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Abstract

Recent improvements in cardiac computed tomography (CCT) allow for whole-heart functional 

studies to be acquired at low radiation dose (< 2mSv) and high-temporal resolution (< 100ms) in a 

single heart beat. Although the extraction of regional functional information from these images is 

of great clinical interest, there is a paucity of research into the quantification of regional function 

from CCT, contrasting with the large body of work in echocardiography and cardiac MR. Here we 

present the Simultaneous Subdivision Surface Registration (SiSSR) method: a fast, semi-

automated image analysis pipeline for quantifying regional function from contrast-enhanced CCT. 

For each of thirteen adult male canines, we construct an anatomical reference mesh representing 

the left ventricular (LV) endocardium, obviating the need for a template mesh to be manually 

sculpted and initialized. We treat this generated mesh as a Loop subdivision surface, and adapt a 

technique previously described in the context of 3-D echocardiography to register these surfaces to 

the endocardium efficiently across all cardiac frames simultaneously. Although previous work 

performs the registration at a single resolution, we observe that subdivision surfaces naturally 

suggest a multiresolution approach, leading to faster convergence and avoiding local minima. We 

additionally make two notable changes to the cost function of the optimization, explicitly 

encouraging plausible biological motion and high mesh quality. Finally, we calculate an accepted 

functional metric for CCT from the registered surfaces, and compare our results to an alternate 

state-of-the-art CCT method.
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1. Introduction

Regional cardiac dysfunction commonly precedes changes in global metrics such as ejection 

fraction (EF), and is useful in the characterization of subtle impairment and monitoring of 

treatment response (Tee et al., 2013). Techniques developed for cardiac magnetic resonance 

imaging (CMR), including harmonic phase (HARP) imaging (Osman et al., 1999), strain 

encoded (SENC) imaging (Osman et al., 2001), and displacement encoding with stimulated 

echos (DENSE) imaging (Aletras et al., 1999), have enabled the measurement of biomarkers 

for regional cardiac function, including strain, strain rate, and torsion. However, due to their 

complex and time-consuming acquisition and analysis, further complicated by 

contraindication of CMR in patients with pacemakers, these techniques have been confined 

to research studies in academic centers.

Echocardiographic techniques for measuring function are widely deployed in the clinic due 

to low cost and real-time, bedside acquisitions. However, in terms of cardiac function, 

echocardiography is subject to certain limitations. Tissue Doppler echocardiography (TDI) is 

used to measure cardiac motion, but is highly angle-dependent. Speckle-tracking, which has 

been developed both for 2-D and 3-D sequences, currently provides measurements which are 

less sensitive to probe angle than Doppler techniques (Tee et al., 2013). Transthoracic 

echocardiography (TTE) is non-invasive, but unfortunately is limited by the available 

acoustic window. Transesophageal echocardiography (TEE) avoids these issues, but is an 

uncomfortable, semi-invasive procedure. All echocardiographic techniques are limited by 

operator dependence, and 2-D techniques are additionally subject to through-plane motion 

errors.

Historically, cardiac computed tomography (CCT) has been clinically infeasible for 

functional studies due to high radiation dose and low temporal resolution (Suinesiaputra et 

al., 2016). However, recent advances in CCT have dramatically reduced the necessary 

radiation dose (< 2mSv) and increased the temporal resolution (< 50ms) for whole-heart 

functional studies (Tee et al., 2015), spurring interest in the use of CCT in assessing cardiac 

function. Moreover, CCT is an attractive modality for functional studies given its high 

spatial resolution (on the order of 0.25mm), inherently volumetric data, fast scan times 
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(single heart beat), ubiquity in clinic, and increasing inclusion in cardiac imaging protocols 

due to the depiction of coronary anatomy (Tee et al., 2013). Therefore, fast, automated, and 

robust algorithms for extracting regional functional information from CCT are of immediate 

interest.

Initial efforts to recover strain from CCT have largely focused on application of tools 

originally developed for 2-D ultrasound (Ogawa et al., 2006) to resliced CCT sequences 

(Helle-Valle et al., 2010; Tee et al., 2013). This approach is limited, as it relies on 

myocardial features which are largely absent from CCT and discards useful volumetric 

information. An alternative metric and approach has been proposed by Pourmorteza et al. 

(2012), who employed the coherent point drift (CPD) method (Myronenko et al., 2007; 

Myronenko and Song, 2010) to register a template mesh representing the left ventricular 

(LV) endocardium at end diastole to each subsequent frame. In CPD, the “moving” point set 

is represented as a Gaussian Mixture Model (GMM). Using Expectation Maximization 

(EM), the GMM is deformed so as to maximize the probability of the “fixed” point set 

having been sampled from it. “Coherent” motion is enforced by constraining the motion of 

the GMM centroids relative to one another. CPD can be used for non-rigid registration, and 

does not prescribe any specific transformation model. Having performed the registration, 

Pourmorteza et al. (2012) calculated for each face the square root of the ratio between the 

face’s area and the area of the corresponding face at end diastole. This metric, which they 

termed Stretch QUantifier for Endocardial Engraved Zones (SQUEEZ), may be interpreted 

as a surrogate for cardiac contraction (< 1) or expansion (> 1) in the circumferential-

longitudinal plane. SQUEEZ is well suited to volumetric CCT data, and was subsequently 

shown to correlate with strain obtained by tagged CMR (Pourmorteza et al., 2015); to have 

clinical utility in the planning of cardiac resynchronization therapy (Behar et al., 2017); and 

to be robust to noise in low-dose CCT (Pourmorteza et al., 2018). After detailing the 

technical contributions of our proposed method, we calculate SQUEEZ and compare our 

results to those obtained from the CPD method.

The objective of our method is conceptually similar to Pourmorteza et al. (2012) in that we 

derive SQUEEZ from a series of registered meshes. However, rather than registering meshes 

using CPD, we adapt and extend a method which has been successfully used for cardiac 

modeling and segmentation in the context of 3-D echocardiography (Stebbing, 2014; 

Stebbing et al., 2015). In Stebbing (2014), a subdivision surface is registered to an arbitrary 

point set obtained using an off-the-shelf edge detector. A notable advantage of this method is 

that the subdivision surfaces are registered across all frames simultaneously, contrasting 

with the conceptually simpler “frame-to-frame” and “reference-frame” formulations. In the 

frame-to-frame formulation, consecutive pairs of frames are registered, leading to 

propagation of error throughout the cardiac cycle. In the reference-frame formulation, each 

frame is registered to the end diastolic frame, resulting in independent motion estimates. 

While this may be desirable in some scenarios, it may also lead to discontinuities in the 

displacements measured between successive frames (as the transformation estimated by a 

registration algorithm is not in general a smooth function of its inputs). By formulating the 

problem as a single, global optimization, the method constructed by Stebbing (2014) avoids 

both drawbacks.
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In this paper, we present the Simultaneous Subdivision Surface Registration (SiSSR) 

method, which extends the state-of-the-art method for Loop subdivision surface registration 

developed by Stebbing (2014) in order to register an anatomical reference mesh representing 

the endocardium of the LV to a 3-D+time cardiac image sequence (Fig. 1). The most notable 

differences between SiSSR and its predecessor are:

• An anatomical reference mesh is constructed directly from the (segmented) 

image data, obviating the need for a bespoke template mesh representing the 

structure of interest, and accounting for the wide anatomical variability between 

canines.

