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Abstract

Real-time 3D navigation during minimally invasive procedures is an essential yet

challenging task, especially when considerable tissue motion is involved. To bal-

ance image acquisition speed and resolution, only 2D images or low-resolution

3D volumes can be used clinically. In this paper, a real-time and registration-free

framework for dynamic shape instantiation, generalizable to multiple anatomi-

cal applications, is proposed to instantiate high-resolution 3D shapes of an organ

from a single 2D image intra-operatively. Firstly, an approximate optimal scan

plane was determined by analyzing the pre-operative 3D statistical shape model

(SSM) of the anatomy with sparse principal component analysis (SPCA) and

considering practical constraints . Secondly, kernel partial least squares regres-

sion (KPLSR) was used to learn the relationship between the pre-operative 3D

SSM and a synchronized 2D SSM constructed from 2D images obtained at the

approximate optimal scan plane. Finally, the derived relationship was applied

to the new intra-operative 2D image obtained at the same scan plane to predict

the high-resolution 3D shape intra-operatively. A major feature of the proposed

framework is that no extra registration between the pre-operative 3D SSM and

the synchronized 2D SSM is required. Detailed validation was performed on

studies including the liver and right ventricle (RV) of the heart. The derived

results (mean accuracy of 2.19mm on patients and computation speed of 1ms)
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demonstrate its potential clinical value for real-time, high-resolution, dynamic

and 3D interventional guidance.

Keywords: Image-guided interventions, Dynamic shape instantiation, 3D

shape recovery, KPLSR

1. Introduction

Current clinical systems for minimally invasive procedures, such as cardiac

radio-frequency ablation, image-guided needle biopsies, and endovascular inter-

ventions, typically incorporate static 3D surfaces for guidance. Real-time dy-

namic tracking of 3D surfaces can help to optimize the interventional procedure,

especially for complex anatomical structures undergoing gross tissue deforma-

tion, bulk organ motion, and potential topological changes during interventions.

A combination of multiple imaging modalities has been used for dynamic 3D

navigation. For example, a real-time registration scheme based on both spatial

registration and electrocardiography was proposed to overlay pre-operative 3D

magnetic resonance (MR) or computed tomography (CT) volumes onto intra-

operative 2D ultrasound images for dynamic 3D navigation (Huang et al., 2009).

3D transesophageal echocardiography (TEE) was fused with 2D X-ray fluoro-

scopic images using image localization and calibration for dynamic cardiac navi-

gation (Gao et al., 2012). However, based on a combination of multiple imaging

modalities, the dynamic 3D shapes were either interpolated from pre-operative

3D volumes or intra-operatively collected 3D volumes with low-resolution. A

3D shape recovery scheme based on intra-operative 2D images including X-ray,

ultrasound, and MR could take intra-operative information into account whilst

achieving high-resolution at the same time. This kind of 3D shape recovery

is termed dynamic shape instantiation. The scheme may or may not involve

the use of template models (Filippi et al., 2008). Without template models

used, more intra-operative information and longer image acquisition time are

needed; for example, at least seven intra-operative 2D images were needed for

reasonable 3D prostate reconstruction (Cool et al., 2006). In this paper, a single
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intra-operative 2D image is targeted and hence we focus on template-based 3D

shape instantiation.

For template-based 3D shape instantiation methods, statistical shape mod-

els (SSM) (Frangi et al., 2002), free form deformation (FFD) (Koh et al., 2011),

and Laplacian surface deformation (Karade & Ravi, 2015) can be used for the

representation of templates. SSM (Cootes et al., 1995) is a popular technique

which represents a set of 3D meshes or 2D contours with the same number

of vertices and connectivities. SSM-based 3D shape instantiation learns from

shape variations rather than only applying smoothness and 2D/3D similarity as

the constraints. It deforms an initial 3D SSM to match intra-operative sparse

inputs such as ultrasound-derived surface points (Barratt et al., 2008), digitized

landmarks (Rajamani et al., 2007), or two or more calibrated X-ray images

(Baka et al., 2011). These methods usually learn a model from a training set of

anatomies of multiple patients and deform the learned model for a new patient,

which requires a high anatomical similarity between patients. This learning

is not suitable for patients with anatomical anomalies. For example, patients

who have undergone liver resection have a significantly different liver shape to

other subjects. A possible solution for these specific cases has been proposed

in (Lee et al., 2010). Here, limited optimal scan planes were determined by

analyzing the pre-operative and patient-specific 3D SSM of the liver with prin-

cipal component analysis (PCA). The relationship between pre-operative 3D

SSM and synchronized 2D SSM constructed from 2D images at the optimal

scan planes was learned by partial least squares regression (PLSR). Finally,

with new intra-operative 2D images obtained at the same scan planes, the 3D

shape was instantiated intra-operatively by applying the PLSR-derived rela-

tionship. However, in (Lee et al., 2010), the optimal scan plane determination

depended on the selected vertices that were deemed informative but were highly

correlated and clustered. PLSR can only derive linear relationships while the

deformations of most anatomies are non-linear. Based on (Lee et al., 2010), a

framework which achieves more accurate, robust, generalizable and convenient

shape instantiations from a single intra-operative 2D image is proposed in this
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paper.

Subspace reprojection was proposed to determine an optimal scan plane for

SSM-based 3D shape instantiation by fitting a plane to the most informative

vertices (Lee et al., 2005). This optimal scan plane was shown to have enhanced

accuracy compared to other scan planes(Lee et al., 2005). By applying PCA

(Jolliffe, 2002) on the pre-operative 3D SSM, the informative vertices which

contribute most to the shape variations are determined by the loadings of prin-

cipal components (Lee et al., 2010). The downside of using PCA is that the

derived principal components are linear combinations of multiple variables and

therefore the selected informative variables are highly related and difficult to

interpret. This phenomenon when reflected in our application is that the se-

lected informative vertices are clustered and are not the real and independent

informative vertices. Many methods have been proposed to solve this issue,

including rotation methods (Jolliffe, 1995), limited set of integers (Vines, 2000),

and simplified component technique least absolute shrinkage and selection op-

erator (SCoTLASS) (Jolliffe et al., 2003). Simple thresholding is a common

and informal method usually used in practice (Lee et al., 2010); however, this

method lacks theoretical support and usually causes problems (Cadima & Jol-

liffe, 1995). Recently, Zou et al. proposed sparse PCA (SPCA) which reformu-

lated PCA into a regression-type optimization problem and then added a L1

constraint to achieve sparse loadings; they demonstrated improved performance

of SPCA in selecting the real informative variables over previous methods (Zou

et al., 2006). A SPCA toolbox was later developed (Sjöstrand et al., 2012).

PLSR is a linear regression method which has a similar prediction accuracy

to ridge regression (RR) and principal component regression (PCR) (Frank &

Friedman, 1993). It is more widely used than RR and PCR in medical prob-

lems, such as cardiac motion prediction (Ablitt et al., 2004) and craniofacial

reconstruction (Duan et al., 2015), as it is more suitable for problems with a

larger number of variables and fewer number of observations (Rosipal & Trejo,

2001). However, its accuracy for non-linear motions is limited.

