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Abstract

In Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI), a tensor field or a spher-
ical function field (e.g., an orientation distribution function field), can be estimated from measured diffusion weighted
images. In this paper, inspired by the microscopic theoretical treatment of phases in liquid crystals, we introduce a novel
mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white
matter based on the reconstructed tensor field or spherical function field: 1) We propose a set of mathematical tools to
process general director data, which consists of dyadic tensors that have orientations but no direction. 2) We propose
Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion
of a spherical function in a single voxel or in a region, respectively; 3) We also show how to construct a local orthogonal
coordinate frame in each voxel exhibiting anisotropic diffusion; 4) Finally, we define three indices to describe three
types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to
describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational
distortion (splay, bend, and twist) in general spherical function fields from DTI or HARDI data. The proposed DFA
and its related mathematical tools can be used to process not only diffusion MRI data but also general director field
data, and the proposed scalar indices are useful for detecting local geometric changes of white matter for voxel-based or
tract-based analysis in both DTI and HARDI acquisitions. The related codes and a tutorial for DFA will be released in
DMRITool.
Keywords:
Diffusion MRI, Diffusion Tensor, Orientation Distribution Function, Distortion, Dispersion, Director Field Analysis,
Local Orthogonal Frame, Liquid Crystals, dyadic

1. Introduction

Diffusion MRI is a powerful non-invasive imaging tech-
nique widely used to explore white matter in the human
brain. Diffusion Tensor Imaging (DTI) (Basser et al.,
1994) is used to reconstruct a tensor field from diffusion
weighted images (DWIs). High Angular Resolution Diffu-
sion Imaging (Tuch et al., 2002; Frank, 2002; Descoteaux
et al., 2007; Tournier et al., 2007; Cheng et al., 2010, 2015,
2014; Özarslan et al., 2013), which makes no assumption
of a 3D Gaussian distribution of the diffusion propaga-
tor, is used to reconstruct a general function field from
DWIs, (e.g., an Orientation Distribution Function (ODF)
or Ensemble Average Propagator (EAP) field). Both the
ODF and the EAP fields with a given radius are spheri-
cal function fields. Exploring microstructural information
from the reconstructed tensor field or spherical function
field is of interest in many biological and clinical applica-
tion areas, which makes diffusion MRI a powerful means
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to study white matter. For example, in an voxel exhibit-
ing anisotropic diffusion, local peaks of the reconstructed
spherical function or the principal eigenvector of the re-
constructed 2nd-order diffusion tensor normally prescribe
the fiber directions in that voxel.

Some scalar indices have been proposed to be esti-
mated voxel-wise from tensors/ODFs/EAPs. For DTI,
well-established tensor scalar indices, including the mean
diffusivity and Fractional Anisotropy (FA), are widely
used as biologically meaningful descriptors (Pierpaoli and
Basser, 1996). Kindlmann et al. (2007) proposed two sets
of scalar indices (three scalar indices per set), which are or-
thogonal in terms of tensor changes and the Euclidean in-
ner product. For High Angular Resolution Diffusion Imag-
ing (HARDI), the generalized FA (Tuch, 2004), Orienta-
tion Dispersion index (OD) (Zhang et al., 2012), return-
to-origin probability (Helmer et al., 2003; Wu and Alexan-
der, 2007), and mean-squared displacement (Basser, 2002;
Wu and Alexander, 2007) were all proposed for ODFs and
EAPs. These indices indicate some information inside a
voxel, but cannot describe local geometric or topologi-
cal information, including fiber crossing, fanning, bending,
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and twisting, in a local spatial neighborhood.
Some previous works have extracted local geometric

information by considering the local spatial change of ten-
sor fields or ODF fields. Pajevic et al. (2002) demon-
strated that the norm of the spatial gradient of the tensor’s
isotropic and anisotropic parts can detect boundaries be-
tween white matter, CSF, and gray matter. Kindlmann
et al. (2007) proposed tangents of scalar invariants and
rotation tangents, which are 2nd-order tensors, and also
proposed projecting the 3rd-order spatial gradient tensor
onto these 2nd-order tangents to obtain the spatial direc-
tion with the largest change of scalar indices or rotation of
tensors. Based on the rotation tangents of tensors, Savad-
jiev et al. (2010) proposed fiber curving and fiber disper-
sion indices. Tax et al. (2016) proposed a sheet proba-
bility index to quantify the local sheet structure by using
spatial changes of ODF peaks. Duits and Franken (2009,
2011); Portegies et al. (2015) proposed spatial and spher-
ical smoothing to enhance an ODF field in a PDE frame-
work, preserving crossing structures. Reisert and Kiselev
(2011); Cheng et al. (2013); Michailovich et al. (2011) con-
sidered spatial coherence in ODF estimation.

The terms “splay”, “bend” and “twist” have been used
to qualitatively describe complex local white matter struc-
tural configuration in literature of diffusion MRI for about
20 years (Basser, 1997; Pajevic et al., 2002; Johansen-Berg
and Behrens, 2009). However, to our knowledge, there
is no existing work that quantitatively describes the de-
gree of local orientational change of white matter, includ-
ing splay, bend, and twist, from general ODF fields in
dMRI, although the fiber curving and dispersion indices
in Savadjiev et al. (2010) can be seen to quantify “splay”
and “bend” for a tensor field in DTI.

Basser (1997) discussed the initial idea to study the
torsion and curvature of a fiber tract by using the Frenet
frame 1 along the tract. Torsion and curvature from the
Frenet frame were later used in diffusion data analysis
in Batchelor et al. (2006). Savadjiev et al. (2007) used the
Frenet frame as a prior in the relaxation labeling algorithm
to regularize the data and estimate ODFs in voxels. These
works on the Frenet frame studied geometric information
along a single tract. However, tractography is known to be
sensitive to a large number of parameters, and any flaws
in the reconstructed tracts due to noise or parameter se-
lection will inevitably be reflected in the geometric infor-
mation that is extracted subsequently. Piuze et al. (2015)
proposed moving frames determined by the geometry of
cardiac data, and calculated Maurer-Cartan connections.
However this method is not applicable to general diffusion
MRI data, and does not consider the sign ambiguity in the
frame.

There exist some connections between diffusion MRI
data analysis and liquid crystals. Orientational order pa-
rameter is well-established to describe the degree of align-
ment in liquid crystals Andrienko (2006). Lasič et al.

1https://en.wikipedia.org/wiki/Frenet-Serret formulas

(2014); Szczepankiewicz et al. (2015) calculated the or-
der parameter map by estimating variance of microscopic
diffusion parameters from the contrast between diffusion
signals measured by directional and isotropic diffusion en-
coding. However, it cannot be used for general DTI and
HARDI data. Topgaard (2016) used a diffusion tensor
method to estimate the director orientations of a lyotropic
liquid crystal as a spatially resolved field of Saupe order
tensors.

In this paper, inspired by orientation and distortion
analyses applied to liquid crystals, we propose a unified
framework, called Director Field Analysis (DFA), to study
the local geometric information of white matter from the
reconstructed spherical function field. DFA works both for
tensor fields obtained from DTI and for spherical function
fields from HARDI. At the voxel level, 1) the Orienta-
tional Order index (OO) and Orientational Dispersion in-
dex (OD) are defined for the spherical function in a voxel
with a given axis (e.g., the ODF with its principal direc-
tion); and 2) the principal direction is extracted from the
spherical function in such a voxel exhibiting anisotropic
diffusion. At a local neighborhood level, 1) an orthogonal
coordinate frame is defined for each voxel with anisotropic
diffusion, where the first axis is the extracted principal
direction; 2) OO is defined for spherical functions in a lo-
cal neighborhood with the given principal direction; and
3) three distortion indices (splay, bend, twist) and a total
distortion index are defined based on the spatial direc-
tional derivatives of the principal direction. An overview
of the DFA pipeline for a spherical function field is shown
in Fig. 1.

This paper is organized as follows. Section 2 provides a
unified overview of existing works on tensor field analysis
for exploring local geometric information (Pajevic et al.,
2002; Kindlmann et al., 2007; Savadjiev et al., 2010), which
is also a motivation for the proposed DFA. Section 3 pro-
poses the DFA framework that works for both diffusion
tensor fields and ODF fields. Section 4 demonstrates some
results of synthetic and real data experiments by using
DFA. Section 5 discusses some issues on implementing
DFA.

2. Tensor Field Analysis

This section provides an overview of existing works ex-
ploring the local geometric features of a 2nd-order diffusion
tensor field by using the spatial gradient of tensors (Paje-
vic et al., 2002; Kindlmann et al., 2007; Savadjiev et al.,
2010) in a unified framework. It also proposes a new 4th-
order structure tensor applied to 2nd-order tensor data
that generalizes the conventional 2nd-order structure ten-
sor applied to scalar fields.