• Two notable changes are made to the cost function. First, the velocity, rather than 

acceleration, of the (coarse) mesh vertices are regularized, more plausibly 

modeling real cardiac motion. Second, (coarse) mesh faces with high aspect 

ratios are penalized, thereby explicitly discouraging solutions with low mesh 

quality.

• Subdivision surfaces naturally lend themselves to a multiscale approach, which 

may decrease computation time while directing the optimization away from local 

minima. Therefore, we perform an initial registration, explicitly subdivide the 

result, and use the subdivided result to initialize a second pass.

• Stebbing (2014) evaluates the method primarily as a segmentation algorithm, and 

stops short of calculating functional parameters. We calculate SQUEEZ, and 

compare our results with the CPD approach.

• The subdivision method was originally developed in the context of 3-D 

echocardiography. Here, we instead investigate 3-D+time CCT, which has 

received relatively less attention and which we feel will become increasingly 

common clinically in the near future.

The structure of this paper is as follows. In Section 2 we present our methodology in detail, 

specifically highlighting points of difference between our and prior methods. In Section 3, 

we provide technical details pertaining to the implementation. In Section 4, we describe the 

canine infarct model, imaging parameters, and validation against the CPD method. In 

Section 5, we present qualitative and quantitative results. In Section 6 we offer a discussion 

of our findings, its limitations, and future directions. In Section 7, we provide a summary of 

the paper.

Unless otherwise noted or obvious from context, images and meshes are denoted by 

uppercase script letters (e.g., ℐ); matrices by uppercase, boldface letters (e.g., X); tuples and 

vectors by lowercase boldface letters (e.g., t); real and integer scalars by lowercase, 

unweighted letters (e.g., r); and constants by uppercase, unweighted letters (e.g., F).

2. Methods

SiSSR takes as its input a sequence of contrast-enhanced CCT volumes, ℐ, and produces as 

its output a sequence of registered mesh models, , from which functional parameters may 

be calculated. Broadly, the pipeline involves selecting boundary candidates, ℬ, 
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corresponding to the endocardium of the LV (Section 2.1), generating a single anatomical 

reference mesh, , from the boundary candidate data at end diastole (Section 2.2), 

registering  to the boundary candidates across all frames simultaneously (Section 2.3), and 

calculating functional parameters (Section 2.4).

For each of these quantities, a particular cardiac phase is indicated by the subscript f; that is, 

ℐ indicates the 3-D+time image sequence, whereas ℐf indicates the particular volume at 

frame f.

2.1. Boundary candidate selection

The input volume sequence ℐ is binarized by thresholding at 200 Hounsfield units (HU), 

resulting in a foreground segmentation corresponding to the intravenous contrast (Fig. 2); in 

one case where contrast was low, it was necessary to use a threshold of 125 HU. The blood 

pool of the LV is then separated from other structures using standard morphological 

techniques (binary opening/closing, connected component selection, and hole filling), and 

the surface of the binary image (the “boundary candidate mesh,” ℬ) is extracted using 

marching cubes (Lorensen and Cline, 1987). Where necessary, the right heart is pruned from 

the LV before selecting the largest connected component. In order to aid comparison with 

the CPD method, the LV is segmented from the left atrium and LV outflow tract, though this 

is not a requirement of our pipeline. The result is a sequence of dense, triangular boundary 

candidate meshes, ℬ, representing the endocardium of the LV for each volume in the 

sequence.

2.2. Mesh model generation

ℬ cannot be used directly to quantify cardiac function, because these meshes are not 

parametrically addressable. Therefore, it is necessary to generate a single anatomical 

reference mesh, , which can be registered to ℬ across all frames. We choose the boundary 

candidate mesh at end diastole, ℬED, as the starting point for generating  (Fig. 3). ℬED is 

decimated to approximately 100 faces by iterative edge contraction, positioning new vertices 

so as to minimize quadric error relative to the prior iteration (Garland and Heckbert, 1997). 

Quadric error is preferred over a simpler metric, such as squared edge length, due to the 

tendency of the former to preserve regions of high curvature (in our application, we found 

that this was helpful in preserving, in particular, the cardiac apex and atrial appendage).

Our ability to generate  directly from ℬED is possible because the boundary candidates are 

stored as a mesh, as opposed to a point set as in Stebbing (2014). This advantage justifies 

our decision to use marching cubes in the previous stage (Section 2.1). The decimation step 

is necessary because it dramatically reduces the number of vertices in  compared to ℬED (a 

two order of magnitude reduction in our application), each of which contributes three 

parameters to the optimization (Section 2.3). Note that by generating  directly from ℬED, 

we avoid the need to provide a bespoke template mesh, as required elsewhere (Stebbing, 

2014; Pourmorteza et al., 2012).

As a practical note, it is common for ℬED to contain one or more regions which are perfectly 

flat, either due to manual pruning or to the region of interest extending beyond the bounds of 

the image. We found that when decimating this mesh directly, the face count could be 
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reduced by contracting edges in these flat regions with zero quadric error. The resulting 

mesh tended to score poorly in metrics of mesh quality, specifically the condition number of 

the triangle Jacobian matrix (a measure of the deviation of a triangle face from equilateral, 

where 1.0 indicates equilateral and greater magnitude indicates greater distortion).1 We were 

able to largely circumvent these negative effects by perturbing the vertices of ℬED with a 

small amount of Gaussian noise prior to decimation (Fig. 4). We refer the reader to 

Vigneault (2016) for a more thorough discussion.

2.3. Registration

Having generated the anatomical reference mesh, , and the boundary candidate meshes, ℬ, 

we now describe how the former may be registered to the latter across all frames 

simultaneously, yielding a sequence of registered meshes, . The parameters of the 

registration are the Cartesian coordinates of the vertices of . The primary residuals are the 

distances between points sampled from the underlying surface and the nearest boundary 

candidates. Additional regularizers encourage physically plausible motion and topology, and 

high mesh quality. Here we present background on Loop subdivision surfaces, the details for 

evaluating an arbitrary position on a Loop subdivision surface, formulation of the cost 

function for the optimization, and our multiresolution approach.

2.3.1. Loop subdivision surfaces—Loop subdivision is an approximating (as opposed 

to interpolating) procedure in which a coarse triangle mesh is refined (either explicitly or 

implicitly) to a smooth underlying surface. Loop subdivision generalizes quadratic triangle 

B-splines to triangle meshes with “extraordinary” (υ ≠ 6) valency, where quadratic triangle 

B-splines are themselves one possible generalization of quadratic B-splines to a 2-D 

manifold in ℝ3. Loop subdivision surfaces have properties which are highly desirable for 

cardiac mesh modeling.

From an anatomical standpoint:

• Iterative subdivision converges to a limit surface with C1 continuity, which is 

useful when representing an anatomical structure.

• Membrane and thin plate energies, which are physically-motivated measures of 

surface curvature, may be closely approximated for a given patch and used as 

regularizers to discourage excessive bending (Cashman and Fitzgibbon, 2013).

• Subdivision surfaces are “parametrically addressable;” that is, a particular point 

may be uniquely addressed by its patch index and parametric patch coordinates. 

This point exists and remains unique for all meshes in the sequence. This is in 

contrast to, e.g., level sets, where there is no uniform way of addressing 

corresponding points on two successive level set contours.

From a computational standpoint:

• Exact evaluation of a parametric position on the model surface requires at most 

one explicit subdivision (Stam, 1998).

