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Abstract—Accurate and automatic organ segmentation from
3D radiological scans is an important yet challenging problem
for medical image analysis. Specifically, as a small, soft, and
flexible abdominal organ, the pancreas demonstrates very high
inter-patient anatomical variability in both its shape and volume.
This inhibits traditional automated segmentation methods from
achieving high accuracies, especially compared to the perfor-
mance obtained for other organs, such as the liver, heart or
kidneys. To fill this gap, we present an automated system from
3D computed tomography (CT) volumes that is based on a two-
stage cascaded approach—pancreas localization and pancreas
segmentation. For the first step, we localize the pancreas from
the entire 3D CT scan, providing a reliable bounding box
for the more refined segmentation step. We introduce a fully
deep-learning approach, based on an efficient application of
holistically-nested convolutional networks (HNNs) on the three
orthogonal axial, sagittal, and coronal views. The resulting HNN
per-pixel probability maps are then fused using pooling to reliably
produce a 3D bounding box of the pancreas that maximizes
the recall. We show that our introduced localizer compares
favorably to both a conventional non-deep-learning method
and a recent hybrid approach based on spatial aggregation
of superpixels using random forest classification. The second,
segmentation, phase operates within the computed bounding
box and integrates semantic mid-level cues of deeply-learned
organ interior and boundary maps, obtained by two additional
and separate realizations of HNNs. By integrating these two
mid-level cues, our method is capable of generating boundary-
preserving pixel-wise class label maps that result in the final
pancreas segmentation. Quantitative evaluation is performed on
a publicly available dataset of 82 patient CT scans using 4-fold
cross-validation (CV). We achieve a (mean ± std. dev.) Dice
similarity coefficient (DSC) of 81.27±6.27% in validation, which
significantly outperforms both a previous state-of-the art method
and a preliminary version of this work that report DSCs of
71.80±10.70% and 78.01±8.20%, respectively, using the same
dataset.

I. INTRODUCTION

PANCREAS segmentation in computed tomography (CT)
challenges current computer-aided diagnosis (CAD) sys-

tems. While automatic segmentation of numerous other organs
in CT scans, such as the liver, heart or kidneys, achieves good
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performance with Dice similarity coefficients (DSCs) of >90%
[1], [2], [3], the pancreas’ variable shape, size, and location
in the abdomen limits segmentation accuracy to <73% DSC
being reported in the literature [3], [2], [4], [5], [6], [7].
Previous pancreas segmentation work [3], [2], [4], [5] are all
based on performing volumetric multiple atlas registration [8],
[9], [10] and executing robust label fusion methods [11], [12],
[13] to optimize the per-pixel organ labeling process. This
type of organ segmentation strategy is widely used for many
organ segmentation problems, such as the brain [11], [13],
heart [12], lung [14], and pancreas [3], [2], [4], [5]. These
methods can be referred as a top-down model fitting approach,
or more specifically, MALF (Multi-Atlas Registration & Label
Fusion). Another group of top-down frameworks [15], [16],
[17] leverages statistical model detection, e.g., generalized
Hough transform [15] or marginal space learning [16], [17],
for organ localization; and deformable statistical shape models
for object segmentation. However, due to the intrinsic huge 3D
shape variability of the pancreas, statistical shape modeling has
not been applied for pancreas segmentation.

Recently, a new bottom-up pancreas segmentation repre-
sentation has been proposed in [6], which uses dense binary
image patch labeling confidence maps that are aggregated to
classify image regions, or superpixels [18], [19], [20], into
pancreas and non-pancreas label assignments. This method’s
motivation is to improve segmentation accuracy of highly
deformable organs, such as the pancreas, by leveraging mid-
level visual representations of image segments. This work
was advanced further by Roth et al.[7], who proposed a
probabilistic bottom-up approach using a set of multi-scale
and multi-level deep convolutional neural networks (CNNs) to
capture the complexity of pancreas appearance in CT images.
The resulting system improved upon the performance of [6]
with a reported DSC of 71.8±10.7% against 68.8±25.6%.
Compared to the MALF based pancreas segmentation work
[3], [2], [4], [5] that are evaluated using “leave-one-patient-
out” (LOO) protocol, the bottom-up approaches using su-
perpixel representation [6], [7] have reported comparable or
higher DSC accuracy measurements, under more challenging
6-fold or 4-fold cross-validation1. Comparing the two bottom-

1As discussed in [21], LOO can be considered as an extreme case of M -
fold cross-validation with M = N when N patient datasets are available for
experiments. When M is decreasing and significantly smaller than N , M -
fold CV becomes more challenging since there are less data for training and
more patient cases on testing.
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up approaches, the usage of deep CNN models has noticeably
improved the performance stability, which is evident by the
significantly smaller standard deviation [7] than all other top-
down or bottom-up works [6], [3], [2], [4], [5].

Deep CNNs have successfully been applied to many high-
level tasks in medical imaging, such as recognition and object
detection [22]. The main advantage of CNNs comes from
the fact that end-to-end learning of salient feature represen-
tations for the task at hand is more effective than hand-
crafted features with heuristically tuned parameters [23]. Sim-
ilarly, CNNs demonstrate promising performance for pixel-
level labeling problems, e.g., semantic segmentation in recent
computer vision and medical imaging analysis work, e.g.,
fully convolutional neural networks (FCN) [24], DeepLab [25]
and U-Net [26]. These approaches have all garnered signif-
icant improvements in performance over previous methods
by applying state-of-the-art CNN-based image classifiers and
representation to the semantic segmentation problem in both
domains.