The 2nd-order diffusion tensor field. In a diffusion
tensor field denoted as D, there is a diffusion tensor D(x)
at the voxel x, where D(x) ∈ S3

+, and S3
+ is the set of 3×3

symmetric positive definite matrices. The diffusion tensor
is symmetric with six unique (i.e., independent) elements.
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Figure 1: Director Field Analysis (DFA) pipeline for an ODF field obtained from DTI or HARDI. DFA provides total six scalar indices
calculated from a spherical function field at the voxel level and at the local neighborhood level.

The 3rd-order spatial gradient of the diffusion
tensor. For a tensor field denoted as D with elements
[Dij(x)] at the voxel x, its spatial gradient at voxel x,
denoted as ∇xD(x), is a 3rd-order tensor with elements
[Dij,k(x) = ∂Dij

∂xk
(x)], where i, j, k ∈ {1, 2, 3}. Since the

diffusion tensor is symmetric with six unique elements, the
3rd-order spatial gradient has 18 unique elements.

Mapping the 3rd-order spatial gradient to a vec-
tor. Let W = [Wij ] be a designed 2nd-order weighting

tensor in tensor space, then the tensor inner product

W : ∇xD =
∑
ij

WijDij,k =
∑
ij

Wij
∂Dij

∂xk
=
∂
∑

ij
WijDij

∂xk
(1)

produces a vector in the image space that is the spatial
gradient of the scalar field

∑
ijWijDij at the voxel x.

Note that the inner product in Eq. (1) is performed at
voxel x, and the x dependency is omitted in the notation
if there is no ambiguity. There are several ways to design

3



a physically meaningful weighting tensor, W. W could be
a constant independent of spatial position, x, or a func-
tion of x. 1) If W = 1

3I, then
∑
ijWijDij is the mean

diffusivity field, and Eq. (1) is its spatial gradient. 2) If
f : D ∈ S3

+ 7→ f(D) ∈ R1 is a scalar function that maps D
to a scalar value, then ∂f(D)

∂D is the gradient of the scalar
function, which is also a 2nd-order tensor with elements
[∂f(D)
∂Dij

]. If we set W = ∂f(D)
∂D , then the vector in Eq. (1)

is the spatial gradient of the scalar field f(D(x)), because
of ∂f

∂x = ∂f
∂D : ∂D

∂x by the chain rule. If f(D) is the mean
diffusivity function, then ∂f

∂D = 1
3I. We can also use other

scalar invariants of tensors, e.g., FA. 3) If we choose W
as the rotation tangent Φp(D) (Kindlmann et al., 2007)
defined as the change of tensor value due to infinitesimal
rotations around the p-th eigenvector, then Eq. (1) de-
notes the direction in which the tensor orientation around
the p-th eigenvector varies the fastest.

Mapping the 3rd-order spatial gradient to a
scalar value. Let W = [Wij ] be a 2nd-order weight-
ing tensor in tensor space, and let v be a vector, then the
tensor inner product

W : ∇xD : v =
∑
ijk

Wijvk
∂Dij

∂xk

=
∂
∑
ijWijDij

∂v
=
∑
ij

Wij
∂Dij

∂v
(2)

produces a scalar value that is the directional derivative of
the scalar field

∑
ijWijDij at voxel x along the vector v,

and is also the weighted mean of the directional derivative
of D(x) along the vector v. 1) If we set Wijvk = Dij,k,
then Eq. (2) is the squared norm of the tensor gradi-
ent, which is useful for detecting boundaries of a ten-
sor field (Pajevic et al., 2002). 2) By choosing v as the
three eigenvectors of D, and W as three rotation tan-
gents around three eigenvectors, respectively, we have to-
tal 9 scalar values to distinguish 9 configurations of tensor
fields (Savadjiev et al., 2010). 3) The above 9 scalar in-
dices can be combined to devise the fiber curving and fiber
dispersion indices (Savadjiev et al., 2010).

The 4th-order structure tensor. We propose a
new 4th-order structure tensor with elements Dij,kl =
∂Dij

∂xk

∂Dij

∂xl
, which is analogous, but generalizes the struc-

ture tensor of a scalar field 2. The above 4th-order struc-
ture tensor is minor symmetric (Moakher, 2009), i.e.,
Dij,kl = Dji,kl, Dij,kl = Dij,lk. Thus, there are 36 unique
elements out of a possible total of 81 elements, and there
is one-to-one mapping between this 4th-order tensor and a
2nd-order tensor (i.e., a 6× 6 matrix). However, since the
4th-order tensor is minor symmetric, the corresponding
6 × 6 matrix is not symmetric in general. Thus, eigen-
values and the 2nd-order left and right eigenvectors can

2https://en.wikipedia.org/wiki/Structure tensor

be calculated based on eigen-decomposition of the non-
symmetric 6 × 6 matrix. We may define some scalar in-
variants from these six eigenvalues of the 4th-order struc-
ture tensor, which can be used as features in this high
dimensional space. We can also contract the 4th-order
structure tensor to a scalar value by using the tensor inner
product

∑
ijklWijDij,klvkvl, which is the weighed mean

of the squared spatial directional derivative along vector
v. When setting v as three eigenvectors and correspond-
ing weighting W as rotation tangents divided by the spa-
tial gradient, then the tensor inner product produces nine
scalar indices that are the squares of the corresponding
nine indices in Savadjiev et al. (2010). Thus, the curving
and dispersion indices in Savadjiev et al. (2010) can also
be obtained by choosing the corresponding W.

3. Method: Director Field Analysis

Section 2 provides a unified framework to explore geo-
metric structure information (e.g., boundary, curving, dis-
persion, etc.) from a tensor field, by considering a differ-
ent weighting matrix on the spatial gradients. However,
it is challenging to generalize this framework to ODFs in
HARDI, where ODFs are normally general spherical func-
tions with antipodal symmetry.

In this section, we propose a novel mathematical frame-
work, called Director Field Analysis (DFA). Section 3.1
defines director related concepts to deal with vectors with
sign ambiguity. Section 3.2 provides a set of mathemat-
ical tools for DFA. Section 3.3 proposes OO and OD for
tensors and ODFs in voxels and in a spatial neighborhood,
and gives closed-form results in some specific cases. Sec-
tion 3.4 extracts the principal direction and its related
local orthogonal frame in voxels exhibiting anisotropic dif-
fusion. Section 3.5 defines four orientational distortion
indices and demonstrates the implementation of the cal-
culation by using the local orthogonal frame in Section 3.4.
Section 3.1 and 3.2 are the theory part of DFA. Section 3.3,
3.4, and 3.5 are the application part of DFA in diffusion
MRI. Fig. 1 demonstrates DFA to a spherical function field
obtained from DTI or HARDI.

3.1. Director and Director Field
We define a director as a unit norm vector v that is

equivalent to −v. The director term is borrowed from
studies of liquid crystals 3. We also define a director with
weight, or weighted directors, as a vector associated with a
weight (v, w), which is equivalent to (−v, w), where ‖v‖ =
1, w ∈ R1. If w ≥ 0, then a weighted director (v, w) can
be represented as wv. See Fig. 2. A director v can be
uniquely represented as a dyadic tensor, vvT , which avoids
the sign ambiguity, and a director with weight (v, w) can
be uniquely represented as a dyadic tensor, wvvT . We

3https://en.wikipedia.org/wiki/Liquid crystal
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define a director field as {(ui(x), wi(x))}, where there are
some weighted directors in each voxel x.

Directors occur very often in diffusion MRI studies.
Eigenvectors of diffusion tensors, local maxima of ODFs,
and local fiber directions are all directors. Based on eigen-
decomposition, a tensor D =

∑3
i=1 λivivTi is the sum of

three dyadic tensors that represent three weighted direc-
tors. A spherical function f(u) which satisfies antipodal
symmetry, i.e., f(u) = f(−u), can be seen as infinite
weighted directors {(ui, f(ui))}. Thus, a spherical func-
tion field, f(u,x), is a director field by definition.

An ODF in a voxel exhibiting anisotropic diffusion is
anisotropic, and the orientations where the ODF takes its
local peak (i.e., local maximal values) are normally con-
sidered to be local fiber directions in that voxel. A normal
peak detection algorithm for ODFs performs a grid search
in a spherical mesh, and then refines the solution by us-
ing a gradient ascent on the continuous sphere (Tournier
et al., 2004). Note that peak detection is only per-
formed for voxels exhibiting anisotropic diffusion (e.g.,
where ODFs have Generalized FA (GFA) (Tuch, 2004)
values larger than 0.3). Moreover, in order to avoid in-
cluding small peaks produced by noise, only peaks whose
values are larger than a threshold percentage (e.g., 0.5) of
the largest ODF value are counted. After peak detection,
for each voxel x, we obtain a discrete spherical function
g(u,x) =

∑
i f(ui,x)δ(u−ui) from the continuous spher-

ical function f(u,x), where {ui} are local peaks. This
discrete spherical function field is also a director field, or
called a peak field, which emphasizes local peaks and sup-
presses weights for other directors. A peak field can also
be extracted from a tensor field. In each voxel for a tensor
field, there is 0 or 1 peak, and the principal eigenvector of
the tensor is considered as a peak, if the tensor has a large
FA value (e.g., larger than 0.3).

