
Monitoring Tool Usage in Surgery Videos using Boosted Convolutional and Recurrent
Neural Networks

Hassan Al Hajja, Mathieu Lamardb,a, Pierre-Henri Conzec,a, Béatrice Cochenerb,a,d, Gwenolé Quelleca,∗

aInserm, UMR 1101, Brest, F-29200 France
bUniv Bretagne Occidentale, Brest, F-29200 France

cInstitut Mines-Télécom Atlantique, Brest, F-29200 France
dService d’Ophtalmologie, CHRU Brest, Brest, F-29200 France

Abstract

This paper investigates the automatic monitoring of tool usage during a surgery, with potential applications in report generation,
surgical training and real-time decision support. Two surgeries are considered: cataract surgery, the most common surgical proce-
dure, and cholecystectomy, one of the most common digestive surgeries. Tool usage is monitored in videos recorded either through
a microscope (cataract surgery) or an endoscope (cholecystectomy). Following state-of-the-art video analysis solutions, each frame
of the video is analyzed by convolutional neural networks (CNNs) whose outputs are fed to recurrent neural networks (RNNs)
in order to take temporal relationships between events into account. Novelty lies in the way those CNNs and RNNs are trained.
Computational complexity prevents the end-to-end training of “CNN+RNN” systems. Therefore, CNNs are usually trained first,
independently from the RNNs. This approach is clearly suboptimal for surgical tool analysis: many tools are very similar to one
another, but they can generally be differentiated based on past events. CNNs should be trained to extract the most useful visual
features in combination with the temporal context. A novel boosting strategy is proposed to achieve this goal: the CNN and RNN
parts of the system are simultaneously enriched by progressively adding weak classifiers (either CNNs or RNNs) trained to im-
prove the overall classification accuracy. Experiments were performed in a dataset of 50 cataract surgery videos, where the usage
of 21 surgical tools was manually annotated, and a dataset of 80 cholecystectomy videos, where the usage of 7 tools was manually
annotated. Very good classification performance are achieved in both datasets: tool usage could be labeled with an average area
under the ROC curve of Az = 0.9961 and Az = 0.9939, respectively, in offline mode (using past, present and future information),
and Az = 0.9957 and Az = 0.9936, respectively, in online mode (using past and present information only).

Keywords: cataract and cholecystectomy surgeries, tool usage monitoring, video analysis, Convolutional and Recurrent Neural
Networks, boosting

1. Introduction

With the emergence of imaging devices in the operating
room, the automated analysis of videos recorded during the
surgery is becoming a hot research topic. In particular, videos
can be used to monitor the surgery, for instance by recognizing
which surgical tools are being used at every moment. An im-
mediate application of surgery monitoring is report generation.
If automatic reports are available for many surgeries, then the
automatic analysis of these reports can help optimize the surgi-
cal workflow or evaluate surgical skills. Additionally, if we are
able to generate such a report in real-time, during a surgery, then
we could compare it with previous reports to generate warn-
ings, if we recognize patterns often leading to complications,
or recommendations, to help younger surgeons emulate more
experienced colleagues based on their surgical reports (Quellec

∗LaTIM - IBRBS - CHRU Morvan - 12, Av. Foch
29609 Brest CEDEX - FRANCE
Tel.: +33 2 98 01 81 29 / Fax: +33 2 98 01 81 24

Email address: gwenole.quellec@inserm.fr (Gwenolé Quellec)

et al., 2015). With adequate image analysis techniques, tool us-
age could be monitored reliably in tool-interaction videos, such
as endoscopic videos (in laparoscopic or retinal surgeries) or
microscopic videos (in anterior eye segment surgeries). In the
simplest scenario, we can consider that a tool is being used if
it is visible in these videos. In a more advanced scenario, we
can consider that it is in use if it is in contact with the tissue
(as opposed to approaching the tissue, waiting to be used, etc.).
Therefore, several tool detection techniques for tool-interaction
videos have been proposed in recent years (Bouget et al., 2017).
To compare these techniques, two tool detection challenges
were organized recently. A first challenge, organized at the
M2CAI 2016 workshop,1 relied on endoscopic videos of chole-
cystectomy operations performed laparoscopically. We orga-
nized a second challenge for cataract surgery, the most common
surgical procedure worldwide (Trikha et al., 2013).2 It relied on
videos recorded through a surgical microscope. Following the

1http://camma.u-strasbg.fr/m2cai2016/index.php/

tool-presence-detection-challenge-results/
2https://cataracts.grand-challenge.org/

Preprint submitted to Medical Image Analysis May 8, 2018

ar
X

iv
:1

71
0.

01
55

9v
2

 [
cs

.C
V

]
 6

 M
ay

 2
01

8

http://camma.u-strasbg.fr/m2cai2016/index.php/tool-presence-detection-challenge-results/
http://camma.u-strasbg.fr/m2cai2016/index.php/tool-presence-detection-challenge-results/
https://cataracts.grand-challenge.org/

trend in medical image and video analysis (Shen et al., 2017),
the best solutions of both challenges all relied on convolutional
neural networks (CNNs) (Raju et al., 2016; Sahu et al., 2016;
Twinanda et al., 2017; Zia et al., 2016; Roychowdhury et al.,
2017; Hu and Heng, 2017; Maršalkaitė et al., 2017).

Compared to other computer vision tasks, surgical tool us-
age annotation has several specificities. First, as opposed to
many computer vision tasks, including the popular ImageNet
visual recognition challenges,3 the problem at hand is not multi-
class classification (one correct label per image among multiple
classes), but rather multilabel classification (multiple correct la-
bels per image): the number of tools being used in each im-
age varies (from zero to three in cataract surgery for instance).
Therefore, multilabel CNNs should be used. Second, taking
the temporal sequencing into account is important: knowing
which tools have already been used since the beginning of the
surgery greatly helps recognize which tools are currently being
used. Therefore, multilabel recurrent neural networks (RNNs)
(Hochreiter and Schmidhuber, 1997) may also be used advan-
tageously. In fact, recent machine learning competitions clearly
show that ensembles of CNNs outperform single CNNs (Rus-
sakovsky et al., 2015): multiple CNNs with different archi-
tectures are generally trained independently and their outputs
are combined afterward using standard machine learning algo-
rithms (decision trees, random forests, multilayer perceptrons,
etc.). However, this simple strategy is suboptimal since diffi-
cult samples may be misclassified by all CNNs. And there are
many difficult samples to classify in surgery videos: in partic-
ular, many tools resemble one other (e.g. two types of cannu-
lae in cataract surgery). Building the ensemble of CNNs us-
ing a boosting meta-algorithm (Freund and Schapire, 1997) can
theoretically design CNNs focusing specifically on challeng-
ing samples. Boosting an ensemble of RNNs would also make
sense as there are difficult samples along the time dimension
as well: in particular, some tools or tool usage sequences are
very rare and temporal sequencing algorithms tend to misclas-
sify those rare cases. Therefore, we propose to jointly boost an
ensemble of CNNs and an ensemble of RNNs for automatic tool
usage annotation in surgery videos. In the same way as CNN
boosting (or RNN boosting) allows various CNNs (or RNNs) to
be complementary, this general boosting solution allows CNNs
to be complementary with RNNs. In that sense, it approximates
the end-to-end training of a “CNN+RNN” network, which is
theoretically ideal but not computationally tractable.

