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Abstract

It is challenging to characterize and classify normal and abnormal brain development during early childhood.
To reduce the complexity of heterogeneous data population, manifold learning techniques are increasingly
applied, which find a low-dimensional representation of the data, while preserving all relevant information.
The neighborhood definition used for constructing manifold representations of the population is crucial for
preserving the similarity structure and it is highly application dependent. The recently proposed neighbor-
hood approximation forests learn a neighborhood structure in a dataset based on a user-defined distance.
We propose a framework to learn multiple pairwise distances in a population of brain images and to combine
them in an unsupervised manner optimally in a manifold learning step. Unlike other methods that only
use a univariate distance measure, our method allows for a natural combination of multiple distances from
heterogeneous sources. As a result, it yields a representation of the population that preserves the multiple
distances. Furthermore, our method also selects the most predictive features associated with the distances.
We evaluate our method in neonatal magnetic resonance images of three groups (term controls, patients
affected by intrauterine growth restriction and mild isolated ventriculomegaly). We show that combining
multiple distances related to the condition improves the overall characterization and classification of the
three clinical groups compared to the use of single distances and classical unsupervised manifold learning.

Keywords: Random forest, neighborhood approximation forest, manifold learning, similarity measure,
brain development

1. Introduction

During early childhood, the brain undergoes complex structural changes, which makes it challenging to
characterize and quantify normal and abnormal brain development. Depending on the condition occurring
during the pregnancy, brain structure could have overt lesions or more subtle and general structural changes
that could make it difficult to quantify these changes. The diagnostic and subsequent therapy, however, often5

relies only on one dimensional measurements, such as the width of the ventricles in a specific plane manually
determined by the experts. Therefore, there is a growing need for identifying brain imaging biomarkers to
improve the characterization of diseases, their diagnosis and therapy. Medical images, such as magnetic
resonance (MR) images, provide structural information of the brain which can be analyzed to find changes
and disease-specific differences in a population.10
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Techniques of manifold learning have been used successfully in medical imaging for various applica-
tions (Aljabar et al., 2012). Their aim is to reduce the complexity (dimensionality) of the data while
preserving all relevant information (the intrinsic structure of the data). The obtained new representation of
the data can facilitate further analysis such as classification, visualization and compression. For an overview
of manifold learning techniques see, e.g., the review of van der Maaten et al. (2009). Popular dimensionality15

reduction and manifold learning methods, both linear (e.g., PCA (Pearson, 1901), MDS (Cox and Cox,
2001)) and non-linear (e.g., kernel PCA (Schölkopf et al., 1998), Isomap (Tenenbaum et al., 2000) and
Laplacian Eigenmaps (Belkin and Niyogi, 2003)), require some notion of distance between data samples to
capture global and local structures in the population. Often, they optimize an objective function based on
the image’s neighborhoods to learn the underlying manifold structure.20

The neighborhood definition is crucial for the quality of the resulting new representation. This is highly
application dependent and a field of on-going research. A typical choice is to calculate the Euclidean
distance between data samples to approximate distances on the manifold (in the context of brain imaging the
Euclidean distance between the voxels of the image or a region of interest). However, the Euclidean distance
may not capture all the differences in a population or be representative of anatomical characteristics. The25

works by Aljabar et al. (2011), Gray et al. (2013), Wolz et al. (2012) and Zimmer et al. (2015b) have shown
that more sophisticated and application-dependent distance definitions improve the overall performance of
the methods.

At the same time, there has been much interest in identifying and combining different kinds of hetero-
geneous information in the definition of image neighborhoods to improve the new representation resulting30

from manifold learning. The manifold structure of brain images has been estimated by Gerber et al. (2010)
based on non-rigid transformations, whereas Aljabar et al. (2008) derived similarities from overlaps of their
structural segmentations. Aljabar et al. (2011) combined shape and appearance information in a joint repre-
sentation for an improved characterization of brain development and Wolz et al. (2012) incorporated clinical
information into the manifold learning step. Regional approaches were presented by Bhatia et al. (2014) and35

Ye et al. (2014) that learned a manifold for image regions rather than for the entire image. To define such
pairwise similarities, additional information, e.g., structural segmentations, shape information or non-rigid
deformations between images, have to be extracted or estimated.

However, the extraction of additional information, such as structural segmentations and shape informa-
tion, is computationally expensive. Moreover, it is in general not clear how to combine and weight multiple40

heterogeneous neighborhood definitions. In multiple kernel learning, different kernels, representing different
notions of similarity between information coming from different sources, are combined by learning an opti-
mal linear or non-linear weighting of the kernels (Gönen and Alpaydın, 2011; Sanchez-Martinez et al., 2017;
Zimmer et al., 2015b). Wolz et al. (2012) combined non-imaging information with appearance-based image
features by including additional edges in the neighborhood graph used for Laplacian Eigenmaps. Aljabar45

et al. (2011) combined new embedding coordinates of multiple manifold representations, obtained using
different information, for a joint representation.

Another powerful method that can be used to approximate distance measurements is a random forest
(Breiman, 2001). A random forest is an ensemble of decision trees, where at each node of the trees the
data samples are partitioned into two sets, according to a test, whose parameters are learned a priori50

from training data. A notion of similarity between the data samples can be defined based on the co-
occurrences in leaf nodes (Shi and Horvath, 2006) which has been applied successfully to several clustering
and classification tasks (Gray et al., 2013; Nowak and Jurie, 2007; Shi et al., 2005). In particular, Gray
et al. (2013) used random forests for deriving the pairwise distances from different imaging modalities for
manifold learning. Additionally, the most important features for the classification problem were extracted.55

One of the advantages of using random forests is the feature selection which is done simultaneously to the
classification, and can give additional insight to the application at hand.

