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Abstract

We present a novel computational framework for the analysis of high-throughput microscopy 

videos of living cells. The proposed framework is generally useful and can be applied to different 

datasets acquired in a variety of laboratory settings. This is accomplished by tying together two 

fundamental aspects of cell lineage construction, namely cell segmentation and tracking, via a 

Bayesian inference of dynamic models. In contrast to most existing approaches, which aim to be 

general, no assumption of cell shape is made. Spatial, temporal, and cross-sectional variation of 

the analysed data are accommodated by two key contributions. First, time series analysis is 

exploited to estimate the temporal cell shape uncertainty in addition to cell trajectory. Second, a 

fast marching (FM) algorithm is used to integrate the inferred cell properties with the observed 

image measurements in order to obtain image likelihood for cell segmentation, and association. 

The proposed approach has been tested on eight different time-lapse microscopy data sets, some of 

which are high-throughput, demonstrating promising results for the detection, segmentation and 

association of planar cells. Our results surpass the state of the art for the Fluo-C2DL-MSC data set 

of the Cell Tracking Challenge (Maška et al., 2014).
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1. Introduction

Thanks to advances in automation, thousands of cell populations can be perturbed and 

recorded by an automated microscope, making live cell imaging a widespread and versatile 

platform for quantitative analysis of cellular processes. Nevertheless, the pace of modern 

imaging far outstrips the capability of biologists to manually analyse the resulting movies. 

Automated image processing can extract a richness of quantitative measures far beyond what 

a human can observe. Yet, to fully exploit the power of live-cell imaging, a spatiotemporal 

tracing of multiple cells in a dynamic environment is required. To address this challenge for 

large data sets, numerous cell tracking algorithms have been developed and have become a 

focus in the bioengineering community (Maška et al., 2014; Ulman et al., 2017). While 

many tracking and detection algorithms for specific experimental setups exist, the 

construction of a generally applicable tool for a variety of datasets, without exhaustive 

training, remains a challenge. We hereby present an unsupervised approach for joint cell 

segmentation and tracking that allows automatic and systematic extraction of quantitative 

measurements that can be applicable to different experimental situations.

Spatiotemporal tracing is often considered as two sequential problems: the spatial definition 

of the cells within the frame, i.e., segmentation, and the temporal frame to frame association, 

i.e., tracking. There are numerous approaches that address the segmentation problem in 

general and that of live cell imaging in particular. The majority of these methods rely on low 

level image features, such as pixel intensities and gradients, to separate cells from 

background and to distinguish between the different cells. This could be done by different 

algorithms ranging from basic methods such as adaptive thresholding (Padmanabhan et al., 

2010; Otsu, 1975) to more sophisticated methods, such as deformable models and active 

contours (Chan and Vese, 2001; Osher and Sethian, 1988). For example, the Active Mesh 

Dufour et al. (2011) approach allows the users to utilize computer graphics models to find 

accurate segmentation with low computational power. Watershed transformation introduced 

by Beucher (Beucher and Meyer, 1992) is widely used for cell segmentation e.g., Wählby et 

al. (2004). The graph-cut method Boykov and Funka-Lea (2006), common in natural image 

processing has also been applied to microscopy images e.g., Bensch and Ronneberger 

(2015).

In most cases relying on low level image features alone is insufficient for the segmentation 

task. Prior knowledge adds orthogonal information and can improve the overall result. An 

interesting model-driven approach suggested by Kanade et al. (Kanade et al., 2011) and Su 

et al. (Su et al., 2013) incorporates the physical properties of the microscope within the 

segmentation. Machine learning methods that aim to be general and not specific to 

acquisition conditions or modality, require training data, usually obtained by manual 

annotations. For example, Ilastik (Sommer et al., 2011) - a commonly used interactive tool 

for cell segmentation, is based on the Random Forest classifier (Breiman, 2001), and is 
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trained by labeled pixels provided by the user annotation. In Ronneberger et al. (2015) a 

deep artificial neural network (U-Net) is presented for segmentation. The classification deep 

neural network in Kraus et al. (2016) utilizes the Jacobian maps for cell segmentation. While 

these Deep Learning methods and Ilastik provide accurate segmentation results they require 

a comprehensive set of annotated examples.

Provided that the segmentation problem is well-posed, cell-to-cell association is commonly 

approached by finding correspondences between cell features in consecutive frames. Cell 

association becomes complicated when the feature similarity of a cell to its within-frame 

neighbors is comparable to the similarity of the same cell in consecutive frames. When cells 

cannot be easily distinguished, a more elaborate cell matching criterion is needed, for 

example, considering cell dynamics (Yang et al., 2006), solving sub-optimal frame-to-frame 

assignment problems, via linear and integer programming optimization (Kachouie and 

Fieguth, 2007) and its expansion to global cell association (Türetken et al., 2016, 2017; Bise 

et al., 2011), or by using multiple hypothesis testing (MHT) (Reid, 1979) and its relaxation 

(Jaqaman et al., 2008). Common recent approaches, in this spirit, to address the cell tracking 

problem are based on graphical models. The key idea is the construction of a graph, in the 

spatial and/or time domain, of possible hypotheses and using it to find the globally optimal 

solution (Jaiswal et al., 2016; Akram et al., 2016; Schiegg et al., 2013; Magnusson et al., 

2015; Padfield et al., 2011).

Often an accurate delineation of cell boundaries is a challenging task. A high degree of 

fidelity is required for cell segmentation, even in instances where the cells are far apart and 

hence can be easily distinguished. Moreover, in many cases the extracted cellular features 

(e.g., shape or intensity profile) are also the intended subject of the biological experiment. 