1The implementation used here can be found at https://www.vtk.org/doc/nightly/html/classvtkMeshQuality.html
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• Surface positions and measures of surface curvature depend only on the one-ring 

surrounding a patch,2 meaning that the residuals of the optimization depend only 

on a small number of parameters. This sparsity can be exploited during the 

optimization in order to increase both computational and memory efficiency 

(Agarwal and Mierle, 2010).

• The models may be optimized jointly across all cardiac phases, circumventing 

the propagation of error inherent to “frame-to-frame” algorithms.

• Subdivision surfaces suggest a multiresolution approach, whereby the output of 

one registration pass is subdivided and used as the initialization to a subsequent 

registration pass.

2.3.2. Subdivision surface evaluation—In order to calculate the primary residual of 

the cost function, it is necessary to evaluate an arbitrary position on the Loop subdivision 

surface. The details of Loop subdivision surface evaluation are provided elsewhere (Stam, 

1998; Stebbing, 2014); in order to aid in understanding the cost function formulation 

(Section 2.3.3), we briefly review the mathematics here.

We begin by defining our terminology. A “patch” is the subset of the limit subdivision 

surface which arises from a particular face in the initial, coarse mesh. A point u ∈ ℝ3 on a 

subdivision surface is uniquely described by its patch index i, and its parametric coordinates 

t = (r, s) ∈ Δ = {(r, s) : r, s ∈ [0, 1], r + s ≤ 1}. A patch is termed “ordinary” if the three 

vertices defining it each have valency υ = 6. A patch is termed “extraordinary” if exactly one 

vertex has valency υ ≠ 6. Patches with more than one extraordinary vertex are disallowed.3 

This distinction is useful because ordinary and extraordinary patches require distinct 

procedures for evaluating surface positions. The “one-ring” of a patch is the set of the three 

vertices defining the central triangle, plus those vertices connected by exactly one edge. Any 

surface position in a patch may be evaluated given its one-ring.

Let X ∈ ℝ3×(C×F) be the matrix of Cartesian coordinates comprising the subdivision surface 

control points across all frames, where C is the number of control points in a single mesh 

and F is the number of frames. Xf ∈ ℝ3×C is the submatrix of X containing the control points 

in frame f, and Xf,i ∈ ℝ3×(υ+6) is the submatrix of Xf containing the control points 

comprising the one-ring of patch i. We define a function χ : t, Xf,i → ℝ3 which gives the 

position of a surface point uf,i,t given the parametric coordinates and the one-ring matrix for 

a given frame and patch. For an ordinary patch, χ can be evaluated directly as a barycentric 

combination of the 12 relevant control points, where b (t) ∈ ℝ12 is a vector of quartic 

polynomials (Stam, 1998).

χ(t, X f , i) = X f , i · b(t) = ui, t (1)

2In this context, we use the “one-ring” of a mesh face to mean to the collection of vertices which are at most one edge away from the 
vertices comprising the face itself.
3The requirement that each patch has at most one extraordinary vertex does not impose any practical limitation, as it can be satisfied 
by subdividing the input mesh exactly once prior to surface point evaluation.
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In the case of a patch with a single extraordinary vertex, a simple set of barycentric weights 

does not exist. However, geometric subdivision of an extraordinary patch results in four 

“child” patches: three ordinary patches and one extraordinary patch with topology identical 

to the parent (Fig. 5). This process may be repeated iteratively. Therefore, excluding the 

origin t = (0, 0) (which by convention is placed at the extraordinary vertex), the position at 

any local patch coordinate may be evaluated with (1) by subdividing a sufficient number of 

times, extracting the vertices of the relevant one-ring, and transforming the local patch 

coordinate into the subdivided patch. In Stam (1998), this concept is formalized in terms of 

matrix algebra. In particular, the “extended subdivision matrix” A ∈ ℝ(υ+6)×(υ+6) is 

described, which subdivides the patch around the extraordinary vertex, yielding a patch of 

identical topology to the first; the “bigger subdivision matrix” Ā ∈ ℝ(υ+12)×(υ+6), which 

additionally generates the three ordinary child patches; and the “picking matrix” Pk ∈ 
ℝ12×(υ+12), which selects the one-ring around the kth ordinary child patch (k ∈ {0, 1, 2}). 

For the precise definitions of these matrices, we refer the reader to Stam (1998).

For a given t, n geometric subdivisions are required before the surface point of interest is 

contained within one of the three ordinary child patches:

n = ⌊ − log2(r + s) + 1⌋ .

The index of the ordinary child patch k is given by:

k =
0: 2−n < r ≤ 2−n + 1, 0 ≤ s ≤ 2−n + 1 − r

1: 0 ≤ r ≤ 2−n, 2−n − r ≤ s ≤ 2−n

2: 0 ≤ r ≤ 2−n, 2−n < s ≤ 2−n + 1 − r,

and the patch coordinate t may be transformed into the appropriate child patch given n and 

k:

t =
k = 0: (2nr − 1, 2ns)

k = 1: (1 − 2nr, 1 − 2ns)

k = 2: (2nr, 2ns − 1) .

Given these definitions, the surface position for patch i and frame f at t ≠ 0 is given by4:

χ(t, X f , i) = X f , i(PkAAn − 1)⊤b(t ) .

At the patch origin (t = 0), this Equation cannot be used as the power of A approaches 

infinity. However, as shown in Stebbing (2014), the surface position at the origin can be 

4Note that the powers of A can be calculated efficiently through eigen-decomposition ( An = V AΛA
n V A

−1, where VA is a matrix of 

eigenvectors and ΛA is a diagonal matrix of eigenvalues).
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evaluated by χ (0, X) = Xυ̃
1, where υ̃

1 is the (normalized) left subdominant eigenvector of 

A.

2.3.3. Registration metrics and optimization—Levenberg-Marquardt least squares 

optimization (Marquardt, 1963) is used to register the anatomical reference mesh, , to the 

boundary candidates, ℬ. The parameters ΔX ∈ ℝ3×(C×F) of the optimization are Cartesian 

displacements to the vertices of all model surface meshes. A fixed number of surface points 

uf,i,t were sampled across the model surfaces (three per patch). At each step in the 

optimization, for each of these points, the nearest boundary candidate ϕ (uf,i,t) was 

calculated (that is, the nearest vertex in ℬf), where ϕ : ℝ3 → ℝ3. This was computed 

efficiently by representing the vertices defining ℬ at each frame as a Kd tree. The Cartesian 

components of the distance between the surface point and nearest boundary candidate were 

the residuals of Ecf, the first term of the cost function,

Ecf = ∑
f , i, t

‖u f , i, t − ϕ(u f , i, t)‖
2 . (2)

Additionally, three regularizers were included to enforce physical constraints of anatomical 

deformation and ensure high mesh quality: control point acceleration, subdivision patch 

thin-plate energy, and triangle aspect ratio. This differs from the cost function formulation 

by Stebbing (2014), where the regularizing terms were control point velocity and thin-plate 

energy.

In our cost function, control point acceleration is the only means by which information is 

shared between frames (that is, the only residual which is dependent upon parameters from 

more than one frame). At a minimum, regularizing against control point velocity as in 

Stebbing (2014) is necessary to maintain material consistency (the assumption that, for fixed 

i and t, uf,i,t corresponds to the same material point ∀f). By regularizing against acceleration 

rather than velocity, our method additionally encourages smooth, biologically plausible 

motion. The control point acceleration regularizer Eac was defined as the Cartesian 

components of the second differences between corresponding vertices xf,c in three adjacent 

frames, where xf,c is the (f × C) + cth column of X.