3.2. Mathematical Tools for Directors
We provide a set of mathematical tools for analyzing

directors and director fields. These tools are useful not
only for this paper, but also for other applications which
deal with continuous or discrete director data.

3.2.1. Mean Director of a Set of Directors
For a given N weighted directors {(vi, wi)}Ni=1, if we

convert a director to a vector by assigning a sign, we have
total 2N possible sign assignments. Thus, we have 2N pos-
sible Euclidean mean vectors for the N vectors. We define
a mean weighted director of a set of weighted directors as
the Euclidean mean vector with the sign assignment that
takes the maximal norm among the 2N mean vectors.

Definition 1. Mean director of weighted
directors. A mean weighted director of a set of
weighted directors {(vi, wi)}Ni=1 is defined as
Mean({(vi, wi)}Ni=1) = 1

N

∑N
i=1 wisivi, where the signs

{si} = arg maxsi={1,−1} ‖
∑N
i=1 wisivi‖2, and Mean(·) is

the mean director operator.

It is obvious that {(vi, wi)}Ni=1 and {(vi, |wi|)}Ni=1 have
the same mean director. Thus, without loss of generality,
we assume non-negative weights for calculating the mean
director. If the angle between any two vectors vi and vj is
no more than 90◦, then the sign assignment for the mean
director can be proved to be si = 1, ∀i. See Proposition 1
whose proof is based on the proof of the mean director of
two directors, which is trivial. The mean director may be
not unique when some directors are orthogonal.

Proposition 1. Mean director of weighted directors in a
90◦ cone. For a set of weighted directors {(vi, wi)}Ni=1 with
non-negative weights, if all directors are in a 90◦ cone,
i.e., vTi vj ≥ 0, ∀i, j, then the mean weighted director is
1
N

∑N
i=1 wivi.

3.2.2. Main Director of a Set of Directors
We define the main director of a set of weighted di-

rectors as the main axis in Principal Component Analysis
(PCA) by using eigen-decomposition. This concept is from
the average director of molecule orientations in liquid crys-
tals.

Definition 2. Main director of weighted directors. A
main weighted director of a set of weighted directors
{(vi, wi)}Ni=1 is defined as Main({(vi, wi)}Ni=1) = (v0, λ0),
where λ0 is the eigenvalue of the tensor

∑N
i=1 wivivTi

which has the largest absolute value among all eigenval-
ues, and v0 is its corresponding eigenvector, and Main(·)
is the main director operator.

Note 1) The dyadic tensor of the largest eigenvalue and
eigenvector λ0v0vT0 is the best rank-1 approximation of∑N
i=1 wivivTi in terms of the L2 norm. 2) The main direc-

tor may not be unique, considering there may be more than
one eigenvalues which are equal, and are all the largest
eigenvalue. 3) Unlike the mean director which is inde-
pendent of the signs of the weights, the main director is
dependent on the weight signs. 4) Although, in general,
the mean and the main directors are not the same, in some
cases, they may give the same direction. See Proposition 2
and Fig. 2 (a) for the two director case. See Fig. 2 (a) and
(b) for an illustration of the mean and main directors.

Proposition 2. Two weighted directors with the same
weight. For two weighted directors with the same weight,
denoted as (v1, w) and (v2, w), the main director is
( v1+v2
‖v1+v2‖ , w(1+vT1 v2)) if wvT1 v2 ≥ 0, and is ( v1−v2

‖v1−v2‖ , w(1−
vT1 v2)) if wvT1 v2 ≤ 0. The mean director is |w|2 (v1 + v2),
if vT1 v2 ≥ 0, and is |w|2 (v1 − v2), if vT1 v2 ≤ 0.

The mean director and main director describe different
meaningful information about directors. Take a diffusion
tensor D =

∑3
i=1 λivivTi , λ1 > λ2 > λ3 > 0, as an ex-

ample. There are three weighted directors {(vi, λi)}3i=1,
or represented as {λivi} because of non-negative weights.
The mean director is 1

3
∑3
i=1 siλivi with any sign assign-

ment of {si}, while the main director is λ1v1. See Fig. 2
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w1v1w2v2

rotation

(a) (b) (c)

Figure 2: The mean, main, and difference of directors. Directors (vi, wi), i = 1, 2, 3, are visualized as vectors wivi and −wivi, and the
length of wivi is the positive weight wi. (a) the mean (in blue) and main (in red) directors of two directors (in black), where w1 = w2, and
vT1 v2 > 0. See Proposition 2. (b) the mean (in blue) and main directors of three directors (in black) which are orthogonal to each other,
where w1 > w2 > w3, vTi vj = δji . The mean director is not unique, because 1

3
∑

i
siwivi with an arbitrary sign assignment {si} can be

the mean director. The main director is w1v1. (c) the difference of two directors. The two blue vectors denote the director representation
of the difference, i.e., Diffd(w1v1, w2v2) = w1v1 − w2v2. The two red arcs denote the rotation matrix representation of the difference, i.e.,
Diffr(w1v1, w2v2) = R, where R is a scaled rotation matrix such that w1v1 = Rw2v2. The rotation matrix representation has no sign
ambiguity, while the director representation has the sign ambiguity.

(b). Additionally, small changes in λ2, λ3, v2, and v3
may change the mean director, but not the main director,
if λ1 and v1 are still the largest eigenvalue and eigenvec-
tor. This example clearly shows that the mean director
concept is a generalization of the mean vector concept in
vector space, while the main director emphasizes the main
axis in PCA. Please note that in a general case, the change
of any director (vi, wi) may cause the change of the main
director (i.e., the largest eigenvector and eigenvalue of the
tensor

∑
i wivivTi ) and also the mean director.

3.2.3. Two Representations of the Difference between Two
Directors

We aim to generalize the tensor field analysis in Sec-
tion 2 to director fields (i.e., ODF fields), and explore ge-
ometric structure information by using spatial derivatives
which rely on the concept of difference between two direc-
tors.

We propose two ways, i.e., the director representa-
tion denoted as Diffd and the rotation matrix represen-
tation denoted as Diffr, to represent the difference be-
tween two weighted directors with non-negative weights,
w1v1 and w2v2. These two directors can be converted
to the vectors w1s1v1 and w2s2v2 by assigning the sign
s1 = 1 (or s1 = −1), and s2 such that w1w2s1s2vT1 v2 ≥ 0.
Thus, there are two different cases because of the sign
ambiguity. We can represent the difference as a direc-
tor, i.e., Diffd(w1v1, w2v2) = w1s1v1 − w2s2v2. We can
also represent the difference as a scaled rotation matrix R
which rotates w2s2v2 to w1s1v1, i.e., w1s1v1 = Rw2s2v2,

Diffr(w1v1, w2v2) = R. The rotation matrix can be cal-
culated from the rotation axis s2v2 × s1v1 (i.e., the cross
product of s2v2 and s1v1) and the rotation angle (i.e.,
the angle between s2v2 and s1v1) 4, and the scale can be
calculated from the weights w1 and w2. Note that this
rotation matrix is the same for the above two cases, with-
out sign ambiguity. See Fig. 2 (c) as an illustration. The
director representation of the difference has the sign am-
biguity, but it gives a vector without a sign which can be
projected onto axes. The rotation matrix representation
is unique without sign ambiguity, but cannot be projected
onto axes.

3.2.4. Spatial Gradient and Directional Derivative of a Di-
rector Field

Considering a director field where there is only one
director with non-negative weight wv(x) (simplified nota-
tion for w(x)v(x)) at each position x ∈ R3, a directional
derivative along u at x is defined as

∂wv
∂u = lim

k→0

Diff(wv(x + ku), wv(x − ku))
2k . (3)

Thus, there are also director and rotation matrix repre-
sentations of the directional derivative because of the two
representations of Diff, i.e., Diffd and Diffr.

4https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_
matrix_from_axis_and_angle
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For the director field where directors wv(x) are only
obtained in a integer lattice, the central difference can be
used to approximate the spatial gradient [∂wv

∂xi
], where

∂wv
∂xi

≈ Diff(wv(x+oi), Mean({wv(x−oi), wv(x+oi)})), (4)

o1 = [1, 0, 0]T , o2 = [0, 1, 0]T , o3 = [0, 0, 1]T are the unit
norm vectors along spatial axes, and Mean is the mean
director operator in Definition 1.