Many non-linear PLSR variations have been proposed and they can be di-
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vided into two groups (Rosipal & Krämer, 2006): the first group reformulates

the linear relationship into a non-linear one by polynomial functions, smooth-

ing splines, artificial neural networks, and radial basis function networks while

the second group maps the original variables into a higher dimensional space

and regresses the mapped variables in the higher dimension, for example, kernel

space. Kernel PLSR (KPLSR) (Rosipal & Trejo, 2001) from the second group

is adopted in this paper for improved computation speed as its formulation is as

time-efficient as PLSR and avoids the non-linear optimization in the first group.

In this paper, the high-resolution 3D shape of a dynamic anatomy was in-

stantiated from a single intra-operative 2D image in real-time. Firstly, the

anatomy was scanned by MR or CT pre-operatively for multiple 3D volumes

along the dynamic cycle and a 3D SSM was constructed. SPCA was applied

on the pre-operative 3D SSM to select the informative vertices which were used

to fit an optical scan plane. Local adjustments of the scan plane parameters

for better accessibility, visibility or satisfying other local constraints is possi-

ble without incurring major errors, as the later KPLSR-based 3D shape in-

stantiation scheme is robust to optimal scan plane derivations. Secondly, 2D

images synchronized with the pre-operative scanning were obtained at the ap-

proximate optimal scan plane and were sampled to generate a synchronized 2D

SSM. KPLSR was applied to learn the relationship between the pre-operative

3D SSM and the synchronized 2D SSM. Finally, the high-resolution 3D shape

was instantiated intra-operatively by applying the KPLSR-derived relationship

onto a new intra-operative 2D image at the same scan plane. The overall frame-

work of the proposed dynamic shape instantiation is illustrated in Fig. 1. Due

to the learning of patient-specific models, the framework is applicable to any

anatomy. No extra registration is needed for the pre-operative 3D SSM and

the synchronized 2D SSM. Validation was performed on the liver (two digital

liver phantoms, one dynamic liver phantom, one in vivo porcine liver, eight

metastatic livers) and the cardiac right ventricle (RV) (18 asymptomatic RVs

and 9 hypertrophic cardiomyopathy (HCM) RVs); we anticipate that potential

applications of our work will include percutaneous liver biopsy, cardiac catheter-
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ization (Razavi et al., 2003), and intra-myocardial therapy (Saeed et al., 2005).

For example, in cardiac ablation, the instantiated 3D RV shape can be used to

help navigate the catheter tip to the target ablation area.

Figure 1: A schematic illustration of the overall framework of the proposed dynamic shape

instantiation scheme: both the 2D images in the learning and prediction are taken at the

approximate optimal scan plane; the learning 2D SSM and learning 3D SSM are not registered

but synchronized.

2. Methodology

The methods for determining the optimal scan plane are described in Sec.

2.1. The learning and instantiation based on KPLSR are described in Sec. 2.2.

Finally, the data collection and detailed validation experiments are in Sec. 2.3.

2.1. Optimal Scan Plane Determination

By pre-operatively scanning the target anatomy with CT or MR, a 4D

volume consisting of multiple 3D volumes at different time frames along the

dynamic cycle of the anatomy was obtained. These 3D volumes were repre-

sented with 3D meshes using the same number of vertices and connectivities,

which created a pre-operative 3D SSM (a point distribution model) with vertices

YN×numY×3, where N is the number of time frames and numY is the number of

vertices. By rearranging the (x, y, z) coordinates of the vertices as independent
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variables, YN×q was obtained, where q = numY × 3 is the number of variables.

Without loss of generality, YN×q was centered and normalized as Ynorm with

the mean and norm of each column as 0 and 1.

For data Ynorm, its singular value decomposition is Ynorm = UDV T , where

Z = UD are the principal components and V are the loadings of the principal

components. The ith principal component Zi, i ∈ (1, N) represents the ith mode

of variation in the anatomical deformation while the corresponding loadings Vi

represent the contribution of each variable to this mode of variation (Lee et al.,

2005). The Vi calculated by PCA are usually all non-zero values and hence the

selected informative vertices are highly related and clustered. The aim of SPCA

is to achieve a sparse Vi. Vi can be recovered by:

β̂ridge = arg minβ‖Zi − Ynormβ‖2 + λ‖β‖2 (1)

Here,
β̂ridge

‖β̂ridge‖
= Vi, λ is a manually set positive parameter. With the addi-

tion of an L1 constraint, Eq. 1 becomes:

β̂ridge = arg minβ‖Zi − Ynormβ‖2 + λ‖β‖2 + λ1‖β‖1 (2)

where ‖β‖1 =
∑q
j=1 |βj | and λ1 is a manually set parameter which controls

the sparsity or the number of non-zero values of β̂ridge. Eq. 2 can be solved with

a fixed λ and any λ1 by least angle regression elastic net (LARS-EN) efficiently

(Zou & Hastie, 2005).

However, Eq. 2 is still based on PCA due to the inclusion of Zi. To solve

this, a two-stage exploratory analysis was formulated with PCA initialization

and then optimization with sparse approximations.

With yi - the ith row of Ynorm:

(α̂, β̂) = arg minα,β

N∑
i=1

‖yi − αβT yi‖2 + λ‖β‖2 (3)

When ‖α‖2 = 1, then β̂ ∝ V1; the detailed proof can be found in (Zou et al.,

2006). If the first k principal components and the lasso penalty are included,

Eq. 3 becomes
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(Â, B̂) = arg minA,B

N∑
i=1

‖yi −ABT yi‖2 + λ

k∑
j=1

‖βj‖2 +

k∑
j=1

λ1,j‖β‖1 (4)

Here, Aq×k = [α1, ..., αk] are the loadings of the first k principal components

of PCA, when ATA = Ik×k. Then Bq×k = [β1, ..., βk] are the approximated

sparse loadings of V1:k.

The complete SPCA algorithm is listed in Algorithm 1. The approximated

sparse loadings V̂j is a q × 1 matrix with the loading or contribution of each

variable to the jth principal component or mode of variation. The parameter

λ1,j controls the sparsity or the number of non-zero values in V̂j . As suggested in

(Lee et al., 2005), the contribution of three coordinates (x, y, z) at V̂1 was added

together to represent the vertex contribution. The vertices at all time frames

with non-zero contribution were selected as the informative vertices. A plane

with the minimum sum of distances to all informative vertices was determined as

the optimal scan plane. When calculating the sum, each distance was weighted

by the vertex contribution. For multiple scan planes, V̂j , j ∈ (2, N) can be used

to determine the jth optimal scan plane; however, this is out of the scope of

this paper as we are targeting a single scan plane.

