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Abstract

Computed tomography (CT) is a widely used imaging modality for screening and diagnosis. 

However, the deleterious effects of radiation exposure inherent in CT imaging require the 

development of image reconstruction methods which can reduce exposure levels. The development 

of iterative reconstruction techniques is now enabling the acquisition of low-dose CT images 

whose quality is comparable to that of CT images acquired with much higher radiation dosages. 

However, the characterization and calibration of the CT signal due to changes in dosage and 

reconstruction approaches is crucial to provide clinically relevant data. Although CT scanners are 

calibrated as part of the imaging workflow, the calibration is lim-ited to select global reference 

values and does not consider other inherent factors of the acquisition that depend on the subject 

scanned (e.g. photon starvation, partial volume effect, beam hardening) and result in a non-

stationary noise response. In this work, we analyze the effect of reconstruction biases caused by 

non-stationary noise and propose an autocalibration methodology to compensate it. Our 

contributions are: 1) the derivation of a functional relationship between observed bias and non-

stationary noise, 2) a robust and accurate method to estimate the local variance, 3) an 

autocalibration methodology that does not necessarily rely on a calibration phantom, attenuates the 

bias caused by noise and removes the sys-tematic bias observed in devices from different vendors. 

The validation of the proposed methodology was performed with a physical phantom and clinical 

CT scans acquired with different configurations (kernels, doses, algorithms including iterative 

reconstruction). The results confirmed the suitability of the proposed methods for removing the 

intra-device and inter-device reconstruction biases.
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1. Introduction

Computed tomographic imaging has become almost universally available in clinical and 

research settings. Since its introduction, it has grown to be part of routine clinical practice, 
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and it is estimated that over 80 million CT scans are performed each year in the United 

States (Hess et al., 2014). While it continues to provide new insight into the characterization 

and prognostication of disease, this high utilization has also raised concerns about the 

implications of radiation exposure to clinical populations (Brenner and Hall, 2007). Those 

concerns have tempered the growth in CT imaging studies (Hess et al., 2014) and propelled 

technological innovations for the implementation of low-dose and ultra-low-dose techniques 

in clinical practice (Mayo-Smith et al., 2014).

The characterization and calibration of the CT signal due to changes in dosage and 

reconstruction approaches is crucial for the advent of quantitative imaging as a clinically 

relevant tool. Quantitative imaging (QI) is the process of reducing functional, biological and 

morphological processes to a measurable quantity employing medical imaging. The uses of 

QI are even greater in the light of a new healthcare delivery system that becomes more 

personalized and tries to tailor therapies to the underlying pathophysiology. QI contributes to 

the radiological interpretation by assessing the degree of a given condition (Buckler et al., 

2011). QI has been adopted in clinical studies and trials to obtain more sensitive and precise 

endpoints. The advancement in techniques to automatically interpret and quantify medical 

images has been recognized by regulatory agencies that have now proposed guidelines for 

the qualification of image-based biomarkers to be used as valid endpoints in clinical trials 

(e.g. the Quantitative Imaging Biomarkers Alliance, QIBA, at www.rsna.org/qiba). However, 

the utility of quantitative imaging is hampered by the lack of standardization among vendors 

due to the variations in the acquisition and reconstruction processes such as signal-to-noise 

ratio, spatial resolution, slice thickness, image reconstruction algorithms among others 

(Mulshine et al., 2015).

The characterization and calibration of the CT signal due to changes in dosage and 

reconstruction approaches are foundational for the transition of quantitative image analysis 

from biomedical research to clinical care (Sieren et al., 2012). This transition has heretofore 

been limited by inter- and intra-scanner variability which has inhibited efforts to perform 

and interpret large-scale cross-sectional and longitudinal studies (Chen-Mayer et al., 2017; 

Parr et al., 2004). Any observed variability in such efforts has been ascribed to an 

inseparable admixture of poor standardization and biology. The current approach to this 

challenge is to create larger cohorts of subjects for clinical investigation with the hope that 

sample size will allow to detect biological effects despite the noise (Regan et al., 2011).

Although CT scanners are calibrated as part of the imaging workflow, the calibration is 

typically based on selecting global reference values such as air and water (Millner et al., 

1978). These limited calibration points are unable to account for inherent factors of the 

acquisition (e.g. photon starvation, partial volume effect, beam hardening) and so the 

resulting CT signal is more variable than desired (Hsieh, 2003). These effects are 

particularly important to account for when creating a quantitative metric that is consistent 

among vendors and free of confounding factors due to changes in patient weight and size to 

fulfill requirements of accuracy and precision (Uppot et al., 2007). Recent validation studies 

comparing different low-dose reconstruction approaches show the variability of quantitative 

traits, therefore, suggesting the need for calibration procedures (Choo et al., 2014).
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Among all those issues, a clear effect of low-dose and ultra-low-dose CT protocols is the 

increase of image noise (Kim et al., 2015). CT noise is a major factor that has been carefully 

studied during the last decades at the detector level as part of the transmission process 

(Whiting, 2002). The non-monochromatic nature of the X-ray signal, the amount of total X-

ray energy defined by tube current coupled with the effects of the reconstruction and the 

interaction between X-ray and matter within the scanning field of view make the noise 

characterization in the reconstructed image a complex process. One of the main effects of 

this complexity is the lack of stationarity. It is well understood that fan-beam tomography 

introduces non-stationary frequency components and non-stationary noise by the nature of 

the scanning geometry (Zeng, 2004).

The advent of iterative methods to deal with ultra-low-dose reconstruction provides a more 

complex scenario in which the The advent of iterative methods to deal with ultra-low-dose 

reconstruction provides a more complex scenario in which the underlying preprocessing 

affects differently the reconstructed signal. Those reconstruction methods affect the 

attenuation levels levels differently depending on their assumptions and may result in a 

deviation of the desired calibration as commonly seen in PET attenuation correction 

techniques using ultra-low dose CT protocols (Xia et al., 2012).