The remainder of this paper is organized as follows. Section
2 reviews the state of the art of video analysis, and surgery video
analysis in particular. Sections 3 and 4 describe the proposed
solution. Section 5 presents the video datasets and section 6
reports the experiments performed on that dataset. We end with
a discussion and conclusions in section 7.

3http://www.image-net.org/challenges/LSVRC/2017/index.

php

2. State of the Art

2.1. Deep Learning for Video Analysis

The automatic analysis of dynamic scenes through deep
learning has become a very hot research topic (Simonyan and
Zisserman, 2014; Wang et al., 2017; Donahue et al., 2017).
Different strategies have been proposed for this task. A first
strategy is to regard videos or video portions as 3-D images
and therefore analyze them with 3-D CNNs (Ji et al., 2013),
which is computationally expansive. A second strategy is to
analyze 2-D images as well as the optical flow between con-
secutive images (Simonyan and Zisserman, 2014), with the dis-
advantage of only modeling short-term relationships between
images. A third strategy is to combine a CNN, analyzing 2-D
images, with a RNN analyzing the temporal sequencing (Don-
ahue et al., 2017). The main advantage of this “CNN+RNN”
approach, which is now the leading video analysis solution, is
that long-term relationships between events can be taken into
account efficiently. One application of “CNN+RNN” models,
which is particularly relevant for our study, is video labeling:
the goal is to assign one class label to each frame inside a video
(Singh et al., 2016; Khorrami et al., 2016). Medical applica-
tions of this research, ranging from gait analysis (Feng et al.,
2016) to surgery monitoring (Bodenstedt et al., 2017; Twinanda
et al., 2016), are starting to emerge.

2.2. Temporal Analysis of Surgery Videos

In the context of surgical workflow analysis, solutions have
been proposed to recognize surgical phases in surgery videos
(Lalys and Jannin, 2014; Charrière et al., 2017). In Primus
et al. (2018), phases are recognized using one CNN process-
ing the visual content of one frame plus the relative timestamp
of that frame. However, most solutions rely on statistical mod-
els, such as Hidden Markov Models (HMMs) (Cadène et al.,
2016), Hidden semi-Markov Models (Dergachyova et al., 2016;
Tran et al., 2017), Hierarchical HMMs (Twinanda et al., 2017),
Linear Dynamical Systems (Zappella et al., 2013; Tran et al.,
2017) or Conditional Random Fields (Tao et al., 2013; Quel-
lec et al., 2014; Lea et al., 2016a). Recently, solutions based
on RNNs have also been proposed (Jin et al., 2016; Bodenst-
edt et al., 2017; Twinanda et al., 2016). Following the state-
of-the-art video analysis strategy, these RNNs process instant
visual features extracted by a CNN from images. In particu-
lar, Jin et al. (2016) applied a “CNN+RNN” network to a small
sliding window of three images. Bodenstedt et al. (2017) ap-
plied a “CNN+RNN” network to larger sliding windows and
copy the internal state of the network between consecutive win-
dow locations. As for Twinanda et al. (2016), they applied a
“CNN+RNN” network to full videos. Interestingly, the CNN
proposed by Twinanda et al. (2016), namely EndoNet, detects
tools as an intermediate step. A challenge on surgical workflow
analysis was also organized at M2CAI 2016:4 two of the top
three solutions relied on RNNs (Jin et al., 2016; Twinanda et al.,

4http://camma.u-strasbg.fr/m2cai2016/index.php/

workflow-challenge-results/

2

http://www.image-net.org/challenges/LSVRC/2017/index.php
http://www.image-net.org/challenges/LSVRC/2017/index.php
http://camma.u-strasbg.fr/m2cai2016/index.php/workflow-challenge-results/
http://camma.u-strasbg.fr/m2cai2016/index.php/workflow-challenge-results/

2016). It should be noted that successful works on the analy-
sis of kinematics surgery data have also been reported, using a
RNN (Dipietro et al., 2016) or a CNN along the temporal di-
mension (Lea et al., 2016b). In all these works, statistical mod-
els or RNNs were used to label surgical activities and phases.
Given the strong correlation between surgical activities and tool
usage, they can be expected to improve tool recognition as well.

2.3. Deep Learning for Surgical Tool Detection

As evidenced by the M2CAI 2016 and CATARACTS 2017
challenges, the state-of-the-art algorithms for tool detection
in surgery videos are CNNs. The best solutions of these
challenges rely on a transfer learning strategy: well-known
CNNs trained to classify still images in the ImageNet dataset
were fine-tuned on images extracted from surgery videos. For
M2CAI 2016, Sahu et al. (2016) and Twinanda et al. (2017)
fine-tuned AlexNet (Krizhevsky et al., 2012), Raju et al. (2016)
fine-tuned GoogleNet (Szegedy et al., 2015a) and VGG-16
(Simonyan and Zisserman, 2015), and Zia et al. (2016) fine-
tuned AlexNet, VGG-16 and Inception-v3 (Szegedy et al.,
2015b). For CATARACTS, Roychowdhury et al. (2017) fine-
tuned Inception-v4 (Szegedy et al., 2017), ResNet-50 (He et al.,
2016a) and two NASNet-A instances (Zoph et al., 2017), Hu
and Heng (2017) fine-tuned ResNet-101 and DenseNet-169
(Huang et al., 2017), and Maršalkaitė et al. (2017) fine-tuned
four ResNet-50 instances. Training a CNN proved challenging
due to highly frequent tool co-occurrences: a solution based on
label-set sampling has been proposed by Sahu et al. (2017) to
reduce this bias. Note that temporal information is not exploited
in these solutions, with a few exceptions presented hereafter
(Sahu et al., 2017; Maršalkaitė et al., 2017; Al Hajj et al., 2017;
Mishra et al., 2017; Roychowdhury et al., 2017). In Sahu et al.
(2017) and Maršalkaitė et al. (2017), a linear filter is used to
smooth CNN predictions from consecutive frames. In Al Hajj
et al. (2017), a CNN processes short sequences of consecutive
images, using the optical flow to register and combine local fea-
tures from consecutive images. In Mishra et al. (2017), one
RNN processes the outputs of a frame-level CNN inside short
sequences of consecutive frames. Note that long-term relation-
ships between images are not exploited neither in these four so-
lutions: the goal is to combine slightly different views on a tool,
some of which being affected by motion blur or occlusion. In
Roychowdhury et al. (2017), on the other hand, long-term rela-
tionships between images are exploited through a Markov Ran-
dom Field (MRF) modeling long sequences of approximately
20,000 frames. The drawback is that online video analysis is
not possible.