We normally use the rotation matrix representation for
the spatial gradient ∂wv

∂xi
, considering this representation

is unique. Let {Ri(x)} be the rotation matrices for the
spatial gradient at x along axes {xi}, i.e., Diffr is used
in Eq. (4). Then, analogously to the spatial gradient of a
vector field, the director wv(x + ku) at position x + ku
with small k can be approximated as the sum of rotated
directors, i.e.,

3∑
i=1

kpi(x), where pi(x) =
{
uiRi(x)w(x)v(x), if ui ≥ 0

− uiRT
i (x)w(x)v(x), if ui < 0.

(5)
Note that every director in the above sum is a rotated
w(x)v(x) in a small local rotation, thus we assume all di-
rectors are in a 90◦ cone to obtain a simple sum of vector
representation. See Proposition 1. If Eq. (4) is used to ap-
proximate Ri, then the angle between wv(x) and Riwv(x)
is no more than 45◦, thus all three rotated directors are
indeed in a 90◦ cone.

3.3. Orientational Order and Dispersion
Before working on a field of ODFs, an ODF in a

voxel can provide some geometric information at the voxel
level, including GFA (Tuch, 2004), and orientation disper-
sion (Zhang et al., 2012).

3.3.1. Orientational Order Transform and Orientational
Tensor

The NODDI model is increasingly used to study neu-
rite orientation dispersion (Zhang et al., 2012). NODDI
uses the Watson distribution in Eq. (6) to model the ODF
with a single orientation, where M is the confluent hyper-
geometric function, n0 ∈ S2 is a given axis

f(u | (n0, κ)) =
1

4π M(1/2, 3/2, κ)
exp(κ(uTn0)2), u ∈ S2. (6)

Note that the original formula of the Watson distribution
in Zhang et al. (2012) has no unit integral in S2, because
it missed 4π. An orientation dispersion index (OD) was
defined as Eq. (7), where we denote it as ODw because it
only applies to the Watson distribution.

ODw = 2
π

arctan( 1
κ

) (7)

Note that in order to obtain good contrast in the disper-
sion index map, in the NODDI toolbox provided by the
authors, a scaled κ (10κ in the codes) is used in Eq. (7)
to calculate ODw, instead of the estimated κ from the
NODDI model. ODw can not be used for ODFs that have

general shapes, have more than one peak, or are not an-
tipodally symmetric. Some other works also proposed dis-
persion indices based on different models of ODFs, e.g.,
Bingham distributions Tariq et al. (2016) and mv-Γ dis-
tributions in DIAMOND Scherrer et al. (2015). These
dispersion indices cannot work for general ODFs. Inspired
by liquid crystals, we would like to define the degree of
dispersion for general ODFs, independent of microscopic
diffusion signal models.

For a general spherical function f(u), u ∈ S2, we define
the orientational tensor as

Q(f) =
∫
S2

uuT f(u)du, (8)

which is related to the Q-tensor in liquid crystal model-
ing (Andrienko, 2006) 3. Q(f) is a 3×3 symmetric matrix
dependent on f(u). If f(u) is non-negative, then Q(f) is
positive semidefinite. We propose the orientational order
index (OO) from the theory of liquid crystals (Andrienko,
2006) to describe the orientation or dispersion of a general
spherical function along a given axis n:

OO(n) =
∫

u∈S2
P2(uTn)f(u)du

=
∫

u∈S2

3(uTn)2 − 1
2

f(u)du (9)

where P2 is the 2nd-order Legendre polynomial. By defini-
tion, Eq. (9) is an integral transform in S2 which converts
the spherical function f(u) to another spherical function
OO(n), and the kernel is P2(uTn), similar to the Funk-
Radon transform used in Q-Ball imaging (Tuch, 2004),
where the kernel is δ(uTn). We call Eq. (9) the Orienta-
tional Order Transform (OOT), i.e., OOT(f) = OO(n).
Note that we have

OO(n) = 3
2nTQ(f)n − 1

2

∫
S2
f(u)du. (10)

By definition, OO(n) is antipodally symmetric and has a
global maximum and a global minimum on the unit sphere,
which correspond to the largest and smallest eigenvectors
of Q(f), respectively. Based on Definition 2, the main
director of infinite weighted directors {(ui, f(ui))} is the
maximum point of OO(n).

Although OO(n) is a spherical function, it is a scalar
index when n is chosen as a physically meaningful axis,
e.g., f(u) takes its maximal value at n. Let θ be the angle
between u and axis n, then P2(uTn) = 3 cos2 θ−1

2 . Thus,
if f(u) is a Probability Density Function (PDF) on the
unit sphere, then OO(n) is 〈 3 cos2 θ−1

2 〉, where 〈·〉 signifies
the expectation operation. As shown in Fig. 3, 〈cos2 θ〉 is
the expectation of the squared projected length of u onto
the axis n. If f(u) is more concentrated along n, then
〈cos2 θ〉 is larger, so is OO(n). Based on the definition,
when f(u) is a PDF, then we have OO(n) ∈ [−0.5, 1].
If f(u) = δ(uTn0 − 1), i.e., the delta function along a
given n0 axis, then OO(n0) = 1. If f(u) = 0, ∀u ∈ S2

such that uTn0 6= 0, i.e., f(u) is non-zero only in the
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θ

O

n

f (u)f (u) cos θ

Figure 3: A cross-section view of a spherical function f(u) along axis
n. The projection of f(u)u onto n is (f(u) cos θ)n.

plane orthogonal to n0, then OO(n0) = −0.5. If f(u)
is the isotropic PDF, i.e., f(u) = 1

4π , then OO(n) = 0.
In practice, if we choose the axis n such that f(u) takes
its local or global maximal value, then OO(n) is normally
non-negative.

We define the orientational dispersion along axis n as

OD(n) = 1−OO(n). (11)

Then OD(n) ∈ [0, 1.5].
Note that the proposed OO is different from the order

parameter in Lasič et al. (2014); Szczepankiewicz et al.
(2015) which was also inspired by liquid crystals (An-
drienko, 2006). In Lasič et al. (2014); Szczepankiewicz
et al. (2015), the order parameter is calculated by esti-
mating the variance of microscopic diffusion parameters
from the contrast between signals measured by directional
and isotropic diffusion encoding. However, it cannot be
used for general DTI and HARDI data. The proposed
OO in this paper is defined for general spherical functions
(i.e., ODFs) along a given axis, independent of microscopic
diffusion models and reconstruction of the ODFs.

3.3.2. Axisymmetric Spherical Functions
When f(u) is axisymmetric, and its axis is given by n0,

i.e., f(u) = f ′(uTn0), where f ′(x) is the corresponding
scalar function defined in [−1, 1], then OOT has a closed
form:

OO(n) =
∫ π

0

(∫ 2π

0
P2(cos θ cos t+ sin θ cos t sinφ)dt

)
f ′(cos θ)dθ

=
(1 + 3 cos(2φ))π

2
a2 =

1 + 3 cos(2φ)
4

OO(n0) (12)

where φ = arccos(|nTn0|) is the angle between n and
the axis n0, and a2 =

∫ 1
−1 P2(x)f ′(x)dx is the 2nd-order

Legendre coefficient of f ′(x). Note that if a2 > 0, when
n = n0, φ = 0, then OO = 2πa2 is the global maximum
of OO(n). When nTn0 = 0, φ = π/2, then OO = −πa2 is
the global minimum of OO(n). In the following develop-
ment, without any ambiguity, we will use OO to denote
OO(n0), and OD to denote OD(n0), for axisymmetric
spherical functions.

3.3.3. Watson Distributions
The Watson distribution defined in Eq. (6) is axisym-

metric with the axis n0. Thus, based on the above analy-
sis of axisymmetric spherical functions, we have OO(n) =
1+3 cos(2φ)

4 OO, and

OO = 3eκ

2
√
κπ Erfi(

√
κ)
− 3 + 2κ

4κ (13)

where Erfi(x) = 2√
π

∫ x
0 exp(t2)dt is the imaginary error

function. Then OD = 1 − OO. The left part of Fig. 4
shows the above OD and ODw as functions of κ, where the
axis n is set as the Watson distribution’s axis n0. Both
dispersion indices decrease as κ increases. Based on the
derivation of κ, ODw is more sensitive to changes of κ
when κ is small (< 2), while it is less sensitive when κ is
large (> 2). Compared with ODw, the change of OD is
smoother for the change of κ over the entire range of κ.