In this work, we focus on how to define and combine multiple neighborhood structures to obtain a new
data representation of a complex population of MR brain images, which best captures all relevant infor-
mation. Our contributions are threefold. First, we propose to learn the neighborhood structure in brain60

MR images based on application-specific properties of the population. We employ neighborhood approxi-
mation forests (NAFs) (Konukoglu et al., 2013), which are a type of random forests specifically designed to
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approximate neighborhoods. Second, we use several definition of similarity, based on multiple user-defined
criteria. The corresponding information comes from heterogeneous sources of supervised information (i.e.,
user-defined distances relevant to the pathology) to take into account the complex nature of the data. The65

proposed method allows a seamless combination of those multiple neighborhoods. The distances between
images are expressed in the same units (co-occurrences on leaf nodes) across heterogeneous data information.
Another advantage of using random forests to define image similarity is the ability to define discriminative
features for interpretation purposes. To the best of our knowledge, the only work using random forests
to approximate distances for manifold learning in medical image analysis is Gray et al. (2013). They take70

advantage of multiple modalities of the data, whereas we extract multiple neighborhood structures from a
single modality. Third, we propose to optimally combine multiple neighborhood structures, based on the
quality of the resulting data representation (e.g., by optimizing an embedding quality measure Zimmer et al.
(2015b)).

We use NAFs to approximate different definitions of similarities based on the appearance information in75

MRI and obtain approximated neighborhoods. The pairwise affinities are based on the co-occurrence counts
in the leaf nodes of the NAFs. This allows seamlessly combining several neighborhoods induced by arbitrary
criteria since they are all represented in the same units (co-occurrence counts) and therefore can be readily
combined. The combined affinity matrices are used in a manifold learning step to extract a vector represen-
tation of the images that preserves the combined image neighborhoods and encodes different heterogeneous80

information simultaneously. Thus, the proposed method enables the combination of heterogeneous sources
of supervised information and obtain a new representation useful for analyzing the pathology. Moreover,
our method automatically extracts relevant features (without the need to engineer them a priori).

We apply the proposed method to a population of neonates. Two conditions are present in this pop-
ulation: intrauterine growth restriction (IUGR) and mild isolated ventriculomegaly (VM). IUGR is due85

to placental insufficiency and is related to changes in brain size and more subtle changes in several brain
structures (Batalle et al., 2012; Esteban et al., 2010; Padilla et al., 2011), which makes prior analysis and
feature extraction difficult. VM, on the other hand, is defined by an enlargement of the ventricular system
and it has been described as being associated with changes in cortical development and changes in white
and gray matter volumes (Gilmore et al., 2008; Lyall et al., 2012; Wyldes and Watkinson, 2004).90

As an example of application, the new representation is used to classify different diagnostic groups (CN:
normal controls, IUGR and VM). That is, we evaluate how well the resulting low-dimensional data represen-
tation separates (using simple kNN classification) the different diagnostic groups. We compare classification
accuracy with several methods using single affinities and classical unsupervised manifold learning. The new
vector representations obtained by our method are able to separate the three groups (normal controls (NC),95

IUGR and VM) with a high accuracy. The features used for the neighborhood definition are extracted
automatically and reflect the disease’s structural changes.

This work extends our previous conference paper (Zimmer et al., 2015a) with a more detailed description
of the method, a more sophisticated combination method for the approximated neighborhoods and a more
extensive evaluation on new data.100

The remainder of the paper is structured as follows: Section 2 presents the proposed pipeline and
explains the main parts in detail, including the construction of NAFs, feature selection, and combination
in a manifold learning step. Section 3 reports experimental results on a neonatal population, followed by
further discussion and conclusions in Section 4.

2. Methodology105

The pipeline of the proposed method is shown in Fig. 1. For a given population of images, NAFs are
constructed based on multiple distances. These distances are chosen such that they represent different
properties of subpopulations. Affinity matrices are derived from the NAFs as neighborhood representations
and used to obtain a new representation that best characterizes the original data. In the following, the
different parts of the pipeline are explained in detail, namely, the computation of affinities (Fig. 1 (a)-(d))110

and the manifold learning (Fig. 1 (e)).
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Fρ1 , . . . , FρK Aρ1 , . . . ,AρK Yρ1,...,ρK

Figure 1: Pipeline of the proposed method. For a given population, NAFs are constructed using various distances to obtain
neighborhoods within the population and for feature extraction. The combined information is used for classification.

2.1. Pairwise Image Similarities using Random Forests

In this work, we choose to learn the neighborhood structure of images using NAFs. A NAF learns a
neighborhood structure of a given dataset in a supervised manner induced by an arbitrary notion of similarity
between images. In the training step, the algorithm learns to cluster the images based on appearance features115

according to the distance function. For testing, the learned features are used to predict the closest neighbors
of a test image in the training database. Given a population I of images, a subset I = {Ip}Pp=1 ∈ I is used

for training and each Ip is represented by a high-dimensional intensity-based feature vector f(Ip) ∈ RQ. The
population I is equipped with a user-defined distance function ρ : I × I → R which allows the definition of
pairwise distances ρ(Im, In) between the images.120

Training phase. In the training phase, T individual trees are constructed. For each tree t, a random subset
of features f (t) ⊂ f is selected with f (t) ∈ Rq, q < Q. At each node of tree t, the algorithm divides the data

samples present in the current node into two sets. This branching of the set of images I
(t)
s in node s of tree

t is based on a binary test: for In ∈ I
(t)
s , In ∈ I

(t)
sR if f

(t)
m (In) > τ , and In ∈ I

(t)
sL otherwise. Here, f

(t)
m (In) is

the mth feature in image In in tree t, τ ∈ R is a threshold, and I
(t)
sR and I

(t)
sL are the sets of images splitted125

to the right and left child node, respectively. For each node in each tree, the binary test is optimized with
respect to the parameters m and τ such that the data samples are clustered according to a user-defined
distance function ρ by maximizing a compactness criterion (Konukoglu et al., 2013).