2.4. Proposed Solution

In this paper, we propose to design “CNN+RNN” networks,
the state-of-the-art video analysis framework, for the task of au-
tomatic tool usage annotation. Due to the specific challenges of
this task, namely the similarity between some tools and the rar-
ity of some tool usages, we propose to apply the boosting prin-
ciple to both the CNN part and the RNN part of the network, in
a novel and unified manner. Besides addressing the previously

RNN

𝑉1

𝒒1

CNN

RNN

𝑉2

𝒒2

CNN

RNN

𝑉3

𝒒3

CNN

RNN

𝑉4

𝒒4

CNN

(a) end-to-end trainable CNN+RNN architecture

RNN

𝒑1

𝒒1

RNN

𝒑2

𝒒2

RNN

𝒑3

𝒒3

RNN

𝒑4

𝒒4

𝑉𝑡

CNN

𝒑𝑡

(b) two-step trainable CNN+RNN architecture

𝒑1 𝒑2 𝒑3 𝒑4

Figure 1: Training strategies for “CNN+RNN” networks. Each green cell rep-
resent one RNN cell (or several RNN cells stacked on top of each other in a
multi-layer RNN). Each orange cell represents one CNN; pt and qt are short
notations for p(Vt) and q(Vt), respectively. Two “CNN+RNN” training strate-
gies are illustrated in Fig. (a) and (b). They reveal that the first strategy (a) is
not tractable: backpropagating errors at time index t involves t backpropaga-
tions through the CNN, as illustrated in red for t = 4.

mentioned difficult cases, the proposed framework has multiple
advantages: 1) it can be used to select the network architectures
automatically, an open problem in deep learning, and 2) it can
improve the complementarity of CNNs and RNNs, an unsolved
problem in “CNN+RNN” models for which end-to-end learn-
ing is not tractable (see Fig. 1). Section 3 briefly describes the
networks considered in this paper and the related challenges.
Section 4 describes the boosting algorithm proposed to address
those challenges. The proposed solution has several novelties.
First, the use of CNN boosting and RNN boosting for medical
images or videos is novel. Second, the data-driven design of a
CNN or CNN ensemble to be used as input for an RNN or RNN
ensemble (through boosting — see section 4.5) has never been
studied before.

3. “CNN+RNN” Networks

3.1. Notations
Let Θ denote a set of surgical tools whose usage should be

monitored in videos. Let D denote a collection of training
videos and let Vt denote the t-th frame in video V ∈ D. Let
δ(Vt, θ) ∈ {−1, 1} denote the binary label assigned to frame Vt

for tool θ ∈ Θ: this label indicates whether or not tool θ is being
used in frame Vt. We are addressing a multilabel classification
problem, so 0 ≤

∑
θ δ(Vt, θ) ≤ |Θ|. In contrast,

∑
θ δ(Vt, θ) = 1

in a multiclass classification problem.
Neural networks considered in this paper consist of one or

several CNNs working in parallel: this set of CNNs is referred
to as the “CNN block”. Let p(Vt) = {p(Vt, θ) ∈ [0; 1], θ ∈ Θ}

3

denote the instant predictions computed by the CNN block
for frame Vt. Some of the neural networks considered in this
paper also contain one or several RNNs working in parallel:
this set of RNNs is referred to as the “RNN block”. Let
q(Vt) = {q(Vt, θ) ∈ [0; 1], θ ∈ Θ} denote the context-aware pre-
dictions computed by the RNN block for frame Vt.

3.2. RNNs Processing CNN Predictions
A recurrent neural network (RNN) is a neural network that

takes a sequence of observations at the input and produces a se-
quence of predictions at the output (Hochreiter and Schmidhu-
ber, 1997). In this paper, the input sequence is {p(Vt)|t = 1..|V |},
i.e. the predictions of the CNN block for each frame in a video.
The output sequence is {q(Vt)|t = 1..|V |}. The network is struc-
tured in such a way that the prediction vector q(Vt) depends
on feature vector p(Vt), but also on all previous feature vectors
q(Vu), u < t. This behavior is achieved by 1) connecting each
input element p(Vt) to a group of neurons Ct called “cell”, 2)
connecting Ct to the output element q(Vt) and 3) connecting Ct

to the next cell Ct+1. Weights are shared across all cells. The
most popular cells are Long Short-Term Memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997): they include a “forget-
ting” mechanism preventing backpropagated errors from van-
ishing or exploding in long sequences. More recently, Gated
Recurrent Units (GRU) were proposed by Cho et al. (2014):
the labeling performance of these lower-complexity cells is of-
ten comparable with LSTM.

A multi-layer extension was proposed for RNNs. In this ex-
tension, each timestamp t is associated with multiple cells Ci,t,
where i = 1..n is the layer index. At each timestamp t, p(Vt)
is connected to C1,t, Ci,t is connected to Ci+1,t for i = 1..n − 1,
and Cn,t is connected to p(Vt). In each layer i, Ci,t is connected
to Ci,t+1. Weights are shared across all cells in the same layer.
A bidirectional extension was also proposed for RNNs (Schus-
ter and Paliwal, 1997). In this extension, illustrated in Fig. 2,
two independent RNNs are defined: in one of them, informa-
tion flows from timestamp t to timestamp t +1; in the other one,
information flows from timestamp t to timestamp t − 1. Their
outputs are concatenated and connected to the output sequence.
The performance of bidirectional RNNs, which take advantage
of past and future information, is generally higher. The draw-
back is of course that online video labeling is not possible.

3.3. RNNs on Long Video Sequences
In the literature, RNNs are generally trained using video se-

quences consisting of a few dozen frames at most (Chen et al.,
2017; Gammulle et al., 2017; Mishra et al., 2017). In contrast,
analyzing all frames of full surgery videos requires the anal-
ysis of much longer sequences: for instance, there are at least
10,000 frames per video sequence in our cataract surgery videos
(see section 5.1). Training long-term relationships with RNNs
is more computationally intensive using long sequences, so we
propose to analyze shorter sequences. In that purpose, M sub-
sampled versions of each original sequence V , denoted by V (m),
m = 1..M, are generated as follows:

V (m) = {Vu | u = m + tM, t ∈ N∗, u ≤ |V |} . (1)

𝐶1
𝑓

𝐶1
𝑏

𝒒1

𝒑1

𝐶2
𝑓

𝐶2
𝑏

𝒒2

𝒑2

𝐶3
𝑓

𝐶3
𝑏

𝒒3

𝒑3

𝐶4
𝑓

𝐶4
𝑏

𝒒4

𝒑4

concat. concat. concat. concat.

Figure 2: Bidirectional RNN networks. Three elements are defined at each
timestamp: 1) a forward RNN cell (or stack of RNN cells), 2) a backward
RNN cell (or stack of RNN cells) and 3) a fusion part, which concatenates their
outputs. The purple arrows represent information propagated backward in time.

During training, this results in a novel kind of data augmenta-
tion (Shen et al., 2017): the number of training sequences in-
creases artificially. For simplicity,

{
V (m) | V ∈ D,m = 1..M

}
is

denoted by D in the remainder of this paper. During testing,
each of the M subsequences of V are analyzed independently
and the final prediction sequence for V is obtained by interleav-
ing the resulting M prediction sequences. The resulting pre-
diction sequence is further processed by median filters to blend
subsequences: a filter of radius Rθ is used for each tool-specific
channel of the sequence.

3.4. Training Complexity for “CNN+RNN” Networks

Because CNNs and RNNs are integrated into the same net-
work, it would make sense to train the entire network from end
to end, so that features extracted by the CNNs are as relevant
as possible to the RNNs that process them further. However,
as illustrated in Fig. 1, the complexity of the learning process
is very high. The error measured for each prediction q(Vt, θ) is
backpropagated to p(Vt) but also to all p(Vu) (such as u ≤ t, in
unidirectional networks). Errors computed for each p(Vu) are
backpropagated further towards Vu.