3.3.4. Tensors
For the tensor model in DTI, denoted as D, OOT is

defined for its ODF, i.e.,

Φ(u | D) = 1
4π|D| 12

1
(uTD−1u) 3

2
, (14)

which is a PDF on the unit sphere. When the three eigen-
values of D satisfy λ1 > λ2 = λ3 > 0, Φ(u | D) is an
axisymmetric function with the axis v1 that is the princi-
pal eigenvector of D. OOT has a closed-form expression
in Eq. (12), and

OO =

√
λ1 − λ2(2λ1 + λ2)− 3λ1

√
λ2 arctan

(√
λ1−λ2
λ2

)
2(λ1 − λ2)

3
2

. (15)

The right panel of Fig. 4 shows OO and FA as functions of
λ1/λ2, where we set n = v1. Both OO and FA increases
as λ1/λ2 increases. Thus, OO can be seen as a type of
anisotropy index for tensors. For general tensors with λ1 >
λ2 > λ3 > 0, no such closed form solution like Eq. (15)
and Eq. (12) exists, but we can calculate OO using the
spherical harmonic representation of the ODF.

3.3.5. Spherical Harmonic Representation
For a general spherical function f(u), OO and OD can

be analytically calculated from the spherical harmonic co-
efficients of the rotated function. Considering f(u) is a
real function on the unit sphere, it can always be linearly
represented by the real Spherical Harmonic (SH) basis
{Y ml (u)}, i.e.,

f(u) =
∑
l,m

cl,mY
m
l (u) (16)

Y ml (θ, φ) =


√

2Re(y|m|l (θ, φ)) if −l ≤ m < 0
yml (θ, φ) if m = 0√

2Im(yml (θ, φ)) if l ≥ m > 0
(17)

8



Figure 4: Left: dispersion indices (OD and ODw) of a Watson distribution as functions of κ. Right: OO and FA of prolate tensors (λ2 = λ3)
as functions of λ1

λ2
.

where yml (θ, φ) =
√

2l+1
4π

(l−m)!
(l+m)!e

imφPml (cos θ) is the com-
plex SH basis, Pml (·) is the associated Legendre polyno-
mial. For any rotation matrix, the SH coefficients of the
rotated function can be calculated with very high accu-
racy based on the Wigner D-matrix 5, or based on fitting
rotated function samples (Lessig et al., 2012). Let R be
the rotation matrix which rotates the axis n to z-axis, and
{al,m} be the real SH coefficients of the rotated function
(Rf)(u) = f(R−1u), considering the orthogonality of the
real SH basis and Y 0

2 (θ, φ) =
√

5
4πP2(cos θ), we have

OO(n) =
∫

u∈S2
P2(uTn)f(u)du

=
∫

u∈S2
P2(cos θ)

∑
l,m

al,mY
m
l (θ, φ)du =

√
4π
5
a2,0. (18)

Note that OO(n) is only determined by the rotated SH
coefficient a2,0 that is only related to {c2,m}−2≤m≤2 and
the axis n, based on the rotation property of the SH basis.
Thus, OO(n) is only related to the SH coefficients of f(u)
with l = 2, and also the axis n.

3.3.6. Relationship Between OO, OD, and GFA
For an ODF in an SH representation in Eq. (16), its

GFA (Tuch, 2004) is

GFA =

√
1−

c20,0∑
lm c

2
l,m

. (19)

Note that the rotation of a spherical function does not
change the shape of the function and the norm of SH
coefficients, thus we have

∑
m a

2
2,m =

∑
m c

2
2,m. Based

5https://en.wikipedia.org/wiki/Spherical harmonics

on Eq. (18), we have

OO(n) =
√

4π
5 a2,0 ≤

√
4π
5

√√√√ 2∑
m=−2

c22,m

≤
√

4π
5

√√√√∑
l≥2

l∑
m=−l

c2l,m. (20)

Combining Eq. (19) and Eq. (20), we have

OO(n) ≤

√
4πc20,0

5

√
1

1−GFA2 − 1. (21)

The above inequality gives an upper bound of OO(n) as a
function of GFA which is independent of n. Note that the
above upper bound is tight, and the equality holds when
cl,m = 0, for l > 2, and a2,m = 0 for m 6= 0 after rotation.
If the ODF has unit integral, i.e.,

∫
S2 f(u)du = 1 6, then

c0,0 = 1√
4π , and we have

OO(n) ≤
√

1
5

√
1

1−GFA2 − 1 (22)

Thus, for an ODF with low GFA, OO is also low, and
OD is high, no matter how we choose the axis n. Note
that Eq. (22) does not imply that an ODF with high GFA
tends to have high OO, because it is an upper bound of
OO(n), not a lower bound.

3.3.7. Mixture Model
OOT in Eq. (9) is a linear transform. Thus, if f(u) =∑
i wifi(u) is the PDF of a mixture of models, where fi(u)

is the PDF for the i-th model, and wi is the weight, then

6Note that ODFs estimated by some methods (e.g., constrained
spherical deconvolution (Tournier et al., 2007), Q-Ball Imag-
ing (Tuch, 2004; Descoteaux et al., 2007)), do not have the unit
integral, if there is no normalization after estimation.

9
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OO(n) =
∑
i wiOOi(n) is also a mixture of OO func-

tions. Fig. 5 illustrates OO for a two-tensor model with a
crossing angle φ, where two tensors share the same eigen-
values [1.7, 0.2, 0.2]× 10−3mm2/s, the weights are 0.5 and
0.5, and one tensor component is along the y-axis and the
other one rotates from the y-axis to the x-axis. Based
on Eq. (12) and Eq. (15), OO for the mixture model can
be analytically calculated.

3.3.8. OO and OD for a General ODF Along the Principal
Peak

In the above context, we focus on OO(n) and OO(n)
as spherical functions. A physically meaningful axis n0
is needed to obtain scalar indices of OO and OD from
OO(n) and OO(n). For an axisymmetric function f(u),
its axis can be used as described above. For a general
function (e.g., an ODF), we can set the axis as the local
maxima of f(u) (e.g., detected peaks of the ODF), because
the peaks of ODFs are considered as local fiber directions
in dMRI. A general ODF may have more than one peak.
The principal peak of the anisotropic ODF f(u), where the
ODF takes its global maximum u1, i.e., f(u1,x) > f(u,x),
∀u ∈ S2, is used to calculate OO and OD for the ODF.
Note that peaks are detected from ODFs with all orders of
SH coefficients, not only SH coefficients with l = 2. Thus,
the scalar indices of OO and OD are actually dependent on
SH coefficients of ODFs with all orders. See Algorithm 1
for the pipeline to calculate OO and OD maps from a
given ODF field with SH representation, where peaks are
detected for voxels whose GFA values are larger than a
given threshold (e.g., 0.3). It is also possible to calculate
OO and OD for all voxels by setting the GFA threshold as
0. As shown in Section 3.3.6, for the voxels with GFA <
0.3, we have OO < 0.14 and OD > 0.86.

Algorithm 1: Calculation of OO and OD for
ODFs with SH representation along principal
peaks:

Input: ODF field f(u,x) =
∑
lm cl,m(x)Y ml (u) in

SH representation.
Output: OO map, OD map.
Peak detection using gradient ascent for ODFs in
voxels with the anisotropy higher than a given
threshold (e.g., GFA > 0.3). See Section 3.1;
for each voxel x with detected peaks {ui(x)} do

1) Find the principal peak u1 with the largest
ODF value, i.e., f(u1,x) > f(ui,x), ∀i ;
2) Calculate rotation matrix R, which rotates
u1 to the z-axis ;
3) Calculate the rotated SH coefficient a2,0 from
{c2,m}−2≤m≤2 under the rotation R ;
4) OO =

√
4π
5 a2,0 as shown in Eq. (18), and

OD = 1−OO ;
end

3.3.9. OO, OD and the Orientational Tensor in a Spatial
Region

The above OO, OD, and the orientational tensor are
defined for a single voxel. They can also be defined for
voxels in a spatial region of voxels. A linear weighting
generalization of OO can be defined as

OO(n) =
∫

x∈Ω

∫
u∈S2

P2(uTn)w(x)f(u,x)dudx. (23)

The orientational tensor in a spatial region is

Q(f) =
∫

x∈Ω

∫
u∈S2

w(x)f(u,x)uuTdudx. (24)

Because of the linearity of the integration, Eq. (23) is ac-
tually OOT in Eq. (9) performed on the region smoothed
spherical function

∫
x∈Ω w(x)f(u,x)dx, and Eq. (24) is the

orientational tensor for the region smoothed function. The
largest eigenvector of Q(f) in Eq. (24) indicates the main
orientation of all ODFs f(u,x) in the region Ω.

