgical hardware-using artificial neural networks have also been recently reported 33see (Litjens et al., 2017) for a survey on deep learning based neural network methods for medical image analysis, including for the segmentation of vessels from retinal images (Fu et al., 2016) and segmentation of surgical instruments from endoscopic images (Pakhomov et al., 2017).We investigated two foundational ideas that have been applied in several of the articles mentioned above. In early work, we explored the vesselness metric (Frangi et al., 1998) which combines appearance and shape using Eigenvectors of local Hessian matrices, to enhance the tubular structure, but were unable to capture catheters with any level of success. It is possible that this was because the vesselness metric has been used most frequently in angiographic images where there is significant contrast between vessels and tissue. The contrast between catheters and tissue is not sharp in the T2-MRI scans of our application. More recently, we explored the use of Hough transform (Duda and Hart, 1972), a voting method which is used to find parametric shapes in an image. We implemented a 3D Hough transform and were able to detect up to two of the straightest and most prominent catheters in our images. Noise in the parameter space caused many false positive ”catheters” (line segments) to be detected in the image space (oversegmentation), which is why we believe that this method could not scale up to the tens of catheters in our images.Our Previous Work: In 2013, we reported our first results in the literature for the segmentation of brachytherapy catheters from MRI (Pernelle et al., 2013). In this work, each catheter is represented as a Bezier curve, and the control points of each curve are automatically detected using a raycasting-based search for a specific gray-level pattern in a series of cones. Starting from a user click t0 (i = 0) on the superior catheter tip, the method searched for the best dark-line candidate inside conic volumes of radius rcone towards the base of the cone (Fig. 3 illustrates one search cone). The objective function integrated the visited voxels in the image along the current ray. Mathematically, the method seeks superior to inferior line integrals that minimize the image intensity value I (x), thus minimizing the line integral sum.The optimal point cimg is computed as: 
(1) and the resulting optimal line segment is 
 (Fig. 3). The process is then repeated using the accepted point cimg as tip, ti+1 for the next segment. A Bezier curve with N control points is used to combine these accepted points – from the tip t0 and successive cimg from N − 1 search cones with increasing heights determined by a Fibonacci heuristic – into a trajectory for the catheter.This method resulted in almost 90% identification accuracy in a database of 101 catheters. An analysis of the failure modes of this method indicated the need for stronger simulation models for capturing catheter deflections, the state of the art for which are described in the remainder of this section.Mechanical Models for Needles: The field of virtual reality simulations of surgical procedures has a rich history of using mechanical modeling for needles (Fortmeier et al., 2015, 2016; DiMaio and Salcudean, 2005). Our method leverages results reported in two papers from 2006–2009 that compared different mechanical models for needles and determined the model that is most suited for brachytherapy needles (Goksel et al., 2009; Dehghan et al., 2006). In particular, these papers observe that brachytherapy needles are typically inserted through measured holes in a template (or base), bend due to numerous forces acting on them, including the interactions between the catheter and the tissue it passes through, movement of the template, and deformation of the tissue. They compared three mechanical models against a physical experiment (Fig. 4a), two classical FEM-based approaches and an angular spring model for deflection accuracy in a physical experiment. They then determined that an angular spring model (Goksel et al., 2009), which consists of a series of rigid bars connected by three angular springs with three corresponding degrees of freedom, i.e., angles α, β and γ, (see Fig. 4b), best models brachytherapy needles. In this model, equal length rod elements are connected by rotational springs for every deflection direction. The deflection of the catheter results from forces acting on the springs. A simpler model with only one deflection direction, α, is shown in Fig. 4c.Physical experiments in these papers measured actual bending in brachytherapy needles by attaching different weights to the catheter tip while keeping the base fixed (Fig. 4a illustrates one such experiment) were set up in (Goksel et al., 2009; Dehghan et al., 2006). The actual deflection was compared to the prediction of the two FEM and the angular spring model, and the angular spring model was demonstrated to be the most efficient and accurate. We adapted this angular spring model with an one-dimensional approximation (see Fig 4c) that was initially presented in a workshop paper (Mastmeyer et al., 2015). Details of this model are presented in Sec. 3.1.1.
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