Testing phase. Given a test set Î = {Îr}Rr=1 ∈ I, a test image Îr is passed down each tree in the forest. At
a node, the binary test with the parameters learned in the training phase is applied. According to this test,130

the image is sent to the left or to the right child of the current node. This is repeated until the image arrives

at a leaf node. If the leaf node contains the training image Ip, their affinity a
(pr)
ρ is increased by one. This

procedure is repeated for each tree and yields an affinity matrix Aρ = {a(pr)ρ }p=1,...,P
r=1...,R

between the samples

of the training and testing set.
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Feature Selection. During the training phase of NAFs, the parameters m and τ of each binary test of135

tree t are optimized to obtain an optimal partitioning of the training data samples. The parameter m
denotes the component of the feature vector f (t) which is tested at the current node. There exist several
ways of determining the importance of individual features for the growing of the decision trees. Konukoglu
et al. (2013) considered a feature important if it is selected in the first three levels of the trees. A more
sophisticated approach was used by Gray et al. (2013), where the decrease in the Gini impurity criterion140

(Breiman, 2001) was measured for the individual features in each node. In this work, we adopt the former
and simpler approach. The frequency of the selected features in the first three levels of the trees is recorded,
and the values are normalized by the number of nodes in the tree level.

Pairwise Similarities based on leaf co-occurrences. For each distance function ρ, a NAF Fρ is trained using

the training set I and a pairwise affinity matrix Aρ ∈ RP×P = {a(ij)ρ }i,j=1,...,P is computed, where a
(ij)
ρ145

reports how often images Ij ∈ I and Ii ∈ I finish in the same node across each tree in the forest. The

corresponding distance matrix Dρ = {d(ij)ρ }i,j=1,...,P is constructed with d
(ij)
ρ = 1− a(ij)ρ /T , where T is the

number of trees in the forest. The matrix Dρ can now be interpreted as pairwise distances of the image set
I and can be used for constructing a manifold representation of the training set.

2.2. Manifold learning using multiple approximated neighborhoods150

Combination of affinity matrices. To consider different features simultaneously, the affinity matrices from
NAFs based on different user-defined distances ρk, k = 1, . . . ,K, can be combined, producing a joint
embedding of various neighborhood approximations. Assuming that the NAFs Fρk contain the same number
of trees T , the affinity matrices can be additively combined by

Aρ1,...,ρK =

K∑
k=1

µkAρk . (1)

The weights µk ∈ R+,
∑K
k=1 µk = 1 control the influence of each Aρk in the combination (and will be

computed following a weighting optimization scheme described later). The components of the joint distance

matrix Aρ1,...,ρK are d
(ij)
ρ1,...,ρK = 1− a(ij)ρ1,...,ρK/T .

Since the affinity matrices are expressed in the same units (i.e., leaf counts), they can be readily combined
without the need of additional normalization or scaling, as opposed to other similarity combination methods.155

Manifold learning method. Laplacian Eigenmaps (LE) (Belkin and Niyogi, 2003) is used for learning the
manifold. It captures the intrinsic low-dimensional structure of a manifold by finding an optimal embedding
which preserves local neighborhoods. This can be posed as the minimization problem

min
Y

YTDY=Id

∑
ij

‖ yi − yj ‖2 w(ij),

where Y = [y1, . . . , yP ] ∈ RP×P are the embedding coordinates, Id the P × P identity matrix and w(ij)

the similarity between input data points. By using the above objective function, neighboring points in the
original space (w(ij) large) receive a penalty if they are mapped far apart in the embedding space (yi − yj
large). Thus, by minimizing the objective function, local neighborhoods are preserved. It can be shown that
solving this minimization problem is equivalent to the generalized eigenvalue problem Lv = λMv of the
corresponding graph Laplacian L = M−W (with degree matrix M and weight matrix W = (w(ij))i,j=1,...,P ),
whose eigenvectors vi give the optimal embedding. Typically, only the eigenvectors corresponding to the
lowest (nonzero) n eigenvalues λi, i = 1 . . . , n are kept for the final embedding. We estimate the best value
of n by a goodness-of-fit parameter G (Mardia et al., 1980):

G =

∑n
i=1 λi∑P
i=1 λi

,
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describing how well these n eigenvalues represent the full matrix of eigenvalues.
Here, the similarity coefficients w(ij) are functions of the distances based on leaf co-occurences between

images Ii and Ij , i.e., functions of the elements d
(ij)
ρ1,...,ρK . We choose

w(i,j)
ρ1,...,ρK (d(ij)ρ1,...,ρK ) = exp

(
−
(
d
(ij)
ρ1,...,ρK

)2
2σ2

ρ1,...,ρK

)
,

where σ ∈ R+ plays the role of a scale parameter and is estimated as σ = 1
P 2

∑P
i,j=1

√
d
(ij)
ρ1,...,ρK .

We denote the new embedding coordinates as Yρ1,...,ρK using affinity matrices obtained from NAFs
trained on the user-defined distance functions ρk, k = 1, . . . ,K.