Semantic organ segmentation involves assigning a label to
each pixel in the image. On one hand, features for classifi-
cation of single pixels (or patches) play a major role, but on
the other hand, factors such as edges, i.e., organ boundaries,
appearance consistency, and spatial consistency, could greatly
impact the overall system performance [23]. Furthermore,
there are indications of semantic vision tasks requiring hierar-
chical levels of visual perception and abstraction [27]. As such,
generating rich feature hierarchies for both the interior and
the boundary of the organ could provide important “mid-level
visual cues” for semantic segmentation. Subsequent spatial
aggregation of these mid-level cues then has the prospect of
improving semantic segmentation methods by enhancing the
accuracy and consistency of pixel-level labeling.

A preliminary version of this work appears as [28], where
we demonstrate that a two-stage bottom-up localization and
segmentation approach can improve upon the state of the
art. In this work, the major extension is that we describe
an improved pancreas localization method by replacing the
initial super-pixel based one, with a new general deep learning
based approach. This methodological component is designed
to optimize or maximize the pancreas spatial recall criterion
while reducing the non-pancreas volume as much as possible.
Specifically, we generate the per-pixel pancreas class proba-
bility maps (or “heat maps”) through an efficient combination
of holistically-nested convolutional networks (HNNs) in the
three orthogonal axial, sagittal, and coronal CT views. We
fuse the three HNN outputs to produce a 3D bounding box
covering the underlying, yet latent in testing, pancreas volume
by nearly 100%. In addition, we show that exactly the same
HNN model architecture can be effective for the subsequent
pancreas segmentation stage by integrating both deeply learned
boundary and appearance cues. This also results in a simpler
overall pancreas localization and segmentation system using
HNNs only, rather than the previous hybrid setup involving
non-deep- and deep-learning method components[28]. Lastly,
our current method reports an overall improved DSC perfor-
mance compared to [28] and [7]: DSC of 81.14±7.3% versus
78.0±8.2% and 71.8±10.7% [7], respectively.

The proposed two-stage process essentially performs 3D
spatial aggregation and assembling on the HNN-produced
per-pixel pancreas probability maps that run on 2D axial,
coronal, and sagittal CT planes. This process operates exhaus-
tively for pancreas localization and selectively for pancreas
segmentation. Therefore, this work inherits a hierarchical and
compositional visual representation of computing 3D object
information aggregated from 2D image slices or parts, in a
similar spirit of [29], [30], [31]. Alternatively, there are recent
studies on directly using 3D convolutional neural networks for
liver, brain segmentation [32], [33] and volumetric vascular
boundary detection [34]. Due to CNN memory restrictions,
these 3D CNN approaches adopt padded sliding windows or
volumes to process the original CT scans, such as 96×96×48
segments [34], 160×160×72 subvolumes [32] and 80×80×80
windows [33], which may cause segmentation discontinu-
ities or inconsistencies at overlapped window boundaries.
We argue that learning shareable lower-dimensional 2D CNN
models may be more generalizable and handle the “curse-of-
dimensionality” issue better than their fully 3D counterparts,
especially when used to parse complex 3D anatomical struc-
tures, e.g., lymph node clusters [35], [36] and the pancreas
[7], [28]. Analogous examples of comparing compositional
multi-view 2D CNNs versus direct 3D deep models can be
found in other computer vision problems: 1) video based
action recognition where a two-stream 2D CNN model [37],
capturing the image intensity and motion cues, significantly
improves upon the 3D CNN method [38]; 2) the advantageous
performance of multi-view CNNs over volumetric CNNs in 3D
Shape Recognition [39]. The rest of this paper is organized as
follows. We describe the technical motivation and details of
the proposed approach in Sec. II. Experimental results and
comparison with related work are addressed in Sec. III. We
conclude the paper, an with extended discussion, in Sec. IV.

II. METHODS

In this work, we present a two-phased approach for auto-
mated pancreas localization and segmentation. The pancreas
localization step aims to robustly compute a bounding box
which, at the desirable setting, should cover the entire pancreas
while pruning the high majority volumetric space from any
input CT scan without any manual pre-processing. The second
stage of pancreas segmentation incorporates deeply learned
organ interior and boundary mid-level cues with subsequent
spatial aggregation, focusing only on the properly zoomed
or cascaded pancreas location and spatial extents that are
generated after the first phase. In Sec. II-A we introduce
the HNN model that proves effective for both stages. After-
wards, we focus on localization in Sec. II-B, which discusses
and contrasts a conventional approach to localization with
newer CNN-based ones—a hybrid and a fully deep-learning
approach. We show how the latter approach, which relies
on HNNs, provides a simple, yet state-of-the-art, localization
method. Importantly, it relies on the same HNN architecture
as the later segmentation step. With localization discussed, we
explain our segmentation approach in Sec. II-C, which relies
on combining semantic mid-level cues produced from HNNs.
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Our approach to organ segmentation is based on simple,
reproducible, yet effective, machine-learning principles. In
particular, we demonstrate the most effective configuration of
our system is simply composed of cascading and aggregating
outputs from six HNNs trained at three orthogonal views and
two spatial scales. No multi-atlas registration or multi-label
fusion techniques are employed. Fig. 1 provides a flowchart
depicting the makeup of our system.