Therefore, several recent methods attempt to support segmentation through solving the cell 

association problem and thus extract prior information from previous frames. For example, 

the initial cell boundaries in the active contour framework can be derived from the contours 

of the associated cells in the previous frame as long as cell position is relatively stable 

Bergeest and Rohr (2012); Dufour et al. (2005); Wang and Chung (2007); Zimmer et al. 

(2002); Dzyubachyk et al. (2010). An alternative active contour strategy is to segment a 

series of time-lapse images as a 3D volume (Padfield et al., 2008). Li et al. (2008) 

incorporate multiple modules including cell motion prediction and active contours to 

simultaneously perform segmentation and data association. More recent methods 

successfully deal with complex data sets using probabilistic frameworks. In the graphical 

model suggested by Schiegg et al. (2014) cell segments are merged by solving multiple 

hypothesis testing subject to inter-frame and intra-frame constraints. The Gaussian mixture 

model proposed by Amat et al. (2014) is based on the propagation of cell centroids and their 

approximated Gaussian shape to the following frame in order to combine super-voxels into 

complete cell regions.

In this paper, cell tracking and segmentation are jointly solved via two intertwined 

estimators. The first is the motion estimation filter, inspired by the Kalman Filter. The 

second is maximum a posteriori probability (MAP) of a pixel belonging to a cell. Consider 

Figure 1 showing an example of two consecutive frames at times t and t+1. The 

segmentation of the cell at time t (red) may not match the true segmentation at time t+1 due 

Arbelle et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the cell’s dynamics. Translation of the contour in frame t by using cell motion estimation 

(magenta) allows better alignment. The final cell segmentation (green) can be calculated 

based both on the estimated contour and frame t+1.

One of the key ideas is the extension of the commonly-used Kalman state vector to account 

for shape fluctuations for dynamic shape modeling (DSM). Shape inference requires a 

probabilistic modeling of cell morphology, which is not mathematically trivial. We address 

this challenge by applying a sigmoid function to the signed distance function (SDF) of the 

cell boundaries such that the slope of the sigmoid models the shape uncertainty and defines a 

prior probability for each cell. Given the estimated cell poses, shape models and velocity 

maps, that are generated from the observed image measurements, we calculate the likelihood 

maps of each cell via a fast marching (FM) algorithm. Using the prior probabilities and the 

likelihood maps, we calculate the posterior probabilities of the image pixels. The 

partitioning of the image into individual cells and background is defined by the MAP 

estimates.

The proposed method is mathematically elegant and robust, with just a few parameters to 

tune. The algorithm has numerous advantages. A main contribution is the DSM, which 

serves as a prior for the consecutive frame segmentation without imposing any 

predetermined assumptions on cell shape. In contrast to existing approaches (Türetken et al., 

2017; Amat et al., 2014; Türetken et al., 2016), which explicitly or implicitly assume 

ellipsoidal structure, the proposed algorithm can handle non-convex cell shapes. Consider 

for example the cells’ shapes in Figure 5, which exhibit significant irregularities. 

Furthermore, introducing the boundary uncertainty estimate to the shape model makes our 

algorithm robust against temporal, morphological fluctuations. In addition, estimating the 

cell temporal dynamics facilitates accurate frame-to-frame association, particularly in the 

presence of highly cluttered assays, rapid cell movements, or sequences with low frame rate. 

We note that mitotic events (i.e., cell divisions) significantly complicate cell tracking. We 

address this issue by initiating tracks for the daughter cells based on the MAP segmentation.

We demonstrate the proposed method both quantitatively and qualitatively on several data 

sets of different cell types acquired in a variety of laboratory and imaging settings including 

the Cell Tracking Challenge (Maška et al., 2014). The results show that the method is 

capable of robustly handling both segmentation of cells with irregular shapes and tracking of 

long sequences (hundreds of frames). We note that for the Cell Tracking Challenge - Fluo-

C2DL-MSC data set, our method was ranked the first in all three categories (Tracking, 

Segmentation, and combined score) by the challenge organizers .

The code is freely available at https://github.com/arbellea/

CellTrackingAndSegmentationPublic.git and a compiled version is available at https://

github.com/arbellea/CellTrackingAndSegmentationCompiled.git. Access to the RPE data set 

will be given upon request. The current version of the code is implemented for 2D data sets.

This paper is an extension of our preliminary work Arbelle et al. (2015) with a more general 

mathematical formulation and a variety of challenging data sets.
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The rest of the paper is organized as follows. In Section 2 we introduce the proposed cell 

tracking and segmentation approach, which consists of four main components: Section 2.3 

discusses the time series analysis for motion and shape uncertainty estimation; Section 2.4 

defines the probabilistic DSM based on previous frame segmentation and the estimated 

boundary uncertainty; Section 2.5 utilizes the FM algorithm for the calculation of the 

likelihood; Section 2.6 presents the MAP estimation of the final segmentation and 

association. Section 3 presents experimental results for eight different datasets. We conclude 

and outline future directions in Section 4.

2. Methods

2.1. Problem Formulation

In the following section, we aim to define the association and segmentation process by 

partitioning the image to a labeled set such that each cell has a unique label for the duration 

of the entire sequence. Let 𝒞 = C(1), …, C(K)  denote K cells in a time lapse microscopy 

sequence, containing 𝒯 frames. We define Ω ⊂ ℝ2 as the image domain. Let ℐ:Ω ℝ be a 

random variable with probability function Pℐ. Let It be the observed values of t’th frame in 

that sequence, t = 1, …, 𝒯. We assume that each It is a gray-level image of 𝒦t cells, that 

form a subset of 𝒞. Our objective is twofold and consists of both cell segmentation and 

frame-to-frame cell association defined as follows:

Segmentation—For every frame It, find a function ft : Ω → Lt, (where Lt is a subset of 

𝒦t + 1 integers in [0, …, K]) that assigns a label lt ∈ Lt to each pixel x = [x, y] ∈ Ω. The 

function ft partitions the t’th frame into 𝒦t regions, where each segment corresponding to a 

cell Γt
(k) = x ∈ Ω f t(x) = lt = k  forms a connected component of pixels, in frame t. The 

background, i.e., Γt
(0), includes all non-cell pixels and is not limited to a single connected 

component. Note that ∪k = 0
𝒦t Γt

(k) = Ω and Γt
(i) ∩ Γt

( j) = 0, ∀i ≠ j.