3.4. Local Orthogonal Frame
As described in Section 3.1, after peak detection on a

spherical function field or a tensor field, the obtained peak
field is also a director field. We propose extracting a local
orthogonal frame in each voxel exhibiting anisotropic dif-
fusion from the detected peak field. The orthogonal frame
has three orthogonal orientations. Denote the peaks at
voxel x as {ui(x)}. The first orientation is the princi-
pal peak where the ODF takes its global maximum u1(x),
i.e., f(u1,x) > f(u,x), ∀u ∈ S2. We call it the principal
director of the voxel x. The other two orientations are
in the orthogonal plane of the principal direction. Con-
sidering f(u) is normally antipodally symmetric in dif-
fusion MRI, all these orientations are equivalent to their
antipodal ones. Thus, we project all peaks in a spatial
local neighborhood onto the orthogonal plane, and define
a weighted sum of dyadic tensors in voxel x:

Qx =
∑

y∈Ωx

∑
i

w(y,x)f(ui(y),y)ui,⊥(y)uTi,⊥(y) (25)

ui,⊥(y) = ui(y)− (uTi (y)u1(x))u1(x) (26)

where Ωx is a local neighborhood of voxel x, w(y,x) is the
spatial weight which is normally set to be proportional to
exp(−‖y−x‖2

2σ2 ), δ which is normally set as 1 voxel controls
spatial weight concentration, ui,⊥(y) is the projected ori-
entation ui(y) onto the orthogonal plane of u1(x). The
above 3 × 3 matrix Qx is actually the orientational ten-
sor of all projected peaks in region Ωx based on Eq. (24),
where the continuous integral is replaced by a discrete
summation over all projected peaks in region Ωx . Note
that although we can define Qx using continuous ODF
f(u,x) with projected directors in a continuous integra-
tion like Eq. (24), we choose a discrete summation over
peaks, which actually focuses only on peaks and sets zero
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Figure 5: OO for the mixture tensor model. Left: OO as a function of the angle between two tensor components. Right: ODF glyphs of the
two-tensor model for different crossing angles, where the yellow tube shows the y-axis which is used to calculate OO.

(a) (b) (c)

Figure 6: Sketch to determine local orthogonal frames from an ODF field, where an ODF may have 0, 1, or more than 1 peaks. (a) an ODF
field with peaks, where yellow tubes denote peaks. (b) the orthogonal plane for the principal peak, where red tubes denote principal peaks.
(c) local orthogonal frames, where three tubes in red, green, and blue colors denote three directors in local orthogonal frames.

weights for orientations that are not peaks in the continu-
ous integration. Qx in Eq. (25) has at most two non-zero
eigenvalues, because it is defined by using {ui,⊥(y)} in the
orthogonal plane. The eigenvector for the largest absolute
eigenvalue of Qx is set as the second orientation of the
orthogonal frame, which is the main director of directors
{(ui,⊥, w(y,x)f(ui,y))}, and indicates the main orienta-
tion of the local spatial change of u1(x) in the orientational
plane. Note that we define Qx using the isotropic spatial
weight w(y,x) to capture the general spatial change of the
principal director u1(x) in the orthogonal plane. If one
has a good motivation and specific spatial prior knowl-
edge (e.g., to capture local change only in a specific region
like hippocampus), an anisotropic spatial weight w(y,x)
with consideration of spatial prior knowledge may be use-
ful. The third orientation in the orthogonal frame is set as
the cross product of the first two orientations. These three
orientations are three orthogonal directors due to sign am-
biguity. Please see the sketch map in Fig. 6 to determine
local orthogonal frames from a given ODF field. If these
two eigenvalues of Qx are equal or their difference is very

small, then we set the second and third orientations in the
orthogonal frame to zero, which means any two orthogo-
nal vectors in the orthogonal plane can be the second and
third axes in the orthogonal frame.

3.5. Local Distortion Indices: Splay, Bend, and Twist
Three types of orientational distributions in liq-

uid crystals. Based on the liquid crystal analogy, there
are three fundamental types of distortions 3 for the director
field as demonstrated in Fig. 7. 1) splay: bending occurs
perpendicular to the director; 2) bend: bending is parallel
to the director and molecular axis; 3) twist: neighboring
directors are rotated with respect to one another, rather
than aligned. These three fundamental distortions can be
used to describe a myriad of complex geometric patterns
that liquid crystals can assume. We would like to quantify
these fundamental distortion patterns in dMRI by explor-
ing the local spatial changes of principal directors.

Spatial derivatives of the local orthogo-
nal frame. With the local orthogonal frame
{u1(x),u2(x),u3(x)} at each voxel x obtained above, we

11



splay bend twist

Figure 7: Demonstration of three types of distortions, i.e., splay, bend, and twist.

can define the spatial directional derivatives of ui(x) along
a direction v as

∂ui
∂v

= lim
k→0

Diffd(ui(x + kv),ui(x − kv))
2k . (27)

Diffd is the director representation of the difference of
two directors as described in Section 3.2.3. Note that we
use the director representation for the spatial derivative,
instead of a rotation matrix representation, because we
would like to project the director onto different axes. See
Section 3.2.3 and 3.2.4.

Spatial derivatives of vectors, and Maurer-
Cartan connection forms in the moving frame
method. If we assume {ui} are all well-aligned unit vec-
tors (i.e., no sign ambiguity), then we have

∂ui
∂v

= ∇xui : v (28)

with elements
[∑

k
∂uil

∂xk
vk

]
, where uil is the l-th element

of ui, and ∇xui = [∂uil

∂xk
] is the spatial gradient matrix of

ui(x). Similarly with Eq. (2), we can extract some features
by devising v and a weighting vector w:

wT ∂ui
∂v

= w : ∇xui : v =
∑
lm

wlvm
∂uil
∂xm

. (29)

Eq. (29) can be seen as a generalization of Eq. (2) in tensor
field analysis. When we set w = uj and v = uk, Eq. (29)
is the projection of the directional derivatives onto uj(x),
denoted as cijk:

cijk = uTj
∂ui
∂uk

= uj : ∇xui : uk =
∑
lm

ujlukm
∂uil
∂xm

. (30)

{cijk(x)} is the Maurer-Cartan connection form in the
moving frame method 7. cijk(x) denotes the spatial change
rate of frame vector ui towards uj when moving the frame
along uk at voxel x (Piuze et al., 2015).

Orientational distortion indices. In this paper, in-
stead of directly using the connections {cijk(x)}, we pro-
pose three scalar indices to describe the relative prevalence
of each of the three types of local distortions of white mat-
ter, inspired by liquid crystals (Andrienko, 2006). We de-
fine three indices and a total distortion index as

Splay index: s =
√
c2

122 + c2
133 =

√
(uT2

∂u1

∂u2
)2 + (uT3

∂u1

∂u3
)2 (31)

Bend index: b =
√
c2

121 + c2
131 =

√
(uT2

∂u1

∂u1
)2 + (uT3

∂u1

∂u1
)2 (32)

Twist index: t =
√
c2

123 + c2
132 =

√
(uT2

∂u1

∂u3
)2 + (uT3

∂u1

∂u2
)2 (33)

7https://en.wikipedia.org/wiki/Maurer-Cartan_form

Algorithm 2: Calculation of spatial directional
derivatives of the principal director:

Input: A local orthogonal frame field
{u1(x),u2(x),u3(x)}.

Output: Three spatial directional derivatives ∂u1
∂ui

,
i = 1, 2, 3.

// Calculate three rotational matrices {Ri},
i = 1, 2, 3 ;
o1 = [1, 0, 0]T , o2 = [0, 1, 0]T , o3 = [0, 0, 1]T ;
for i = 1, 2, 3 do

v1 = u1(x + oi), v0 = u1(x − oi) ;
if vT1 v0 ≥ 0 then

v2 = (v1 + v0)/2
else

v2 = (v1 − v0)/2
end
v2 = v2

‖v2‖ // v2 is the normalized mean
director of v1 and v0 ;
Calculate rotation matrix Ri which rotates v2
to v1 ;

end
// Calculate spatial directional derivatives from
rotation matrices ;
for i = 1, 2, 3 do

for j = 1, 2, 3 do
ui,j = uTi oj ;
if ui,j ≥ 0 then

pj = ui,jRju1, nj = ui,jRT
j u1 ;

else
pj = −ui,jRT

j u1, nj = −ui,jRju1 ;
end

end
p0 = p1 + p2 + p3, p0 = p0

‖p0‖
;

n0 = n1 + n2 + n3, n0 = n0
‖n0‖ ;

if ‖p0 − n0‖ ≤ ‖p0 + n0‖ then
∂u1
∂ui

= p0 − n0

else
∂u1
∂ui

= p0 + n0

end
end

Total distortion index: d =
√
s2 + b2 + t2. (34)