The aforementioned factors highlight the many challenges present in the quantitative 

comparison of CT images acquired under different conditions. This paper analyzes the effect 

of reconstruction inconsistencies depending on the dose, reconstruction algorithm, and 

acquisition parameters. The analysis is especially focused on the effect of the non-

stationarity of noise, which is a signal-dependent source of variability that cannot be 

prevented due to the physics of the acquisition. The effect of bias due to the non-stationary 

variance has been observed in the literature due to the strong deviations perceived in the 

attenuation level for the air cavities such as the trachea (Parr et al., 2004). On the other hand, 

the kernels and iterative algorithms used for reconstruction may arbitrarily affect the average 

intensities. If these effects are not considered, the reconstructions become useless for 

multicenter studies or the analysis of disease progression.

Several efforts have been coordinated to conduct phantom studies in a variety of scanner 

models to establish a baseline for assessing the variations in patient studies that can be 

attributed to scanner calibration and measurement uncertainty. One of those is Chen-Mayer 

et al. (2017), in which a phantom study provides an assessment of the accuracy and 

precision of the density metrics across platforms due to machine calibration. This study, 

however, does not consider the potential effects of non-stationary noise and spatially variant 

biases as the ones observed in Parr et al. (2004).

In our previous work Vegas-Sánchez-Ferrero et al. (2017), we proposed a statistical 

framework to describe the non-stationary behavior of noise and proposed a stabilization 

scheme to transform it into a stationary Gaussian process, enabling the local comparison of 

histograms between different doses and reconstruction kernels. This methodology would 

suffice to standardize scanners under the same calibration assuming the reconstruction 

methods do not introduce any bias. However, the non-stationary and positively skewed 

nature of noise also introduces an intrinsic bias that depends spatially on the object scanned. 

Vegas-Sánchez-Ferrero et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2018 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Even the same imaging device exhibits different bias fields depending on the subject being 

imaged. This fact is further complicated in multivendor studies where different systematic 

biases may be observed (Sieren et al., 2012).

To define and correct the aforementioned effect, we performed a bias study through a 

statistical exploratory data analysis in a series of acquisitions provided with different 

devices, reconstruction kernels, and doses. Then, we establish a functional relationship 

between the observed attenuation level and the local moments. This relationship paves the 

way for the derivation of an autocalibration method. The local variance has to be carefully 

estimated to remove the spatial dependence between bias and noise. We propose a robust 

methodology to estimate the local variance that avoids artifacts due to tissue boundaries and 

non-homogeneities based on the statistical characterization and variance stabilization 

methods recently proposed in Vegas-Sánchez-Ferrero et al. (2017). Then, an autocalibration 

scheme is proposed to establish a common framework for comparison of studies. This 

method successfully removes the bias caused by non-stationary noise and calibrates 

according to certain reference attenuation levels (e.g. anatomical references or well-defined 

homogeneous materials). The proposed methodology does not require any phantom, and it is 

designed to deal with studies with heterogeneous calibrations that may differ remarkably in 

their reconstruction methods or doses without the need for any parameter specification such 

as the reconstruction method. This method makes use of anatomical regions to establish 

common references and successfully removes the bias due to spatially-variant noise. The 

systematic bias induced by reconstruction methods and devices is also successfully 

corrected.

The contributions of this paper are: 1) The derivation of a functional relationship between 

the bias and non-stationary variance, 2) a robust method to calculate non-stationary variance, 

and 3) the autocalibration methodology.

The evaluation of the methods is performed with phantom acquisitions for different doses, 

reconstruction methods, and devices. The bias due to noise is successfully removed with a 

reduction over 90% in most of the cases, and the systematic bias is successfully removed. 

The evaluation with clinical CT scans is tested considering low-dose acquisitions, different 

reconstruction kernels, and iterative reconstruction methods. The observed intensities in 

well-defined anatomical structures such as trachea show a significant discrepancy in non-

calibrated images. The autocalibration methodology successfully removes the bias and 

provides a uniform response across the different acquisition conditions.

The paper is structured as follows: Section 2 presents the exploratory data analysis of a 

phantom acquired with different kernels, doses, and devices. The exploratory analysis 

carefully tests the functional relationships between the statistics of noise and the observed 

attenuation level. The descriptive analysis leads to the definition of a functional relationship 

between observed attenuation and local variance of noise (Section 2.1). The methods to 

estimate local moments and the non-stationary variance are described in Section 3.1. Then, 

in Section 3.3, the autocalibration methodology is described. The validation of the proposed 

methodology is given in Section 4. Finally, in Section 5 we present our conclusions.
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2. Exploratory data analysis of bias

The exploratory analysis is carried out in a physical phantom to see the deviations from the 

nominal attenuation value given by manufacturers. The deviations will be studied 

considering the non-stationary nature of noise, which is signal dependent.

We used the 8-step linearity module of the Lung Cancer Screening CT Phantom.1 The 

phantom is schematically described in Fig. 1. It consists of a cylindrical structure (200 mm 

diameter, 100 mm height) made of a homogeneous material that contains other 8 concentric 

cylindrical structures with different attenuation levels (from 340 HUs to −1000 HUs).

The phantom was acquired with two different devices with the following reconstruction 

protocol:

• General Electric Discovery STE. Four volumes of size 512 × 512 × 313 were 

acquired at Brigham and Women’s Hospital with various doses (40 0 mA and 10 

0 mA) and reconstruction kernels (Standard, Bone). All of them with a KVP: 120 

kV, slice thickness 0.625, pixel spacing 0.7 ×0.7, with software 

07MWDVCT36.4. We will refer to these volumes as STD HD, STD LD, BONE 

HD, BONE LD for the different arrangements of kernels and doses (HD: high 

dose; LD: low dose).

• Siemens Definition. Similarly, four volumes of size 512 × 512 × 313 were 

acquired at Brigham and Women’s Hospital for the same configurations of doses 

(40 0 mA and 10 0 mA) and reconstruction kernels B31f, B45f. All of them with 

a KVP: 120 kV, slice thickness 0.75, pixel spacing 0.98 ×0.98, with software 

Syngo.CT 2007C. Following the same convention as before, we will refer to 

them as B31f HD, B31f LD, B45f HD, B45f LD.