In (Lee et al., 2010), the real scan planes were registered to the optimal scan

planes. In this paper, as the proposed KPLSR-based 3D shape instantiation

is robust to local scan plane deviations, which will be shown in Sec. 3.2, the

final scan plane is an approximate one that is both accessible and convenient for

imaging with parameters near the optimal scan plane. When the deformations

or shapes of the anatomy are significantly different between patients and hence

there are significantly different optimal scan planes between patients, such as

the metastatic liver after oncological surgery, the optimal scan plane needs to be

determined on a patient-specific basis. When the deformations or shapes of the

anatomy are similar between patients and hence there are similar optimal scan

planes between patients, such as the RV, the trend of the optimal scan planes for

multiple patients is determined as a general optimal scan plane for the anatomy
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Algorithm 1: SPCA (Zou et al., 2006)

SPCA

Initialize A = V [:, 1 : k]:

the loadings of the first k principal components from PCA

Initialize Bq×k = [β1, ..., βk] = 0

For j=1:k

If ‖βnewj − βoldj ‖ > criterion, which has not converged

Solve the following minimum by LARS-EN:

βj = arg minβ(αj − β)TY TnormYnorm(αj − β) + λ‖β‖2 + λ1,j‖β‖1
Update B with the normalized new βj

Update A with the normalized new αj :

αj = (1−A[:, 1 : j − 1]A[:, 1 : j − 1]T )Y TnormYnormβj

End

End

Approximated sparse loadings V̂j = βj , j = 1, ..., k.

and will be used directly in subsequent interventional procedures, thus reducing

the workload for clinicians. Detailed optimal scan plane determination and

approximation in our experiments are given in Sec. 2.3.

2.2. 3D Shape Instantiation

With the pre-operative 3D SSM and the approximate optimal scan plane

obtained, 2D images synchronized with the time frames for pre-operative scan-

ning were obtained at the approximate optimal scan plane. The 2D anatomical

contours were segmented and sampled to the same number of 2D vertices and

connectivities, resulting in a 2D SSM with vertices XN×numX×2, where N is the

number of time frames and numX is the number of vertices. By rearranging

the (x, y) coordinates of vertices as independent variables, XN×p was obtained,

where p = numX × 2 is the number of variables and typically p 6= q. The 3D

volumes and 2D images do not need to be registered. KPLSR is then applied to
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learn the relationship between the 3D SSM which is the response in regression

and the 2D SSM which is the predictor in regression. For 3D shape instantia-

tion, the new intra-operative 2D image is obtained at the same scan plane and is

sampled into the same number of vertices and connectivities as that for the orig-

inal 2D SSM with vertices x′numX×2. x′1×p is obtained by rearranging the (x, y)

coordinates as independent variables for applying the KPLSR-derived relation-

ship to predict the intra-operative response y′1×q whose (x, y, z) coordinates are

then rearranged back to obtain the intra-operative 3D shape y′numY×3.

In the following sections, we introduce PLSR and show its extension to

KPLSR.

2.2.1. PLSR

PLSR extracts the relationship between two matrices which could have dif-

ferent dimensions. With predictors XN×p and responses YN×q, PLSR finds the

relationship:

ŶN×q = XN×pBp×q (5)

Here, Ŷ is the prediction of Y . The latent variables in X are determined

by Bp×q to explain the latent variables in Y maximally. Bp×q is later used to

predict the intra-operative response y′1×q from x′1×p. Non-linear iterative partial

least squares (NIPALS) is a widely applied PLSR algorithm (Rosipal & Trejo,

2001). In this paper, an alternative algorithm - SIMPLS (De Jong, 1993) - was

used for increased time-efficiency.

Without loss of generality, both XN×p and YN×q are centered with the mean

of each column as 0, which are expressed by X0 and Y0 respectively below.

The main problem for SIMPLS is to compute the weight factors ri and di,

where i ∈ (1,M) and M is a manually set parameter denoting the number of

components used. ri and di maximize the covariance of ti = X0ri and ui = Y0di

with the following four conditions:

1. maximized covariance: u′iti = d′i(Y
′
0X0)ri = maximum,
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Algorithm 2: SIMPLS

SIMPLS

Initialize S0 = XT
0 Y0, X0, Y0 are the centered matrix of X,Y respectively

for i = 1 : M (M is a manually set parameter - the number of components used)

if i == 1

ri = first left singular vector of SVD of S0, (ri − weights)

else

ri = first left singular vector of SVD of S0(Ip − Ci−1(C ′i−1Ci−1)−1C ′i−1)

end

ti = X0ri (ti − scores)

ci = XT
0 ti/(t

t
iti) (ci − loadings)

end

Coefficient: Bp×q = RT−1Y0, where R = [r1, r2...rM ], T = [t1, t2...tM ]

2. normalized ri: r
′
iri = 1,

3. normalized di: d
′
idi = 1,

4. orthogonalized t: t′jti = 0, i > j

To satisfy the fourth condition, t′jti = t′jX0ri = (t′jtj)c
′
jri = 0, where

cj = X ′0tj/(t
′
jtj). When i > 1, any new ri must be orthogonal to Ci−1 =

[c1, c2...ci−1]. This orthogonal projector is Ip − Ci−1(C ′i−1Ci−1)−1C ′i−1, where

Ip is an identity matrix. The SIMPLS algorithm is listed in Algorithm 2:

2.2.2. KPLSR

PLSR is less suitable for regressing non-linear motions. KPLSR was used to

compensate for this shortage. A kernel function maps the predictor XN×q into

a new feature space F non-linearly with Φ : xi ∈ Rq → Φ(xi) ∈ F, i ∈ (1, N). Φ

satisfies the kernel trick : Φ(xi)
T

Φ(xj) = K(xi, xj). PLSR is then constructed

in the feature space F to achieve a non-linear regression for X (Rosipal & Trejo,

2001).

The kernel used in this paper was a Gaussian kernel for its increased accuracy
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over a polynomial kernel:

Kspace = exp(−K/W ) (6)

Here K(i,j) = K(j,i) = (xi − xj)
2, i, j ∈ (1, N). W , the Gaussian width,

was adjusted to Ratio×maximum(KN×N ) to facilitate parameter adjustment

between different targets and subjects, Ratio is a manually set ratio which we

term the Gaussian ratio. Substituting the X in Algorithm 2 with Kspace gives

us the algorithm for KPLSR.

2.3. Data Collection and Validation

The proposed framework was validated on both liver and cardiac RV studies.

The experiments included two digital liver phantoms, one dynamic liver phan-

tom, one in vivo porcine liver, eight livers from metastatic patients, 18 cardiac

RVs from asymptomatic subjects, and 9 cardiac RVs from HCM patients.