Numerical calculation of spatial derivatives of
directors and orientational distortion indices. Note
that the above definitions of four indices and the formulae
from Eq. (28) to Eq. (34) are for a general vector frame
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in a vector field without sign ambiguity. We would like to
calculate the above four indices for the local orthogonal
frames in Section 3.4 with sign ambiguity. Squared values
of uTj ∂u1

∂ui
in definitions are used to avoid the sign ambigu-

ity of {ui} and {∂u1
∂ui
}. The difficulty of numerically cal-

culating the above four indices is that it is challenging to
calculate the three spatial directional derivatives {∂u1

∂ui
},

i = 1, 2, 3, because the local orthogonal frame {ui(x)}
with three directors is ambiguous with respect to its sign.
In other words, ui is equivalent to −ui, considering the
ODF and its peaks are antipodally symmetric. We pro-
pose calculating the above spatial directional derivatives
using a rotation matrix representation and a central dif-
ference approximation as described in Section 3.2.4. See
Algorithm 2 for a detailed implementation. The algorithm
first calculates three rotation matrices respectively along
the x, y, z axes, which is analogous to the spatial gradi-
ent of a vector field. Then ∂u1

∂ui
is numerically approx-

imated by the director representation of the difference,
i.e., Diffd(u1(x + ui),u1(x − ui)), where u1(x + ui) and
u1(x−ui) are approximated by the weighted mean of three
rotated vectors along three axes, as shown in Eq. (5). Af-
ter {∂u1

∂ui
} are obtained, we can calculate the above four

indices in Eq. (31), Eq. (32), Eq. (33), and Eq. (34), from
the directional derivatives. Note that Algorithm 2 avoids
alignment of local frames in Piuze et al. (2015) that does
not work for general dMRI data.

4. Experiments

4.1. Synthetic Data Experiments
Fig. 8 demonstrates these four orientational distortion

indices (i.e, splay, bend, twist, and total distortion) cal-
culated from idealized tensor fields. The tensors are vi-
sualized by using superquadric tensor glyphs (Kindlmann,
2004). The first column of Fig. 8 shows different tensor
fields. The middle area of the first tensor field is the splay-
ing area, while the middle area of the second tensor field
is the bending region. These two tensor fields are gen-
erated by rotating a tensor from left to right around the
z-axis perpendicular to the page and decreasing the ten-
sor mode (Kindlmann et al., 2007) from the bottom row to
the top row. The third tensor field shows the twist of ten-
sor orientations, which is generated by rotating a tensor
around the x-axis (i.e., the left-to-right axis), and decreas-
ing the tensor mode from bottom to top. Fig. 8 shows that
1) the four indices only depend on the orientations (i.e.,
local orthogonal frame), not on the tensor or ODF shape;
2) splay, bend, twist indices provide complementary infor-
mation about the orientational change, and demonstrate
different types of orientational distortions. Note that the
twist index for the third tensor field is actually a constant,
and the index value around the boundary is different due
to the Neumann boundary condition used in the calcula-
tion. Although the results in Fig. 8 are for tensor fields,

the distortion indices are actually determined by the lo-
cal orthogonal frame field that can be calculated from a
general spherical function field as described in Section 3.4.

We would like to compare the four orientational distor-
tion indices with the curving and dispersion indices pro-
posed for tensor fields in Savadjiev et al. (2010). The ten-
sor field in Fig. 9 was used in Savadjiev et al. (2010). It has
three areas where the tensors rotate about its three eigen-
vectors, respectively. From bottom to top, the mode of
the tensors changes linearly. Fig. 10 shows two other syn-
thetic tensor fields used in Savadjiev et al. (2010). Fig. 9
and Fig. 10 demonstrate all six scalar indices. It can be
seen that 1) the splay index is similar to the dispersion
index; 2) the bend index is similar to the curving index;
3) the four orientational distortion indices are independent
of tensor shapes, while curving and dispersion indices are
dependent on the tensor mode; 4) when the principal di-
rections are well aligned (e.g., in the left part of the tensor
field in Fig. 9), all distortion indices are close to zero, be-
cause they are calculated based on the spatial difference
of principal directions; 5) the definition and calculation of
distortion indices are rotationally invariant. Note that the
singular values of these scalar indices around the central
point in the tensor fields in Fig. 10 are attributable to the
singularity of the tensor orientation in the central point.
Although the proposed splay and bend indices have similar
contrast compared with the dispersion and curving indices
that are only for tensor fields, the proposed distortion in-
dices can be defined for both tensor fields and ODF fields.
Moreover, the proposed splay and bend indices are inde-
pendent of tensor shapes, while the dispersion and curving
indices are related with tensor shapes.

4.2. Real Data Experiments
The experimental data are from Human Connectome

Project (HCP), Q3 release (Sotiropoulos et al., 2013;
Van Essen et al., 2013). This data set is acquired using
three shells, with 90 staggered directions per shell, and at
b = 1000, 2000, and 3000 s/mm2.

We perform NODDI on the HCP multi-shell data using
the released matlab toolbox by the authors (Zhang et al.,
2012). The first row in Fig. 11 shows the parameter maps
by the NODDI toolbox, i.e., the κ map and ODw map.
It should be noted that ODw is calculated based on 10κ
and Eq. (7) in the author-released toolbox. Fig. 11 also
shows OO and OD from NODDI, based on the closed form
in Eq. (13) with a scaled 25κ. The scale on κ is used for
a better contrast in the obtained dispersion index map.
The obtained κ map has intensities that are less than 0.4
in most voxels. Thus, as shown in Fig. 4, 10κ obtains the
range [0, 4] which is good for ODw, and 25κ obtains the
range [0, 10] which is good for OD. The two dispersion
index maps calculated in two ways from κ visually have
similar contrast.

Non-negative spherical deconvolution (NNSD) (Cheng
et al., 2014) is performed to estimate non-negative fiber
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splay bend twist total distortion

Figure 8: Distortion indices calculated from different tensor fields. In each row, the four distortion indices are calculated from the ODF field
obtained from the tensor field. The tensors were visualized by using superquadric tensor glyphs (Kindlmann, 2004).

ODFs from three-shell DWI data. NNSD works for multi-
shell data. It is more robust to noise, and the obtained
fiber ODFs (fODFs) in isotropic regions are closer to the
isotropic spherical PDF, compared with conventional con-
strained spherical deconvolution (Tournier et al., 2007).
After obtaining the fODFs by NNSD, the peaks are de-
tected from the estimated fODFs with GFA larger than
0.3, as described in Section 3.4. OO and OD are calcu-
lated from the spherical harmonic representation of fODFs
along their principal peaks as shown in Algorithm 1. The
second row in Fig. 11 demonstrates FA from tensors es-
timated by DTI, OO and OD from fODFs estimated by
NNSD, and the total distortion map estimated from the
local orthogonal frames of fODFs. Fig. 12 and 13 show the
close-up views of fODFs, local orthogonal frames, and the
six proposed indices for the red and blue regions in Fig. 11,
where the region shown in 12 is also visualized in the DFA
pipeline in Fig. 1. The fODF glyphs are colored by us-
ing its sampled directions. The three orientations in the
local orthogonal frame in each voxel are visualized by us-
ing three tubes in red, green, and blue colors respectively.
There is no local orthogonal frame in some voxels because
those voxels have GFA values lower than 0.3. These fig-
ures show the following: 1) OO is high in anisotropic areas
with well-aligned directions, while OD is high in isotropic
or crossing areas. 2) The four orientational distortion in-

dices are low in areas with well aligned principal directions,
and zero in isotropic voxels without peaks. Distortion in-
dices are high in voxels where the principal directions in its
local neighborhood change largely. 3) The central voxels
in red region is the crossing area of the Corpus Callosum
from left to right and Fornix that goes through the coronal
slice. The twist index showed high value in this crossing
area as expected.

OO and OD by NODDI are different from OO and OD
by NNSD in Fig. 11. We propose OO and OD as general
properties (i.e., the degree of aligment and dispersion along
peaks) for general ODFs, like GFA for ODFs, independent
of diffusion signal models. OO and OD can be calculated
from ODFs estimated by the NODDI model (Zhang et al.,
2012), the tensor model in DTI (Basser et al., 1994), and
various spherical deconvolution methods (Tournier et al.,
2007; Cheng et al., 2014), etc. In this sense, we claim that
the proposed OD (and OO) inspired from liquid crystals
is more general than the dispersion index in NODDI that
only works for Watson distributions.