Fig. 2 shows an example of the acquired images for all the kernels, devices, and doses 

considered.

In what follows we will denote X: Ω →ℝ as the CT volume defined in, the location 

coordinates as r = (x, y, z) ∈ Ω, and Ωn ⊂ Ω the locations of the n-th homogeneous material.

2.1. Functional dependence on local variance

The study was performed in a set of samples collected from each tissue identified by the 

numbered regions from 1 to 9 of the CT images (see the designation of regions in Fig. 1). 

The samples were acquired by manually selecting a circular region in the axial view laying 

within each tissue type. More than 20,0 0 0 samples were obtained in each region.

The deviations from the nominal attenuation level per region were firstly analyzed by 

considering the spatial mean and (unbiased) variance estimators computed in the 

longitudinal direction as:

1www.kyotokagaku.com.
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μ(x, y) = 1
N ∑

z = 1

N
X (x, y, z) (1)

σ2 (x, y) = 1
N − 1 ∑

z = 1

N
(X(x, y, z) − μ(x, y))2 (2)

where X (x, y, z) is the voxel value at location (x,y,z), and N is the number of slices 

considered. Note that this calculation takes advantage of the invariance in the z-axis due to 

the cylindrical shape of the phantom. This analysis allows us to obtain the functional 

relationship between the mean attenuation level and the local noise variance. Fig. 3 shows 

this relationship between μ and σ2 for the different regions, doses, and devices.

At first sight, the average attenuation levels seem to be independent of the local variance. 

However, as lower densities are considered, both the mean and variance become more 

related. We have zoomed in the samples of the lowest attenuation level and superimposed 

the regression line for a better visual inspection. Note that the observed correlation exhibits 

an increasing bias as the variance grows. This bias will be more noticeable in those 

acquisitions with more intrinsic noise (e.g. low-dose or sharper kernels) or near high-density 

structures.

On the other hand, the observed correlation decreases for higher densities, meaning that 

local variance introduces a bias in tissues typically characterized by lower attenuation levels 

such those related to air (e.g. lung parenchyma, airways).

This bias is due to the lower limit imposed by the physics of the acquisition, which assigns 

−10 0 0 HU to the minimum attenuation perceived –corresponding to air– and 0 HU to the 

attenuation level of water (Hsieh, 2003). Obviously, this constraint on the lower attenuation 

level enforces a positive skewness in the distribution of noise. The positive skewness was 

confirmed in Vegas-Sánchez-Ferrero et al. (2017), where the statistical response of noise 

was studied for different doses, reconstruction kernels, and devices. In Fig. 4 we show the 

probability density functions observed for both the GE and Siemens devices where the 

overall statistical behavior can be observed. Note that the density functions may take values 

below −1000 HU. This is because the least attenuation level is set to −1000 HU on average. 

Usually, vendors set a lower attenuation limit to a value below −1000 HU. We will refer to 

this value as δ and, in our particular case, δ = −1024 HU.

It is also worth mentioning that, in some cases, the lower attenuation value set by vendors 

may generate a truncated distribution, which clearly has a positive skewness (the 

distributions depicted in Fig. 4 do not show this effect, but other configurations with higher 

noise may exhibit truncated distributions).
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In both possible scenarios, the skewness will link the CT number with the local variance of 

noise resulting in a non-stationary bias that strongly affects the lower attenuation levels.

The positive skewness can contribute to the bias in several functional ways. For simplicity, 

we test the linear relationship between the mean and the variance with a linear regression 

model. The results gathered for the regression analyses in air regions are shown in Table 1 

and the regression lines are depicted as dashed lines in Fig. 3. We exclude the rest of tissues 

because the coefficient of determination rapidly decreases for higher densities, resulting in a 

negligible bias due to the rapid reduction of skewness for higher densities.

The increasing bias with the variance of noise is confirmed with an F-test for the null 

hypothesis “H0 : The average attenuation level does not depend on the local variance.” The 

coefficient of determination R-squared that accounts for the explained variance shows a 

strong linear relationship between the attenuation level and the local variance with up to 

58% of the variance explained by a linear model. Finally, the p-value obtained for the F-test 

condirms with a strong evidence (p-value < 10−4) that both parameters – attenuation and 

local variance– exhibit a linear relationship and, therefore, the null hypothesis can be 

rejected. Note that although the linear coefficient may seem small, the variance observed in 

the images make this factor non-negligible. Actually, the bias interval calculated for the 95% 

of confidence may go up to 15 HU (see Table 1), which is a remarkably high number that 

may affect quantitative measures based on thresholding such as emphysema or gas trapping 

(Parr et al., 2004).

Assuming the linear model μ = aσ2 + b confirmed by the statistical test, we now study the 

influence of the nominal attenuation level on the linear coefficient, a, for each tissue n = {1, 

… , 9}. Then, the assumed linear model becomes:

μn = anσ2 + bn, (3)

The functional relationship of the linear coefficient with respect to the nominal attenuation 

level can be derived by writing a n as a function of the local mean and variance according to 

the linear model of Eq. (3):

an =
μn − bn

σn
2 , withn = 1, ..., 9, (4)

where bn is the intercept coefficient of Table 1 and μn and σ2
n are the local mean and 

variance for locations of each tissue type Ωn, i.e. μn (x, y)= μ(x, y)and σ 2
n  (x, y) = σ2 (x, y) 

for (x, y) ∈ Ωn. The results for the different configurations of acquisitions are shown in Fig. 