The acquisition of 3D meshes and synchronized 2D contours at different time

frames along the dynamic cycle for each data are given in Sec. 2.3.2 - 2.3.5. All

data used the same methods to construct the 3D and 2D SSM. With known

3D shapes consisting of 3D vertices and connectivities at different time frames,

the mid-state 3D mesh was first projected to meshes at other time frames by

non-rigid registration (Manu, 2016). Then the registered mid-state 3D mesh

was mapped onto meshes at other time frames by projecting its vertices along

the normal directions. Therefore a 3D SSM with point correspondences was

constructed. With known 2D contours consisting of 2D vertices and connectivi-

ties at different time frames, the construction of a 2D SSM was in the same way

as that for a 3D SSM but with a different registration method (Kroon, 2016).

2.3.1. Digital Livers

XCAT is a digital whole body phantom with detailed, high-resolution and

dynamic tissues (Segars et al., 2010) as shown in Fig. 2a and Fig. 2b. In

this paper, the isotropic resolution of the volume was set at 0.625mm. 21 time

frames were collected between exhalation and inhalation. 3D meshes of two
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XCAT livers (one male and one female) were segmented and processed with

Analyze (AnalyzeDirect, Inc, Overland Park, KS, USA) and MeshLab (Cignoni

et al., 2008). A 3D SSM was constructed for each digital liver.

The optimal scan plane for each liver was determined with approximately

200 informative vertices and was used to slice the meshes in the 3D SSM. The

intersection contours were projected onto the slicing plane to simulate 2D con-

tours. A 2D SSM was constructed for each liver.

Figure 2: The digital livers and phantom experiment setup: (a) the male digital phantom,

(b) the female digital phantom, (c) an X-ray image of the Regina phantom, whose lungs have

been modified to simulate different respiratory positions, (d) the custom designed tracking

frame based on a Polaris tracker mounted on the ultrasound transducer.

2.3.2. Dynamic Liver Phantom Experiment

A detailed female phantom modeled with silicone organs (the Regina model

(Lerotic & Lee, 2010)) was used. The lungs were modified to simulate respira-

tory motion. In each lung, foam board inserts (each 5mm thick) were used, cre-

ating seven different liver deformation positions. Each respiratory position was

scanned in a Siemens 64 slice SOMATOM Sensation CT Scanner with images of

13



0.77mm×0.77mm in-plane resolution and 1mm slice separation. Segmentation

and processing were performed with Analyze and MeshLab.

For real-time scanning, ultrasound imaging was used. A 2D imaging trans-

ducer used with the ALOKA prosound α10 system (Aloka Co. Ltd, Tokyo,

Japan) was affixed with an NDI Polaris passive infrared tracker (Northern Dig-

ital, Inc, Waterloo, ON, Canada), enabling the recording of the spatial position

and orientation of the scan plane. Calibration between systems was established

by registering three known landmarks on the liver phantom in both frames of

reference. The ultrasound images were captured from the S-video output feed

of the scanner. The experiment setup is shown in Fig. 2c and Fig. 2d.

Freehand 3D ultrasound systems require calibration and a number of tech-

niques and corresponding phantoms have been developed for this (Mercier et al.,

2005). To calibrate the ultrasound images to the coordinate space of a tracking

device, a three-point crossed wires phantom was built. The transforms from

the coordinate space of the optical tracker to that of the CT imaging space

were calculated by PRAXIS (Gegenfurtner, 1992). This defined a translation

and a quaternion for the rotation between the ultrasound image points and the

CT imaging space (Prager et al., 1998). The mean distance between the regis-

tered ultrasound image points and the 3D meshes scanned by CT is less than

10−2mm.

Due to the constraints caused by the rib cage, the optimal scan plane fitted

with 30 informative vertices was selected as the actual scan plane. The silicone

phantom was filled with water. For each respiratory position, the optimal scan

plane was acquired with the ultrasound probe. An experienced operator scanned

the phantom using an in-house guidance system where the silicone liver was reg-

istered to a 3D guidance mesh by three manually chosen points. This guidance

system provided the actual scan plane in real-time as well as the desired scan

plane orientation.

A semi-automatic segmentation based on active contours (Geiger et al., 1995)

was used to delineate the liver contour from the 2D ultrasound images. It could

determine a contour in an ultrasound image automatically when the two end
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points were selected manually. The contours were transformed to the CT coor-

dinate frame to achieve registered contour coordinates from which a registered

2D SSM was constructed. The registration between 3D volumes and 2D images

was only performed for the Regina phantom for later specific comparison and

was not performed for all other data.

2.3.3. Porcine Liver

One contrast enhanced 3D CT scan was captured at full exhalation using

a GE Innova 4100 interventional X-ray machine capable of fluoro-CT imaging.

Due to the respirator design, the porcine liver could not be stopped at differ-

ent respiratory positions for a 3D CT scan. Instead, fluoroscopic images were

obtained in an anteroposterior (AP) direction over time to cover the animal’s

respiratory motion. As only one 3D volume at full exhalation was scanned

with CT, 3D volumes at other respiration positions were simulated by image

constrained finite element modeling (FEM) (Lerotic et al., 2009) while the col-

lected fluoroscopic images were used as the image constraints. This created

multiple liver 3D meshes at different time frames. In this paper, the surface

mesh at full exhalation was first turned into a tetrahedral mesh using Gmsh

(Geuzaine & Remacle, 2009). Then, the Open Source SOFA framework (Allard

et al., 2007), chosen for its emphasis on real-time medical simulations, was used

for the FEM. The material for the liver was set to be elastic and isotropic, with

a Young’s modulus of 640 Pa and Poisson’s ratio of 0.3 (Yeh et al., 2002). A

3D SSM was constructed for the porcine liver.

The meshes in the 3D porcine liver SSM were sliced by the optimal scan

plane determined with approximately 200 informative vertices. The sliced con-

tours were projected onto the slicing plane with 2D coordinates to simulate 2D

contours. A 2D SSM was constructed for the porcine liver as well.

2.3.4. Metastatic Livers

Clinical data from eight patients (6 male, 2 female, mean age 63) with

metastatic liver tumors was collected. 4D volumes were scanned using a 1.5T
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MR scanner (Intera, Philips, Amsterdam, Netherland) using a T1 weighted free-

breathing sequence (TR = 7.83ms, TE = 2.24ms, 3.5mm × 3.5mm in-plane

resolution, 4.5mm slice thickness). Each volume consisted of 45 slices and was

acquired in approximately 1.2s. 60 time frames were collected to cover the liver

motion during respiration. Due to motion artifacts caused by respiration, we

could only confidently segment the livers at full inhalation and full exhalation.

As before, the SOFA framework was used to generate the meshes at different

respiratory positions but with the 3D volumes at full inhalation and full exha-

lation as the constraints. These meshes were used to construct a 3D SSM for

each patient.

The eight metastatic patients have significantly different liver shapes and

deformations, as shown in Fig. 3 and the optimal scan planes for each patient

were very different. For this reason, for the metastatic liver, the optimal scan

plane was determined patient-specifically with approximately 50 informative

vertices for each patient and this was used to slice the meshes in the 3D SSM.