Association—For every frame It, find an injective function ht : Lt−1 → Lt that 

corresponds to cell segments in frame t − 1 and frame t. As we will show in the following, 

the segmentation and association steps are merged and Γt
(k), k ≥ 1 defines the segmentation 

of cell C(k) in frame t. We assume that each cell is represented by a state vector ξt
(k)

(including the location, velocity, and shape uncertainty of the cell).

2.2. Probabilistic Model

The proposed method for joint cell segmentation and association is based on a graphical 

model presented in Figure 2. Shaded circles represent the observed variables It−1,It and It+1. 

The non-shaded circles represent the unknown variables: cell segmentations Γt = Γt
(k)

k = 0

Kt

and cell state vectors ξt = ξt
(k)

k = 0

Kt
. Given a sequence of microscopy videos as input, the 
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proposed algorithm’s output is the segmented sequence, where each cell is assigned a unique 

label. Our goal is to find the partitioning Γt given It and information from previous frames. 

We do not require cell shape to be elliptical or otherwise convex. Our only assumption, 

related to cell topology, is that its segmentation, i.e., Γt
(k) is represented as a single connected 

component. Figure 3 presents the flow of the proposed algorithm, to be detailed below, using 

a single representative cell. For every cell C(k) there exist a number of properties that 

describe its state at a given time t. Let ξt
(k) ∈ ℝF, Eq. (1), denote the hidden state vector that 

holds the true, unknown, state of the cell comprised of F features. In our case the state vector 

holds the following features:

ξt
(k) = cxt

(k), cyt
(k), vxt

(k), vyt
(k), εt

(k) T
= ct

(k)T, vt
(k)T, εt

(k) T
(1)

where, c(k)
t = cxt

(k), cyt
(k) T

 denote the center of mass(COM) of the cell at time t and 

v(k)
t = vxt

(k), vyt
(k) T

 denote the COM velocities. In addition, the commonly used state vector is 

extended to include a shape uncertainty variable, denoted by εt
(k), which will be explained in 

Section 2.4. We note that although we deal with planar cells, the extension to 3D is 

straightforward and only requires adaptation of the state-vector, e.g., using 3D coordinates 

for the calculation of cell COM and velocity.

In the following we present the probabilistic modelling for the assignment of a specific pixel 

to a specific cell. Although each pixel is treated independently, the spatial relations are 

indirectly introduced into the prior and likelihood as will be explained in Sections 2.4 and 

2.5 respectively. Let Θt t
(k)(x) denote the probability of x ∈ Γt

(k) given the current frame and all 

relevant information from previous frames:

Θt t
(k)(x) = P x ∈ Γt

(k) It, Γ0, ξ0, …, Γt − 1, ξt − 1
= P x ∈ Γt

(k) It, Γt − 1, ξt − 1

(2)

Note the subscript t|t implies that the current time step and history are taken into account. 

Using Bayes theorem we get:

P x ∈ Γt
(k) It, Γt − 1, ξt − 1 =

P It x ∈ Γt
(k), Γt − 1, ξt − 1 P x ∈ Γt

(k) Γt − 1, ξt − 1
P It Γt − 1, ξt − 1

. (3)

We denote the prior probability that x ∈ Γt
(k) given only history with the subscript t|t − 1:
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Φt t − 1
(k) (x) = P x ∈ Γt

(k) Γt − 1, ξt − 1 (4)

Here, we assume that Γt−1, that was estimated from the previous frame, is known and is no 

longer considered an unknown random variable. The image likelihood is denoted by:

Lt t(x) = P It x ∈ Γt
(k), Γt − 1, ξt − 1 = P It x ∈ Γt

(k) (5)

Since P (It|Γt−1, ξt−1) is not a function of k or x we refer to it as a normalization constant:

β = 1
P(It Γt − 1, ξt − 1) (6)

Substituting Eqs. (5,4,6) into Eq. (3) we get a compact notation:

Θt t
(k)(x) = βΦt t − 1

(k) (x)Lt t(x) (7)

The final segmentation is then defined by the maximum a posteriori estimator (MAP):

ℒt(x) = arg max
k ∈ 𝒦t

Θt t
(k)(x) = arg max

k ∈ 𝒦t
ϕt t − 1

(k) (x)Lt t(x) (8)

and the partitioning is given by:

Γt
(k) = x ℒt(x) = k (9)

2.3. Time series analysis

In the following discussion the superscript (k) is removed for clarity. Let Qt ∈ ℝF×F, Rt ∈ 
ℝO×F be known covariance matrices and wt, rt ∈ ℝF be random variables drawn from 

𝒩(0, Qt) and 𝒩(0, Rt)respectively. We refer to wt and rt as the process noise and measurement 

noise, respectively. Let A ∈ ℝF×F denote the state transition model. We assume that the state 

vector approximately follows a linear time step evolution:

ξt = Aξt − 1 + wt (10)

In order to predict the state of a cell at time t we adopt the equations of the Kalman Filter 

(Kalman, 1960). The predicted (a priori) state vector estimation and error covariance matrix 

at time t given measurements up to time t − 1 are:
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ξ t t − 1 = Aξ t − 1 t − 1
∑t t − 1 = A∑t − 1 t − 1AT + Qt

(11)

Figure 3.a shows an estimation of the COM component of ξ t t − 1 superimposed on It 

marked by a red cross. The estimated segmentation of a cell C(k) in frame t, i.e., Γt t − 1
(k)  is 

obtained by a translation of the cell segmentation in frame t − 1 : 

t − 1:Γt t − 1
(k) = x (x − vt t − 1

(k) dt) ∈ Γt − 1
(k) , where vt t − 1

(k) dt is the estimated cell displacement. 