Eac = ∑
f , c

[1 −2 1]

x( f + 2) mod F, c
⊤

x( f + 1) mod F, c
⊤

x f , c
⊤

2

(3)

Thin-plate energy for patch i in frame f is the surface integral over the sum of the partial 

second derivatives with respect to ρ = r + 1
2s and σ = 3

2 s (the transformation yields an 

orthogonal coordinate system, which is a necessary condition for isotropic thin-plate energy) 

(Cashman and Fitzgibbon, 2013).
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Etp = ∑
f , i t ∈ Δ

∂2 χ

∂ρ2

2
+ 2 ∂2 χ

∂ρ∂σ

2
+ ∂2 χ

∂σ2

2
dt

Unfortunately, this integral is not straightforward to evaluate for an extraordinary patch. 

However, it is possible to define a matrix B ∈ ℝ15×(υ+6) in terms of the position function χ 
and its first derivatives, evaluated at a discrete number of points, which replaces of a Loop 

subdivision patch Xf,i of any valence with an approximate quartic triangle Bézier patch X̂
f,i 

(Stebbing, 2014). For an ordinary Loop subdivision patch, the Bézier representation is 

equivalent, and for an extraordinary patch, the error is negligible in practice (the error may 

become relevant for extremely high valence patches, which were not encountered in this 

work).

X f , i = BX f , i

The surface position on the Bézier patch may then be evaluated as a barycentric combination 

of the 15 relevant control points, where b̂ (t) is a vector of quartic polynomials (Stam, 1998).

χ(t, X f , i) = X f , i × b(t)

The thin plate energy of a Bézier patch can be calculated exactly, regardless of the valence 

of the Loop subdivision patch which it approximates. In our notation, we indicate quantities 

pertaining to the Bézier approximation with a superposed chevron (ˆ).

Etp = ∑
f , i t ∈ Δ

∂2 χ
∂ρ2

2
+ 2 ∂2 χ

∂ρ∂σ

2
+ ∂2 χ

∂σ2

2
dt (4)

Though thin plate energy is useful for limiting excessive bending, it is only sensitive to 

deformations which affect the second derivative of the surface positions with respect to the 

parametric coordinates, and does not penalize affine transformations. Therefore, thin plate 

energy regularization allows long, thin patches to “bunch” along a ridge, resulting in 

biologically implausible compression. In order to counteract this, the mesh triangle aspect 

ratio was penalized.

Ear = ∑
f , i

‖Δmax‖
‖Δmin‖ (5)

Here Δmax and Δmin denote the longest and shortest edges of the innermost triangle in patch 

i, respectively.

The overall optimization problem may then be written in terms of Equations 2, 3, 4, and 5 

and corresponding scaling factors.
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E = min (αcf Ecf + αacEac + αtpEtp + αarEar)

Recall that the sum for Ecf is taken over all frames, patches, and surface points; Eac over all 

frames and control points; Etp over all frames and patches; and Ear over all frames and 

patches.

Two points relating to computational efficiency are worth noting. First, the Jacobians of 

Equations 2, 3, 4, and 5 can all be calculated analytically. By providing explicit Jacobians, 

we avoid the need for numeric derivatives, which would slow computation precipitously. For 

a given set of correspondences between surface positions and boundary candidates, the 

Jacobians of Equations 2, 3, and 4 are linear with respect to the Cartesian displacements of 

the control points and therefore trivial to calculate. Equation 5 is the ratio of two Euclidean 

distances. Its Jacobian, therefore, can be calculated with the quotient rule and the knowledge 

that the partial derivative of Euclidean distance ‖w‖ with respect to a particular component 

wd is wd/‖w‖, while noting that whether a particular control point contributes to the 

numerator, denominator, or neither must be determined with each iteration. Second, each 

individual residual depends upon a very small number of parameters. Specifically, the 

individual terms comprising Ecf and Etp depend on 3 × (υ + 6) parameters, and those 

comprising Eac and Ear depend on 3 × 3 parameters. This sparsity is exploited during the 

optimization to limit the number of components of the Jacobian which must be evaluated, 

further reducing computational cost.

2.3.4. Multiresolution approach—Multiresolution techniques frequently have the effect 

of speeding convergence and avoiding local minima; we expect both of these benefits to 

apply in our application. Recalling Sect 2.2, the anatomical reference mesh  was 

decimated to ~ 100 faces. This target was chosen empirically as the minimum number of 

faces beyond which large discrepancies were observed between ℬED and . This model is 

subdivided once prior to registration to ensure that no triangle has more than one 

extraordinary vertex; therefore, the input to the registration algorithm consists of ~ 100 × 4 

faces. The output of the first pass ( 1) is subdivided and used to initialize a second pass, 

such that the final mesh model ( 2) contains ~ 100 × 42 faces. In principle, the user could 

perform as many passes as necessary. In practice, we find that two passes are sufficient to 

reflect the endocardial geometry with subpixel error; that is, for the mean Euclidean distance 

between all points sampled from the registered subdivision surface and their nearest 

boundary candidate is less than the resampled voxel size of 0.5mm.

2.4. Cardiac function

Following registration, the end diastolic mesh is subdivided until visually smooth (we find 

that 5 subdivisions are adequate) and the subdivided mesh is segmented according to the 16-

segment American Heart Association (AHA) model based on standard clinical planes 

(Cerqueira et al., 2002). The patches in all other frames are assigned to an AHA segment 

based on the assignment of the corresponding patch in the end diastolic mesh. For each face 

in the limit subdivision surface of , SQUEEZ is calculated for a given frame f as a 
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function of the current and end diastolic surface areas af and aED, respectively (Pourmorteza 

et al., 2012).

SQUEEZ( f ) =
a f

aED
(6)

2.5. Statistics

Normally distributed variables are reported as mean ±1 standard deviation. Non-normally 

distributed variables are reported as median [interquartile range, IQR]. Normally and non-

normally distributed variables were compared using the paired Student’s t-test and Wilcoxon 

signed-rank test, respectively. Linear relationships are assessed with Pearson’s correlation, 

where 0.7 < |R| ≤ 1.0 is interpreted as a strong correlation, 0.5 < |R| ≤ 0.7 a moderate 

correlation, 0.3 < |R| ≤ 0.5 a weak correlation, and |R| ≤ 0.3 no correlation.

3. Implementation details

Evaluation of Loop subdivision surfaces at arbitrary parameter values was implemented 

according to Stam (1998) in the C++ programming language. The core classes have been 

packaged as an external module for the Insight Toolkit (ITK) library (Johnson et al., 2016). 

Visualization and user interaction was implemented using the Visualization Toolkit (VTK) 

library (Schroeder et al., 2006). Levenberg Marquardt least squares optimization was 

performed using the Ceres Solver (Agarwal and Mierle, 2010), configured with OpenBLAS 

(Wang et al., 2013). Experiments were run on an Ubuntu 16.04 laptop computer with eight 

Intel Core i7-6700HQ 2.60GHz quad-core processors and 16GB RAM.

4. Experiments

We applied our algorithm to CCT images obtained from a canine infarct model, and 

compared our results to those obtained for the CPD algorithm. The details of the animal 

model, imaging parameters, and validation are as follows.

4.1. Canine infarct model

The study design was reviewed and approved by the Animal Care and Use Committee at the 

National Institutes of Health. Thirteen adult male mongrel canines underwent surgical 

ligation of the left anterior descending (LAD) coronary artery for 90 minutes to simulate 

myocardial infarction, followed by reperfusion. Canines were scanned between six and eight 

weeks following surgery.