Pancreas Segmentation

Pancreas Localization

II-B2 Random Forest on 
Superpixels for Organ 

Region Proposal

II-B3 Mutli-view Max-pooled 
HNNs for Pancreas 

Localization (Preferred)

II.C1 Mid-level Cues from HNNs and Multi-
view Fusion for Pancreas Segmentation

II.C2 Learning Organ-specific Segmentation 
Proposals via Boundary Cue

II.C3 Spatial Aggregation using Random Forests 
on Segmentation Proposal Features

Fig. 1: Flowchart of the proposed two-stage pancreas localization and
segmentation framework. Sec. II-B2 and Sec. II-B3 are the alternative
means of bottom-up organ localization. The remaining modules are
for pancreas segmentation.

A. Learning Mid-level Cues via Holistically-Nested Networks
for Localization and Segmentation

In this work, we use the HNN architecture, to learn the
pancreas’ interior and boundary image-labeling maps, for
both localization and segmentation. Object-level interior and
boundary information are referred to as mid-level visual cues.
Note that this type of CNN architecture was first proposed by
[27] under the name “holistically-nested edge detection” as a
deep learning based general image edge detection method. It
has been used successfully for extracting “edge-like” structures
like blood vessels in 2D retina images [40]. We however would
argue and validate that it can serve as a suitable deep repre-
sentation to learn general raw pixel-in and label-out mapping
functions, i.e., to perform semantic segmentation. We use these
principles to segment the interior of organs. HNN is designed
to address two important issues: (1) training and prediction on
the whole image end-to-end, i.e, holistically, using a per-pixel
labeling cost; and (2) incorporating multi-scale and multi-level
learning of deep image features [27] via auxiliary cost func-
tions at each convolutional layer. HNN computes the image-
to-image or pixel-to-pixel prediction maps from any input
raw image to its annotated labeling map, building on fully
convolutional neural networks [24] and deeply-supervised nets
[41]. The per-pixel labeling cost function [24], [27] makes
it feasible that HNN/FCN can be effectively trained using
only several hundred annotated image pairs. This enables the
automatic learning of rich hierarchical feature representations
and contexts that are critical to resolve spatial ambiguity in the

segmentation of organs. The network structure is initialized
based on an ImageNet pre-trained VGGNet model [42]. It
has been shown that fine-tuning CNNs pre-trained on general
image classification tasks is helpful for low-level tasks, e.g.,
edge detection [27]. Furthermore, we can utilize pre-trained
edge-detection networks (trained on BSDS500 [27]) to seg-
ment organ-specific boundaries. Network formulation: Our
training data SI/B =

{
(Xn, Y

I/B
n ), n = 1, . . . , N

}
where

Xn denotes cropped axial CT images Xn, rescaled to within
[0, . . . , 255] with a soft-tissue window of [−160, 240] HU.
Y I
n ∈ {0, 1} and Y B

n ∈ {0, 1} denote the binary ground truths
of the interior and boundary map of the pancreas, respectively,
for any corresponding Xn. Each image is considered holis-
tically and independently as in [27]. The network is able to
learn features from these images alone from which interior and
boundary prediction maps can be produced, which we denote
as HNN-I and HNN-B, respectively. HNN can efficiently
generate multi-level image features due to its deep architec-
ture. Furthermore, multiple stages with different convolutional
strides can capture the inherent scales of organ edge/interior
labeling maps. However, due to the difficulty of learning such
deep neural networks with multiple stages from scratch, we
use the pre-trained network provided by [27] and fine-tuned
to our specific training data sets SI/B with a relatively smaller
learning rate of 10−6. We use the HNN network architecture
with 5 stages, including strides of 1, 2, 4, 8 and 16, respec-
tively, and with different receptive field sizes as suggested
by the authors2. In addition to standard CNN layers, a HNN
network has M side-output layers as shown in Fig. 2. These
side-output layers are also realized as classifiers in which
the corresponding weights are w = (w(1), . . . ,w(M)). For
simplicity, all standard network layer parameters are denoted
as W. Hence, the following objective function can be defined3:

Lside(W,w) =

M∑
m=1

αml
(m)
side(W,wm). (1)

Here, lside denotes an image-level loss function for side-
outputs, computed over all pixels in a training image pair
X and Y . Because of the heavy bias towards non-labeled
pixels in the ground truth data, [27] introduces a strategy to
automatically balance the loss between positive and negative
classes via a per-pixel class-balancing weight β. This offsets
the imbalances between edge/interior (y = 1) and non-
edge/exterior (y = 0) samples. Specifically, a class-balanced
cross-entropy loss function can be used in Eq. (1) with j
iterating over the spatial dimensions of the image:

l
(m)
side(W,w(m)) = −β

∑
j∈Y+

logPr
(
yj = 1|X;W,w(m)

)
−

(1− β)
∑
j∈Y−

logPr
(
yj = 0|X;W,w(m)

)
. (2)

Here, β is simply |Y−|/|Y | and 1 − β = |Y+|/|Y |, where
|Y−| and |Y+| denote the ground truth set of negatives and
positives, respectively. In contrast to [27], where β is computed

2https://github.com/s9xie/hed.
3We follow the notation of [27].

https://github.com/s9xie/hed
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Input Image X

Side-output 1

Side-output 2

Side-output 3

Side-output 4

Side-output 5

Lfuse

Ground Truth Y
Weighted-fusion layer error propagation path
Side-output layer error propagation path

Receptive Field Size

5 14 40 92 196

l
(1)
side

l
(2)
side

l
(3)
side

l
(4)
side

l
(5)
side

Y

Ground Truth

Fig. 2: The HNN-I/B network architecture for both interior (left im-
ages) and boundary (right images) detection pathways. We highlight
the error back-propagation paths to illustrate the deep supervision
performed at each side-output layer after the corresponding convolu-
tional layer. As the side-outputs become smaller, the receptive field
sizes get larger. This allows HNN to combine multi-scale and multi-
level outputs in a learned weighted fusion layer. The ground truth
images are inverted for aided visualization (Figures adapted from
[27] with permission).