The sliced contours were projected onto the slicing plane with 2D coordinates

to simulate 2D contours. A 2D SSM was constructed for each patient.

Figure 3: The eight metastatic livers shown on their corresponding MR images.
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2.3.5. Cardiac Data

27 subjects (18 asymptomatic subjects (Subjects 1-18) and 9 patients with

HCM (Subjects 19-27)) were scanned with a 1.5T MR scanner (Sonata, Siemens,

Erlangen, Germany). HCM was selected as it is one of the diseases that influ-

ence both the shape and deformation of the heart significantly. Short-axis cine

sequences from the atrioventricular ring to the apex were scanned with a 10mm

slice gap and a 1.5−2mm pixel spacing. 19−25 time frames were collected. To

recognize the slice location of the atrioventricular ring and the apex, the 10mm

slice gap was interpolated to 1mm in Analyze. 3D RV meshes were segmented

and built with Analyze and MeshLab. A 3D SSM was constructed for each

patient.

Even though HCM influences both the shape and deformation of the RV, the

optimal scan planes for the 27 subjects, which were determined with approxi-

mate 150 informative vertices each, were mostly found to be along the long axis

of the heart. Four examples are shown in Fig. 4. Even though the optimal

scan planes in Fig. 4 are not exactly the same, they still share the same trend –

lying along the long axis of the heart. This similarity of the optimal scan planes

between patients is mainly due to the similarity in deformation and shape of the

RVs between patients. As later KPLSR-based 3D shape instantiation is robust

to optimal scan plane deviations, we made an adjustment to the optimal scan

plane to ensure the accessibility of the scan plane and the visibility of the RV

considering the following three issues: 1) The long-axis is accessible for 2D MR,

2) The horizontal (four-chamber) long-axis has a clear view of the RV without

overlap with other chambers, and 3) Clinicians are familiar with this plane as it

features the apex and the atrioventricular ring. For these reasons, the horizontal

(four-chamber) long-axis plane was selected as the actual scan plane for all RVs.

2D MR images at the horizontal (four-chamber) long-axis plane with the

synchronized time frames as that for the pre-operative 4D volume scanning were

obtained for all 27 subjects. Analyze was used to segment the RV contours and

a 2D SSM was constructed for each subject.
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Figure 4: Four RVs, with optimal scan plane determination using the 150 most informative

vertices: the vertices are colored by their normalized importance determined by SPCA and

the grey plane is the optimal scan plane, with the overall view direction shown on the left hand

side. The red/blue/green/grey chambers are the right ventricle/right atrium/left atrium/left

ventricle, respectively.

2.3.6. Validation

Leave-one-out cross validation was applied for all time frames for all data.

The ith, i ∈ (1, N) time frame in the 2D SSM was left out as a new predictor

while the ith time frame in the 3D SSM was left out as the ground truth. All

other time frames were used in the learning. The error was calculated as the

Euclidean vertex-to-vertex distance between the 3D prediction and the ground

truth. The shape variation was calculated as the mean vertex-to-vertex distance

between the (i− 1)th and the (i+ 1)th time frame in the 3D SSM.

It was shown that SPCA was able to better select the real and unrelated

informative variables than PCA on a synthetic example (Zou et al., 2006). For

the synthetic example, the contribution of a variable and the relations between

variables were known. However, for practical data, both this contribution and

the relations were unknown; a comparison of the distribution of the informative

vertices selected by PCA and SPCA is given in this paper. In practice, adjusting

the optimal scan plane is usually necessary for better scan plane accessibility

and target visibility. To illustrate that this adjustment will not incur major

errors, multiple deviated optimal scan planes were used to instantiate the 3D

shape.

Both PLSR and KPLSR regress the relationships between two matrices
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rather than two coordinate frames. Lee et al. applied PLSR with registra-

tion of pre-operative 3D SSM and synchronized 2D SSM (Lee et al., 2010). In

this paper, this explicit registration is not required. To demonstrate this, both

the registered and non-registered 2D SSM of the dynamic phantom liver were

used as the predictor for dynamic shape instantiation. The stability of an algo-

rithm with respect to its parameters is important for judging its performance.

PLSR has one parameter, the number of components used, while KPLSR has

two parameters, the number of components used and the Gaussian ratio. To

evaluate the stability of PLSR and KPLSR to the number of components used,

the validation was applied on two HCM RVs with the number of components

used set from 1 − 18. In practice, the time frames at or near the boundaries,

i.e. at maximal inhalation and exhalation or at diastole and systole, are the

most difficult time frames to recover, as the learning is more weak for these

time frames. We term these time frames boundary time frames. In this paper,

the performance of PLSR and KPLSR at boundary time frames were validated

on two cardiac RVs (one asymptomatic RV and one HCM RV). The liver data

was collected along half of the dynamic cycle - the first and last few time frames

are the inhalation and exhalation respectively, i.e. the boundary time frames.

The cardiac data was collected along the entire dynamic cycle, the first and last

few time frames are at diastole while the middle few time frames are at systole,

i.e. the boundary time frames.

Finally, the accuracy of the proposed dynamic shape instantiation was tested

on two digital livers, one in vivo porcine liver, eight metastatic liver patients,

and 27 RVs of asymptomatic subjects and HCM patients.

3. Results

The results from our experiments are shown in the following sections. The

comparison between PCA and SPCA on selecting informative vertices is demon-

strated in Sec. 3.1. The robustness of the KPLSR-based 3D shape instantiation

to scan plane deviations is shown in Sec. 3.2. The validation on releasing
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the registration between pre-operative 3D SSM and synchronized 2D SSM is

illustrated in Sec. 3.3. The stability of PLSR and KPLSR to the number of

components used is compared in Sec. 3.4. Boundary time frames are tested in

Sec. 3.5. Finally, the accuracy of the proposed dynamic shape instantiation is

validated on the liver and the heart, which is shown in Sec. 3.6.

3.1. Comparison between PCA and SPCA

For most subjects, including the metastatic livers and cardiac RVs, it was

found that the informative vertices selected by PCA were more clustered than

the informative vertices selected by SPCA. Three examples are shown in Fig.

5. Clustered informative vertices were selected by PCA due to their related

motion with the informative vertices considered to be in the same area. SPCA

can remove this inter-relation and only select the true and sparse informative

vertices.

3.2. Robustness to Scan Plane Deviations

To demonstrate the robustness of the proposed KPLSR-based 3D shape

instantiation to scan plane deviations, example RV results from Subject 3 are

illustrated below. 13 scan planes with some deviations from the optimal scan

plane were used to slice the pre-operative 3D SSM for 3D shape instantiation.

The distance error and the deviation for each scan plane is shown in Fig. 6a

and Fig. 6b respectively. We can see that the achieved accuracy was scarcely

influenced by local scan plane deviations, demonstrating the robustness of the

proposed KPLSR-based 3D shape instantiation to scan plane deviations. This

is important for practically implementing the proposed framework, as due to

practical constraints (access window, or other local, physical constraints), it

may be necessary to deviate slightly from the theoretical optimal scan plane.