We perform whole brain streamline tractography on
the estimated fODF field using mrtrix (Tournier et al.,
2012) 8. The voxels with GFA larger than 0.3 are used
as seed voxels to generate 10000 tracts by using tckgen

8http://www.mrtrix.org/
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Figure 9: Dispersion, curving (Savadjiev et al., 2010), and the proposed four orientational distortion indices calculated from a tensor field.

in mrtrix. All other parameters are default parameters in
mrtrix. The obtained fiber tracts are then visualized by
using trackvis 9. Fig. 14 and 15 demonstrate the tracts
respectively cross two given ball ROIs. The tracts are
colored by using the proposed six scalar indices. Note
that the proposed scalar indices are calculated based on
estimated fODFs, not based on fiber tracts. It can be
seen that 1) OO is high in areas with well aligned fibers,
while OD is high in crossing areas and distortion areas;
2) distortion indices are low when fibers are well aligned;
3) the total distortion index is high in areas with highly
curved fibers or crossing fibers. 4) although splay, bend,
twist indices may be separable (e.g., one is large while
another one is close to zero) in synthetic data, in real data,
these three types of distortions normally occur together,
especially for bending and splaying. 5) the ROI in Fig. 14
is the crossing area of the Corpus Callosum and the Fornix,
where all distortion indices have high values, especially for
twist and total distortion indices. This finding agrees with
Fig. 12.

9http://trackvis.org

5. Discussion

5.1. Effect of the Spatial Resolution on Directional Deriva-
tives and Distortion Indices

The definition of the spatial directional derivative
in Eq. (3) is for continuous spatial domain. The unit
of the spatial directional derivative ∂ui

∂v in Eq. (27) is
[mm−1,mm−1,mm−1], considering the numerator is a di-
rector with no unit and the unit of the denominator is
mm. Thus, the four distortion indices have the unit of
mm−1. The spherical function field and peak field in dif-
fusion MRI are obtained in a discrete integer lattice. In Al-
gorithm 2, rotation matrices {Ri} are calculated based on
directors in neighborhood voxels u1(x+oi) and u1(x−oi).
Thus, these three rotation matrices are dependent on spa-
tial resolution of the diffusion image. So are the central
difference approximation of the spatial gradient in Eq. (4),
and the distortion indices calculated based on directional
derivatives. Consider the twisting synthetic tensor image
in Fig. 8 as an example, where the tensor from left to right
rotates about the x-axis by the angle π. If there are N + 1
tensors from left to right, then the spatial gradient along
the x-axis is the rotation matrix with a rotation angle of
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Figure 10: Dispersion, curving (Savadjiev et al., 2010), and the proposed four orientational distortion indices calculated from two tensor
fields.

π/N . With the local linear change assumption of rota-
tion angles, finer spatial resolution will produce smaller
rotation angles of central differences in the three rotation
matrices, which results in smaller spatial gradients, direc-
tional derivatives and smaller distortion indices.

An improved version of calculation of the spatial direc-
tional derivatives in Algorithm 2 is to consider the spatial
resolution of the image as the step size of the central dif-
ference. The image resolution should be used to normalize
the rotation angles in the rotation matrices. We can ap-
proximate the spatial gradient using all directors within a
given physical resolution, e.g., 3 × 3 × 3 mm. If the im-
age resolution is also 3 mm isotropic, then we just use the
central difference described in Section 3.2.4. If the image
resolution is 1.5 mm isotropic, then we can use a mean of
rotation matrices from two central differences. One rota-
tion matrix is generated by wv(x + oi), wv(x − oi), then
we keep the rotation axis, but scale the rotation angle by 2,

based on the local linear rotation angle assumption. The
other one is generated by wv(x + 2oi), wv(x − 2oi). The
Riemannian mean is used to calculate the mean of rota-
tion matrices (Moakher, 2002). In this way, for the twist-
ing synthetic tensor image in Fig. 8, the rotation matrix
representation of the central difference along the x-axis re-
mains the same for different spatial resolutions of the syn-
thetic image. Note that the local linear rotation change
assumption only holds in a small local neighborhood, not
for a large spatial scale. With the correct consideration of
image resolution in calculation, the image resolution effect
can be reduced in numerical calculation of the proposed
distortion indices.

5.2. DFA For General Spherical Functions Without An-
tipodal Symmetry

Considering spherical functions obtained in diffusion
MRI are normally antipodally symmetric, the detected
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κ from NODDI ODw from NODDI (10κ) OO from NODDI (25κ) OD from NODDI (25κ)

FA from tensors total distortion from fODFs OO from fODFs OD from fODFs

Figure 11: First row: NODDI results for multi-shell HCP data, where κ is estimated from NODDI model, ODw is calculated from Eq. (7)
by using 10κ, and OO and OD are calculated from Eq. (13) by using 25κ. Second row: DTI and NNSD results for HCP data, where OO,
OD and total orientational distortion are calculated from fODFs by NNSD. The close-up views of red and blue regions are in Fig. 12 and 13.

principal directors and local orthogonal frames all have
sign ambiguity. Thus, the proposed DFA is mainly for di-
rector data analysis. However, if the reconstructed spher-
ical function in a voxel (e.g., an ODF) is not antipodally
symmetric, the detected principal peak field is a tradi-
tional vector field. Then DFA can be modified for vector
field analysis.

The difference of two vectors, the spatial gradient, and
the spatial derivative of a vector field are all well defined.
Note that the definitions of OO and OD in Section 3.3 work
for a general spherical function f(u) without requiring an-
tipodal symmetry, although OO(n) is always antipodally
symmetric by definition. If the detected peaks have no
sign ambiguity, then the three orientations in the local or-
thogonal frame can all be traditional vectors. The first ori-
entation is the principal peak at voxel x. As described in
Section 3.4, after projecting all peaks onto the orthogonal
plane, we obtain vectors {w(y,x)f(ui,y)(ui−(uTi u1)u1)}
without sign ambiguity. Then, the second orientation can
be set as the orientation in the orthogonal plan with maxi-
mal value among |w(y,x)f(ui,y)|‖ui−(uTi u1)u1)‖, ∀i, or
the mean orientation of the projected vectors in the orthog-
onal plane, and the third orientation is the cross product
of the first and second orientations. Finally, the four orien-
tational distortion indices in Eq. (31), Eq. (32), Eq. (33),
and Eq. (34) can still be used for the spatial derivatives
of the vector field, which are actually functions of Maurer-
Cartan connections in the moving frame method.

6. Conclusion

In this paper, we propose a unified mathematical
framework, called Director Field Analysis (DFA), to ana-
lyze a spherical function field and its extracted peak field.
See Fig. 1 for an overview of the DFA pipeline. First, in
DFA, we detect peaks from the spherical function field, and
define the Orientational Order (OO) and the Orientational
Dispersion (OD) indices in voxels or within spatial regions.
Closed-form solutions of OO and OD are obtained for some
specific spherical functions. We propose OO and OD as
properties for general ODFs along peaks, independent of
diffusion signal models. Second, we define a local orthog-
onal frame in each voxel exhibiting anisotropic diffusion,
where the principal peak is its first axis, and the other two
axes describe the local spatial change directions of prin-
cipal peaks. Third, from the extracted local orthogonal
frames in voxels, DFA estimates three distortion indices
(splay, bend, twist) that are able to distinguish three types
of distortions and a total orientational distortion index. To
our knowledge, this paper is the first work to quantitatively
describe orientational distortion (splay, bend, and twist)
in general spherical function fields from DTI or HARDI
data. The experiments demonstrate the following: 1) The
proposed OO is another type of anisotropy index for spher-
ical functions, and OD is more general and natural than
the previous dispersion index proposed in NODDI (Zhang
et al., 2012), which only works for Watson distributions. 2)
The proposed splay and bend indices can be seen as a gen-
eralization of the dispersion and curving indices in Savad-
jiev et al. (2010), considering they have similar contrast
in the same tensor field. The proposed four orientational
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Figure 12: fODFs, local orthogonal frames, and six scalar indices for the red region in Fig. 11. Local orthogonal frames are visualized using
tubes in red, green, and blue colors. The scalar indices are shown in the background. This region is also used in the DFA pipeline in Fig. 1

distortion indices work not only for tensors but also for
general spherical functions. 3) The proposed distortion in-
dices demonstrate good sensitivity for the three different
types of orientational distortion in Fig. 7. 4) Orientational
distortion indices normally have large values in areas with
fiber curving and crossing.

Note that the proposed DFA and its related mathemat-
ical tools can be used not only for diffusion MRI data, but
also for general director data. Moreover, there are many
applications in which vector fields, like velocity fields, can
be easily processed by using the modified DFA described
in Section 5.2 to analyze their spatial features. Consid-
ering the proposed scalar indices are sensitive to different
distortions of principal directions, these indices have po-
tential in voxel-based analysis and tract-based analysis for
group studies and longitudinal studies (Smith et al., 2006;
Liu et al., 2013), which is a goal of future work. We will
release the related codes and demos for DFA in DMRI-
Tool 10, which is an open source toolbox for diffusion MRI
data processing.

10https://diffusionmritool.github.io
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