4.2. Image acquisition

Images were acquired using the SOMATOM Force scanner (Siemens, Erlangen, Germany). 

For the cardiac functional analysis test scan, a 30mL bolus of 20% iopamidol 370 (I-370) 

contrast was used at 2.5mL/s, followed by a 10mL saline chaser. For the final scan, a 30mL 

bolus of 80% I-370 contrast was used at 2.5mL/s, followed by a 10mL saline chaser. The 

test scan was used to determine optimal timing; the SiSSR analysis was performed using the 
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final scan. Images were reconstructed over a single heart beat. The heart rate was controlled 

to 100bpm (normal for medium-sized dogs) with a β-blocking agent to the extent permitted 

by the protocol. The gantry rotation time was 250ms; the tube current was 1152 − 1688mA; 

the tube voltage was 90kV; and the collimation was 96 rows (full detector). The matrix size 

was 512 × 512 (slice thickness: 0.5mm; pixel size: ~ 0.3mm × ~ 0.3mm). Twenty cardiac 

phases were reconstructed over the R-R interval using the Br36d convolution kernel. The 

images were resampled to be isotropic (0.5mm in all dimensions) prior to SiSSR analysis. 

The LV bloodpool, assessed in a 5 × 5 region of interest in the center of the LV, was found to 

have a signal of 426.7 ± 16.7 HU. The LV myocardium, assessed in a 5 × 5 region of interest 

in the midwall of the septum, was found to have a signal of 77.2 ± 11.1 HU. The contrast-to-

noise ratio between these was 20.9 = (426.7 − 77.2)/11.1.

4.3. Validation

The original SQUEEZ implementation (Pourmorteza et al., 2015) relies upon coherent point 

drift (CPD). The dataset was analyzed with this implementation and the results were 

compared with those from the subdivision algorithm proposed here. Hyperparameters used 

in the CPD algorithm were chosen to match those used previously in the literature, and are 

given in Table 1. The relationship between whole-heart and segmental peak SQUEEZ values 

measured by the two methods was assessed quantitatively by paired Student’s t-test and 

Pearson’s correlation, and visually by Bland-Altman plots and regression.

5. Results

5.1. Parameter selection

In order to determine optimal hyperparameters, the weight αcf associated with the primary 

cost function Ecf was initialized to unity, and a sequential parameter sweep was performed 

for the remaining residuals across three orders of magnitude (0.01, 0.1, 1.0, and 10.0). For 

each run, segmentation accuracy and mesh quality were assessed for all frames and canines 

(Fig. 6). Jaccard Index (the ratio between the intersection and union of the ground truth and 

predicted segmentations, where 0.0 indicates disjoint sets and 1.0 indicates perfect overlap) 

was used as a surrogate for segmentation accuracy, and the condition number of the triangle 

Jacobian matrix (a measure of the deviation of a triangle face from equilateral, where 1.0 

indicates equilateral and greater magnitude indicates greater distortion) was used as a 

surrogate for mesh quality.

First, a range of values for αtp were attempted (Fig. 6a). As αtp increased, mesh quality 

improved considerably, both in terms of median condition number and interquartile range. 

However, segmentation performance deteriorated above αtp = 0.1; for this reason, αtp = 0.1

was selected.

Second, a range of values for αar were attempted (Fig. 6b). As αar increased, median 

condition number improved, and the interquartile range tightened considerably, without 

deterioration in segmentation accuracy; αar = 10.0 was selected.
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Note that one may indirectly penalize aspect ratio by instead penalizing edge length. This 

may be understood the smallest perimeter is equilateral. Since edge length is mathematically 

simpler to define (and, therefore, possibly easier to optimize), edge length was investigated 

for comparison with aspect ratio (Fig. 6c). Indeed, median condition number does improve 

somewhat when edge length is weighted ≤ 1.0. However, whereas penalizing aspect ratio has 

little effect on segmentation accuracy, penalizing edge length brings about a precipitous 

decline, causing the mesh to collapse at 10.0. For this reason, it was concluded that the 

additional complexity of penalizing aspect ratio was justified.

Finally, a range of values for αc were attempted (Fig. 6d). As αac increased, segmentation 

accuracy slightly decreased, but without appreciable deterioration in mesh quality. While 

this suggests that penalizing acceleration is not detrimental, it does not prove its benefit. To 

see the benefit, consider the effect of varying αac on global SQUEEZ in an individual 

canines (Fig. 7) with a discontinuity in global SQUEEZ at frame four as measured by CPD. 

Interestingly, even without regularizing acceleration (αac = 0.0), the discontinuity is less 

pronounced in the SQUEEZ curves calculated by the SiSSR algorithm. As αac increases, the 

discontinuity is mitigated, but likewise details of the SQUEEZ curve at end systole and late 

diastole are lost. αac = 0.1 was ultimately selected as a compromise between enforcing 

temporal coherence and preserving fine details of the SQUEEZ curves.

Note that, in enforcing temporal consistency, penalizing velocity and acceleration are both 

considerations. Broadly speaking, the cardiac cycle consists of contraction, relaxation, and 

diastasis. Acceleration is expected to be high only during the transitions between these 

periods, whereas velocity is expected to be high during all of contraction and relaxation. 

That is, the acceleration field is expected to be sparse compared with the velocity field, and 

is therefore a more appropriate term to penalize. However, we nonetheless investigated 

velocity (Fig. 6e), and found that the two performed similarly in terms of segmentation 

accuracy and mesh quality.

The final values of αcf, αac, αtp, and αar are reported in Table 2.

5.2. Optimization performance

The two optimization passes combined took 4.7 minutes per canine (283.7s, IQR = [246.4s, 

298.8s]). The first pass contributed very little time to the total compared with the second 

pass (22.8s, IQR = [21.7s, 26.6s] vs 259.0s, IQR = [224.0s, 272.1s]).

Qualitatively, the registered mesh models 2 (Fig. 8) were of high quality, closely tracked 

the endocardium, and reflected the observed myocardial contraction throughout the cardiac 

cycle (Fig. 9). Quantitatively, the meshes were of high segmentation accuracy (Jaccard 

Index: 0.966, IQR = [0.961, 0.970]) and high mesh quality (triangle Jacobian condition 

number: 1.03, IQR = [1.03, 1.04]).

In order to assess the benefit of the multiresolution technique, a separate, single-pass 

registration was performed where the anatomical reference mesh  was generated by 

decimating directly to 100 × 42 = 1600 mesh faces, followed by one registration. Compared 

with the multiresolution approach, this single “dense” pass took 60.3% longer (454.8s, IQR 
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= [418.8s, 548.3s], p < 0.001), while producing similar segmentation accuracy (0.968, IQR = 

[0.964, 0.972]) and mesh quality (1.04, IQR = [1.03, 1.07]).

In order to assess the benefit of deriving the anatomical reference mesh, , from the 

boundary candidates at end diastole, ℬED, compared with instead using a bespoke left 

ventricular model, the analysis was repeated, replacing  with a prolate hemispheroid. The 

prolate hemispheroid was constructed in Blender 2.78,5 and designed to have a number of 

triangles equal to  after its final subdivision. The model was initialized by translating, 

rotating, and scaling to align with ℬED. Compared with registering , the bespoke model 

produced lower segmentation accuracy (Jaccard Index: 0.966, IQR = [0.961, 0.970] vs 

0.957, IQR = [0.952, 0.965], p < 0.0001) and lower mesh quality (triangle Jacobian 

Condition Number: 1.03, IQR = [1.03, 1.04] vs 1.10, IQR = [1.08, 1.18], p < 0.0001).