The vast majority of weights in a “CNN+RNN” network are
in the CNNs. Therefore, the cost of backpropagating an error
measured for one timestamp t to all frames Vu in the video se-
quence (such as u ≤ t, in unidirectional networks) is very high.
As a consequence, a two-step training process is always pre-
ferred in the literature (see section 2.1). A CNN is trained first:
errors measured for one timestamp t are only backpropagated to
Vt. Then, a RNN is trained: errors measured for one timestamp
t are backpropagated to all p(Vu) (such as u ≤ t, in unidirec-
tional networks) without affecting the CNN weights. Given the
number of weights in a RNN, this process is tractable. We pro-
pose a solution based on boosting that is able to improve the
CNN block after or while training the RNN block, in order to
achieve the desirable properties of end-to-end training, but at a
reasonable computational cost.

4

𝒉′2

𝑉𝑡

𝒒𝑡

𝒉1 𝒉2 𝒉𝐿
…

𝒉′1 𝒉′𝐿′…

𝛼1 𝛼2
𝛼𝐿

𝛼′1 𝛼′2
𝛼′𝐿′

Figure 3: Boosted “CNN+RNN” network (unidirectional version). The ⊗ sym-
bol represents the sigmoid operator applied to the weighted sum of the inputs.

4. Boosted “CNN+RNN” Networks (see Fig. 3)

4.1. Context

Recent boosting algorithms, such as AnyBoost (Mason et al.,
1999) and Friedman (2001)’s Gradient Boosting Machines
(GBM), are formulated as a gradient descent optimization,
which integrates nicely with the way neural networks are
trained. When CNNs or RNNs are used as weak learners, the
boosting meta-algorithm controls the loss function used to train
these learners. Typically, training samples with large classifi-
cation errors are assigned a larger weight in the updated loss
function. A few authors thus used CNNs as weak learners for
AnyBoost (Moghimi et al., 2016) or GBM (Zhang et al., 2016;
Walach and Wolf, 2016). A boosting algorithm based on GBM
(Friedman, 2001) is proposed in this section to design either a
CNN block or an RNN block. The same algorithm is used for
CNN boosting in RNN-free networks and for RNN boosting in
“CNN+RNN” networks. To ensure the complementarity of the
CNN and RNN blocks in “CNN+RNN” networks, an improved
criterion is proposed for CNN boosting in such networks (see
section 4.5). How to design an adequate neural network ar-
chitecture for a given classification problem remains an open
question. So, generalizing Gao et al. (2016), multiple architec-
tures of neural networks (CNNs or RNNs) are considered in this
study; letH denote the set of (CNN or RNN) architectures.

4.2. Gradient Boosting Machine

The purpose of GBM is to build a strong learner HL by lin-
early combining multiple weak learners hl ∈ H , l=1..L, with
weights αl. Let hl(x) = {hl(x, θ), θ ∈ Θ} denote the predictions
of hl for some input x. The predictions of the strong learner for
x are given by:

HL(x) =

L∑
l=1

αlhl(x) . (2)

These predictions are mapped to probabilities using the sigmoid
function σ: pL(x, θ) = σ(HL(x, θ)) in CNN boosting, qL(x, θ) =

σ(HL(x, θ)) in RNN boosting. Weak learners are added sequen-
tially in order to minimize the negative log-likelihood (Fried-
man, 2001):

L(h) = −
∑
θ∈Θ

 ∑
x,δ(x,θ)=1

logσ(h(x, θ))

+
∑

x,δ(x,θ)=−1

log [1 − σ(h(x, θ))]

 ,
(3)

where δ(x, θ) is the binary label assigned to x for tool θ (see
section 3.1). At each boosting iteration L + 1, all weak learners
h ∈ H are trained as detailed in sections 4.3 to 4.4. Then, the
weak learner h minimizing L(HL + αh), α ≥ 0, is added to the
strong classifier:

(hL+1, αL+1) = argmin
(h∈H ,α≥0)

L(HL + αh) . (4)

Boosting stops when L stops decreasing.

4.3. Loss Function for Boosting Neural Networks
As noted by Friedman (2001), the weak learner hL+1 selected

at boosting iteration L + 1 > 1 should ideally return values
hL+1(x, θ) proportional to − ∂L(HL)

∂HL(x,θ) :

hL+1(x, θ) = κ ωL+1(x, θ), ∀x, ∀θ, κ ∈ R , (5)

ωL+1(x, θ) = −
∂L(HL)
∂HL(x, θ)

, (6)

where the ωL+1(x, θ) coefficients, called sample weights, are
given by:

ωL+1(x, θ) =

{
1 − σ (HL(x, θ)) if δ(x, θ) = 1
−σ (HL(x, θ)) if δ(x, θ) = −1 . (7)

With that property, the strong learner’s loss function would de-
crease directly towards zero. Neural networks can be trained to
solve Eq. (5) in the least square sense, using κ = 1 without loss
of generality. Therefore, the following quadratic loss function
can be used for L > 0 (Moghimi et al., 2016):

L2(h,ω) =
∑
θ

∑
x

(h(x, θ) − ω(x, θ))2 . (8)

4.4. Efficiently Training Neural Networks as Weak Learners
The proposed solution for training weak learners can be sum-

marized as follows. At iteration 1 (L = 0), each weak learner
h ∈ H is trained to minimize L(h), the negative log likeli-
hood [see Eq. (3)]. CNN weights are fine-tuned from a model
trained on ImageNet; RNN weights are initialized at random.
At iterations L + 1, L > 0, each weak learner h ∈ H is trained
to minimize L2(h,ωL+1), the quadratic loss function [see Eq.
(8)]. Following Moghimi et al. (2016), the neuron weights of
h are fine-tuned from neuron weights obtained at the previ-
ous boosting iteration. This strategy saves time and also im-
proves performance. Indeed, more and more samples receive
marginal weights at each boosting iteration, as the classifica-
tion error decreases [see Eq. (7)]. Therefore, the training set
somehow becomes smaller and smaller. The proposed strategy
can be regarded as transfer learning from a larger dataset, which
is known to be beneficial.

5

4.5. Boosting CNNs inside a “CNN+RNN” Network

The boosting solution described in previous sections is sub-
optimal for CNN boosting in a “CNN+RNN” network. Let us
assume that one image in a video sequence is wrongly classified
by the firstly selected CNN h1. Based on the temporal context,
the RNN block might be able to correct this classification error.
Therefore, building a second CNN h2 for correcting that error
specifically might be useless. Instead, CNNs should be trained
to maximize the performance of the “CNN+RNN” network as
a whole.

Throughout the rest of this paper, let H′, h′, α′ and L′ de-
note respectively the strong learner, the weak learners, their
weights and their number in the RNN block, in order to avoid
confusion with their counterparts in the CNN block. To achieve
the desired behavior, the sample weights ωL+1 should be de-
fined based on qL′ , the outputs of the RNN block, rather than
pL, the outputs of the CNN block: the goal should be to mini-
mize L(HL,H′L′). In this scenario, ωL+1(Vt, θ), the weight as-
signed to frame Vt and label θ ∈ Θ, does not depend solely
on instant quantities, namely HL(Vt) and δ(Vt, θ). In bidi-
rectional networks (for offline processing), it depends on all
(HL(Vu), δ(Vu, φ)) pairs, φ ∈ Θ. In unidirectional networks, it
depends on all pairs such that u ≥ t. For L > 0, sample weights
become:

ωL+1(Vt, θ) = pL(Vt, θ)(1 − pL(Vt, θ))
×

∑
φ∈Θ

∑
Vu

∆δ(Vu,φ)(Vt, θ,Vu, φ)

∆+(Vt, θ,Vu, φ) = (1 − qL′ (Vu, φ))
L′∑

l=1

α′l
∂h′l(Vu, φ)
∂pL(Vt, θ)

∆−(Vt, θ,Vu, φ) = −qL′ (Vu, φ)
L′∑

l=1

α′l
∂h′l(Vu, φ)
∂pL(Vt, θ)

.