5 where the 95% confidence interval is shown in red. Note that the value of a n rapidly 

decreases as the attenuation level grows. This behavior is well described by an inversely 

proportional relationship with μ − δ, which always falls within the 95% of confidence for all 

the different configurations (kernels and doses).
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According to this analysis, we can formulate a mathematical model describing the bias 

induced by non-stationary noise considering the linear relationship with σ2 previously tested 

and the inverse relationship with μ − δ:

X (r) = μ (r) + σ2(r)
μ(r) − δ

non‐stationarybias

+ b
systematicbias

(5)

where μ(r) is the actual attenuation coefficient and X the observed attenuation at location r 
∈ Ω. The linear term with σ2 (r) accounts for the increasing bias with higher variance and 

the inverse relationship with μ(r) shows a higher influence for lower attenuation levels, 

whereas the systematic bias, b, depends on the calibration of the device or the DC 

contribution of the reconstruction kernels.

3. Methods

3.1. CT signal model

According to Eq. (5), the bias correction will require the calculation of accurate estimates of 

local variance and local mean. This is achieved by considering the statistical characterization 

of noise proposed in Vegas-Sánchez-Ferrero et al. (2017), which adopts a non-central 

Gamma (nc-Γ) model as a suitable distribution that models the stochastic behavior of 

homogeneous tissues in CT scans with different reconstruction kernels, doses or devices. 

This model is a three-parameter distribution whose density function (PDF) is defined as:

f X(x α, β, δ) = (x − δ)α − 1

βαΓ(α)
e

− x − δ
β , x ≥ δandα, β, > 0, (6)

where Γ (x) is the Euler Gamma function, α is the shape parameter, β is the scale parameter, 

and δ is defined as the least attenuation level (typically around −1000 HU, in our case 1024 

HU). In Fig. 4 we show the nc- Γ distribution (continuous lines) fitted to the data.

Its generalization for describing the heterogeneous nature of tissues is formulated as a non-

central Gamma Mixture model (nc- Γ MM), whose PDF reads as:

p(x Θ) = ∑
j = 1

J
π j f X(x Θ j), (7)

with πj the weights of the mixture, and Θj the parameters of each jth component. As in 

Vegas-Sánchez-Ferrero et al. (2017), the mixture model parameters are estimated by 

Expectation-Maximization.

The local moments of the observed intensity, X, are estimated taking advantage of the tissue 

characterization provided by the mixture model conditioned to each component:
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E X (r)k = ∑
j = 1

J
π jE X(r)k Z (r) = j ≈ ∑

j = 1

J
π j X(r)k Z (r) = j , (8)

where the variable Z (r) describes the membership of the random variable (RV) at location r 

to the different nature of tissues (e.g. air, muscle, fat). Besides, the approximation to the 

local conditioned moments is performed with the operator ⋅ Z(r) = j  in neighborhood η 
(r) at location r:

X(r)k Z(r) = j =

Σ
s ∈ η(r)

x(s)kγ j(s)

Σs ∈ η(r)γ j(s) , (9)

and γj (r) is the posterior probability for the jth tissue class derived by the Bayes theorem as:

γ j(r) = p(Z(r) = j x(r), Θ) =
p(x(r) Θ j)p(Z(r) = j Θ j)

p(x(r) Θ j)
. (10)

3.2. Homomorphic local variance estimation

The non-stationarity of variance depends on the tissue nature and also on the nearby 

structures that may induce an increase of variance due to photon starvation and beam 

hardening. Unfortunately, the estimation of variance according to local neighborhoods will 

show a significant deviation from the actual value in the boundaries of structures. Fig. 6.a 

shows the standard deviation calculated in the longitudinal axis following Eqs. (1) and (2), 

and can be considered as a gold standard due to the cylindrical shape of the phantom. The 

local estimate of variance calculated with Eqs. (8)–(10) over one single slice is shown in Fig. 

6.b. Note that this estimate exhibits a particular granular pattern. This pattern is due to the 

presence of different densities within the neighborhood and the relatively low number of 

samples in the neighborhood. As a result of this, it does not accurately describe the spatial 

variation but the edges of structures within the local neighborhood. To overcome this 

important limitation, we develop a homomorphic approach inspired by the methodology 

presented in Aja-Fernandez et al. (2015), where the authors apply a statistical model of noise 

to provide a homomorphic decomposition for the nonstationary variance (assumed to be 

smooth) and the noise fluctuations themselves. The estimation is finally achieved by taking 

advantage of the Gaussian convergence as the signal-to-noise ratio (SNR) increases. 

Additionally, some correction functions are provided for low SNRs. Pieciak et al. (2016) 

extended this approach by increasing the converge to a Gaussian distribution by a functional 

transformation.
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In our extension to CT scans, we adopt the nc-ΓMM characterization as the model of noise, 

and the stabilization scheme for nc-ΓMM to increase the convergence range to a Gaussian 

distribution, both proposed in Vegas-Sánchez-Ferrero et al. (2017).

Formally, let us suppose the image X: Ω → ℝ is distributed as a nc-Γ MM with central 

parameters δj = δ and Y (r) = X(r) − δ the centered Gamma mixture model.

This mixture model can be transformed to a more treatable mixture model with the 

stabilizing function proposed in Vegas-Sánchez-Ferrero et al. (2017) for nc-ΓMM:

f stab (Y(r)) = σ(r) . Y(r) − E Y(r)
Var Y(r)

= σ(r) . N(r), (11)

where σ(r) accounts for the unknown non-stationary standard deviation and N (r) is the 

estimate of the stabilized noise, i.e. zero mean and standard deviation equals 1. This 

transformation shows important features to obtain a good estimate of the non-stationary 

variance:

1. It transforms each component of the mixture model into its corresponding 

stabilized counterpart, i.e. each component shows a more independent behavior 

between mean and variance.

2. The stabilization accelerates the Gaussian convergence as a function of the 

signal-to-noise (SNR) ratio.