The importance of the cell displacement estimation is illustrated in Figure 1. Since the true 

state is hidden, the observed state ζt ∈ RO, where O is the number of observed variables and 

B ∈ RO×F is the observation matrix, is modeled as:

ζt = Bξt + rt (12)

The state of the cell, ζt, is calculated once the segmentation is complete (Section 2.6). This 

includes the measured COM and εt, which also requires the segmentation of the previous 

frame.

Let Gt = Σt|t−1BT (BΣt|t−1BT + Rt)−1 define the Kalman Gain matrix. The a posteriori state 

estimate and error covariance matrix at time t given measurements up to and including time 

t are:

ξ t t = Aξ t t − 1 + Gt(ζt − Bξ t t − 1)
∑t t = (I − GtB)∑t t − 1

(13)

2.4. Prior Probability - Dynamic Shape Model (DSM)

The main concepts of the DSM are illustrated in Figure 4. Let ϕt t − 1
(k) Ω ℝ define the 

signed distance function (SDF) and is constructed as follows:

ϕt t − 1
(k) (x) =

min
x′ ∈ ∂Γt t − 1

(k) dE(x, x′) x ∈ Γt t − 1
(k)

− min
x′ ∈ ∂Γt t − 1

(k) dE(x, x′) x ∉ Γt t − 1
(k) (14)

where dE (·, ·) denotes the Euclidian distance and ∂Γt t − 1 denotes the estimated 

segmentation boundary. Figure 4.a shows two pairs of contours with different shape 

variations. The top cell varies greatly while the bottom does not. Figure 4.b is an overlap of 

the two contours. Figure 4.c, visualizes the SDF relative to the contour at time t. In the spirit 
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of (Riklin-Raviv et al., 2010; Pohl et al., 2006; Bishop, 2006) we define the probability that 

a pixel x belongs to the domain of cell k by the logistic regression function:

Φt t − 1
(k) (x) = P(x ∈ Γt

(k) Γt − 1, ξt − 1) ≜ 1 + exp −
ϕt t − 1

(k) (x)
ε t t − 1

(k)

−1

(15)

where, ε t t − 1
(k)  is the estimation of εt

(k), which determines the slope of the logistic sigmoid. 

The slope should be indicative of the uncertainty of the k-th cell outline; however, as this 

value cannot be calculated, we set εt
(k) to be proportional to the difference between the 

boundaries of the cell in two consecutive frames, (refer to the pink region in Figure 4.b). We 

chose to measure this difference using the Modified Hausdorff Distance (MHD) (Dubuisson 

and Jain, 1994), denoted by dMHD (·). Recall that the dMHD () of two sets 𝒳 and 𝒴 of 

cardinality N𝒳 and N𝒴, respectively, is defined as:

dMHD(𝒳, 𝒴) = 1
2

1
N𝒳

∑
x ∈ 𝒳

miny ∈ 𝒴 ( x − y 2) + 1
N𝒴

∑
y ∈ 𝒴

minx ∈ 𝒳 ( x − y 2) , (16)

where ‖·‖2 denotes the L2 norm. We can equivalently consider the expression in Eq. (15) as 

the zero-mean cumulative distribution function of the logistic distribution, where εt
(k) is 

proportional to the standard deviation. We therefore set εt
(k) as follows:

εt
(k) ≜ dMHD ∂Γt − 1

(k) , ∂Γt
(k) 3

2π (17)

Note, as can be seen in Figure 4.d–e, large temporal shape fluctuations increase dMHD, 

which in turn increases the slope of the logistic regression function and the uncertainty in 

cell boundaries. Further explanation of the choice of εt
(k) is available in Appendix A. Eq. 15 

defines the proposed DSM, which is the prior probability that a pixel belongs to the cell. 

Figure 3.b shows an example of a prior probability, Φt t − 1
(k) , for a given cell.

2.5. Likelihood

We now present the calculation of the Likelihood of the proposed segmentation algorithm 

given the state vector estimation ξ t t − 1 and cell segmentation of the previous frame. The 

modeling of cell (foreground) and background intensity distributions, f FG( ⋅ ) and f BG( ⋅ ), 

respectively, can be done via several different methods. We suggest either using Gaussian 

Mixture Model (GMM) as long as the data fits the GMM assumptions (as proposed by 

Arbelle et al. (2015)) or in more complicated cases, when the underlying PDF is unknown, 

the Kernel Density Estimation (KDE) (Rosenblatt et al., 1956; Parzen, 1962) can be applied.
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The intensity-based probability of being a cell or background (Figure 3.c) is defined using 

the estimated PDFs as follows:

Pt
(BG)(x) =

α f BG(It(x))
α f BG(It(x)) + (1 − α) f FG(It(x))

; Pt
(FG)(x) = 1 − Pt

(BG)(x) (18)

where 0 < α < 1 is a predetermined weight. The robustness of the parameter α is examined 

in Appendix B

We use the FM algorithm (Hassouna and Farag, 2007) to find the shortest path from each 

pixel x to the estimated COM of a cell k s.t. a speed image S t t − 1
(k) :Ω [0, 1] The FM 

distance, dFM x, ct t − 1
(k) S t t − 1

(k) , is the minimal geodesic distance from x to ct t − 1
(k) . In other 

words, the value S t t − 1
(k) (x) is the speed of a pixel x along the shortest path to ct t − 1