(9)
If a unidirectional RNN network is used, then the
∂h′l(Vu, φ)/∂pL(Vt, θ) partial derivatives equal zero for all
u < t. In all other cases, they can be computed automatically by
the backpropagation algorithm. Note that the backpropagation
algorithm does not compute each ∂Oi

∂I j
term individually, where

I denotes an input tensor whose influence on the output tensor
O should be computed. Instead, it computes:∑

i

∂Oi

∂I j
∇i, (10)

given a tensor ∇ weighting each coefficient of the output tensor.
However, Eq. (9) can be computed setting:

• Oi = h′l(Vu, φ), i = (u, φ),

• I j = pL(Vt, θ), j = (t, θ),

• ∇i = 1−qL′ (Vu, φ) or ∇i = qL′ (Vu, φ) depending on ∆δ(Vu,φ).

Proof for Eq. (9). In this scenario, the partial derivative of the
negative log-likelihood function [see Eq. (3)], with respect to

HL(Vt, θ), is given by:

∂L(HL,H′L′)
∂HL(Vt, θ)

= −
∑
φ∈Θ

 ∑
Vu,δ(Vu,φ)=1

∂ log qL′ (Vu, φ)
∂HL(Vt, θ)

+
∑

Vu,δ(Vu,φ)=−1

∂ log (1 − qL′ (Vu, φ))
∂HL(Vt, θ)

 .
(11)

Each term in this sum can be decomposed according to the
chain rule of derivation, using the following equations:

∂ logσ(y)
∂σ(y)

=
1

σ(y)
, (12)

∂ log (1 − σ(y))
∂σ(y)

=
−1

1 − σ(y)
, (13)

∂qL′ (Vu, φ)
∂HL(Vt, θ)

=
∂qL′ (Vu, φ)
∂σ(HL(Vt, θ))

∂σ(HL(Vt, θ))
∂HL(Vt, θ)

. (14)

The second factor on the right hand side of Eq. (14) can be
decomposed using the derivative of the sigmoid function:

∂σ(y)
∂y

= σ(y)(1 − σ(y)) , (15)

Similarly, the first factor on the right hand side of Eq. (14) can
be decomposed as follows:

∂qL′ (Vu, φ)
∂pL(Vt, θ)

= qL′ (Vu, φ)(1−qL′ (Vu, φ))
L′∑

l=1

α′l
∂h′l(Vu, φ)
∂pL(Vt, θ)

. (16)

where qL′ (Vu, φ) = σ(HL′ (Vu, φ)) and HL′ (Vu, φ) is a function of
all pL(Vt, θ) values.

The sample weights we have defined for CNN boosting in-
side a “CNN+RNN” network are more complex than the gen-
eral case [see Eq. 7]. However, they are only computed once
per boosting iteration. Therefore, they do not make the opti-
mization problem significantly less tractable, as opposed to the
end-to-end training of a “CNN+RNN” network. But, like end-
to-end training, they ensure a good complementarity between
the CNN and RNN blocks.

4.6. Joint CNN and RNN Boosting

Two strategies are proposed below to define the order in
which CNNs and RNNs are trained to design data-driven
“CNN+RNN” architectures.

“Sequential” strategy. The most straightforward solution is
to boost the CNN block while L(HL) decreases, and then to
boost the RNN block while L(H′L′) decreases. Besides the
use of boosting, this is the standard approach for designing
“CNN+RNN” networks (see section 2.1). However, this so-
lution suffers from the limitation described in the previous sec-
tion, namely the lack of complementarity between the CNN and
RNN blocks.

6

D
at

as
et

To
ol

In
te

r-
ra

te
r

ag
re

em
en

t

%
of

tr
ai

ni
ng

fr
am

es

C
A

TA
R

A
C

T
S

biomarker 0.835 0.0168 %
Charleux cannula 0.963 1.79 %
hydrodissection cannula 0.982 2.43 %
Rycroft cannula 0.919 3.18 %
viscoelastic cannula 0.975 2.54 %
cotton 0.947 0.751 %
capsulorhexis cystotome 0.995 4.42 %
Bonn forceps 0.798 1.10 %
capsulorhexis forceps 0.849 1.62 %
Troutman forceps 0.764 0.258 %
needle holder 0.630 0.0817 %
irrigation/aspiration handpiece 0.995 14.2%
phacoemulsifier handpiece 0.997 15.3 %
vitrectomy handpiece 0.998 2.76 %
implant injector 0.980 1.41 %
primary incision knife 0.961 0.700 %
secondary incision knife 0.852 0.522 %
micromanipulator 0.995 17.6 %
suture needle 0.893 0.219 %
Mendez ring 0.953 0.100 %
Vannas scissors 0.823 0.0443 %

C
ho

le
c8

0

grasper n/a 55.3 %
bipolar n/a 4.47 %
hook n/a 56.7 %
scissors n/a 1.76 %
clipper n/a 3.29 %
irrigator n/a 5.05 %
specimen bag n/a 6.35 %

Table 1: Statistics about tool usage annotation in the CATARACTS and
Cholec80 datasets. The first column indicates inter-rater agreement (Cohen’s
kappa) after adjudication. The last column indicates the prevalence of each tool
in the training set (excluding frames without a consensus in CATARACTS).

“Joint” strategy. To overcome this limitation, we propose to
design the CNN and RNN blocks inside a single boosting
loop, using a single strong learner’s loss function, namely
L(HL,H′L′). At each boosting iteration, all CNN architectures
h ∈ H and all RNN architectures h′ ∈ H ′ are trained (or re-
trained) and only one CNN or one RNN is added to the network:
the one minimizing

{L(HL + αh,H′L′) | h ∈ H , α ≥ 0}⋃ {
L(HL,H′L′ + α′h′) | h′ ∈ H ′, α′ ≥ 0

} . (17)

Of course, in the first boosting iteration, only CNN architec-
tures are considered: RNNs need at least one feature extractor
to operate. Eq. (9) is used to define the sample weights for
CNN boosting as soon as L′ ≥ 1.

5. Surgery Video Datasets

The proposed approach is applied to tool usage annotation in
two surgical video datasets: CATARACTS and Cholec80.