5.3. Sensitivity of SQUEEZ to optimization parameters

The ultimate goal of this pipeline is to calculate SQUEEZ as a surrogate of regional 

function; therefore, it is necessary to investigate the sensitivity of SQUEEZ to moderate 

perturbations of the optimized registration weights. As a baseline measurement, peak 

segmental SQUEEZ was calculated in all canines using the parameters in Table 2. In six 

additional registrations, αtp, αar, and αac were each doubled, then halved relative to baseline, 

and peak segmental SQUEEZ was recalculated. Linear regression was then performed 

between baseline and each of the six runs (Table 3). Correlation was excellent (R > 0.99, p < 

0.0001), with near-zero intercepts and near-unity slopes in all cases, suggesting that the 

SQUEEZ analysis is robust to perturbations of the registration hyperparameters over a 

moderate range centered on the optimized values.

5.4. Correlation with CPD

Compared with SiSSR, CPD produced lower segmentation accuracy (Jaccard Index: 0.966, 

IQR = [0.961, 0.970] vs 0.922, IQR = [0.909, 0.930], p < 0.0001) and lower mesh quality 

(triangle Jacobian Condition Number: 1.03, IQR = [1.03, 1.04] vs 1.10, IQR = [1.08, 1.14], 

p < 0.0001). Correlation between global left ventricular SQUEEZ as measured by SiSSR vs 

CPD was excellent (SiSSR = 0.74 CPD +0.25, R = 0.92, p < 0.0001). A positive bias noted 

visually on Bland-Altman plot (Fig. 10) was statistically significant (0.866 ± 0.025 vs 0.827 

± 0.030, p < 0.0001). Inspection of the meshes suggests that error for the CPD algorithm is 

highest near the papillary muscles, perhaps due to implicit penalization of adjacent 

expanding and contracting regions due to the the coherent motion constraint. SQUEEZ 

estimated by CPD is lower for the papillary muscles than that measured by SiSSR, which 

may account for the noted bias in peak global SQUEEZ.

Representative curves as calculated by SiSSR as well as CPD are shown in Fig. 11. We note 

that the timing of contraction is very consistent between the two methods, reaching end 

systole at frame 7 and recovering by frame 12 in both cases. Moreover, SQUEEZ curves 

calculated by the CPD method are slightly noisy, which could be problematic for the 

calculation of strain rate without smoothing. SQUEEZ curves calculated by SiSSR by 

5https://blender.org
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contrast are smooth as a result of regularizing against control point acceleration, and could 

be used to calculate strain rate directly.

Infarcts were localized using contrast-enhanced CCT, and found to be small (median 7.1g 

myocardial mass), subendocardial, and localized to the anterior and septal apex, consistent 

with LAD occlusion. In order to assess whether regional SiSSR is correlated with CPD in 

both infarcted and remote myocardium, segmental SQUEEZ was compared in the anterior 

apex and anteroseptal base (AHA segments 13 and 2, respectively, Cerqueira et al. (2002)).

Correlation between SQUEEZ in the anteroseptal base as measured by SiSSR vs CPD was 

good (SiSSR = 1.04 CPD + − 0.08, R = 0.75, p < 0.01), whereas correlation between 

SQUEEZ in the anterior apex as measured by SiSSR vs CPD was moderate (SiSSR = 0.52 

CPD +0.41, R = 0.53, p = NS, Fig. 12).

6. Discussion

In this article, we have described an end-to-end pipeline for quantifying cardiac function 

from a 3-D+time CCT image sequence. Our method, which we term Simultaneous 

Subdivision Surface Registration (SiSSR), inherits a number of desirable features from the 

prior state-of-the-art method (Stebbing, 2014) that we have adapted and extended. Loop 

subdivision surfaces are useful structures for modeling cardiac anatomy. First, they allow 

smooth, detailed structures to be represented implicitly with a coarse mesh. Second, they 

impose minimal modeling requirements on the mesh (only that it be triangular, and avoid 

pathological topologies such as self-intersection). Third, each control point in the coarse 

mesh influences only a small portion of the underlying surface, leading to sparse 

dependence between parameters and residuals during the optimization and consequent 

computational gains. Besides making use of subdivision surfaces, the cost function 

formulation performs the optimization across all frames simultaneously, which has the effect 

of avoiding frame-to-frame errors which typically plague heart tracking algorithms.

Our contributions include a number of modifications which improve upon the method 

proposed by Stebbing (2014). By generating the anatomical reference mesh directly from the 

blood pool of the left ventricle, we account for broad variability in cardiac anatomy, provide 

an excellent initialization for mesh registration, and minimize the required human 

intervention. Additionally, we make two notable changes to the cost function. First, we 

regularize against acceleration (as opposed to velocity), encouraging smooth, biologically 

plausible motion. Second, we explicitly encourage high mesh quality by penalizing mesh 

faces with high aspect ratio, which we note has the added benefit of discouraging physically 

unreasonable SQUEEZ values. Our work also employs a multiresolution approach for mesh 

registration, which has the dual advantages of avoiding local minima and increasing 

computational efficiency. Finally, Stebbing (2014) stopped short of calculating metrics of 

regional function. We hypothesize that their template mesh, defined by 40 faces initially and 

40*4 faces after subdivision, would have been insufficiently detailed to adequately capture 

regional function. The final registered meshes calculated in the SiSSR method, by contrast, 

contained ~ 100 * 42 = 1600 faces; approximately 75% of these correspond to the LV 

endocardium (the remaining faces define the mitral valve plane), such that 1600 * 0.75/16 = 
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75 faces contribute on average to each AHA segment. The spatial resolution of our method 

is therefore sufficient to characterize clinical motion abnormalities. Moreover, we have 

shown that SQUEEZ calculated by our pipeline correlates globally with SQUEEZ calculated 

with an independent methodology (Pourmorteza et al., 2012), giving us further confidence in 

our results beyond visual inspection, as well as segmentally in both infarcted and remote 

myocardium.

6.1. Alternate methods

Functional CCT studies have historically had limited applicability due to high radiation dose 

and low temporal resolution, and as such quantifying cardiac function from CCT has 

received relatively less attention compared with CMR and echocardiography. Recent 

advances in CCT acquisition and reconstruction have largely eliminated these concerns, 

sparking renewed interest in the literature.

The most straightforward approach sought to directly apply a block-matching technique 

originally developed for 2-D ultrasound to stacks of 2-D+time CCT images, resliced from 3-

D+time volumes (Tee et al., 2015). This study used a porcine infarct model, with the 

ultimate goal of calculating circumferential and radial strain. Segmentally, correlation with 

HARP was moderate in the radial direction (R = 0.55, p = 0.27) and weak in the 

circumferential direction (r = 0.40, p = 0.125). Unfortunately, in treating the volume as a 2-

D stack, through-plane motion error inherent to 2-D block-matching is unavoidable. The 

SiSSR method avoids through-plane errors by considering the volume as a whole, but is 

limited to quantifying function in the circumferential-longitudinal plane; the radial 

component of cardiac function cannot be quantified.