Such deviation should not induce large changes in instantiation errors.

3.3. Validation of Registration-Free Instantiation

The instantiation accuracy across all time frames with registered and non-

registered predictors which were collected in the liver phantom experiment is
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Figure 5: One liver and two RV examples showing the most informative vertices selected

by SPCA and PCA: (a) a metastatic liver with 50 informative vertices determined by SPCA

while 50, 150, 250 informative vertices determined by PCA, (b) an asymptomatic RV with 100

informative vertices determined by SPCA while 50, 150, 250 informative vertices determined

by PCA, (c) a HCM RV with 101 informative vertices determined by SPCA while 50, 150,

250 informative vertices determined by PCA. The view directions for RVs and vertex coloring

are in the same way as that in Fig. 4
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Figure 6: Testing the robustness of the proposed KPLSR-based 3D shape instantiation to

scan plane deviations: (a) the mean distance error of the 3D shape instantiation with devi-

ated optimal scan planes, with standard deviation calculated across 20 time frames, (b) the

deviations of the scan planes. Even though a plane could have six transformations, three of

them (rotation along the z axis, translation along the x axis and translation along the y axis do

not influence the slicing results. The other three transformations were explored. For example,

(0, 0, 6) means rotating 0◦ along the x axis, rotating 0◦ along the y axis, and translating 6mm

along the z axis, (c) illustration of the x, y, z axes of a plane.

shown in Fig. 7. It can be seen that PLSR is influenced by the registration

while KPLSR shows little influence, demonstrating that explicit registration is

not required in the proposed method.

3.4. Stability to the Number of Components Used

Instantiation for two HCM patients (Subject 21 and Subject 27) was calcu-

lated along all time frames with a varying number of components used (1− 18),

as shown in Fig. 8a and Fig. 8d. It can be seen that the accuracy of KPLSR

is less sensitive to this parameter - the number of components used - than that

of PLSR, as the standard deviations of KPLSR are less than that of PLSR at

most time frames. Two time frames (time frame 5 of Patient 21, time frame 9

of Patient 27) are shown with the mean distance errors at different numbers of

components used in Fig. 8b and Fig. 8e. Two instantiation examples colored

by the distance errors are shown in Fig. 8c and Fig. 8f. The error is distributed

evenly over the mesh.
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Figure 7: The instantiation accuracy for the liver phantom experiment: (left) the mean dis-

tance errors of PLSR with registered and non-registered predictors, (right) the mean distance

errors of KPLSR with registered and non-registered predictors.

Figure 8: Testing the influence of the number of components used on PLSR and KPLSR: (a)

the mean ± std errors for Subject 21, with the standard deviation calculated across 1 − 18

components used, (b) mean distance errors with numbers of components used varying from

1 − 18 for time frame 5 of Subject 21 (labeled with blue dots in a), (c) a shape instantiation

example colored by the distance errors with 7 components used for time frame 5 of Subject

21 (labeled with green dot in b), with the same view direction in Fig.4, d,e,f are the same as

a,b,c but for Patient 27, time frame 9, 7 components used respectively.
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3.5. Performance at Boundary Time Frames

The mean distance errors for shape instantiation along all time frames are

shown for two selected subjects (Subject 6 (asymptomatic) and Subject 19

(HCM)) in Fig. 9a. The PLSR errors show large peaks near systole (time

frame 10 for Subject 6, time frame 11 for Subject 19) and diastole (time frame

1 and 25 for Subject 6, time frame 1 and 20 for Subject 19) while KPLSR er-

rors show smaller increasing errors at these boundary time frames. It can be

concluded that KPLSR has better performance at boundary time frames than

PLSR.

Figure 9: Results at the boundary time frames and for the RV experiments: (a) performance

test for boundary time frames, (b) the instantiation errors for 27 subjects (Subjects 1-18 =

asymptomatic subjects; Subjects 19-27 = HCM).

3.6. Accuracy of Dynamic Shape Instantiation

Mean distance errors of PLSR and KPLSR and the shape variation of two

digital phantom livers and one porcine liver are shown along all time frames in

Fig. 10. For the two digital livers, KPLSR achieved much lower errors at the

time frames where PLSR showed high peaks. For the porcine data, the accuracy

of KPLSR is higher than that of PLSR at most time frames. For both digital

phantom and porcine liver studies, the mean distance error of KPLSR is much
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lower than the shape variation at most time frames. The peaks for KPLSR

(time frames 18-19 in Fig. 10b and time frames 1-2 in Fig. 10c) were caused

by boundary time frames. The higher accuracy of KPLSR for the two digital

livers is not as obvious as that for the porcine liver due to the design and linear

deformation of the digital phantom.

Figure 10: The mean distance errors and the shape variation of the two digital livers and the

porcine liver: (a) the mean distance errors and the shape variation for the female digital liver,

(b) the errors and shape variation for the male digital liver, (c) the errors and shape variation

for the porcine liver.

Eight patients with metastatic tumors were used for instantiation validation

with the mean distance errors of PLSR and KPLSR and the shape variation

shown along all time frames in Fig. 11. For most of the time frames and

patients, KPLSR achieved much more accurate instantiation results than those

of PLSR. The mean distance errors of KPLSR were also much lower than the

shape variation. The higher errors of KPLSR (time frames 29-30 for P1, time

frames 1-3 and 29 for P4, time frame 22 for P5, time frame 14 for P7) were

caused by boundary time frames.

Shape instantiation of 27 RVs was validated with the mean distance errors

of PLSR and KPLSR and the shape variation shown in Fig. 9b; the standard

deviation in the graphs was from the error variation along different time frames.

Overall, KPLSR achieves both lower mean and standard deviation errors in the

instantiation than PLSR for all subjects. The error achieved by KPLSR was

also much lower than the shape variation for all subjects. The similar results

between patients also demonstrate the availability of using one approximate

25



Figure 11: The mean distance errors and the shape variation for the eight metastatic livers.

optimal scan plane - the horizontal (four-chamber) long-axis plane for all RVs

in this paper.

For optimal scan plane determination, the number of informative vertices

was determined as 5%− 10% of the total number of vertices in each test mesh,

the parameter λ was fixed at 0.0001, k was set at 1 as we are targeting a

single scan plane, and the parameter λ1 was set as the number of informative

vertices. For 3D shape instantiation, with the exception of the test for stability

to the number of components used, all tests were validated with the number of

components used for PLSR optimized between 1− 8 while that for KPLSR was

empirically set between 1− 18. Overall, KPLSR achieved better accuracy at a

higher number of components used than PLSR. The Gaussian ratio parameter

of KPLSR was selected empirically.