for each training image independently, we use a constant
balancing weight computed on the entire training set. This
is because some training slices might have no positives at
all and otherwise would be ignored in the loss function. The
class probability Pr(yj = 1|X;W,w(m)) = σ(a

(m)
j ) ∈ [0, 1]

is computed on the activation value at each pixel j using
the sigmoid function σ(.). Now, organ edge/interior map
predictions Ŷ (m)side = σ(Â(m)side) can be obtained at each
side-output layer, where Â(m)side ≡ {a

(m)
j , j = 1, . . . , |Y |}

are activations of the side-output of layer m. Finally, a
“weighted-fusion” layer is added to the network that can be
simultaneously learned during training. The loss function at
the fusion layer Lfuse is defined as

Lfuse(W,w,h) = Dist
(
Y, Ŷfuse

)
, (3)

where Ŷfuse = σ
(∑M

m=1 h
Âside
m

)
with h = (h1, . . . , hM )

being the fusion weight. Dist(., .) is a distance measure
between the fused predictions and the ground truth label
map. We use cross-entropy loss for this purpose. Hence, the
following objective function can be minimized via standard
stochastic gradient descent and back propagation:

(W,w,h)? = argmin (Lside(W,w) + Lfuse(W,w,h))
(4)

Testing phase: Given image X , we obtain both interior (HNN-
I) and boundary (HNN-B) predictions from the models’ side
output layers and the weighted-fusion layer as in [27]:(

Ŷ I
fuse, Ŷ

I1)
side, . . . , Ŷ

IM
side

)
= HNN-I (X, (W,w,h)) (5)

(
Ŷ B
fuse, Ŷ

B1)
side , . . . , Ŷ

BM

side

)
= HNN-B (X, (W,w,h)) (6)

Here, HNN-I/B(·) denotes the interior/boundary prediction
maps estimated by the network.

B. Pancreas Localization

Segmentation performance can be enhanced if irrelevant
regions of the CT volume are pruned out. Conventional organ
localization methods using random forest regression [43], [44],
which we explain in Sec. II-B1, may not guarantee that the
regressed organ bounding box contains the targeted organ with
extremely high sensitivities on the pixel-level coverage. In
Sec. II-B2 we outline a superpixel based approach [6], based
on hand-crafted and CNN features, that is able to provide
improved performance. While this is effective, the complexity
involved motivates our own development of a simpler and
more accessible newly proposed multi-view HNN fusion based
procedure. This is explained in Sec. II-B3. The output of the
localization method will later feed into a more detailed and
accurate segmentation method combining multiple mid-level
cues from HNNs as illustrated in Fig. 1.

1) Regression Forest: Object localization by regression has
been studied extensively in the literature including [43], [45],
[44]. The general idea is to predict an offset vector ∆x ∈ R3

for a given image patch I(x) centered about x ∈ R3. The
predicted object position is then given as x + ∆x. This is
repeated for many examples of image patches and then aggre-
gated to produce a final predicted position. Aggregation can
be done with non-maximum suppression on prediction voting
maps, mean aggregation [43], cluster medoid aggregation [45],
and the use of local appearance with discriminative models to
accept or reject predictions [44]. The pancreas can be localized
by regression due to their locations in the body in correlation to
other anatomical structures. The objective is to predict bound-
ing boxes (xcenter,∆xlower,∆xupper) ∈ R3×3 where xcenter is the
center of the pancreas and xcenter+∆xlower and xcenter+∆xupper
are the lower and upper corner of the pancreas bounding
box respectively. The addition of the extra three parameters
follows from the observation that the center of the bounding
box is not necessarily the center of the localized object. The
pancreas Regression Forest predicts (∆x,∆xlower,∆xupper) for
a given image patch I(x). This produces pancreas bounding
box candidates of the form (x + ∆x,∆xlower,∆xupper). We
additionally use a discriminative model to accept or reject
predictions x+∆x as in [44]. Finally, accepted predictions are
aggregated using non-maximum suppression over probability
scores and then the bounding boxes are ranked by the count of
accepted predictions within the box. The box with the highest
count of predictions is kept as the final prediction.

2) Random Forest on Superpixels: As a form of initializa-
tion, we alternatively employ a previously proposed method
based on random forest (RF) classification [6], [7] using
both hand-crafted and deep CNN derived image features to
compute a candidate bounding box regions. We only operate
the RF labeling at a low probability threshold of >0.5 which
is sufficient to reject the vast amount of non-pancreas from
the CT images. This initial candidate generation is sufficient
to extract bounding box regions that nearly surround the
pancreases completely in all patient cases with ∼ 97% recall.
All candidate regions are computed during the testing phase of
cross-validation (CV) as in [7]. As we will see next, candidate
generation can be done even more efficiently by using the same
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HNN architectures, which are based on convolutional neural
networks. The technical details of HNNs were described in
Sec. II-A.