The homomorphic filter can now be applied considering that the non-stationary variance 

varies smoothly compared to the variability of noise itself (i.e. σ(x) is a low-frequency signal 

compared to noise). The low-frequency contribution can be retrieved with a low-pass filter 

(LPF):

LPF log f stab(Y(r)) = logσ(x)
lower frequency

+LPF{ log|N(r)
higher frequency

|} . (12)

The LPF can be seen as a local averaging that approximates the expectation of the random 

variable:

LPF{log| f stab(Y(r)) ≈ logσ(x)+E{log|N(r)|} . (13)

It is important to note that the calculation of E {log | N (r)|} can be done considering each of 

the components of the mixture model separately since the expectation is a linear operator 

and the PDF of the transformed mixture model remains a mixture model (i.e. the PDF is still 

a convex sum of the PDFs of the transformed components). This way, for this derivation we 

can assume Y (r) to be a central Gamma distribution with parameters α(r) and β(r), and 
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W = Y(r) becomes a generalized Gamma distribution (Stacy, 1962; Vegas-Sanchez-Ferrero 

et al., 2012) with PDF:

f w (w) = 2 w2α − 1

βαΓ (α)
e

− w2
β , withα, β > 0, (14)

and moments:

E Wk = βk /2Γ (α) + k
2

Γ (α) . (15)

Therefore, the expectation of log | N (r)| becomes:

E log N(r) = ∫
0

∞
log w − Γ(α) + 1/2

Γ(α) 2 w2α − 1

βαΓ(α)
e

− w2
β dw − 1

2log α − Γ(α + 1/2)
Γ(α)

2

(16)

Note that Eq. (16) no longer depends on β due to the normalization applied in the calculation 

of N (r).

This integral was estimated by Monte Carlo trials of 105 samples for SNR ∈ [10−3, 20] 

logarithmically sampled. Fig. 7 shows the results where a fast convergence to – log 2 − γ/2 

≈ −0.6352 is clearly observed, being γ the Euler-Mascheroni constant. This specific value 

comes from the expectation of a Gaussian RV with zero mean and σ2 variance, N (0, σ2), 

since E {log |N (0, σ2 ) |} log σ = − log 2 − γ/2 (see (Aja-Fernandez et al., 2015) for more 

details). This fact exhibits the rapid convergence to a Gaussian distri- bution of the stabilized 

random variable as the SNR increases.2

For practical purposes, we provide an approximating function of (Eq. 16) also represented in 

Fig. 7:

E log N(r) ; SNR= χ ≈ − γ
2 + log 2 . φ(χ) (17)

with

2In this case, we define the SNR as μ/σ, which in terms of a Gamma distribution of parameters α and β becomes SNR = α.
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φ(χ) = exp 49χ4 + 255x3 − 1808x2 + 665x1 + 2
χ5 + 21287χ4 − 6169χ2 + 365χ

. (18)

Finally, σ(r) is derived by rearranging Eq. (13) with the result of Eq. (17):

σ(r) = e
LPF{log | f stab (Y(r))|}+(γ /2 + log 2) . φ(SNR)

(19)

Note that this estimation requires the SNR as a parameter that can be directly calculated with 

Eqs. (8)–(10). This formulation can be iteratively refined until convergence by introducing σ
(r ) in the calculation of the SNR in each iteration.

The pipeline of this method is depicted in Figs. 8 and 6.c shows the estimate of σ(r) 

obtained in a single slice of the phantom acquired in a GE scanner with the BONE LD 

configuration with the proposed iterative scheme after convergence is reached (4 iterations in 

this case to get a relative change below 1%).

The mean squared error (MSE) of the estimate was calculated using the z-axis estimate 

shown in Fig. 6.a as the reference. Results obtained with our approach (Fig. 6.c, MSE = 

268.97) clearly overcomes the previously mentioned limitations (Fig. 6.b, MSE 336.87) and 

provides a smooth and reasonably accurate estimate of the non-stationary variance.

3.3. Autocalibration

The proposed autocalibration method for bias correction is based on the functional 

relationship derived in Section 2.1. From Eq. (5) we can remove the non-stationary bias as:

X(r)= X(r) − σ2(r)
μ(r) − δ (20)

where μ (r ) and σ2 (r ) are the local mean and local variance estimates calculated with the 

conditioned moments of Eqs. (8)–(10).

The systematic bias is then removed by imposing the attenuation levels of certain anatomical 

areas with well-defined references. For chest scanners, air cavities offer a well-defined 

anatomic reference in which air attenuation levels should be clearly present. This attenuation 

is set to −1000 HU according to the definition of the Hounsfield unit scale. On the other 

hand, for higher attenuation levels one can find relatively homogeneous regions either in 

muscle, fat, or blood.

Although the selection of fairly homogeneous regions can be easily achieved by manual 

segmentation, the statistical characterization proposed in Vegas-Sánchez-Ferrero et al. 

(2017) provides a suitable way that enables the automatic detection of those regions. Note 

that we use the same formulation to characterize tissues and to calculate conditioned 
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moments in local neighborhoods. Thus, the classification of tissues (e.g. air and blood) can 

be done automatically considering Eq. (10) with no extra cost. The results can be defined as 

the regions Ωi are those locations with a posterior probability higher than a certain threshold, 

t, for each tissue class:

Ωi = r ∈ Ω : p(Z(r) = j y(r), Θ) > t , with i=1,...,n (21)

with Y (r) = X(r) − δ the centered random variable at location r and y (r) its observed 

realization.

In Fig. 9 we show the automatic selection of different regions according to the tissue 

characterization provided by the mixture model of (Eq. (7)) proposed in Vegas-Sánchez-

Ferrero et al. (2017). The resulting posterior probabilities clearly define the trachea as an air 

cavity, while the visceral fat and muscle are also identified.

The removal of the systematic bias is extended to the whole range of attenuation levels by a 

piecewise linear interpolation which centers the average attenuation of each of the reference 

regions Ωi to their respective nominal value, μi, as follows:

X(r) = X(r) − E X(r) + b X(r) , (22)

where the calibrated region is set according to the local average by the piecewise function b

(·): ℝ → ℝ defined for Ω
i i = 1

n
 regions is:

b X(r) =

M1(X(r)) if X < E X Ω2
⋮
Mi(X(r)) if E X Ωi < E X Ωi + 1
⋮
Mn − 1 (X(r)) if E X Ωn − 1 ≤ X

(23)

where E{X | Ωi} is defined in Eq. (9), and Mi(·) is the linear interpolator defined as:

Mi(X) = μi + (μi + 1 − μi)
X − E X Ωi

E X Ωi + 1 − E X Ωi
(24)

with μi the nominal attenuation level for region Ωi

A comprehensive scheme of the proposed autocalibration method is described in Fig. 10, 

where we show the different steps of the for the calibration considering three different 

regions, Ωi i = 1
3 ,, defined by the tissue characterization of (Eq. (7)) (Fig. 10.a). In Fig. 10.b, 
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the variance estimate is computed by following the scheme shown in Fig. 8. Then, in Fig. 