Weight optimization. The weights µk for the affinity combination in Eq. (1) can be chosen in different ways.
For µk = 1

K , k = 1, . . . ,K, each approximated neighborhood has the same influence (uniform weighting).
Alternatively, we can choose the weights µk such that the resulting joint embedding has certain properties.
In this work, we propose two alternative different criteria: (i) minimizing the intra-class variance and (ii)
preserving the neighborhoods. For the former, the variance of the new coordinates of the training set within
each class is minimized (supervised) and for the latter a measure of quality assessing the new neighborhoods
in the embedding is optimized (unsupervised). In the literature, there exist several measures that assess
the quality of embeddings by comparing the k nearest neighbors of samples in the original space and
the embedding space (Chen, 2006; Lee and Verleysen, 2009). We adopt a measure called Neighborhood
Preservation Measure (NPM) (Zimmer et al., 2015b), which quantifies neighborhood intrusions in the new
embedding space. Let the matrix D be the P ×P matrix of pairwise distances between data samples in the
original space, Y the P×d′ matrix of data samples in the embedding space with new dimension d′ < d and P
the number of data samples. Note that we use here the approximated pairwise distances using NAFs, whereas
in (Zimmer et al., 2015b) Euclidean distances were calculated. Let SDk be the set of indices of the k-nearest
neighbors of sample i in the original neighborhood. To measure neighborhood intrusions, we search for the
hypersphere in the new representation space that contains all the neighboring points in SDk . The radius of

this hypersphere is calculated as rD,Yk (i) = max
j∈SD

k

‖ yi − yj ‖2. Subsequently, the set of indices of all points

that are located inside this hypersphere are derived as SD,Yk (i) = {pj | ‖ yi − yj ‖2≤ rD,Yk (i), i 6= j}. This
set will evidently contain all original k-nearest neighbors, but depending on the quality of the embedding,
points that were initially outside this neighborhood could erroneously be mapped inside it. NPM is defined
by summing all point intrusions into the embedding as follows:

NPM(D,Y, k) = 1−
∑P
i=1 |S

D,Y
k (i)| − k

P (P − 1− k)
. (2)

An ideal embedding preserving all neighborhoods without any local or global distortion would result in a160

NPM value of 1. The worst possible mapping, i.e., to a single point in the new space, would result in a
value of 0. Therefore, we choose the weights µk by maximizing the NPM of the resulting embedding using
the Nelder-Mead Simplex algorithm in Matlab.

Projection of new data points. To be able to relate unseen data points with the new manifold representation,
the so-called out-of-sample extensions are applied to project new data points to the low-dimensional space.165

For non-linear techniques such as LE, there is no straightforward extension to out-of-sample data points
and the projection has to be estimated. Here, we use an out-of-sample extension based on the Nyströms
approximation (Bengio et al., 2004; van der Maaten et al., 2009). According to it, the eigenvectors of a large
p × p matrix can be approximated by the eigendecomposition of a q × q submatrix with q < p. Therefore,
we can approximate the coordinates in the new representation of an unseen data sample Ir as170

yr =
1

κ

∑
i∈NκA(i)

yia
(r,i)
ρ , (3)
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where yi are the new embedding coordinates of data sample Ii ∈ I, where i ∈ N κ
A(r), the κ nearest neighbors

of new sample Ir ∈ Î in training set I according to the neighborhood approximated by affinity matrix Aρ.

The affinity a
(r,i)
ρ is based on co-occurrences in leaf nodes of the sample Ir to the sample Ii (which was used

for training the NAF Fρ), when Ir is passed down each tree of the forest Fρ.

3. Experiments and results175

3.1. Dataset

We applied the proposed pipeline to explore the best combination of user-defined distances for a pop-
ulation of neonates that were scanned at the Hospital Cĺınic de Barcelona. The population consists of T2
weighted MR images, scanned on a 3 T system (TrioTrim, Siemens Healthcare) in axial orientation. The
study protocol and recruitment and scanning procedures were approved by the Institutional Ethics Com-180

mittee, and written informed consent was obtained from the parents of each child to participate in the
research studies. Two conditions are present in this population: intrauterine growth restriction (IUGR) and
isolated mild ventriculomegaly (VM). IUGR due to placental insufficiency, which includes lack of oxygen and
nutrition, affects 5-10 % of all pregnancies and is associated with neurostructural and neurodevelopmental
anomalies (Batalle et al., 2012; Esteban et al., 2010; Padilla et al., 2011). A newborn is diagnosed with185

IUGR if its birth weight percentile is less than ten. A percentile of 50 for a newborn means that out of 100
newborns, 50 are bigger and 50 are smaller. The second condition, isolated mild VM, occurs in 0.15-0.7 %
of all pregnancies and is defined as an atrial diameter between 10 mm and 12 mm of the lateral ventricles at
18− 22 weeks gestational age (GA) (Lyall et al., 2012; Wyldes and Watkinson, 2004). VM can affect both
lateral ventricles (bilateral) or only one ventricle (unilateral) and is associated with neurodevelopmental190

disorders (Lyall et al., 2012; Wyldes and Watkinson, 2004).
The dataset consists of 111 neonates with an age range of 38.63 − 48.40 (mean of 43.70 ± 2.24) weeks

GA at scan. The subjects were prenatally diagnosed either as healthy term born controls (NC, 70 subjects),
affected by IUGR (27 subjects) or VM (14 subjects). The study protocol and the recruitment and scanning
procedures were approved by the Institutional Ethics Committee, and written informed consent was obtained195

from the parents of each child to participate in the research studies (IUGR cohort: HCB/2012/7715; VM
cohort: HCB/2014/0484).

Information for each group regarding GA, birth weight percentile and type of VM is provided in Table 1.
The subjects of the three groups have a similar mean GA at scan. The birth weight percentiles differ
between the groups. While the IUGR subjects have a percentile around three, the other two groups have200

larger percentiles as expected. From the VM subjects, the majority have a unilateral VM affecting the right
ventricle.

Image noise was removed (Coupé et al., 2012). The images were skull-stripped using BET (Smith, 2002),
corrected for bias using N4 (Tustison et al., 2010) and intensity normalized using histogram matching (Nyúl
et al., 2000). A group template was created using ANTs (Avants et al., 2008) for the same population as205

used in the experiments. All subjects were non-rigidly aligned using a coarse control-point spacing of 20 mm
to the group template to account for size differences. We performed automatic segmentation (Sanromà
et al., 2016) into four regions (gray matter, white matter, deep gray matter and ventricular structure). The
aligned images in atlas space were of size 166 × 245 × 62 with a voxel size of 0.625 × 0.625 × 2 mm. The
images were smoothed using a Gaussian filter with physical size of 4 mm in each dimension. Figure 2 shows210

subjects for the three subpopulations and the group template.