3) Multi-view Aggregated HNNs: Alternatively to the can-
didate region generation process described in Sec. II-B2 that
uses hybrid deep and non-deep learning techniques, we employ
HNN-I (interior, see Sec. II-A) as a building block for
pancreas localization, inspired by the effectiveness of HNN
being able to capture the complex pancreas appearance in
CT images [28]. This enables us to drastically discard large
negative volumes of the CT scan, while operating HNN-I
on a conservative probability threshold of >=0.5 that re-
tains high sensitivity/recall (>99%). The constant balancing
weight on β during training HNN-I is critical in this step
since the high majority of CT slices have empty pancreas
appearance and are indeed included for effective training of
HNN-I models, in order to successfully suppress the pancreas
probability values from appearing in background. Furthermore,
we perform a largest connected-component analysis to remove
outlier “blobs” of high probabilities. To get rid of small
incorrect connections between high-probability blobs, we first
perform an erosion step with radius of 1 voxel, and then select
the largest connected-component, and subsequently dilate the
region again (Fig. 3). HNN-I models are trained in axial,
coronal, and sagittal planes in order to make use of the
multi-view representation of 3D image context. Empirically,
we found a max-pooling operation across the 3D models to
give the highest sensitivity/recall while still being sufficient to
reject the vast amount of non-pancreas from the CT images
(see Table II). One illustrative example is demonstrated in
Fig. 4. This initial candidate generation is sufficient to extract
bounding box regions that completely surround the pancreases
with nearly 100% recall. All candidate regions are computed
during the testing phase of cross-validation (CV) with the same
split as in [7]. Note that this candidate region proposal is a
crucial step for further processing. It removes “easy” non-
pancreas tissue from further analysis and allows HNN-I and
HNN-B to focus on the more difficult distinction of pancreas
versus its surrounding tissue. The fact that we can use exactly
the same HNN model architecture for both stages though is
noteworthy.

Fig. 3: Candidate bounding box region generation pipeline (left to
right). Gold standard pancreas in red.

C. Pancreas Segmentation

With pancreas localized, the next step is to produce a
reliable segmentation. Our segmentation pipeline consists of

Fig. 4: Candidate bounding box region generation. Gold standard
pancreas in red, blobs of ≥ 0.5 probabilities in green, the selected
largest 3D connected component in purple, the resulting candidate
bounding box in yellow.

three steps. We first use HNN probability maps to generate
mid-level boundary and interior cues. These are then used to
produce superpixels, which are then aggregated together into
a final segmentation using RF classification.

1) Combining Mid-level Cues via HNNs: We now show that
organ segmentation can benefit from multiple mid-level cues,
like organ interior and boundary predictions. We investigate
deep-learning based approaches to independently learn the
pancreas’ interior and boundary mid-level cues. Combining
both cues via learned spatial aggregation can elevate the
overall performance of this semantic segmentation system.
Organ boundaries are a major mid-level cue for defining
and delineating the anatomy of interest. It could prove to be
essential for accurate semantic segmentation of an organ.

2) Learning Organ-specific Segmentation Proposals: Mul-
tiscale combinatorial grouping (MCG) [19] is one of the
state-of-the-art methods for generating segmentation object
proposals in computer vision. We utilize this approach, and
publicly available code4, to generate organ-specific superpixels
based on the learned boundary predication maps HNN-B.
Superpixels are extracted via continuous oriented watershed
transform at three different scales, denoted (Ŷ B2

side, Ŷ
B3

side, Ŷ
B
fuse),

supervisedly learned by HNN-B. This allows the computation
of a hierarchy of superpixel partitions at each scale, and
merges superpixels across scales, thereby efficiently exploring
their combinatorial space [19]. This, then, allows MCG to
group the merged superpixels toward object proposals. We find
that the first two levels of object MCG proposals are sufficient
to achieve ∼ 88% DSC (see Table IV and Fig. 5), with
the optimally computed superpixel labels using their spatial
overlapping ratios against the segmentation ground truth map.
All merged superpixels S from the first two levels are used
for the subsequent spatial aggregation step. Note that HNN-
B can only be trained using axial slices where the manual
annotation was performed. Pancreas boundary maps in coronal
and sagittal views can display strong artifacts.

4https://github.com/jponttuset/mcg.

https://github.com/jponttuset/mcg
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Ŷ B2

side

Ŷ B3

side

Ŷ B
fuse

merged superpixelsCT image

Fig. 5: Multiscale combinatorial grouping (MCG) [19] on three different scales of learned boundary predication maps from HNN-B: Ŷ B2
side,

Ŷ B3
side, and Ŷ B

fuse using the original CT image on far left as input (with ground truth delineation of pancreas in red). MCG computes superpixels
at each scale and produces a set of merged superpixel-based object proposals. We only visualize the boundary probabilities whose values
are greater than .10 (Figure reproduced from [28]).

3) Spatial Aggregation with Random Forest: We use the su-
perpixel set S generated previously to extract features for spa-
tial aggregation via random forest classification5. Within any
superpixel s ∈ S we compute simple statistics including the
1st-4th order moments, and 8 percentiles [20%, 30%, . . . , 90%]
on the CT intensities, and a per-pixel element-wise pooling
function of multi-view HNN-Is and HNN-B. Additionally,
we compute the mean x, y, and z coordinates normalized
by the range of the 3D candidate region (Sec. II-B3). This
results in 39 features describing each superpixel and are used
to train a RF classifier on the training positive or negative
superpixels at each round of 4-fold CV. Empirically, we find
50 trees to be sufficient to model our feature set. A final 3D
pancreas segmentation is simply obtained by stacking each
slice prediction back into the original CT volume space. No
further post-processing is employed. This complete pancreas
segmentation model is denoted as HNN-RF.

III. EXPERIMENTAL RESULTS

A. Data

Manual tracings of the pancreas for 82 contrast-enhanced
abdominal CT volumes are provided by a publicly available
dataset6 [7], for the ease of comparison. Our experiments are
conducted on random splits of ∼60 patients for training and
∼20 for unseen testing, in 4-fold cross-validation throughout
in this section, unless otherwise mentioned.