More recently, Wong et al. (2016) measured radial, circumferential, and principal strains 

from 3-D+time CCT images in a canine infarct model. This work used deformable image 

registration to track the left ventricular endocardium and epicardium, deformed a bespoke 

finite element model of the left ventricle with the resulting displacements, and attempted to 

detect the infarcted region using image intensity and functional metrics. As the primary 

focus of their work was on infarct detection, relatively less effort was devoted to motion 

tracking. They employed a B-spline transform registration method available in ITK (Johnson 

et al., 2016), using the mutual information similarity metric and L-BFGS optimizer. The 

authors allude to the fact that, because traditional registration implementations have been 

designed to warp a single “moving” image into a single “fixed” image, there is no single, 

optimal way to apply these techniques to an image sequence without foundational 

modification. The authors compared “frame-to-frame” and “reference-frame” formulations, 

and found similar accuracy in terms of infarct detection, but no direct comparison of 

tracking error was possible. In the present work, we avoid this ambiguity by formulating the 

registration globally across all cardiac frames.

A state-of-the-art technique for quantifying regional cardiac function from CCT was the 

SQUEEZ method proposed by Pourmorteza et al. (2012), which has been shown to correlate 

well with HARP Pourmorteza et al. (2015) and which we employed as an independent 

methodology for validation in the present work. SQUEEZ is defined as the square root of the 

ratio between current and end diastolic area in the circumferential-longitudinal plane, and 
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may be interpreted as a surrogate for cardiac contraction (< 1) or expansion (> 1). At each 

frame, the left ventricular blood pool was segmented and a boundary candidate mesh 

representing the endocardium was calculated. A deformable point-set registration algorithm 

known as Coherent Point Drift (CPD) was used to register a bespoke template mesh to the 

end diastolic boundary candidate mesh, and again to register the end diastolic template mesh 

to each of the remaining cardiac frames. This formulation is similar to the reference-frame 

registration method used by Wong et al. (2016), and therefore subject to the same errors. To 

address these concerns, Pourmorteza et al. (2012) utilize “shape index” (SI), a scale-

independent shape measure (Koenderink and van Doorn, 1992), which they hypothesize will 

remain constant throughout the cardiac cycle for a given material point:

SI = 2
π atan

k1 + k2
k1 − k2

:k1 ≥ k2 .

Here, k1 and k2 are the principal curvatures at a point of interest. In order to encourage each 

point in the end diastolic mesh to warp into the same anatomical position in the remaining 

frames, a penalty for warping a point in the template mesh into a point with dissimilar SI in 

the target mesh was incorporated into the CPD registration. We note that penalizing SI 

discrepancies may be interpreted as a means of implicitly sharing information between 

frames. This contrasts to the present work, where information is explicitly shared between 

frames via a global optimization framework where no restrictions are imposed on which 

parameters may be used in the calculation of a particular residual. This more flexible 

formulation allows, for example, the acceleration of control points to be regularized, which 

would not be possible using the CPD method using the present implementation.

6.2. Limitations and future directions

Segmental validation—Although there was excellent correspondence between SiSSR 

and CPD in terms of global SQUEEZ, segmental agreement was only moderate. We 

hypothesize that this may be attributed to the relative lack of trabeculation of the canine 

endocardium as compared with humans. Therefore, we hypothesize that human studies 

planned for the future will demonstrate higher segmental correlation. Additionally, although 

the CPD method has itself been validated against HARP, it would be beneficial in the future 

to validate our method directly against HARP, and to assess the relative accuracy of the two 

methods.

Subdivision surfaces have the desirable property of being parametrically addressable; i.e., 

that a unique point on the surface may be addressed with a given patch index and parametric 

position. In order to estimate functional parameters, this parametric addressability must 

further be assumed to be materially consistent, i.e., assumed to refer to the same tissue point. 

The degree to which this assumption holds must be investigated in future work.

Optimization of the SiSSR hyperparameters—Hyperparameters of the SiSSR 

registration were chosen so as to optimize mesh quality while minimizing segmentation 

error. While we recognize that it may have been preferable to optimize peak segmental 

SQUEEZ values, we regret that a true ground truth was unavailable, and were reluctant to 
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optimize against those values measured by CPD, in case differences between the SiSSR and 

CPD measurements represented an improvement of the SiSSR algorithm.

Papillary muscles—Papillary muscles are quite prominent in canine hearts compared 

with humans, such that the endocardium and papillary muscles are flush with one another 

for most or all of the cardiac cycle. The lack of contrast between papillary muscles and 

myocardium makes endocardial function difficult or impossible to assess in the lateral 

midwall (AHA segments 11 and 12). We regard this as a limitation of the underlying 

imaging data, rather than our method, and advise caution when interpreting these segments. 

Modification of the SiSSR method (particularly in the mesh generation step) may be 

required in order to extend this method to humans.

Computational Efficiency—In terms of computational efficiency, we focused in this 

study on exploiting sparsity and maximizing algorithmic efficiency, and spent relatively less 

time exploring parallelism beyond what was available by configuring Ceres with OpenBLAS 

and OpenMP. In the future, it may be possible to further improve the algorithm by adapting 

the implementation to run on a graphics processing unit (GPU).

Protocol Optimization—Although our image acquisition procedure was not optimized 

for right ventricular contrast, we note that in an appropriate dataset our procedure may be 

extended to other cardiac chambers with little or no modification.

Alternative Applications—We further expect the contributions made in this paper to 

translate to problems outside the heart, such as fetal neurosonography, where a closely 

related subdivision surface method has been successfully applied (Namburete et al., 2015).

Boundary Candidate Selection—Finally, although contrast between the myocardium 

and the left ventricular blood pool is high (contrast-to-noise ratio = 20.9), it was nonetheless 

necessary to manually prune the right ventricle in some cases. The authors recognize that the 

technique used for detecting the boundary candidate mesh is not state-of-the-art from the 

perspective of LV segmentation; significant effort has been devoted to this task in the 

literature. However, this approach was nonetheless preferred over other methods described 

in the literature for the following reasons:

• A significant advantage of computed tomography over other modalities is that it 

provides a quantitative, reproducible signal (measured in Hounsfield Units) 

which, when combined with a timed contrast bolus, gives a detailed separation 

between myocardium and bloodpool.

• Endocardial trabeculation and papillary muscles are generally excluded in LV 

CCT segmentation algorithms (Zreik et al., 2016),(Ecabert et al., 2008). While 

this is an advantage in certain contexts, it is detrimental in our application, which 

relies upon these structures as the primary trackable features. Our approach 

retains these features with high fidelity.

• Among the most successful techniques described to-date involve atlas 

registration (Zhuang et al., 2015) and convolutional neural networks (Zreik et al., 
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2016). These algorithms require large training datasets, which were unavailable 

to us.

• Given the striking difference in canine and human anatomy (specifically, the 

relative lack of endocardial trabeculation in dogs), any LV segmentation 

algorithm developed in this dataset would likely need to be redesigned for human 

subjects.

7. Summary

In this study, we have presented the Simultaneous Subdivision Surface Registration (SiSSR) 

algorithm, a pipeline for the quantification of SQUEEZ (a regional metric of cardiac 

function) from 3-D+time contrast-enhanced cardiac computed tomography sequences. The 

primary technical contributions of our technique are in the extension and adaptation of a 

prior technique developed in the context of 3-D echocardiography to cardiac computed 

tomography. An anatomical reference mesh (stored as a Loop subdivision surface) was 

generated at end diastole, and fitted to the endocardium simultaneously across all frames 

using least squares minimization. The optimization was regularized against acceleration of 

the control points, thin plate energy, and triangle aspect ratio. We demonstrated that our 

algorithm could produce visually appealing results in a clinically viable timescale, and 

validated those results against a state-of-the-art described technique for quantifying cardiac 

function from computed tomography.
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Highlights

• A pipeline for quantifying cardiac function from computed tomography is 

proposed.