(k) . For 

each pixel x in frame t we define its speed S t t − 1
(k) (x) as the product of two terms: 1. The 

intensity-based probability of belonging to the foreground (Eq. (18)). 2. The “traversability” 

(Figure 3.d), which is in inverse proportion to the image edges in frame It, is defined by 

g( ∇xIt ) = 1 +
∇xIt

σgrad

−2
 where ∇xIt = ∂

∂x
It

2
+ ∂

∂x
It

2
 defined and σgrad is the standard 

deviation of all values in |∇xIt|. The speed as:

S t t − 1
(k) = log 1 − Pt

(FG) · g( ∇xIt ) (19)

The absolute value of the spatial gradient, i.e., |∇xIt|, can be interpreted as “speed bumps” 

which make the “FM journey” more difficult across edges. An example of the speed image 

and the final FM distance can be seen in Figure 3.e and Figure 3.f, respectively.

Let dFM x, ct t − 1
(k) S t t − 1

(k) ,  define the FM distance from every pixel to the estimated cell 

center. The likelihood of x given Ck (Figure 3.g) can be defined as:

Lt t(Ck x) = dFM x, ct t − 1
(k) S t t − 1

(k) , + 1
−1

(20)

Note that 0 ≤ Lt|t ≤ 1 and that Lt|t = 1 iff dFM = 0.

2.6. MAP Segmentation and Association

The Posterior Probability for each pixel to belong to a cell is given as the normalized 

product of the Prior (Eq. 15) and the Likelihood (Eq. 20) as defined in Eq. (7) (see Figure 

3.h). The final segmentation of the image is then given as the MAP estimation as defined in 

Eq. (8) (see Figure 3.i). In fact, we see that cell association is inherent to the defined 

segmentation problem, since each cell is segmented using its estimated properties from the 
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previous frame. Given the final segmentation, we calculate the state vector ζt and apply the 

Kalman correction given in Eq. (13) to obtain the estimated state vector of the current frame. 

Note that since the measurements are dependent on the segmentation, the method is limited 

to a forward pass on the sequence.

2.7. New Track Detection

We look for new tracks once the MAP estimation is completed, and the image pixels are 

labelled. New cell tracks can be initiated either as a result of mitosis or entrance to the 

frame’s field of view We refer to a mitotic event when two or more connected components 

are associated with the same cell label. In which case the track of the mother cell is 

terminated and a new track is initiated for each connected component. In addition we look 

for pixels that were labelled as background but satisfy:

Γt
(New) = x (x ∈ Γt

(0))Λ(Pt
(FG)(x) > 0.5) (21)

A new cell is detected for each connected component in the region extracted with size within 

the range [Tmin−cell−size, Tmax−cell−size].

3. Experimental Results

3.1. Experimental Setup

Initialization—The first two frames of each data set were manually annotated using the 

initialization tool described in Appendix C, which is made freely available. We, however, 

note that any other utility may be used to create the initial segmentations, e.g., ImageJ 

(Schindelin et al., 2015) or Ilastik (Sommer et al., 2011). Table 1 shows the percentage of 

manually annotated cells with respect to each of the full length sequences. Note that the 

method requires annotation of the first two frames regardless of sequence length, number of 

cells, type of cells, or number of mitotic events. This amounts to a very low percentage of 

the total number of cells within the sequence, especially in long and dense data sets such as 

the RPE set, where the manual annotations amount to 0.31% of the total number of detected. 

Furthermore, the initial segmentation allows us to accurately estimate the very few 

parameters used in the proposed framework. These include the minimum and maximum cell 

sizes, Tmin−cell−size and Tmax−cell−size, respectively; the initial parameters state vector for 

each cell, including the location, velocity, and shape uncertainty variables; and the initial 

foreground and background intensity distributions, f FG and f BG, respectively. These manual 

annotations eliminate the need for parameter tuning, which requires technical expertise. We 

also note that the parameters extracted from the initialization are valid for an entire 

sequence, regardless of its length and therefore can be useful to other sequences acquired 

under the same conditions. Appendix D shows an example of such a scenario.

Parameters—The following parameters were defined for all data sets: The covariance 

matrices Qt, Rt (see Section 2.3) are set as the identity matrix. The transition matrices A and 

B (see section 2.3) are defined as follows: Ai,i = 1, for i = 1 … 5; A1,3 = A2,4 = 1. Bi,i = 1 for 

i ∈ [1, 2, 5] and otherwise 0. Likelihood: The parameter α (defined in Eq. (18)), is set to 0.5.
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Pseudocode—For all experiments we followed Algorithm 1.

3.2. Evaluation Methods

We evaluated the method using the scheme proposed in the online version of the Cell 

Tracking Challenge. Specifically, SEG for segmentation, as defined in Maška et al. (2014); 

Ulman et al. (2017), and TRA for tracking. TRA uses the Acyclic Oriented Graph Matching 

(AOGM), as defined in Matula et al. (2015), which assesses how difficult it is to transform a 

computed graph into a given ground-truth graph. The TRA measure is defined as follows:

TRA = 1 − min AOGM, AOGM0 /AOGM0

where AOGM0 is the AOGM value required for creating the reference graph from scratch 

(i.e., it is the AOGM value for empty tracking results). OP is defined as the mean of TRA 

and SEG. We submitted our results on three of the Cell Tracking Challenge competition 

sequences and received the TRA, SEG and OP scores from the challenge organizers. We 

also evaluated several additional data sets using the same measures. Furthermore, we 

evaluated the tracking results using two measures suggested by Kan et al. (2011), Ptrack, 

representing the percentage of correctly detected tracks, and Plinks, representing the 

percentage of correct frame to frame associations.

Algorithm 1

Pseudocode.