B. Evaluation

We perform extensive quantitative evaluation on different
configurations of our method and compare to the previous
state-of-the-art work with in-depth analysis.

5Using MATLAB’s TreeBagger() class.
6http://dx.doi.org/10.7937/K9/TCIA.2016.tNB1kqBU.

(a) RF: Axial (d) HNN-I: Axial

(b) RF: Sagittal (e) HNN-I: Sagittal

(c) RF: Coronal (f) HNN-I: Coronal

Fig. 6: An example for comparison of regression forest (RF, a-c)
and HNN-I (d-f) for pancreas localization. Green and red boxes are
ground truth and detected bounding boxes respectively. The green
dot denotes the ground truth center. This case demonstrates a case
in the 90th percentile in RF localization distance and serves as a
representative of poorly performing localization. In contrast, HNN-I
includes all of the pancreas with nearly 100% recall in this case.

1) Localization: From our empirical study, the candidate
region bounding box generation based on multi-view max-
pooled HNN-Is (Sec. II-B3) or previous hybrid methods
(Sec. II-B2 [6]) works comparably in terms of addressing
the requirement to produce spatially-truncated 3D regions that

http://dx.doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
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maximally cover the pancreas in the pixel-to-pixel level and
reject as much as possible the background spaces. An average
reduction of absolute volume of 90.36% (range [80.45%-
96.26%]) between CT scan and candidate bounding box is
achieved during this step, while keeping a mean recall of
99.93%, ranging [94.54%-100.00%] Table I shows the test per-
formance of pancreas localization and bounding box prediction
using regression forests in DSC and average Euclidean dis-
tance against the gold standard bounding boxes. As illustrated
in Fig. 7, regression forest based localization generates 16 out
of 82 bounding boxes that lie below 60% in the pixel-to-pixel
recall against the ground-truth pancreas masks. Nevertheless
we obtain nearly 100% recall for all scans (except for two
cases ≥94.54%) through the multi-view max-pooled HNN-Is.
An example of detected pancreas can be seen in Fig. 6.

Metrics Mean Std. 10% 50% 90% Min Max

Distance (mm) 14.9 9.4 6.4 11.7 29.3 2.8 48.7
Dice 0.71 0.11 0.56 0.74 0.83 0.33 0.92

TABLE I: Test performance of pancreas localization and bounding
box prediction using regression forests in Dice and average Euclidean
distance against the gold standard bounding boxes, in 4-fold cross
validation.

(a) regression forest (b) HNN-I

Fig. 7: Histogram plots (Y-Axis) of regression forest based bounding
boxes (a) and HNN-I’s generated bounding boxes (b) in recalls (X-
axis) covering the ground-truth pancreas masks in 3D. Note that
Regression Forest produces 16 out of 82 bounding boxes that lie
below 60% in pixel-to-pixel recall while HNN-I produces 100%
recalls, except for two cases ≥94.54%

2) HNN Spatial Aggregation for Pancreas Segmentation:
The interior HNN models trained on the axial (AX), coronal
(CO) or sagittal (SA) CT images in Sec. II-B3 can be straight-
forwardly used to generate pancreas segmentation masks. We
exploit different spatial aggregation or pooling functions on the
AX, CO, and SA viewed HNN-I probability maps, denoted
as AX, CO, SA (any single view HNN-I probability map
simply used); mean(AX,CO), mean(AX,SA), mean(CO,SA)
and mean(AX,CO,SA) (element-wise mean of two or three
view HNN-I probability maps); max(AX,CO,SA) (element-
wise maximum of three view HNN-I probability maps);
and finally meanmax(AX,CO,SA) (element-wise mean of
the maximal two scores from three view HNN-I probability
maps). After the optimal thresholding calibrated using the
training folds on these pooled HNN-I maps, the resulting
binary segmentation masks are further refined by 3D con-
nected component process and simple morphological oper-

ations (as in Sec. II-B3). Table II demonstrates the DSC
pancreas segmentation accuracy performance by investigating
different spatial aggregation functions. We observe that the
element-wise multi-view (mean or max) pooling operations
on HNN-I probabilities maps generally outperform their sin-
gle view counterparts. max(AX,CO,SA) performs slightly
better than mean(AX,CO,SA). The configuration of mean-
max(AX,CO,SA) produces the most superior performance in
mean DSC which may behave as a robust fusion function
by rejecting the smallest probability value and averaging the
remained two HNN-I scores per pixel location. After the

TABLE II: Four-fold cross-validation: DSC [%] pancreas segmen-
tation performance of various spatial aggregation functions on AX,
CO, and SA viewed HNN-I probability maps in the candidate region
generation stage (the best results in bold).

DSC Mean Std Min Max

AX 73.46 11.63 1.88 85.97
CO 70.19 9.81 39.72 83.84
SA 72.42 11.26 14.00 84.92
mean(AX,CO) 74.65 11.21 5.08 86.87
mean(AX,SA) 75.08 12.29 2.31 86.97
mean(CO,SA) 73.70 11.40 18.96 86.64
mean(AX,CO,SA) 75.07 12.08 4.26 87.19
max(AX,CO,SA) 75.67 10.32 16.11 87.65
meanmax(AX,CO,SA) 76.79 11.07 8.97 88.03

TABLE III: Four-fold cross-validation: DSC [%] pancreas segmen-
tation performance of various spatial aggregation functions on AX,
CO, and SA viewed HNN-I probability maps in the second cascaded
stage (the best results in bold).