3.2. Experimental setup

We selected distance functions ρ specific to the properties of the conditions (as described below) and
applied the pipeline shown in Fig. 1 to the affinity matrices obtained by the NAFs as described in Section 2.
For evaluation, we employed a stratified 10-fold cross-validation strategy, taking randomly 10% of the data215

as test data in each fold and used the rest for training the NAFs and construction of the low-dimensional
embedding. In all folds, all three diagnostic groups are represented with a similar distribution as in the
whole set for both training and testing sets. Each sample is exactly once used for testing and in all other
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Table 1: For each group of the neonatal population (NC: normal controls; IUGR: affected by intrauterine growth restriction;
VM: affected by isolated mild ventriculomegaly), information on the total number of subjects (N), weeks gestational age (GA)
at birth and at scan, birth weight percentile and on the type of ventriculomegaly (bilateral or unilateral) are provided.

N
GA GA birth weight type of VM

at birth at scan percentile bi left right

NC 70 39.6± 1.3 44.0± 2.3 47.4± 29.0 — — —
IUGR 27 37.3± 2.1 42.7± 2.4 3.3± 3.9 — — —
VM 14 40.1± 0.8 43.9± 1.6 77.5± 28.4 5 2 7

Group template NC IUGR VM (bilateral)

Figure 2: From left to right: group template, NC subject (normal controls), IUGR subject (affected by intrauterine growth
restriction), VM subject (affected by isolated mild ventriculomegaly).

folds for training. The feature vector for each image was composed of the intensities of randomly chosen
voxels inside the brain mask of the group template. We chose a feature vector of length Q = 100,000 (13.6%220

of all voxels in the brain mask). NAFs Fρ were trained for three different definitions of the distance function
ρ, namely, (i) the difference in diagnosis (-1: IUGR; 0: NC; 1: VM), FD, (ii) the difference in the birth
weight percentile, FP and (iii) the difference in volume of the right lateral ventricle, FV . Combinations of
those are denoted as FD,P , FP,V and FD,P,V .

3.3. Evaluation strategy225

The aim of this work was to find a low-dimensional representation of the data, which captures its
heterogeneity and all relevant information. The evaluation of such representation is not straightforward.
One could expect, however, that it preserves local neighborhoods and distances. This can be measured using
Euclidean distances. Thus, we assessed the quality of the new data representations by how well unknown
data samples are classified according to population-specific characteristics using its k nearest neighborhood230

(kNN) in the projected space. We performed classification into three diagnostic groups (IUGR/NC-VM,
VM/NC-IUGR and NC/IUGR/VM) using a simple kNN classifier.

We compared our method to classical LE with distance d(ij) between images Ii and Ij being the Euclidean
distance of the feature vector f of the images, to the random forest classifier (NAF, using directly the output
of the NAFs as classification results) and to a logistic regression classifier applied to the original features235

(LR) and to the selected features for each NAF (LR-F).
We evaluate the classification results using three metrics: the balanced accuracy, the sensitivity and the

specificity. The balanced accuracy takes into account the unbalanced nature of our dataset and is computed
as the average accuracy across classes such that each class has the same contribution in the evaluation
regardless of the number of samples240

When the projection captures the heterogeneity of the data, it should have a high classification perfor-
mance for low values of k. With increasing k, the accuracy should decrease slowly. On the other hand, a
data representation of low quality should have a low classification accuracy irrespective of the value of k.

To illustrate the influence of k in the classification, Fig. 3, shows the accuracy of new data representations
obtained using different methods (LE, NAFs FD and FP , and ML-NAFs YNPM

D,P optimized using NPM) for245
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Figure 3: Influence of the number of nearest neighbors for the classification performance of LE (Laplacian Eigenmaps), FD and
FP (random forest classifier NAF, trained on the diagnosis and birth weight percentile, respectively), and YNPM

D,P (proposed

method combining FD and FP using NPM).

Figure 4: Influence of the parameters ∆ (left) and T (right) on the classification performance.

those three classification tasks for varying k. LE yields low accuracies for all three tasks and all values of
k and gives therefore a low quality data projection. The embedding YNPM

D,P has the highest accuracies for
all classification tasks for low values of k, which decrease with increasing k. For the classification of IUGR
and VM, the decrease in accuracy starts for k ≈ 30 and k ≈ 15, respectively, which is related to the size of
those subpopulations (N = 27 for IUGR and N = 14 for VM, see Table 1). For FD and FP , the accuracies250

are lower. As expected, the results of FP are good for the classification task of IUGR and FD performs
reasonable for all classifications, because all diagnostic labels are used for training the forest. The method
YNPM
D,P , combining those information in a low-dimensional space outperforms all other methods.

In the remaining experiments, we fixed the numbers of neighbors for the kNN classifier as k = 5.

3.4. Parameter selection for NAFs255

The most influential parameters on the performance of NAFs are the number of trees for each forest, T ,
and the minimum sample size at each leaf, ∆, (Konukoglu et al., 2013). Low values of ∆ yield high classi-
fication errors due to overfitting and high values to a decrease in the discriminating power. We performed
similar experiments as in (Konukoglu et al., 2013) to analyze the influence of the parameters on our experi-
ments. Figure 4 shows the influence of the parameters Delta and T on the classification performance. Each260

plot was obtained by varying the corresponding parameter while keeping all others constant. We observe
that for ∆ ∈ [10, 20] good results are obtained for all three diagnostic groups and that for T > 200, no
significant increase in accuracy is observed. Based on this, for the following experiments we chose ∆ = 10
and T = 500. In each tree, q = round(

√
Q) = 316 features were evaluated.