10.c, the correction of the spatially variant bias is accomplished by applying (Eq. (20)). 

Finally, the systematic bias is corrected by assigning the nominal values μi i = 1
3  to the 

observed average attenuation levels after non-stationary bias correction with a piecewise 

linear interpolation, Fig. 10.d. The resulting image, Fig. 10.e, is now calibrated with no 

stationary bias introduced by noise.

4. Results

The autocalibration methodology is validated firstly evaluating the reduction of the intra-

device bias due to non-stationary noise. This is performed in the phantom acquired with 

different configurations per device. Then, we carry out a similar evaluation with a subject 

acquired with different configurations (doses and reconstruction methods) by evaluating the 

bias within the trachea. Finally, we test the performance of the autocalibration to correct the 

inter-device bias.

4.1. Intra-device validation

4.1.1. Phantom study—The autocalibration methodology proposed in Section 3.3 is 

evaluated with the Phantom already introduced in the exploratory analysis of bias. This 

evaluation will demonstrate the robustness of our methodology, the importance of the bias 

due to the non-stationary variance for low attenuation level, and the efficiency of the 

suggested scheme in removing systematic biases that depend on the device. Two regions 

were considered for the autocalibration: water density (0 HU) and air (−1000 HU). The 

regions Ωwater and Ωair were automatically selected as described in Eq. (21) for t = 0.9.

The analysis of bias due to noise was measured with respect to the average attenuation level 

of each tissue in the regions described in Fig. 1 for a 95% confidence interval. The reduction 

of bias is shown in Table 2 and was calculated as:

BiasReduction=100 . 1 −
max( BW )

max( BW/O ) %, (25)

were Bw and Bw/o are the bias intervals for 95% of confidence with and without removal of 

non-stationary variance.

Note that the bias is reduced in most of the cases to less than a Hounsfield unit, which 

implies that the reduction is always over 70%. The worst scenario is the BONE low-dose 

reconstruction, that shows a bias up to 4 HU, which is a fairly good result considering the 

initial bias was over 14 HU.

4.1.2. Clinical CT scans—In this experiment, we considered two different acquisitions 

of the same subject with different doses (40 0 mA and 10 0 mA) in the Siemens scanner3 A 

3The data was obtained at Brigham and Women’s Hospital (Boston, MA, USA) with the approval of its ethics committee and 
informed consent of the subject.
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coronal view of the subject is depicted in Fig. 9.a. The reconstruction kernels applied to 

higher doses were B31f and B45f, whereas the B31f was used for the LD reconstruction. 

Additionally, three different implementations of the Siemens iterative reconstruction 

methods were applied for the LD acquisition: I31f2, I44f2 and I31f5, providing a 

reconstruction from a softer to a sharper effect in the reconstruction respectively. Both 

acquisitions were registered with Advanced Normalization Tools4 for easier comparison.

The autocalibration was done considering regions with blood/muscle density (30 HU 

(Aubrey et al., 2014)) and air (−1000 HU). The regions Ωair and Ωblood/muscle were 

automatically selected as described in (Eq. (21)) for t = 0.9 (both regions are depicted in Fig. 

9.b and d). A coronal view of the reconstructions is shown in Fig. 11 jointly to the 

autocalibrated reconstruction (after the systematic and non-stationary bias correction) for an 

intensity window of [−1024, −500] HU to enhance the effect of bias in lower attenuation 

levels.

The local standard deviation, σ(r), estimated according to the methodology proposed in 

Section 3.1 is shown in Fig. 12 (top row). The results show a remarkable increase of 

variance in the lower part due to the higher densities of soft tissues compared to lung 

parenchyma. The non-stationary bias induced by the local variance is shown in the bottom 

row of Fig. 12. As expected, the bias observed is especially affecting the lung parenchyma 

and trachea due to the higher skewness of attenuations levels for low densities. The effect of 

this bias is markedly higher in the B31f LD acquisition, which does not take advantage of 

the iterative reconstruction methodologies. Iterative methods partially attenuate the bias 

observed with reconstruction kernels. However, the observed bias in trachea and 

parenchyma are not negligible. The best case is for I31F5 showing an average bias in the 

trachea of 9.38 ± 2.06 HU, while the worst scenario was for I31f2 showing a bias of 21.36 

± 7.07 HU which is comparable to the observed for the reconstruction kernel B31f for low-

dose (31.65 ± 12.72 HU).

A careful analysis of the local standard deviations and the reconstructed images shows the 

overall effect of the different reconstruction methods. The low-dose reconstructions exhibit a 

higher variance of noise, which induces an increase of the local attenuation level in the 

trachea. There is also a systematic bias introduced by the iterative methods I31f2 and I44f2 

that can be observed in the overall reduction of contrast in the lung parenchyma. The 

histograms in the trachea depicted in Fig. 13 quantitatively confirm the bias introduced by 

the reconstruction methods and the spatialvarying variance of noise (the sample histograms 

are represented as dots, and the parametric approximation with the nc-Γ distribution is 

shown for a better visualization). Note that the low-dose acquisitions are clearly shifted to 

higher values than those obtained for high-dose. This behavior shows a clear inconsistency 

in the mean value due to the different reconstruction methods. The boxplots evidence the 

strong deviation with respect the nominal air attenuation level (−1000 HU) of more than 50 

HU in each reconstructed image and the notable discrepancy among them. On the other 

hand, the autocalibration method is able to remove the deviations and exhibits a consistent 

attenuation level across all the reconstructions.