Require: Initial Segmentation of first two frames,

1: for k ≤ Kt=1 do

2:
 Calculate the observed state vector for cell k, ζt = 1

(k)

3: end for

4: for 2 ≤ t ≤ T do

5:  for k ≤ K do

6:
   Estimate the Kalman state vector, ξt t − 1

(k)  given ξt − 1 t − 1
(k)  as defined in Eq. (11)

7:
   Calculate prior pixel probability (DSM), Φt t − 1(x Ck) given ξt

(k) as defined in Eq. (15)

8:
   Calculate the likelihood, Lt(Ck|x) given the frame It and ξt

(k) as defined in Eq. (20)

9:    Calculate posterior probabilities Pt (Ck|x) as defined in Eq. (7)

10:
   Apply MAP estimator to get cell segmentation, Γt

(k) as defined in Eq. (8)

11:
   Detect new cells, Γt

(New) as defined in Eq. (21)

12:
   Calculate ζt

(k) given Γt
(k)
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13:
   Calculate the corrected state estimation ξt t using Eq. (13)

14:  end for

15: end for

Table 5 shows the results on our data for all measures.

3.3. Experiments

We examined eight different live cell microscopy sequences: three from the Cell Tracking 

Challenge, two from our own datasets, two datasets of our colleagues, and an additional 

publicly available dataset (Rapoport et al., 2011). All experiments were conducted on an 

Intel i7 3.40GHz CPU with 16GB RAM. Processing time of five sequences is detailed in 

Table 2. Run-time varies between data sets and is dependent on the cells’ size, the number of 

cells per frame, and sequence length.

3.3.1. Cell Tracking Challenge data sets—We tested our method on three of the Cell 

Tracking Challenge data sets, namely Fluo-C2DL-MSC, Fluo-N2DH-GOWT1, and Fluo-

N2DH-SIM+. Reported scores were calculated by the challenge organizers and published on 

the website under the label BGU-IL: www.celltrackingchallenge.net/latest-results.html. We 

note that, in contrast to all other data sets, the Fluo-C2DL-MSC cells exhibit highly irregular 

shapes as can be seen in Figure 5. In addition, the cells’ motion is relatively fast. 

Nevertheless, as shown by the results in Table 3, our tracking and segmentation method 

obtained the best scores for all measures (TRA, SEG, OP) by a significant margin. These 

results highlight one of the advantages of the method, which does not assume convexity or 

any other shape model. On the other hand, when cell shapes are elliptical, such as the Fluo-

N2DH-GOWT1 and Fluo-N2DH-SIM+, our method ranks in the middle.

3.3.2. Additional data sets—We tested the algorithm on five additional, high-throughput 

data sets, consisting of one sequence each, as listed in Table 4: (1) H1299 cells, expressing 

eYFP-DDX5 in the background of an mCherry tagged nuclear protein, rate: 3fph, 72 frames 

(Cohen et al., 2008) (Alon Lab, Weizmann Institute of Science). (2) Two data sets RPE cells, 

expressing eYFP-DDX5 in the background of a p21-mVenus tagged nuclear protein, rate: 

4fph, 400 frames (Lahav Lab, Harvard Medical School). One of the RPE data sets along 

with its manual annotations is available upon request. MCF-10A cells, expressing RFP-

Geminin and NLS-mCerulean, rate: 3fph, 142 frames (Brugge Lab, Harvard Medical 

School). See also (Rapoport et al., 2011) for the PSC data set. These data sets exhibit 

difficult challenges such as unclear boundaries (H1299), very long sequence with 

considerable motion (RPE), numerous mitotic events (MCF-10A) and dense cell population 

(PSC). Figure 6 shows examples from these experiments. Further, qualitative evaluations are 

shown in Figure 7. Figure 8 shows a visualization of the tracking results for the MCF-10A 

and H1299 data sets. For quantitative evaluation of three of these data sets, refer to Table 5, 

which shows the OP, SEG, and TRA measures, as other tracking measures. Results can be 

better evaluated when considering the length of each sequence as well as the tracks’ and 

cells’ sizes. Refer to Table 6 for this information. We note that although the Plinks measure 
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seems very high (greater than 98%), the Ptracks drops drastically. Note that the RPE data set 

is especially long, 400 frames, and thus prone to errors that greatly affect Ptracks, produced 

an accuracy of 69% and still kept a relatively high SEG measure of 0.846. Refer to Table 7 

for the full visualization videos of all data sets.

4. Summary and Conclusions

Cell segmentation and tracking are intimately related. In this work we demonstrated the 

strength of jointly solving these problems, where each supports the other, and together yield 

more accurate results. This was accomplished by our novel probabilistic formulation of cell-

to-cell association and segmentation. By expanding the Kalman state vector to include the 

shape uncertainty and intensity levels, we were able to accurately estimate the dynamics of 

cells’ shape as well as their location and motion. The proposed contribution, termed the 

dynamic shape model (DSM), also allows accommodating versatile cell shapes, and serves 

as a prior in our model. We also introduced a unique view of the FM distance and use it to 

construct the likelihood of the pixel segmentation. The prior, from the DSM, and the 

likelihood, from the FM, constructed the posterior probabilities. By applying the commonly 

used MAP estimator, we obtained the final segmentation and association of the cells at each 

frame.

Our method was tested on several different data sets. These include three Cell Tracking 

Challenge (Maška et al., 2014) data sets and five additional data sets acquired in a variety of 

ways and in a variety of laboratory settings. The results obtained demonstrate the ability of 

the proposed method to handle long sequences (hundreds of frames) in an elegant and robust 

manner. Qualitative results (see link to videos in Table 7) and quantitative comparisons 

demonstrate that our method outperforms the state of the art, where the cells follow no 

apparent shape assumption (Table 3). It should be noted that we tested our method using a 

very strict full track measure in addition to the commonly used evaluation metrics. This 

measure, which cannot tolerate even a single error within a cell’s track, is more suitable to 

cell lineage construction. Finally, recognizing the substantial challenges in the analysis of 

high-throughput microscopy imaging, we believe that the key concepts introduced here have 

great potential for a wide variety of biological experiments.