5.1. CATARACTS Dataset

The CATARACTS dataset contains 50 videos of cataract
surgeries performed in Brest University Hospital.5 The purpose
of cataract surgeries is to remove a clouded natural lens and
replace it with an artificial lens. The entire procedure can be
performed with small incisions only. Surgeries were monitored
through an OPMI Lumera T microscope (Carl Zeiss Meditec,
Jena, Germany). Videos were recorded with a 180I cam-
era (Toshiba, Tokyo, Japan) and a MediCap USB200 recorder
(MediCapture, Plymouth Meeting, USA). The frame definition
was 1920x1080 pixels and the frame rate was approximately 30
frames per second (fps). Videos had a duration of 10 minutes
and 56 s on average (minimum: 6 minutes 23 s, maximum: 40
minutes 34 s). In total, more than nine hours of surgery have
been video recorded. A list of 21 tools visible in these videos
was compiled by a surgeon (see Fig 4). Then, the usage of
each tool in videos was annotated independently by two non-
clinical experts, after an initial training by a surgeon. A tool
was considered to be in use whenever it was in contact with the
eyeball. Therefore, both experts recorded a timestamp when-
ever one tool started or stopped touching the eyeball. Tool-
tissue contacts can be detected well: they imply deformations
of the eye surface, which are well visible thanks to specular re-
flections of light. Finally, annotations from both experts were
adjudicated: whenever experts disagreed about the label of one
tool, they watched the video together and jointly determined
the actual label. However, the precise timing of tool/eyeball
contacts was not adjudicated. Inter-rater agreement after adju-
dication is reported in Table 1. The dataset was divided into a
training set (25 videos) and a test set (25 videos). Division was
made in such a way that each tool appears in the same number
of videos from both subsets (plus or minus one). The classi-
fication performance for θ was assessed only in frames where
experts agreed about the usage of θ. During training, some tool
θ ∈ Θ was considered to be in use if at least one expert said so.

5.2. Cholec80 Dataset

The Cholec80 dataset contains 80 videos of cholecystectomy
surgeries (Twinanda et al., 2017). The purpose of cholecystec-
tomy is to remove the gallbladder: this operation can be per-
formed laparoscopically and monitored through an endoscope.
Videos were recorded with a frame definition of 1920x1080
pixels and a frame rate of 25 fps. Videos had a duration of 38
minutes and 26 s on average (minimum: 12 minutes 19 s, max-
imum: 1 hour 39 minutes 55 s). They were downsampled to
1 fps for processing. In total, more than 51 hours of surgery
have been video recorded (2 hours after downsampling). In
Cholec80, a tool was considered to be in use if it was visible
through the endoscope (if at least half of the tool tip was vis-
ible, precisely). The presence of seven tools was annotated in
videos (see Fig 4): one binary label is provided per image and
per tool. The dataset was divided into a training set (40 videos)
and a test set (40 videos).

5https://cataracts.grand-challenge.org

7

Figure 4: Surgical tools annotated in videos

5.3. Training and Validation Subsets
For validation purposes, two training videos of

CATARACTS (respectively four videos of Cholec80) were
assigned to a validation subset; the remaining training videos
were assigned to a learning subset used to optimize the CNN,
RNN and boosting weights. In CATARACTS, the validation
videos were chosen such that all tools appear in the learning
subset: it was not possible to ensure this property for both
subsets. In Cholec80, they were chosen at random.

6. Experiments

6.1. Architectures
Seven CNN architectures were used as weak classifiers in

this paper:

• VGG-16 and VGG-19 (Simonyan and Zisserman, 2015),

• the second version (He et al., 2016b) of ResNet-101 and
ResNet-152 (He et al., 2016a),

• Inception-v4 and Inception-ResNet-v2 (Szegedy et al.,
2017),

• NASNet-A (Zoph et al., 2017).

The TensorFlow-Slim implementation6 of these CNNs was
used, with weights pre-trained on ImageNet. The last layer

6https://github.com/tensorflow/models/tree/master/

research/slim

of each CNN, which computes one logit prediction per class,
was resized from 1000 neurons for ImageNet to 21 neurons for
CATARACTS or 7 neurons for Cholec80; the weights of these
neurons were initialized at random. The same input image size
was used for ImageNet, CATARACTS and Cholec80: 224×224
pixels for VGG-16 and VGG-19, 299 × 299 pixels for ResNet-
101, ResNet-152, Inception-v4 and Inception-ResNet-v2, and
331 × 331 pixels for NASNet-A. To preserve the aspect ratio,
images from CATARACTS and Cholec80 were first resized to
224 × 126 pixels, 299 × 168 pixels or 331 × 184 pixels and
were then padded with zeros at the top and the bottom to ob-
tain square images. All CNNs were trained using the RMSProp
algorithm with a learning rate initialized to 0.01 and decaying
exponentially. In order to define a more challenging boosting
problem, we conducted a secondary experiment involving the
three worst performing CNNs only: this experiment is called
“weaker CNNs”, while the primary experiment involving all
CNNs is called “all CNNs”.

Regarding RNN boosting, two types of RNN cells were used:
LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho
et al., 2014). To limit complexity and computation times, the
number of layers in RNNs was set to n = 2. Three differ-
ent values were used for C, the number of neurons per cell,
in order to define six weak classifiers (three based on LSTM,
three based on GRU): C = 64, C = 128, C = 256. In all
RNN boosting experiments, a subsampling factor of M = 16
and M = 4 was used in CATARACTS and Cholec80, respec-
tively: this number was found to be optimal in initial experi-
ments on the validation subset (see Fig. 5). All RNNs were

8

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 10 20 30 40 50 60 70

a
v
e
ra

g
e
 a

re
a
 u

n
d
e
r

th
e
 R

O
C

 c
u
rv

e

subsampling factor (M)

CATARACTS
Cholec80

Figure 5: Effect of the subsampling factor M (which is also the data augmen-
tation rate — see section 3.3) on tool annotation performance in the validation
subset. This figure reports the average performance obtained using NASNet-A
and each of the six weak RNN classifiers based on LSTM or GRU.

CNN single image batch processing
VGG-16 7.50 ms / image 2.87 ms / image
VGG-19 8.50 ms / image 3.44 ms / image

ResNet-101 10.2 ms / image 3.16 ms / image
ResNet-152 13.2 ms / image 4.62 ms / image
Inception-v4 18.8 ms / image 6.09 ms / image

Inception-ResNet-v2 19.0 ms / image 6.34 ms / image
NASNet-A 24.6 ms / image 18.5 ms / image

Table 2: Inference times of CNNs using one GeForce GTX 1080 Ti GPU by
Nvidia. Inference times are given for batch processing (mini-batches of 16
images for NASNet-A and 32 images for other CNNs), which can be used for
offline video labeling, and for single image processing, which must be used for
online video labeling.

trained using the RMSProp algorithm with a constant learning
rate of 0.001. As for the median filter radii Rθ, they were se-
lected within {1, 2, 4, 8, 16, 32, 64} to maximize the classifica-
tion performance in the validation set; for rare tools absent from
the validation set, the most frequently selected value was used.
RNNs were implemented using Keras version 2.0.8.

Inference times for CNNs, the most computationally inten-
sive parts of the system, are reported in Table 2.