4http://stnava.github.io/ANTs/.
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4.2. Inter-device study

The analysis of the systematic bias introduced by the reconstruction method in each device 

is studied by calculating the deviation from the nominal attenuation level in the phantom. 

The results for both devices are depicted in Fig. 14, where the biases within devices are 

consistent across reconstruction kernels and doses. However, the bias exhibits clear 

differences between both devices that can be over 20 HU in some cases. This confirms the 

importance of a common calibration in heterogeneous cohorts in which different devices and 

reconstruction methods are applied.

We evaluated the performance of the autocalibration method to reduce the discrepancies 

between devices already shown in Fig. 14. The results are gathered in Table 3. Note that the 

systematic bias is virtually removed by the autocalibration method for both the Siemens and 

the GE acquisitions.

It is worth noting that the observed bias for both devices shows two well-defined regions, 

one with a positive bias (for CT numbers > 0HU) and the other for negative bias (CT 

numbers < 0HU). This interesting behavior evidences that a non-linear response in the 

attenuation levels is fitted by a linear function with reference points those of the water and 

air attenuations. This behavior is consistent with the common calibration protocols applied 

in the scanners, that use the air and water references. A higher order polynomial behavior 

has been reported previously in the literature as a result of the interplay between the 

Photoelectric and Compton components of the attenuation coefficient (Jackson and Hawkes, 

1983; Watanabe, 1999).

5. Conclusion

This paper analyzes the effect of reconstruction inconsistencies depending on the dose, 

reconstruction algorithm, and acquisition parameters. These inconsistencies show a two-

folded nature. First, the variance of noise introduces a positive bias that artificially increases 

the intensity values. This effect has been systematically noticed in the literature due to the 

strong deviations observed in the air cavities such as the trachea. Second, the kernels and 

iterative algorithms used for reconstruction may affect the average intensities. This results in 

a strong intensity deviation that may differ from the nominal values in more than 50 HUs, 

making the reconstructions useless for multicenter studies or analysis of disease progression.

The analysis was carried out through a statistical exploratory data analysis of bias in a series 

of acquisitions provided with different devices, reconstruction kernels, and doses. The 

analysis concluded that the bias introduced by the local variance contributes linearly to the 

mean attenuation level, being remarkably higher for lower attenuations levels. This bias may 

increase the intensity level up to 30 HUs in low-dose reconstructions. The linear relationship 

decreases quickly with higher tissue densities, i.e. the linear coefficient decreases with the 

nominal attenuation coefficient of tissues.

In the light of all these results, a functional dependence of the observed attenuation with the 

local variance can be established as a useful model to retrieve the unbiased signal. As a first 

contribution, we propose a model that considers a positive bias as a function of the local 
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moments. The model also considers the systematic bias due to the different behaviors of 

reconstruction kernels or algorithms.

The retrieval of the unbiased signal requires an accurate estimate of the non-stationary local 

variance. Our second contribution is the derivation of an accurate and robust estimate of 

non-stationary variance by adapting the probabilistic model of noise in CT scans proposed in 

Vegas-Sánchez-Ferrero et al. (2017).

The functional relation adopted to model the bias allows us to correct the two different 

manifestations of bias. First, the spatially variant bias induced by the non-stationary noise. 

Second, the systematic bias introduced by different reconstruction methodologies or doses. 

The proposed methodology does not require a phantom, and it is designed to establish a 

common framework for the analysis of CT scanners without a common calibration protocol, 

different reconstruction methodologies or doses.

The autocalibration methodology was tested in a phantom resulting in a bias removal of 

more than 90% in most of the cases for the bias due to noise variance. Additionally, the 

systematic bias was virtually removed. These results evidence the suitability of the bias 

model proposed and the methodology for bias removal.

The experiments carried out in clinical CT images considered several acquisition scenarios 

(two doses, different reconstruction kernels and iterative methods). The biases originated by 

reconstruction methods, and different doses are clear at first sight. These differences become 

more evident when a quantitative analysis of an anatomical reference is performed. The 

autocalibration was evaluated in the trachea to study the consistency across the different 

acquisitions. The non-calibrated signals showed a systematic bias higher than 50 HU 

compared to the nominal intensity expected for air and an arbitrary behavior in terms of 

variance and location for the histogram due to the non-stationarity of noise and undesired 

effects of the iterative reconstruction methods. After calibration, the histograms align around 

the nominal intensity for air showing an excellent consistency across acquisitions.

The overall effect of autocalibration is an increase of the contrast in low-intensity values due 

to the positive bias introduced by the local variance dependence. This effect makes easier to 

detect low attenuation lesions, such us emphysema in chronic pulmonary obstruction disease 

(COPD) patients, due to the consistency across different conditions, and facilitates the 

analysis of progression. It is worth noting that the proposed autocalibration scheme can be 

perfectly combined with other state-of-the-art methodologies to mitigate or stabilize the 

noise just after the autocalibration (Kim et al., 2016; Vegas-Sánchez-Ferrero et al., 2017.

We believe the methodologies provided in this paper will enable the preprocessing of CT 

images before quantitative imaging analysis tasks are performed to control the accuracy of 

the extracted biomarkers. Our results can be especially relevant to those studies that track the 

progression of a disease. The changes in transmission medium due to the reduction of dose 

in longitudinal studies or oncological situations make the consistency in the intensity levels 

critical.
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Fig. 1. 
Scheme of the cylindrical phantom studied. The legend specifies in descend- ing order the 

different attenuation levels per material.