Future work will aim to complete the missing link for cell lineage reconstruction, and focus 

on mitosis detection in the spirit of Gilad et al. (2015).

A compiled version of the method and a utility for the annotation of the first two frames can 

be downloaded from: https://github.com/arbellea/CellTracking 

AndSegmentationCompiled.git and https://github.com/arbellea/ManualAnnotationTool.
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Appendices

Appendix A. Shape Uncertainty

The modified Hausdorff distance, dMHD, calculates a mean measure of distances between 

the two contours from frames t and t − 1. The fluctuation around the midline between the 

contours is thus 1
2dMDH. We assume that the fluctuations in each direction, inside and 

outside of the contour, in frame t + 1 will also be in the magnitude of 1
2dMHD. We set ε such 

that at pixels, where the signed distance from the contour is ϕt t − 1
(k) (x) = ± 1

2dMHD the value 

of the prior would be 

P x ∈ Γt
(k) Γt − 1ξt − 1 ≜ 1 + exp ∓

1
2dMH
3

2π dMH

−1

= 1 + exp ∓ π
3

−1
= 0.5 ± 0.36. This allows 

the prior to accommodate reasonable fluctuations with respect to dMH. Note that the 

cumulative distribution function of a logistic distribution with zero mean and standard 

deviation σ is defined as: Plog(x) = 1 + exp πx
3σ

−1
. Thus, defining εt

(k) ≜ 3
2π dMH is 

equivalent to setting σ =
dMH

2 .

Appendix B. Parameter Robustness

In order to evaluate the robustness of parameter α from Section 2.5 we examined the TRA 

and SEG measures of the Cell Tracking Challenge (Maška et al., 2014) training sequences. 

We changed the parameter in the range (0, 1) and ran the complete sequence. Figure B.9 

shows a wide range of equally good selections of parameter α (defined in Sec.2.5 which 

denotes the weight of the foreground vs. background) demonstrating the method’s 

robustness to the choice of parameter.

Figure B.9. 
SEG and TRA measures for the Cell Tracking Challenge data sets as a function of α. The 

wide plateau shows the robustness of the method to the selection of α.
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Appendix C. Initialization Tool

As our method requires the manual annotation of the first two frames, we present a utility 

for easy annotation. The utility can be freely downloaded from https://github.com/arbellea/

ManualAnnotationTool. The user can easily annotate two frames using the mouse and 

keyboard shortcuts to zoom in and out of the frame, move the frame to all sides, clear and 

correct annotations. The utility also supports the option to save intermediate results that can 

be later loaded for correction or continued annotation. Instruction for use and all the 

keyboard shortcuts can be found in the README.txt file along with the utility.

Appendix D. Sequence To Sequence Initialization

Our method currently requires the manual annotation of the first two frames of each 

sequence. The initial segmentation allows us to accurately estimate the very few parameters 

used in the proposed framework. However, we believe that this requirement can be relaxed 

when an initialization of a similar sequence, under similar conditions, is available. We 

conducted the following experiment using the Cell Tracking Challenge Fluo-N2DH-SIM+ 

data set consisting of both train (with available ground truth) and test sequences. We first ran 

the method on the training sequence and evaluated the SEG and TRA results as a baseline, 

0.8431 and 0.9642 respectively. We then ran the method on the training sequence again, with 

initialization from the test sequence and compared the results. The results show a minor 

degradation with SEG and TRA values 0.8347 (−0.0084) and 0.9605 (−0.0037) respectively. 

The minor difference in the results shows the method’s robustness to initialization 

parameters and may indicate that a similar process will reduce the need for manual 

annotations for similar sequences.
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Highlights

• We propose an unsupervised, automatic tracking and segmentation framework 

for high-throughput microscopy image sequences.

• Cell segmentation and tracking are tied together via Bayesian inference of 

dynamic models.

• The Kalman inference problem is exploited to estimate the time-wise cell 

shape uncertainty in addition to cell trajectory. The inferred cell properties are 

integrated with the observed image, using a fast marching algorithm, to obtain 

the image likelihood for cell segmentation and association.

• We present highly accurate results, surpassing the state of the art, for a variety 

of microscopy data sets with high dynamics, including long sequences 

(hundreds of frames).
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Figure 1. Frame to frame association and segmentation
An example of two consecutive frames at times t and t+1. The segmentation of the cell at 

time t (red) may not match the true segmentation at time t+1 due to the cell’s dynamics. 

Translation of the contour, from frame t, by using cell motion estimation (magenta) allows 

better alignment. The final cell segmentation (green) can be calculated based both on the 

estimated contour and frame t+1.
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Figure 2. Graphical Model
associated with the proposed algorithm. Shaded circles represent the observed variables 

It−1,It and It+1. The non-shaded circles represent the unknown variables: cell segmentations 

Γt and cell state vectors ξt. The dashed line connecting Γt−1 and Γt (as well as Γt−1 and Γt+1) 

indicates that Γt−1 (Γt), which is estimated in the previous frame, is no longer considered an 

unknown random variable
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Figure 3. Segmentation flow of a specific cell
(a) Original image. The estimated COM of the specific cell k is marked by a red cross. (b) 

DSM (Spatial prior probability). (c) Intensity probability of the foreground Pt
(FG). (d) 

Traversability image g (∇xIt). (e) Speed image S t t − 1
(k) , the product of (c–d). (f) FM distance. 