6.2. Performance of Boosted Video Labelers
The performance of the seven weak CNNs is reported in Ta-

bles 3 and 4. As expected, the best performing CNN, NASNet-
A, is also the most recent. Surprisingly, VGG-19 and VGG-16
are also quite good, in spite of being older and less sophisticated
than the others. The three worst performing CNNs (in the vali-
dation set and in the test set) are ResNet-101, ResNet-152 and
Inception-ResNet-v2: they were used in the “weaker CNNs”
experiment. The architecture of boosted bidirectional video la-
belers are reported in Fig 6 for the “all CNNs” and “weaker
CNNs” experiments. Their performance is detailed in Tables
3 and 4 for the “all CNNs” experiment. In the largest dataset
(CATARACTS), training the initial CNNs with early stopping
took between 2h (ResNet-101) and 11h (Inception-ResNet-v2);
training NASNet-A took 8h. In the following boosting itera-
tions, fine-tuning the CNNs and training/fine-tuning the RNNs

took 3h at most per CNN or RNN. At each boosting itera-
tions, CNNs and RNNs were trained in parallel on a cluster
of GeForce GTX 1080 Ti GPUs (RNNs were trained without
GPU). Overall, if the process was fully-automated, boosting
would have lasted approximately 29h. In practice, it took a
few days, as the process involved manual interactions (for early
stopping in particular). The end-to-end training of a NASNet-
A + RNN network would have lasted more than 80,000 hours
(9 years) for CATARACTS, which involves sequences of more
than 10,000 frames.

Tables 3 and 4 show that “CNN+RNN” boosting im-
proves performance compared to CNN boosting alone in both
datasets. Median filtering also improves performance in the
CATARACTS dataset but decreases it in Cholec80. For each
tool θ, the least worst radius is Rθ = 1 for Cholec80 and the
best radius is 2 ≤ Rθ ≤ 32 for CATARACTS. ROC curves
and precision-recall curves for the best CNN, namely NASNet-
A, and the best ensemble, namely joint “CNN+RNN” boosting
(with median filtering for CATARACTS), are reported in Fig. 7
and 8. In terms of area under the ROC curve (Az), all tools were
detected well by the best ensemble (Az ≥ 0.9694). In terms
of average precision (AP), rare tools are poorly detected before
boosting (AP < 0.1 in some cases). For rare tools, precision
(and therefore AP) is indeed impacted strongly by the number
of false alarms which, in the specificity criterion (and therefore
Az), is divided by the large number of negative samples. In fact,
as shown in Table 4, AP is highly correlated with tool preva-
lence in the training set. However, the mean AP is greatly im-
proved after boosting: from mAP = 0.6086 to mAP = 0.7980 in
CATARACTS. Since there are no rare tools in Cholec80, mAP
is much higher (up to mAP = 0.9789).

Sequence labeling examples obtained with the best ensem-
bles are illustrated and commented in Fig. 9. In summary, mis-
takes made by the best ensembles are mainly due to occlusions.
To illustrate the problems that the proposed ensemble solves,
Fig. 10 reports labeling sequences obtained at different ensem-
ble complexity levels. This figure suggests that the same errors
are made by all detectors, but these errors are progressively at-
tenuated as the ensemble becomes more complex.

6.3. Comparisons with Baseline Solutions
The proposed ensemble (obtained through “CNN+RNN

boosting”, with median filtering for CATARACTS) is compared
with various baseline methods in Table 5. For each baseline, the
statistical significance of the difference with the proposed solu-
tion is assessed using a paired sample t-test.

The first five baselines are variations on the proposed en-
semble, as described above. All of these variations lead to
decreased performance, with one exception: replacing bidi-
rectional RNNs with unidirectional RNNs does not impact
performance significantly. We note the good performance of
ensembles obtained in the “weaker CNNs” experiment. In
CATARACTS for instance, Az increases from 0.9663 for the
best CNN (ResNet-152) to 0.9900 (+0.0237), while in the
“all CNNs” experiment, it increases from 0.9831 to 0.9961
(+0.0130). On the downside, we also note that to achieve very
high performance, good weak learners must be available.

9

D
at

as
et

To
ol

V
G

G
-1

6

V
G

G
-1

9

R
es

N
et

-1
01

R
es

N
et

-1
52

In
ce

pt
io

n-
v4

In
ce

pt
io

n-
R

es
N

et
-

v2

N
A

SN
et

-A

bo
os

te
d

C
N

N

bo
os

te
d

C
N

N
+

R
N

N

sm
oo

th
ed

bo
os

te
d

C
N

N
+

R
N

N

C
A

TA
R

A
C

T
S

biomarker 0.9364 0.9855 0.9469 0.9948 0.7852 0.6313 0.9544 0.9920 0.9997 0.9998
Charleux cannula 0.9105 0.9360 0.8238 0.8813 0.9129 0.9174 0.9603 0.9677 0.9877 0.9903
hydrodissection cannula 0.9807 0.9875 0.9585 0.9709 0.9911 0.9768 0.9807 0.9938 0.9956 0.9965
Rycroft cannula 0.9858 0.9846 0.9747 0.9776 0.9857 0.9743 0.9896 0.9920 0.9948 0.9952
viscoelastic cannula 0.9441 0.9341 0.9347 0.8709 0.9393 0.9224 0.9628 0.9630 0.9670 0.9711
cotton 0.9879 0.9889 0.9417 0.9848 0.9622 0.9472 0.9910 0.9926 0.9966 0.9973
capsulorhexis cystotome 0.9935 0.9978 0.9950 0.9955 0.9981 0.9940 0.9982 0.9990 0.9997 0.9998
Bonn forceps 0.9769 0.9896 0.9745 0.9813 0.9867 0.9768 0.9860 0.9933 0.9945 0.9949
capsulorhexis forceps 0.9706 0.9767 0.9648 0.9641 0.9896 0.9765 0.9878 0.9944 0.9983 0.9986
Troutman forceps 0.9746 0.9811 0.9790 0.9472 0.9844 0.9766 0.9886 0.9901 0.9969 0.9971
needle holder 0.9667 0.9911 0.9329 0.9312 0.9722 0.9762 0.9908 0.9951 0.9974 0.9981
irrigation/aspiration HP 0.9950 0.9960 0.9879 0.9910 0.9961 0.9913 0.9963 0.9981 0.9991 0.9993
phacoemulsifier HP 0.9969 0.9983 0.9939 0.9968 0.9980 0.9969 0.9984 0.9992 0.9998 0.9998
vitrectomy HP 0.9756 0.9761 0.9874 0.9516 0.9812 0.9888 0.9579 0.9930 0.9894 0.9927
implant injector 0.9811 0.9827 0.9790 0.9772 0.9887 0.9797 0.9765 0.9909 0.9943 0.9952
primary incision knife 0.9881 0.9908 0.9819 0.9686 0.9959 0.9809 0.9814 0.9969 0.9994 0.9996
secondary incision knife 0.9924 0.9976 0.9977 0.9989 0.9982 0.9980 0.9972 0.9989 0.9996 0.9997
micromanipulator 0.9919 0.9943 0.9919 0.9913 0.9959 0.9922 0.9953 0.9972 0.9983 0.9985
suture needle 0.9757 0.9779 0.9504 0.9742 0.9647 0.9612 0.9756 0.9844 0.9989 0.9991
Mendez ring 0.9943 0.9997 0.9939 0.9792 0.9435 0.9724 0.9913 0.9970 1.0000 1.0000
Vannas scissors 0.9939 0.9924 0.9810 0.9648 0.9799 0.9662 0.9842 0.9943 0.9947 0.9961
Average (mAz) 0.9768 0.9837 0.9653 0.9663 0.9690 0.9570 0.9831 0.9916 0.9953 0.9961
Corr. with prevalence 0.3246 0.2305 0.2793 0.2850 0.2955 0.2461 0.3922 0.2493 0.1309 0.1220