Vegas-Sánchez-Ferrero et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2018 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Axial view of the acquired 3D volumes with different devices (Top: General Electric; 

Bottom: Siemens) for different kernels and doses. a) STD HD, b) STD LD, c) BONE HD, d) 

BONE LD, e) B31f HD, f) B31f LD, g) B45f HD, h) B45f LD.
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Fig. 3. 
Functional relationship of local variance and local mean for the different tissue regions and 

different arrangements of devices, kernels, and doses. Top: GE, Bottom: Siemens. The 

regression lines are superimposed to the samples as dashed lines. The zoomed region shows 

the positive bias introduced by the increase of variance.
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Fig. 4. 
Empirical probability density functions of samples for different acquisitions of the phantom 

(the rest of kernel-dose configurations showed similar distributions and were omitted for 

brevity). Note that the distributions exhibit different variance and a positive skewness 

especially for low CT numbers.
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Fig. 5. 
Functional dependence of bias for the linear coefficient of bias (kernels B31f and STD were 

omitted for brevity, although the behavior is the same).
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Fig. 6. 
Local standard deviation of noise observed in the Phantom acquired with the BONE LD 

configuration in the GE scanner. a) sample standard deviation calculated in the long-axis 

direction; b) Local estimate obtained from one single slice; c) Homomorphic estimation with 

the proposed method.
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Fig. 7. 
Expectation of the log-stabilized signal log | N (r)| as a function of the signal-to-noise ratio. 

The fast convergence to a −γ/2 − log 2 allows applying the Gaussian estimation of non-

stationary variance for SNR > 2, whereas a correction factor can be easily used for SNR ≤ 2.
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Fig. 8. 
Pipeline of σ(r) estimation assuming noise distributed as a nc-ΓMM.
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Fig. 9. 
Posterior probability maps for a conventional CT scan, a) coronal view; b) posterior 

probability for air; c) Posterior probability for fat; d) posterior probability for blood/muscle.
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Fig. 10. 

Autocalibration scheme considering three nominal attenuation levels μi i = 1
3 . a  The 

autocalibration is accomplished considering three different regions, Ωi i = 1
3 ,defined by the 

tissue characterization of (Eq. (7)). b) The variance estimate is computed following the 

scheme shown in Fig. 8.c) the correction of the spatially variant bias is accomplished by 

applying the functional relation of (Eq. (20)). d) The systematic bias is corrected by 

assigning the nominal values μi i = 1
3  to the observed average attenuation levels after non-

stationary bias correction with a piecewise linear interpolation. e) The autocalibrated image.
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Fig. 11. 
Coronal view of the reconstructed images with different configurations for visualization 

window [−1024, −500] HU. Columns are ordered by reconstruction configurations (both 

with systematic and spatially-variant bias), while rows represent the non-calibrated (top) and 

calibrated (bottom) acquisitions (after systematic and spatially-variant bias correction).
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Fig. 12. 
Local standard deviation estimate (top row) and induced non-stationary bias (bottom row). 

The bias observed is especially affecting to the lung parenchyma and trachea due to the 

higher skewness of attenuations levels for low densities. Average biases observed in the 

trachea are: B31f HD 8.30 ± 1.83 HU; B45f HD 17.68 ± 4.87 HU; I31f2 LD 21.36 ± 7.07 

HU; I31f5 LD 9.38 ± 2.21 HU; I44f2 LD 11.65 ± 2.06 HU; B31f LD 31.65 ± 12.78 HU.
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Fig. 13. 
Histograms of the trachea region for the different reconstructions shown in Fig. 11 and Box-

plots for non-calibrated and autocalibrated data. The non-calibrated histograms show a 

important discrepancy with the nominal attenuation level of air (−10 0 0 HU) and an 

inconsistent bias depending on the reconstruction method and doses. Conversely, 

autocalibrated histograms show a consistent average location among them and with the 

nominal attenuation value of air.
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Fig. 14. 
Systematic bias observed in each device. This bias depends on the calibration of the device 

and the DC contribution of the reconstruction.
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Table 1

Linear regression between variance and mean.

Regression Line Bias interval 95% (HU) R2 p-value

STD LD μ = 0.05σ2 − 1006.18 [−0.97,8.24] 0.39 <10−4

STD HD μ = 0.12σ2 − 1002.86 [−0.52,6.71] 0.26 <10−4

BONE LD μ = 0.02σ2 − 1009.67 [0.34, 16.55] 0.58 <10−4

BONE HD μ = 0.04σ2 − 1006.62 [−1.55,8.80] 0.24 <10−4

B31f LD μ = 0.02σ2 − 1003.18 [−1.36,4.52] 0.20 <10−4

B31f HD μ = 0.02σ2 − 1001.44 [−0.97,0.77] 0.07 <10−4

B45f LD μ = 0.02σ2 − 1003.79 [0.36, 15.27] 0.45 <10−4

B45f HD μ = 0.03σ2 − 1004.21 [−1.88,5.47] 0.17 <10−4
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Table 2

Correction of bias due to non-stationary noise.

Air Density: Non-calibrated Bias interval 95% (HU) Calibrated Bias interval 95% (HU) Bias Reduction

STD LD [−3.79,11.81] [−0.41.1.88] 84.09%

STD HD [1.09,9.91] [−1.79,0.13] 81.91%

BONE LD [0.98, 14.31] [−0.28,4.07] 71.17%

BONE HD [1.04, 8.32] [−0.23,0.41] 95.04%

B31f LD [−0.97,3.09] [−0.01,0.04] 98.68%

B31f HD [−0.59,1.54] [−0.04,0.01] 97.64%

B45f LD [2.58, 10.49] [0.05, 1.67] 84.12%

B45f HD [−0.08,3.54] [−0.13,0.01] 96.32%

Water Density Non-calibrated Bias interval 95% (HU) Calibrated Bias interval 95% (HU) Bias Reduction

STD LD [−11.12,−8.40] [−0.25,0.50] 95.52%

STD HD [−12.43,−9.65] [−0.11,0.05] 99.08%

BONE LD [−9.82, −7.27] [−0.62,0.68] 93.04%

BONE HD [−14.07. −7.89] [−0.31.0.32] 97.70%

B31f LD [−11.03,1.86] [−0.25,0.21] 97.76%

B31f HD [−6.61,3.62] [−0.09,0.33] 95.00%

B45f LD [−12.84,1.89] [0.09, 0.27] 97.94%

B45f HD [−10.23,3.48] [0.07, 0.26] 97.48%
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