(g) Likelihood. (h) Posterior. (i) MAP-based labeled segmentation.
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Figure 4. DSM construction from two consecutive instances of a cell
Each row refers to a different cell. (a) Raw data depicting two instances of the same cell in 

frames t − 1 and t. (b) The associated contours of the two instances (red and light blue) 

superimposed. The area of mismatch (pink) corresponds to ε. Note that ε is larger (upper 

row) in the presence of significant shape fluctuations. (c) The signed distance function 

(SDF) associated with the cell instance in frame t. The SDF’s zero level is defined by the 

cell’s contour (light blue). (d) A logistic regression function 1/ 1 + exp − SDF
ε . (e) The 

DSM, which represents the cell’s probability map. The smoother function of the cell shape 

in the upper row reflects high uncertainty.
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Figure 5. Visual Results
Selected frames presenting full views (odd rows) and zoom-in (even rows) of the results 

obtained for three of Cell Tracking Challenge data sets: Fluo-C2DL-MSC (rows 1-2), Fluo-

N2DH-SIM+ (rows 3-4), and Fluo-N2DH-GOWT (rows 5-6). For links to full videos refer 

to Table 7.
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Figure 6. Visual Results
Selected frames presenting full views (odd rows) and zoom-in (even rows) of the results 

obtained for the MCF-10A data set (rows 1-2, courtesy of Brugge Lab, Harvard Medical 

School); H1299 data set (rows 3-4, courtesy of Alon Lab, Weizmann Institute of Science), 

and the RPE data set (rows 5-6, Lahav Lab, Harvard Medical School), respectively. Cells’ 

instances initiating new tracks (right after mitosis) are outlined in magenta. For links to full 

videos refer to Table 7.
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Figure 7. Visual Results
Selected frames presenting full views (odd rows) and zoom in (even rows) of the results 

obtained for the RPE data set (rows 1-2, Lahav Lab, Harvard Medical School) and the PSC 

data set (Rapoport et al., 2011) (rows 3-4). Cells’ instances initiating new tracks (right after 

mitosis) are outlined in magenta. For links to full videos refer to Table 7
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Figure 8. 
XYT plots of cell tracks; the horizontal axes represent the image plane, the vertical axis 

represents time. Each colored line represents a cell track. Refer to 3D tracks: https://

youtu.be/YS5COOY3jeA for live 3D demonstration for all the tracking results presented at 

Figures 6–7.
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Table 1
Manual Annotation

The percentage of manually annotated cells (within the first two frames) with respect to the total number of 

cells detected by the proposed method in the entire sequence.

Data #Man. Annotated #Total Detected Percentage #Frames

Fluo-C2DL-MSC 24 767 3.13% 48

Fluo-N2DH-SIM+ 60 5167 1.16% 110

Fluo-N2DH-GOWT1 64 2987 2.14% 92

H1299 84 3623 2.31% 72

MCF-10A 84 8009 1.05% 141

RPE 56 180881 0.31% 400

Med Image Anal. Author manuscript; available in PMC 2019 July 01.
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Table 2
Processing Time

Run time of most data sets that were tested. Run time varies depending on the length of the sequence, the size 

of the cells, and the number of cells in each frame. All evaluations were conducted on an Intel i7 3.40GHz 

CPU with 16GB RAM.

Data #Frames Total Time [min] Avg. Time per frame [sec]

Fluo-C2DL-MSC 48 53 76.5

Fluo-N2DH-SIM+ 110 38.5 25.6

Fluo-N2DH-GOWT1 92 58 31.8

H1299 72 8 6.6

MCF-10A 141 36 15.3

RPE 400 2264.5 340
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Table 4
Additional data sets

Examples of the results for each data set can be seen in Figures 6–7.

Data Owner Cell Type #of Frames Frame Dimensions #Cells First-Last Frames

Brugge Lab Harvard Medical School MCF-10A 142 501×400 42-80

Alon Lab Weizmann Institute of Science H1299 72 640×511 41-69

Lahav Lab Harvard Medical School RPE 564 1024×1024 67-92

Lahav Lab Harvard Medical School RPE 433 1024×1023 31-49

Rapoport et al. PSC 209 1376×1038 283-2344
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Table 7

Results for all available data sets. Each data set points to two links, the first is a link to the video with the 

contours and labels of the cells marked throughout the sequence. The second link is a visualization of the 

traces of the cells in 3D space (see Figure 8), where the z-axis indicates the frame number. Data Owners: 1. 

Cell Tracking Challenge Maška et al. (2014); 2. Brugge Lab, Harvard Medical School; 3. Alon Lab, 

Weizmann Institute of Science; 4. Lahav Lab, Harvard Medical School; 5. Rapoport et al. (Rapoport et al., 

2011)

Cell Type Results Link Results Link - Traces

Fluo-C2DL-MSC1 https://youtu.be/u30jSoZj62k https://youtu.be/-UjynjlYB88

Fluo-N2DH-SIM+1 https://youtu.be/i3uPOxDQ8KA https://youtu.be/DJrHMviF4uM

Fluo-N2DH-GOWT11 https://youtu.be/3KzPWOR2kSg https://youtu.be/xjpU_SS4zNY

MCF-10A2 https://www.youtube.com/watch?v=hWXhNe2G7EY https://www.youtube.com/watch?v=2cRTHSRSfYc

H12993 https://www.youtube.com/watch?v=mdB77zKbIHU https://www.youtube.com/watch?v=KTfw365zgf8

RPE4 https://www.youtube.com/watch?v=mlYAYIcl1yc https://www.youtube.com/watch?v=W2540XJ9WCc

RPE4 https://www.youtube.com/watch?v=CBYSNkeIHG8 https://www.youtube.com/watch?v=7mk5AzX3V5Q

PSC5 https://www.youtube.be/K5D2YjR58ic https://www.youtube.com/watch?v=3R8RBjOLviQ
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