3.5. Pairwise affinities and feature extraction265

The affinity matrices extracted from NAFs FD, FP and FV are shown in Fig. 5 and illustrate the expected
properties of the new approximated neighborhoods. For FD, three blocks associated with the three classes
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Figure 5: Affinity matrices extracted from the NAFs FD (left), FP (middle) and FV (right) showing the similarity structure
in the approximated neighborhoods.

are visible, showing that subjects in the approximated neighborhood are more similar to subjects of their
own class than to subjects of other classes. For FP and FV , the block structure is degenerated. For FP , only
the block of IUGR subjects is clearly visible, indicating that the birth weight percentile is a discriminating270

factor for IUGR but not for VM or NC. When trained on the right lateral ventricle volume, the VM subjects
show higher similarities to other VM subjects than to subjects belonging to other classes.

As described in Section 2.1, the most discriminative features of the NAFs FD, FP and FV are automat-
ically selected. The frequencies of the features selected in the first three levels of the trees, normalized with
the total number of nodes in these levels, are shown in Fig. 6 after convolution with a Gaussian kernel with275

standard deviation σ = 2.
For FV , the NAF trained on the right ventricle volume, the most discriminative features are selected

around the right ventricle (right column in Fig. 6). The majority of the VM subjects have a dilated right
lateral ventricle (12 out of 14 subjects, see Table 1) and the left ventricle is only affected in half of the
cases. This explains that mainly features from the right ventricle are selected in the first levels of the trees,280

even though the lateral ventricles form normally a symmetric structure. For FP (Fig. 6, middle column),
the selected features are located mainly at the cortex, suggesting that changes in the cortex are connected
with a low birth weight percentile. This is in line with other studies (Dubois et al., 2008; Egaña-Ugrinovic
et al., 2013; Tolsa et al., 2004) that reported changes in the cortex for subjects affected by IUGR. For FD,
features of both locations (right ventricle and cortex) are selected. When training based on the diagnosis285

(Fig. 6, left column), many features are selected around the ventricles. This indicates that the dilation of the
ventricles is a distinguishing structural difference between the two conditions and the controls (see Fig. 2).
The image-based classification of IUGR is difficult, because the structural changes in the brain are more
subtle than those in VM subjects. However, as we can see in Fig. 6, left column, some features from the
cortex are also selected.290

3.6. Data representation

Figure 7 shows examples of new data representations using the first and second embedding coordinates
with different color coding. The columns show different data representations (from left to right: Yf , YD,
YP and YD,P ), and the rows different color codings (from top to bottom: diagnostic labels, birth weight
percentile, right lateral ventricle volume). It can be observed that the representation Yf (left column,295

obtained by applying LE using the Euclidean distance between the original feature vectors f) is not able
to cluster the samples according to the diagnostic labels (in particular IUGR subjects) or the birth weight
percentile (first and second row). It shows a separation according to the right lateral ventricle volume, which
is related to more drastic structural changes than, e.g., the birth weight percentile, and can therefore be
captured by the simple Euclidean distance. With YD, YP and YD,P , the three diagnostic groups are well300

clustered. However, when combining NAFs trained on multiple distances as in YD,P , the embedding better
reflects the different characteristics of the population, which is confirmed by the correlation values (r-scores)
for the birth weight percentile and the volume of the right lateral ventricle. Note that when using image
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Figure 6: The features frequency of the NAFs FD, FP , FV , selected in the first three levels of the trees. For FP (middle
column) and FV (right column), the most discriminative features are located at the cortex (green arrows) and around the right
lateral ventricle (blue arrows), respectively. For FD (left column), features of both locations are selected.

neighborhoods based on the diagnostic labels, similar data samples are mapped very close to each other in
the embedding space (see YD in Fig. 7, top row). When multiple image neighborhoods are combined, the305

data samples are wider spread in the embedding space.

3.7. Classification results using single NAFs

Table 2 shows the classification results (balanced accuracy, sensitivity and specificity) of the three di-
agnostic groups using the different methods without combination. When applying LE, the sensitivity for
classifying IUGR and VM subjects is poor. However, when using logistic regression on the original features,310

the classification metrics increase. This shows that the classical Euclidean distance cannot capture the
differences between the features of the three diagnostic groups.

When the NAFs are directly used as a non-linear classifier, the classification accuracy of the three di-
agnostic groups improves notably. The forests FD and FV yield balanced accuracies of 92% and 87%,
respectively, to classify VM subjects, which indicates that the size of the right ventricle volume is a dis-315

criminative factor in the population. For the classification of IUGR subjects, where the structural changes
are more subtle, the balanced accuracy is 72% for FD and 71% for FP . For both diagnostic groups, the
forests obtaining the highest classification accuracies were trained on distance functions which are associated
with the respective diseases (diagnosis and birth weight percentile for IUGR and diagnosis and right lateral
ventricle volume for VM). When trained on less suitable distance functions (birth weight percentile for VM320

and right lateral ventricle volume for IUGR), the performance in classification decreases. This is also seen
in the multi-class classification problem for the third diagnostic group. The highest accuracy is obtained
with FD, where information about both diseases is encoded in the forest. The balanced accuracy decreases
with FP and FV .

The most discriminative features selected in each forest reflect the relation between the appearance of the325

images in the population and the distance function used for training the NAFs. When only those features
are used for classification, the performance is comparable or increases in almost all cases compared to the
classification results directly obtained by the NAFs, as shown in Table 2. This highlights the strong relation
between the regions from where the features were selected and the respective diseases.
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Figure 7: First and second coordinates of the new representation when applying the proposed pipeline to single and combined
NAFs (YD: trained on the diagnosis; YP : trained on the birth weight percentile; YD,P , YP,V : combination when optimizing
NPM of YD and YP ; Yf : using classical Laplacian eigenmaps. The color coding is with respect to the diagnosis (top row;
controls in yellow, IUGR in blue and VM in red). The samples with a black circle are the test samples projected into the new
space, with the color of their true class labels.