Experiments were performed in MATLAB on an Intel(R) Core(TM) i7-4790

CPU @3.60Hz computer. The training took approximately 1s for one compo-

nent deflation; the number of component deflations is the number of components

used. The prediction or shape instantiation took approximately 1ms.
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4. Discussion

In this paper, SPCA was applied instead of PCA to determine the informa-

tive vertices to find the optimal scan plane. We expect that nearby points on the

surface of organs will tend to move dependently in a similar fashion. This is be-

cause the movement of one cell will cause the movement of its nearby cells due to

the connectivity of tissues. the sparse informative vertices determined by SPCA

and the clustered informative vertices determined by PCA could illustrate the

ability of SPCA to derive principal components from unrelated original vari-

ables and hence select the true, unrelated informative vertices. However, from

our experiments, the overall trend of the informative vertices selected by PCA

was shown to be similar to the trend determined by SPCA. It is more reasonable

to conclude that SPCA facilitates the determination of the optimal scan plane

more clearly and quickly than PCA rather than more accurately in this case.

Setting a higher number of informative vertices when applying PCA could also

achieve a good scan plane.

In practical applications, the calculated optimal scan plane is not always

accessible. The robustness of the proposed KPLSR-based 3D shape instantiation

to local scan plan deviations ensures the adjustment of the scan plane for better

accessibility and visibility in practical clinical scenarios. The optimal scan plane

for the RV, which will be used directly for future patients, was determined by

analyzing the pattern of the optimal scan planes for 27 RVs. This method

of determining the optimal scan plane could be adopted for other anatomies

which share similar deformation and shape across patients. For anatomy such

as the metastatic liver which has significantly different deformation and shape

between patients, the optimal scan plane has to be determined for each patient

individually.

The registration between the pre-operative 3D SSM and synchronized 2D

SSM is no longer required in this paper. The validation on a liver phantom

experiment with both registered and non-registered predictors showed that the

accuracy of KPLSR was not influenced by this. The removal of explicit regis-

27



tration will decrease the workload for clinicians significantly when applying the

proposed method in practice. It was proved that KPLSR had much higher sta-

bility to the number of components used than PLSR. This is important during

practical applications in case of the use of a suboptimal setting of this param-

eter. KPLSR also had better processing at boundary time frames than PLSR

though the errors of KPLSR at boundary time frames are still higher than at

other normal time frames. This boundary limitation corresponded to more time

frames for the liver data than the cardiac data, as the SOFA framework gen-

erated meshes at the first few and last few time frames with very small shape

variations which were usually less than 0.3mm. In practical applications, always

including the time frames at maximum inhalation and exhalation or at systole

and diastole in the training data is highly recommended.

As pre-operative 4D volumes are not typically acquired for livers, FEM was

applied to simulate the meshes between the inspiration and expiration. FEM

or any other methods which could simulate the physical organ motion can thus

be used to generate pre-operative 4D volumes when transferring the proposed

framework onto other target anatomies whose dynamic motion is difficult to

gate.

In general, three kinds of data are needed to apply the proposed 3D shape

instantiation: the 3D SSM for learning, the 2D SSM for learning, and the 2D

intra-operative images for prediction. Synchronization is needed between the

learning 3D SSM and the learning 2D SSM while registration is needed between

the learning 2D SSM and the 2D intra-operative images for prediction. The 4D

volume used for constructing the learning 3D SSM was scanned pre-operatively

while the 2D images used for constructing the learning 2D SSM could be scanned

pre-operatively or intra-operatively, as the learning only takes a few seconds.

In practical applications, for organs whose motion could be gated easily, i.e.

the RV, the synchronization between the learning 3D SSM and the learning 2D

SSM could be achieved through dynamic motion gating, i.e. electrocardiogram

(ECG) gating or respiratory gating. The registration between the learning 2D

SSM and the intra-operative 2D images for prediction could be achieved by
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setting the scan machine at the same scan position. For organs whose motion

is difficult to gate, i.e. the liver, FEM or other available methods which could

simulate the 3D volumes at different time positions could be used to collect the

learning 3D SSM and to slice for the learning 2D SSM. The registration between

the learning 2D SSM and the intra-operative 2D images for prediction could be

achieved by setting the scan machine to the same scan position as that used to

slice the learning 2D SSM.

Two digital livers, one porcine liver, and eight metastatic livers were used

to illustrate the applicability of the proposed method on livers. As well, 27 RVs

were used in our validation with real 2D MR images as the predictors, which

demonstrates the potential value of the proposed method in practical operations.

Even with only a single scan plane, a mean distance error of about 2.19mm

was achieved for the RV. This error was comparable to the mean accuracy in

(Gao et al., 2012) and (Huang et al., 2009) which were approximately 2.83mm

and 3.55mm for patients and animals, respectively. The computation time for

prediction (1ms) demonstrates the real-time ability of the proposed method.

5. Conclusions

In conclusion, a real-time and registration-free framework for dynamic shape

instantiation which is generalizable to multiple anatomies is proposed in this pa-

per. SPCA is applied to select the unrelated and real informative vertices from

a pre-operative 3D SSM, which facilitates a more clear and quick determination

for the optimal scan plane. KPLSR is used to improve the accuracy and robust-

ness of the instantiation. For anatomies like the RV, the optimal scan plane only

needs to be determined once and then can be used in subsequent interventions.

The detailed experiments performed for the removal of explicit registration,

the stability to the number of components used, and the performance at bound-

ary time frames covers the issues which may occur during practical applications.

FEM extends the application of the framework to anatomies like the liver, whose

motion is difficult to gate. The patient-specific learning removes the restrictions
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on the applicable anatomy. This paper sets the basis for applying the proposed

framework to other interventional procedures involving dynamic anatomies.

6. Acknowledgements

We would like to thank Dr Karim Lekadir and Dr Robert Merrifield for

supplying the cardiac data, Dr Maria Hawkins and Dr Diana Tait for the liver

patient data, and Dr Mirna Lerotic for her assistance with the finite element

simulations. This research was partly supported by the Engineering and Phys-

ical Sciences Research Council UK (EP/L020688/1).

References

References

Ablitt, N. A., Gao, J., Keegan, J., Stegger, L., Firmin, D. N., & Yang, G.-Z.

(2004). Predictive cardiac motion modeling and correction with partial least

squares regression. IEEE transactions on medical imaging , 23 , 1315–1324.

Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J., Poyer, F., Duriez, C.,

Delingette, H., & Grisoni, L. (2007). Sofa - an open source framework for

medical simulation. In MMVR 15-Medicine Meets Virtual Reality (pp. 13–

18). IOP Press volume 125.

Baka, N., Kaptein, B., de Bruijne, M., van Walsum, T., Giphart, J., Niessen,

W. J., & Lelieveldt, B. P. (2011). 2D-3D shape reconstruction of the distal

femur from stereo X-ray imaging using statistical shape models. Medical

image analysis, 15 , 840–850.

Barratt, D. C., Chan, C. S., Edwards, P. J., Penney, G. P., Slomczykowski,

M., Carter, T. J., & Hawkes, D. J. (2008). Instantiation and registration of

statistical shape models of the femur and pelvis using 3D ultrasound imaging.