• Patient-specific meshes modelling cardiac anatomy are automatically 

constructed.

• Cardiac mesh models are fitted to the endocardium in all frames 

simultaneously.

• Model fitting is formulated so as to encourage biologically plausible motion.

• Functional cardiac parameters are validated against the prior state-of-the-art.
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Figure 1. 
Overview of the analysis pipeline. The volumetric CCT input images are used to generate 

the boundary candidate meshes. The boundary candidate mesh at end diastole is then 

decimated to generate the anatomical reference mesh. This mesh is then registered to the 

boundary candidate meshes across all frames in order to generate a sequence of registered 

models. The subdivided output of a pass may then serve as the initialization of a subsequent 

pass. The final registered models may then be used to compute a host of functional cardiac 

parameters.
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Figure 2. 
Boundary candidate selection. (a) A septal view of the left heart in a CCT volume, ℐED; the 

bloodpool of the left heart is bright due to contrast enhancement. (b) A septal view of the 

boundary candidate mesh overlain with the underlying image data, showing coincidence of 

ℬED with the endocardium. (c) A lateral view of ℐED (the mirror image of (a)). (d) A lateral 

view of ℐED overlain with ℬED; note the prominent papillary muscles visible in ℬED.

Vigneault et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Generation of the anatomical reference mesh. (a) A septal view of a dense, triangular 

boundary candidate mesh, ℬED, produced by the fast marching cubes algorithm for the end 

diastolic frame. (b) A septal view of the anatomical reference mesh, , generated through 

decimation of ℬED. The dark red wireframe represents the control points and their 

connections; the smooth, pink surface represents the underlying subdivision surface defined 

by the wireframe. Note the tendency of the surface to “contract” somewhat during 

decimation. (c) A lateral view of ℬED. (b) A lateral view of .
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Figure 4. 
Improvement of mesh quality with Gaussian noise. Marching cubes was used to generate a 

fine mesh from a binary half-sphere. This fine mesh was decimated both directly (4a) and 

after perturbing its vertices with a small amount of Gaussian noise (4b). A dramatic 

improvement in the quality of the decimated mesh is visually apparent. A version of this 

figure appears in Vigneault (2016).
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Figure 5. 
Geometric demonstration of loop subdivision. Here we have an extraordinary patch where υ 
= 7, which we would like to evaluate at t = (0.1, 0.2). The number of required subdivisions n 
= 2 and the index of the child patch k = 1. The original extraordinary patch is shown in 

white, and intermediate patches are shown in red. (a) We first subdivide using the “extended 

subdivision matrix,” A. (b) We further subdivide using the “bigger subdivision matrix,” Ā. 

(c) From the result, we extract an ordinary patch containing the parametric point of interest, 

the surface position of which we may then evaluate directly.
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Figure 6. 
Stepwise selection of least squares optimization scaling factors. Each plot shows how the 

Jaccard Index (red, left vertical axis) and the condition number of the triangle Jacobian 

matrix (blue, right vertical axis) vary with the parameter of interest. Points and error bars 

represent median and interquartile range. Note that, for all but subplot (a), the leftmost 

datapoint is reproduced from a previous plot for convenience. The weight αcf associated 

with the primary residual Ecf was initialized to unity and the remaining residual weights αtp

(a), αar (b), and αac (d) were varied and tested sequentially. An edge length penalty (c) is 

shown for comparison to aspect ratio, and a velocity penalty (e) is shown for comparison to 
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acceleration (these did not contribute to the final cost function). The selected parameter 

value is indicated on the horizontal axis with a star (⋆). See text for further discussion.
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Figure 7. 
Effect of varying αac on global SQUEEZ. A discontinuity is noted in the CPD curve at 

frame 4. This discontinuity is visible in the αac = 0.0 SiSSR curve, but is less pronounced. 

Increasing αac to 0.1 further diminishes this discontinuity without smoothing out potentially 

useful features at end systole and during diastasis. Values above 0.1 result in unwanted 

smoothing of these features.
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Figure 8. 
Residual error at each registration stage. Residual error for the end diastolic (top) and end 

systolic (bottom) frames at various stages of the pipeline, overlaid on a long axis view of the 

heart. The pink meshes represent the subdivision surface of the model; the blue bars 

represent the primary residuals of the cost function, pointing from a point on the subdivision 

surface to the nearest boundary candidate. (a, d) The anatomical reference mesh, . (b, e) 

The registered model after the first pass, 𝒯 f
1. (c, f) The registered model after the second 

pass, 𝒯 f
2.
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Figure 9. 
Calculation of SQUEEZ from registered subdivision surfaces. (a) The septal wall at end 

diastole. (b) The septal wall at end systole. (c) The lateral wall at end diastole. (d) The lateral 

wall at end systole. Note that shading has been turned off for the subdivision surface to avoid 

any ambiguity in interpreting the colormap.
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Figure 10. 
Peak global SQUEEZ measured by subdivision and CPD methods. Bland-Altman (top) and 

regression (bottom) comparing whole-heart, peak SQUEEZ as measured by SiSSR vs CPD. 

In the Bland-Altman, the solid line represents the mean difference, and the dashed lines 

represent ±1.96 standard deviations. In the regression, the solid line represents the least-

squares best fit, and the dashed line represents the ideal fit.
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Figure 11. 
Global SQUEEZ curves as measured by subdivision and CPD methods. Global SQUEEZ 

curves for all thirteen canines studied as measured by the subdivision regression method 

(above) and the coherent point drift method (below). Corresponding colors in the two plots 

indicate the same canine. SQUEEZ is by definition equal to one at the end diastolic frame, 

indicating no contraction.
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Figure 12. 
Peak segmental SQUEEZ as measured by the SiSSR and CPD methods. Segmental 

correlation is good in both infarcted (a) and remote (b) regions.
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Table 1

Hyperparameters of the CPD registration.

Parameter Value

Method NONRIGID_LOWRANK

Spatial Normalization true

Fast Gaussian Approximation true

Fine Tuning true

Function Tolerance 10−5

Outliers 0.1

β (Width of Gaussian) 2

λ (Regularization Weight) 3
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Table 2

Hyperparameters of the SiSSR registration.

Parameter Value

Function Tolerance 10−2

Parameter Tolerance 10−2

Linear Solver Type SPARSE_NORMAL_CHOLESKY

Minimizer Type TRUST_REGION

αcf 1.0

αac 0.1

αtp
0.1

αar 10.0
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Table 3

Sensitivity of peak segmental SQUEEZ to regularization weights. Each row represents a single run, including 

all canines, where exactly one parameter is modified (either doubled or halved) relative to the baseline 

measurement in Table 2. The first column indicates which parameter was modified, and how. Linear regression 

was then performed between peak segmental SQUEEZ as calculated using the modified parameters versus 

baseline. The slope (m), intercept (b), coefficient (R), and p-value of the linear regression are reported.

Parameter m b R p-value

αtp = 0.1 × 2 0.959 0.032 0.994 p < 0.0001

αtp = 0.1 ÷ 2 1.029 −0.022 0.993 p < 0.0001

αar = 10.0 × 2 0.975 0.021 0.996 p < 0.0001

αar = 10.0 ÷ 2 1.020 −0.017 0.997 p < 0.0001

αac = 0.1 × 2 0.999 0.001 0.999 p < 0.0001

αac = 0.1 ÷ 2 1.001 −0.001 1.000 p < 0.0001
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