DSC Mean Std Min Max

AX 78.99 7.70 44.25 88.69
CO 76.16 8.67 45.29 88.11
SA 76.53 9.35 40.60 88.34
mean(AX,CO) 79.02 7.96 42.64 88.82
mean(AX,SA) 79.29 8.21 42.32 89.38
mean(CO,SA) 77.61 8.92 44.14 89.11
mean(AX,CO,SA) 80.40 7.30 45.18 89.11
max(AX,CO,SA) 80.55 6.89 45.66 89.92
meanmax(AX,CO,SA) 81.14 7.30 44.69 89.98

pancreas localization stage, we train a new set of multi-view
HNN-Is with the spatially truncated scales and extents. This
serves a desirable “Zoom Better to See Clearer” effect for
deep neural network segmentation models [46] where cascaded
HNN-Is only focus on discriminating or parsing the remained
organ candidate regions. Similarly, DSC [%] pancreas seg-
mentation accuracy results of various spatial aggregation or
pooling functions on AX, CO, and SA viewed HNN-I proba-
bility maps (trained in the second cascaded stage) are shown in
Table III. We find consistent empirical observations as above
when comparing multi-view HNN pooling operations. The
meanmax(AX,CO,SA) operation again reports the best mean
DSC performance at 81.14% which is increased considerably
from 76.79% in Table II. We denote this system configura-
tion as HNNmeanmax. This result validates our two staged
pancreas segmentation framework of proposing candidate re-
gion generation for organ localization followed by “Zoomed”
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deep HNN models to refine segmentation. Table IV shows
the improvement from the meanmax-pooled HNN-Is (i.e.,
HNNmeanmax) to the HNN-RF based spatial aggregation,
using DSC and average minimum surface-to-surface distance
(AVGDIST). The average DSC is increased from 81.14%
to 81.27%, However, this improvement is not statistically
significantly with p > 0.05 using Wilcoxon signed rank test.
In contrast, using dense CRF (DCRF) optimization [25] (with
HNN-I as the unary term and the pairwise term depending on
the CT values) as a means of introducing spatial consistency
does not improve upon HNN-I noticeably as shown in [28]).
Comparing to the performance of previous state-of-the-art
methods [7], [28] at mean DSC scores of 71.4% and 78.01%
respectively, both variants of HNNmeanmax and HNN-RF
demonstrate superior quantitative segmentation accuracy in
DSC and AVGDIST metrics. We have the following two
observations. 1, The main performance gain from [28] (similar
to HNNAX in Table III) is found by the multi-view ag-
gregated HNN pancreas segmentation probability maps (e.g.,
HNNmeanmax), which also serve in HNN-RF. 2, The new
candidate region bounding box generation method (Sec. II-B3)
works comparably to the hybrid technique (Sec. II-B2 [6], [7],
[28]) based on our empirical evaluation. However the pro-
posed pancreas localization via multi-view max-pooled HNNs
greatly simplified our overall pancreas segmentation system
which may also help the generality and reproducibility. The
variant of HNNmeanmax produces competitive segmentation
accuracy but merely involves evaluating two sets of multi-view
HNN-Is at two spatial scales: whole CT slices or truncated
bounding boxes. There is no need to compute any hand-
crafted image features [6] or train other external machine
learning classifiers. As shown in Fig. 7, the conventional organ
localization framework using regression forest [43], [44] does
not address well the purpose of candidate region generation
for segmentation where extremely high pixel-to-pixel recall is
required since it is mainly designed for organ detection. In
Table V, the quantitative pancreas segmentation performance
of two method variants, HNNmeanmax, HNN-RF spatial
aggregation, are evaluated using four metrics of DSC (%),
Jaccard Index (%) [47], Hausdorff distance (HDRFDST [mm])
[48] and AVGDIST [mm]. Note that there is no statistical sig-
nificance when comparing the performance of two variants in
three measures of DSC, JACARD, and AVGDIST, except for
HDRFDIST with p < 0.001 under Wilcoxon signed rank test.
Since Hausdorff distance represents the maximum deviation
between two point sets or surfaces, this observation indicates
that HNN-RF may be more robust than HNNmeanmax in the
worst case scenario.

Pancreas segmentation on illustrative patient cases are
shown in Fig. 9. Furthermore, we applied our trained HNN-
I model on a different CT data set7 with 30 patients, and
achieve a mean DSC of 62.26% without any re-training on the
new data cases, but if we average the outputs of our 4 HNN-
I models from cross-validation, we achieve 65.66% DSC.
This demonstrates that HNN-I may be highly generalizable
in cross-dataset evaluation. Performance on that dataset will

730 training data sets at https://www.synapse.org/#!Synapse:syn3193805/wiki/217789.

likely improve with further fine-tuning. Last, we collected
an additional dataset of 19 unseen CT scans using the same
patient data protocol [7], [28]. Here, HNNmeanmax achieves
a mean DSC of 81.2%.

TABLE IV: Four-fold cross-validation: The DSC [%] and average
surface-to-surface minimum distance (AVGDIST [mm]) performance
of [7], [28], HNNmeanmax, HNN-RF spatial aggregation, and
optimally achievable superpixel assignments (italic). Best performing
method in bold.

DSC [7] [28] HNNmeanmax HNN-RF Opt.

Mean 71.42 78.01 81.14 81.27 87.67
Std 10.11 8.20 7.30 6.27 2.21
Min 23.99 34.11 44.69 50.69 81.59
Max 86.29 88.65 89.98 88.96 91.71

AVGDIST [7] [28] HNNmeanmax HNN-RF Opt.