Medical image analysis, 12 , 358–374.

30



Cadima, J., & Jolliffe, I. T. (1995). Loading and correlations in the interpreta-

tion of principle compenents. Journal of Applied Statistics, 22 , 203–214.

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., &

Ranzuglia, G. (2008). MeshLab: an open-source mesh processing tool.

In V. Scarano, R. D. Chiara, & U. Erra (Eds.), Eurographics Ital-

ian Chapter Conference. The Eurographics Association. doi:10.2312/

LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136.

Cool, D., Downey, D., Izawa, J., Chin, J., & Fenster, A. (2006). 3D prostate

model formation from non-parallel 2D ultrasound biopsy images. Medical

Image Analysis, 10 , 875–887.

Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1995). Active

shape models-their training and application. Computer vision and image

understanding , 61 , 38–59.

De Jong, S. (1993). SIMPLS: an alternative approach to partial least squares

regression. Chemometrics and intelligent laboratory systems, 18 , 251–263.

Duan, F., Huang, D., Tian, Y., Lu, K., Wu, Z., & Zhou, M. (2015). 3D face

reconstruction from skull by regression modeling in shape parameter spaces.

Neurocomputing , 151 , 674–682.

Filippi, S., Motyl, B., & Bandera, C. (2008). Analysis of existing methods for 3D

modelling of femurs starting from two orthogonal images and development of

a script for a commercial software package. Computer methods and programs

in biomedicine, 89 , 76–82.

Frangi, A. F., Rueckert, D., Schnabel, J. A., & Niessen, W. J. (2002). Automatic

construction of multiple-object three-dimensional statistical shape models:

Application to cardiac modeling. IEEE transactions on medical imaging , 21 ,

1151–1166.

Frank, L. E., & Friedman, J. H. (1993). A statistical view of some chemometrics

regression tools. Technometrics, 35 , 109–135.

31

http://dx.doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
http://dx.doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136


Gao, G., Penney, G., Ma, Y., Gogin, N., Cathier, P., Arujuna, A., Morton, G.,

Caulfield, D., Gill, J., Rinaldi, C. A., Hancock, J., Redwood, S., Thomas,

M., Razavi, R., Gijsbers, G., & Rhode, K. (2012). Registration of 3D trans-

esophageal echocardiography to X-ray fluoroscopy using image-based probe

tracking. Medical image analysis, 16 , 38–49.

Gegenfurtner, K. R. (1992). Praxis: Brents algorithm for function minimization.

Behavior Research Methods, Instruments, & Computers, 24 , 560–564.

Geiger, D., Gupta, A., Costa, L. A., & Vlontzos, J. (1995). Dynamic pro-

gramming for detecting, tracking, and matching deformable contours. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 17 , 294–302.

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3D finite element mesh gen-

erator with built-in pre-and post-processing facilities. International Journal

for Numerical Methods in Engineering , 79 , 1309–1331.

Huang, X., Moore, J., Guiraudon, G., Jones, D. L., Bainbridge, D., Ren, J., &

Peters, T. M. (2009). Dynamic 2D ultrasound and 3D CT image registration

of the beating heart. IEEE transactions on medical imaging , 28 , 1179–1189.

Jolliffe, I. (2002). Principal component analysis. Wiley Online Library.

Jolliffe, I. T. (1995). Rotation of principal components: choice of normalization

constraints. Journal of Applied Statistics, 22 , 29–35.

Jolliffe, I. T., Trendafilov, N. T., & Uddin, M. (2003). A modified principal com-

ponent technique based on the lasso. Journal of computational and Graphical

Statistics, 12 , 531–547.

Karade, V., & Ravi, B. (2015). 3D femur model reconstruction from biplane

X-ray images: a novel method based on laplacian surface deformation. Inter-

national journal of computer assisted radiology and surgery , 10 , 473–485.

Koh, K., Kim, Y. H., Kim, K., & Park, W. M. (2011). Reconstruction of patient-

specific femurs using X-ray and sparse CT images. Computers in biology and

medicine, 41 , 421–426.

32



Kroon, D.-J. (2016). Shape context based corresponding point mod-

els. https://uk.mathworks.com/matlabcentral/fileexchange/

30845-shape-context-based-corresponding-point-models. Accessed:

2016-02-20.

Lee, S.-L., Chung, A., Lerotic, M., Hawkins, M., Tait, D., & Yang, G.-Z. (2010).

Dynamic shape instantiation for intra-operative guidance. In International

Conference on Medical Image Computing and Computer-Assisted Intervention

(pp. 69–76). Springer.

Lee, S.-L., Horkaew, P., Caspersz, W., Darzi, A., & Yang, G.-Z. (2005). As-

sessment of shape variation of the levator ani with optimal scan planning

and statistical shape modeling. Journal of computer assisted tomography , 29 ,

154–162.

Lerotic, M., & Lee, S.-L. (2010). A multimodal silicone phantom for robotic sur-

gical training and simulation. In The Hamlyn Symposium on Medical Robotics,

London, UK (pp. 65–66).

Lerotic, M., Lee, S.-L., Keegan, J., & Yang, G.-Z. (2009). Image constrained

finite element modelling for real-time surgical simulation and guidance. In

Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE Interna-

tional Symposium on (pp. 1063–1066). IEEE.

Manu (2016). nonrigidicp. https://uk.mathworks.com/matlabcentral/

fileexchange/41396-nonrigidicp. Accessed: 2016-02-20.

Mercier, L., Langø, T., Lindseth, F., & Collins, L. D. (2005). A review of

calibration techniques for freehand 3D ultrasound systems. Ultrasound in

medicine & biology , 31 , 143–165.

Prager, R. W., Rohling, R. N., Gee, A., & Berman, L. (1998). Rapid calibration

for 3D freehand ultrasound. Ultrasound in medicine & biology , 24 , 855–869.

33

https://uk.mathworks.com/matlabcentral/fileexchange/30845-shape-context-based-corresponding-point-models
https://uk.mathworks.com/matlabcentral/fileexchange/30845-shape-context-based-corresponding-point-models
https://uk.mathworks.com/matlabcentral/fileexchange/41396-nonrigidicp
https://uk.mathworks.com/matlabcentral/fileexchange/41396-nonrigidicp


Rajamani, K. T., Styner, M. A., Talib, H., Zheng, G., Nolte, L. P., & Ballester,

M. A. G. (2007). Statistical deformable bone models for robust 3D surface

extrapolation from sparse data. Medical Image Analysis, 11 , 99–109.

Razavi, R., Hill, D. L., Keevil, S. F., Miquel, M. E., Muthurangu, V., Hegde,

S., Rhode, K., Barnett, M., van Vaals, J., Hawkes, D. J., & Baker, E. (2003).

Cardiac catheterisation guided by MRI in children and adults with congenital

heart disease. The Lancet , 362 , 1877–1882.
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