When applying the proposed method (Fig. 1) to the affinity matrices extracted from FD, FP , FV and330

performing classification in the new representations YD, YP , YV , the overall best results with balanced
accuracy, sensitivity and specificity for single NAFs are obtained in the new space YD, where already
information of both IUGR and VM was encoded (highlighted in bold in Table 2).

3.8. Classification results using combined NAFs

The affinity matrices extracted from the NAFs approximate image neighborhoods resulting from the335

corresponding user-defined distance function. To incorporate several neighborhood definitions, the matrices
can be combined as detailed in Section 2.2 to form a new manifold representation. The classification results
when using several combination methods are shown in Table 3.

It can be observed that the classification performance for all three diagnostic groups increases when
combining image neighborhoods based on different distance functions. For the proposed method, we used340

three different weighted combination methods, as described in Section 2.2. The overall best performance
for all groups is obtained when optimizing the weights µk in Eq. (1) according to the embedding assessment
measure NPM (highlighted in bold in Table 3).

4. Discussion and Conclusions

We have proposed a method to learn and combine pairwise image similarities induced by application345

specific distance functions for finding a new, low-dimensional data representation through manifold learning.
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Table 2: Classification results of the three diagnostic groups (Bacc: balanced accuracy; Sens: sensitivity; Spec: specificity)
using different methods without combination. LR: logistic regression classifier on the original features; LE: classical Laplacian
Eigenmaps using the Euclidean distance between original features f ; NAF: neighborhood approximation forest classifier of
forests FD, FP , FV ; LR-F: logistic regression classifier on the most discriminative features f∗D, f∗P , f∗V , selected from FD, FP ,
FV , respectively; ML-NAF: proposed method (Fig. 1) applied to the affinity matrices AD, AP , AV extracted from FD, FP ,
FV to obtain new representations YD, YP , YV .

IUGR VM NC-IUGR-VM
Method Bacc. Sens. Spec. Bacc. Sens. Spec. Bacc. Sens. Spec.

in % in % in %

LR f 75 52 98 66 35 98 61 77 81
LE Yf 58 18 98 59 2 99 45 68 72

NAF
FD 72 57 88 92 90 95 77 79 85
FP 71 58 84 66 35 98 57 69 78
FV 57 18 96 87 80 94 63 73 78

LR-F
f∗D 74 55 93 81 65 98 68 77 83
f∗P 75 55 94 76 55 98 61 76 80
f∗V 69 43 94 87 75 99 68 77 82

ML-NAF
YD 78 72 85 93 90 96 80 79 88
YP 77 82 73 61 25 97 57 63 77
YV 47 0 94 87 80 94 56 64 73

Table 3: Classification results of the three diagnostic groups (Bacc: balanced accuracy; Sens: sensitivity; Spec: specificity) using
different methods with combination. LR-F: logistic regression classifier on the concatenation of the most discriminative features
f∗D,P , f∗P,V , f∗D,P,V , selected from FD, FP , FV , respectively; ML-NAF: proposed method (Fig. 1) applied to a combination of
affinity matrices AD, AP , AV extracted from FD, FP , FV to obtain new representations YD,P , YP,V , YD,P,V .

IUGR VM NC-IUGR-VM
Method Combination Bacc. Sens. Spec. Bacc. Sens. Spec. Bacc. Sens. Spec.

in % in % in %

NAF
FD,P

uniform
79 72 87 91 85 97 79 79 87

FP,V 67 50 84 87 80 95 70 73 81
FD,P,V 76 65 88 89 85 94 77 78 86

LR-F
f∗D,P

concat.
75 55 95 81 65 98 67 77 82

f∗P,V 72 48 96 87 75 99 69 79 83

f∗D,P,V 75 55 95 81 65 98 67 77 82

ML-NAF
YD,P

uniform
82 80 84 93 90 97 82 80 88

YP,V 72 62 81 87 80 94 71 70 82
YD,P,V 78 72 85 92 90 94 80 78 88

YD,P intra-class
variance

81 77 85 93 90 97 82 80 88
YP,V 77 82 73 77 60 94 68 67 83
YD,P,V 82 77 87 92 90 95 82 81 90

YD,P

NPM
85 90 80 93 90 97 84 79 89

YP,V 78 78 77 87 80 95 75 72 85
YD,P,V 75 65 85 92 90 94 77 77 86
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We used NAFs to approximate image neighborhoods, which are learned on user-defined distances and based
on the appearance of images. Thus, the proposed method allows the combination of heterogeneous sources
of information (i.e., user-defined distances relevant to a pathology) and extracts automatically relevant
features without the need to engineer them a priori (e.g., shape-based features). However, the neurobiological350

meaning of those predictive features remains unclear and has to be investigated further (Shmueli, 2010). We
proposed to combine those multiple neighborhoods in an unsupervised manner through manifold learning
by assessing the quality of the resulting embedding through NPM. We applied the method to a population
of neonatal brain MR images and evaluated it using classification in the resulting manifold representation
space. Results showed an improved classification performance compared to using single affinities and classical355

unsupervised manifold learning regarding structural changes related to neonatal diseases.
A key motivation for using random forests, here in particular NAFs, is that they provide a natural way

for combining the similarities learned from multiple distances. It may not be possible to capture the complex
brain changes and characteristics, which come along with diseases in the developing brain, by single, pre-
selected features. Subsequently, an important part of our framework is the combination of approximated360

neighborhoods. We have shown that an optimal combination can improve the performance of the new
representation with respect to classification of structural and clinical information.