Mean 1.53 0.60 0.43 0.42 0.16
Std 1.60 0.55 0.32 0.31 0.04
Min 0.20 0.15 0.12 0.14 0.10
Max 10.32 4.37 1.88 2.26 0.26

IV. DISCUSSION & CONCLUSION

To the best of our knowledge, our result comprises the
highest reported average DSC in testing folds under 4-fold CV
evaluation metric. Strict comparison to other methods (except
for [7], [28]) is not directly possible due to different datasets
utilized. Our holistic segmentation approach with multi-view
pooling and spatial aggregation advances the current state-
of-the-art quantitative performance to an average DSC of
81.27% in testing. Previous notable results for CT images
range from ∼68% to ∼78% [3], [2], [4], [5], [49], all under
the “leave-one-patient-out” (LOO) cross-validation scheme. In
particular, DSC drops from 68% (150 patients) to 58% (50
patients) as reported in [3]. Our methods also perform with the
better statistical stability, i.e., comparing 7.3% or 6.27% versus
18.6% [1], 15.3% [2] in the standard deviation of DSC scores.
The minimal DSC values are 44.69% with HNNmeanmax and
50.69% for HNN-RF whereas [1], [2], [3], [7] all report pa-
tient cases with DSC <10%. Recent work that explores the di-
rect application of 3D convolutional filters with fully convolu-
tional architectures also shows promise [26], [34]. It has to be
established whether 2D or 3D implementations are more suited
for certain tasks. There is some evidence that deep networks
representations with direct 3D input suffer from the curse-of-
dimensionality and are more prone to overfitting [36], [39],
[50]. Volumetric object detection might require more training
data and might suffer from scalability issues. However, proper
hyper-parameter tuning of the CNN architecture and enough
training data (including data augmentation) might help elimi-
nate these problems. In the mean time, spatial aggregation in
multiple 2D views (as proposed here) might be a very efficient
(and computationally less expensive) way of diminishing the
curse-of-dimensionality. Furthermore, using 2D views has the
advantage that networks trained on much larger databases of
natural images (e.g. ImageNet, BSDS500) can be used for fine-
tuning to the medical domain. It has been shown that transfer

https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
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Fig. 8: Average DSC performance as a function of pancreas probability using HNNmeanmax (left) and spatial aggregation via RF (middle)
for comparison. Note that the DSC performance remains much more stable after RF aggregation with respect to the probability threshold.
The percentage of total cases that lie above a certain DSC with RF are shown (right): 80% of the cases have a DSC of 78.05%, and 90%
of the cases have a DSC of 74.22% and higher.

TABLE V: Four-fold cross-validation: The quantitative pancreas segmentation performance results of our two method variants,
HNNmeanmax, HNN-RF spatial aggregation, in four metrics of DSC (%), Jaccard Index (%), Hausdorff distance (HDRFDST [mm]), and
AVGDIST [mm]. Best performing methods are shown in bold. Note that there is no statistical significance when comparing the performance
by two variants in three measures of DSC, JACARD, and AVGDIST, except for HDRFDIST with p < 0.001 (Wilcoxon Signed Rank Test).
This indicates that HNN-RF may be more robust than HNNmeanmax in the worst case scenario.

DSC Jaccard HDRFDST AVGDIST

HNNmeanmax HNN-RF HNNmeanmax HNN-RF HNNmeanmax HNN-RF HNNmeanmax HNN-RF

Mean 81.14 81.27 68.82 68.87 22.24 17.71 0.43 0.42
Std 7.30 6.27 9.27 8.12 13.90 10.40 0.32 0.31
Median 82.98 82.75 70.92 70.57 18.03 14.88 0.32 0.32
Min 44.69 50.69 28.78 33.95 5.83 5.20 0.12 0.14
Max 89.98 88.96 79.52 80.12 79.52 69.14 1.88 2.26

Fig. 9: Examples of our HNN-RF pancreas segmentation results (green) comparing with the ground-truth annotation (red). The best
performing case (a), two cases with DSC scores close to the data set mean (b,c) and the worst case are shown (d).

learning is a viable approach when the medical imaging data
set size is limited [21], [51]. 3D CNN approaches often adopt
padded spatially-local sliding volumes to parse any CT scan,
e.g., 96×96×48 [34], 160×160×72 [32] or 80×80×80 [33],
which may cause the segmentation discontinuity or inconsis-
tency at overlapped window boundaries. Ensemble of several
neural networks trained with random configuration variations
is found to be advantageous comparing a single CNN model in
object recognition [42], [52], [37]. Our pancreas segmentation
method can be indeed considered as ensembles of multiple
correlated HNN models but good complementary information
gain since they are trained from orthogonal axial, coronal
or sagittal CT views. In conclusion, we present a holistic

deep CNN approach for pancreas localization and segmen-
tation in abdominal CT scans, exploiting multi-view spatial
pooling and combining interior and boundary mid-level cues.
The robust fusion of HNNmeanmax aggregating on interior
holistically-nested networks (HNN-I) alone already achieve
good performance at DSC of 81.14%±7.30% in 4-fold CV.
The other method variant HNN-RF incorporates the organ
boundary responses from the HNN-B model and significantly
improves the worst case pancreas segmentation accuracy in
Hausdorff distance (p<0.001). The highest reported DSCs of
81.27%±6.27% is achieved, at the computational cost of 2∼3
minutes, not hours as in [1], [2], [3]. Our deep learning based
organ segmentation approach could be generalizable to other



10

segmentation problems with large variations and pathologies,
e.g., pathological organs and tumors.
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