The proposed framework is flexible in the sense that the different methods, in particular for learning
and combining the neighborhoods and constructing the manifold representation, are interchangeable. We
chose to learn the pairwise affinities using NAFs but other implementations of random forests can be used365

as well. As a manifold learning method, we employed LE, but other non-linear methods are possible. In
our previous work (Zimmer et al., 2015a), we applied Isomap to the approximated neighborhoods obtained
from the NAFs, because it had the best performance on the given dataset. In Section 2.2, we presented
two methods to optimize the weights in Eq. (1). First, a supervised method which optimizes the intra-class
variance in the new manifold representation such that the classes are well separated in the optimal low-370

dimensional space. Second, as an alternative, we proposed an unsupervised method measuring the quality
of the resulting manifold representation in terms of intrusions in the k nearest neighborhood of samples in
the new space (Zimmer et al., 2015b). Other methods to find the optimal combination, see, e.g., the works
of Gray et al. (2013) and Wolz et al. (2012) or to combine the different distances after the manifold learning
step (Aljabar et al., 2011) are possible.375

The evaluation of such manifold embeddings is not straightforward. Since one could expect that a good
low-dimensional representation capturing the data’s heterogeneity preserves local neighborhoods and dis-
tances, we evaluate our method through the classification of the conditions present in the data population.
Classification methods for brain disorders have been studied extensively and although classification was not
the main objective of this work, we use it to assess the quality of the low-dimensional data representations.380

One major difference is the type of features they use to analyze the data. Many works use hand-crafted
features, such as shape information (Tang et al., 2014) and deformations (Baloch and Davatzikos, 2009) to
classify brain disorders, others combine simple features such as image intensities with other information,
e.g., other measurements such as volume, thickness and shape (Aljabar et al., 2011; de Vos et al., 2016),
or meta-information, such as age, gender and cognitive scores (Wolz et al., 2012; Moradi et al., 2015). Our385

method goes in line with the latter approaches and we avoid the computation of complex features. With
this, we follow an increasing trend in computer vision to substitute hand-crafted features (through non-
straightforward procedures, such as extraction of shape descriptors) by features learned using data-driven
approaches (representation learning) (LeCun et al., 2015). The idea of those approaches is to make methods
and algorithms less dependent on labor intensive feature engineering (Bengio et al., 2013). However, the390

proposed framework allows an easy incorporation of hand-crafted features. One option would be to define
distance functions for training the NAFs based on the difference of those features, e.g., as done in Aljabar
et al. (2011) based on shape features. A second option would be to train the NAFs on more sophisticated fea-
tures. We performed experiments incorporating information about pairwise image deformation by learning
the approximated neighborhoods on the deformation Jacobians instead of the image intensities. However,395

using those supposedly more informative features did not significantly improve the results.
We have applied our framework to neonatal MR images of three different groups (term controls and

subjects affected by one out of two conditions: IUGR and VM). We learned the pairwise image distances
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using clinical (diagnosis and birth weight percentile) and structural information (lateral ventricle volume)
to construct manifold representations which are able to separate between the three groups. The manifold400

representations constructed from individual neighborhoods were specific to the criterion their neighborhoods
were trained on. The combination of pairwise distances through associated affinity matrices obtained from
the NAFs improves the overall performance of the joint representation regarding the full characteristics of
the population.

Diseases affecting the brain structure during brain development are highly complex and might affect405

not only single, well identified brain regions, but influence overall brain development. By learning image
distances through NAFs based on, e.g., clinical information, we couple the neighborhood approximation
with the feature extraction step and do not have to rely on feature extraction methods which require prior
knowledge. Interesting to highlight are the approximated neighborhoods and most discriminative features
trained on the diagnosis or the birth weight percentile to detect IUGR (see Fig. 6). The structural changes410

which go in hand with IUGR are very subtle and hard to identify with MR imaging. However, by learning
the distances based on clinical information, we are able to detect the differences in the cortex. As future
work, it would be of great interest to relate the new embedding coordinates with the neurodevelopmental
outcome of patients affected by VM and IUGR. This would go one step further towards its prediction and
biomarker identification.415

A limitation of this study is the relatively small population size of 111 subjects. The lack of neonatal
data due to challenges during acquisition and data accessibility, is a well known issue. Nonetheless, the
sampling of the manifold by the original data is an important aspect for the quality and performance of the
new representation obtained by manifold learning (Aljabar et al., 2012). We had only 14 VM subjects, and
therefore we cannot assume that they represent the whole variability of the disease. The same holds for the420

27 IUGR subjects. For further clinical studies on the specific diseases, including biomarker extraction, a
larger amount of data is required.

Under the hypothesis that the space of brain images can be represented by a low-dimensional non-linear
manifold, many manifold learning techniques have been proposed to discriminate features over the brain.
However, it remains an open question whether one can consider brains affected by different pathologies to425

lie on or close to the same manifold. Typically, only a single pathology is studied, together with normal
controls. We hypothesize that neonatal brain images affected by different conditions, as IUGR and VM,
have manifold representations approximately in the same space. Another approach would be to construct
new representations for each disease and compare them.

A related issue is the projection of new data samples to an already constructed manifold representation.430

In non-linear manifold learning, determining the manifold coordinates for new subjects is not straightforward.
In this work, we chose a projection based on Nyströms formula (Bengio et al., 2004) as detailed in Section 2.2.
The new coordinates are a weighted linear combination of the coordinates of the nearest training samples
in the original space. By using such an approximation, the assumption is made that the mapping from
the high- to the low-dimensional space is an isometry. Although LE does not preserve distances on the435

manifold (Belkin and Niyogi, 2003), it does preserve locality. Here, we use only the k=10 nearest neighbors
(in the original space determined by the affinity matrices derived from the NAFs) to obtain the embedding
coordinates of an unseen data sample. Other approaches are possible (He and Niyogi, 2004).

To conclude, we have presented a framework encoding simultaneously heterogeneous information (clinical
and image-based) in new manifold representations and have shown on a population of neonatal brain MR440

images that this approach improves the overall characterization of the population and corresponding diseases.
We believe that incorporating different kind of information in the analysis may help in studying abnormal
brain development, which is characterized by changes in multiple biomarkers.
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