C
ho

le
c8

0

grasper 0.9633 0.9620 0.9472 0.9539 0.9505 0.9523 0.9618 0.9689 0.9694 0.9652
bipolar 0.9949 0.9946 0.9929 0.9904 0.9903 0.9913 0.9941 0.9962 0.9977 0.9975
hook 0.9983 0.9983 0.9972 0.9975 0.9963 0.9973 0.9984 0.9989 0.9991 0.9966
scissors 0.9877 0.9865 0.9771 0.9751 0.9802 0.9819 0.9903 0.9909 0.9958 0.9959
clipper 0.9977 0.9979 0.9955 0.9958 0.9923 0.9954 0.9983 0.9989 0.9998 0.9998
irrigator 0.9932 0.9935 0.9859 0.9895 0.9861 0.9882 0.9930 0.9956 0.9980 0.9975
specimen bag 0.9951 0.9951 0.9915 0.9914 0.9926 0.9937 0.9944 0.9969 0.9976 0.9977
Average (mAz) 0.9900 0.9897 0.9839 0.9848 0.9840 0.9857 0.9900 0.9923 0.9939 0.9929
Corr. with prevalence -0.4916 -0.4865 -0.4317 -0.3751 -0.4396 -0.4555 -0.5149 -0.5186 -0.5915 -0.6535

Table 3: Areas under the ROC curves (Az) for each weak CNN classifier and strong classifiers in the “all CNNs” experiment. In case of “CNN+RNN” boosting, the
“joint” strategy is used. HP stands for “handpiece”. On each line, the highest score is marked in bold and the highest score among weak CNN classifiers is marked
in italic. For each dataset, the last row indicates the Pearson correlation between Az in the test set and tool prevalence in the training set (see Table 1).

(a) CATARACTS (b) Cholec80

Figure 6: Evolution of the validation loss across boosting iterations, using bidirectional RNNs. The number of neurons in RNN cells is indicated in brackets. Curves
and architectures obtained for the unidirectional version are very similar: they are not reported.

10

D
at

as
et

To
ol

V
G

G
-1

6

V
G

G
-1

9

R
es

N
et

-1
01

R
es

N
et

-1
52

In
ce

pt
io

n-
v4

In
ce

pt
io

n-
R

es
N

et
-

v2

N
A

SN
et

-A

bo
os

te
d

C
N

N

bo
os

te
d

C
N

N
+

R
N

N

sm
oo

th
ed

bo
os

te
d

C
N

N
+

R
N

N

C
A

TA
R

A
C

T
S

biomarker 0.0046 0.0120 0.0039 0.0482 0.0012 0.0005 0.1294 0.1311 0.5628 0.6352
Charleux cannula 0.0538 0.0891 0.0473 0.1353 0.1276 0.1594 0.4386 0.2455 0.5728 0.6003
hydrodissection cannula 0.8339 0.8652 0.7870 0.8211 0.8881 0.8141 0.8678 0.9213 0.9412 0.9471
Rycroft cannula 0.7819 0.7095 0.7381 0.7357 0.8085 0.7807 0.8530 0.8637 0.9084 0.9155
viscoelastic cannula 0.5670 0.6065 0.5925 0.5582 0.6178 0.4828 0.7048 0.6833 0.7588 0.7658
cotton 0.0063 0.0071 0.0101 0.1317 0.1093 0.2491 0.1092 0.1474 0.2308 0.3148
capsulorhexis cystotome 0.9356 0.9700 0.9399 0.9510 0.9768 0.9462 0.9786 0.9868 0.9959 0.9968
Bonn forceps 0.6181 0.7007 0.6580 0.7102 0.7251 0.5806 0.4816 0.7805 0.8174 0.8223
capsulorhexis forceps 0.6319 0.6441 0.6343 0.6399 0.7705 0.6600 0.6956 0.8210 0.8950 0.9023
Troutman forceps 0.2468 0.2408 0.3803 0.2779 0.3714 0.3282 0.4200 0.4348 0.6173 0.6474
needle holder 0.1371 0.2420 0.0495 0.0514 0.0709 0.1586 0.2916 0.2504 0.5197 0.6356
irrigation/aspiration HP 0.9818 0.9848 0.9551 0.9652 0.9854 0.9765 0.9846 0.9919 0.9954 0.9964
phacoemulsifier HP 0.9877 0.9940 0.9813 0.9904 0.9923 0.9889 0.9949 0.9967 0.9991 0.9992
vitrectomy HP 0.4175 0.3869 0.6402 0.5496 0.4219 0.7296 0.4154 0.6454 0.6088 0.6430
implant injector 0.7701 0.7836 0.8331 0.8400 0.8693 0.8026 0.8524 0.8965 0.9353 0.9386
primary incision knife 0.7944 0.8644 0.8121 0.8443 0.9081 0.7628 0.7823 0.9203 0.9696 0.9740
secondary incision knife 0.6524 0.8321 0.8434 0.9195 0.9120 0.7946 0.8903 0.9169 0.9615 0.9649
micromanipulator 0.9777 0.9843 0.9773 0.9786 0.9878 0.9767 0.9867 0.9920 0.9950 0.9955
suture needle 0.3740 0.4728 0.3937 0.3957 0.4006 0.2942 0.3983 0.4702 0.8031 0.8204
Mendez ring 0.1439 0.8266 0.0759 0.0220 0.0083 0.0587 0.4292 0.3696 0.9606 0.9977
Vannas scissors 0.1987 0.1723 0.1284 0.0441 0.0930 0.0713 0.0760 0.2127 0.1937 0.2456
Average (mAP) 0.5293 0.5899 0.5467 0.5529 0.5736 0.5532 0.6086 0.6513 0.7734 0.7980
Corr. with prevalence 0.6474 0.5560 0.5974 0.5918 0.5600 0.6382 0.6166 0.5544 0.4443 0.4329

C
ho

le
c8

0

grasper 0.9723 0.9711 0.9621 0.9656 0.9627 0.9646 0.9711 0.9764 0.9767 0.9730
bipolar 0.9667 0.9643 0.9513 0.9491 0.9452 0.9477 0.9688 0.9740 0.9823 0.9781
hook 0.9986 0.9986 0.9977 0.9980 0.9971 0.9979 0.9986 0.9990 0.9992 0.9961
scissors 0.8802 0.8810 0.8101 0.8241 0.8120 0.8072 0.8993 0.9155 0.9465 0.9501
clipper 0.9729 0.9722 0.9490 0.9567 0.9326 0.9446 0.9814 0.9860 0.9958 0.9952
irrigator 0.9568 0.9572 0.9213 0.9330 0.9178 0.9319 0.9561 0.9692 0.9781 0.9657
specimen bag 0.9555 0.9551 0.9310 0.9365 0.9364 0.9453 0.9605 0.9691 0.9735 0.9729
Average (mAP) 0.9576 0.9571 0.9318 0.9376 0.9291 0.9342 0.9623 0.9699 0.9789 0.9759
Corr. with prevalence 0.5477 0.5529 0.5899 0.5867 0.6371 0.5741 0.5261 0.4964 0.3838 0.3845

Table 4: Average precision (AP) for each weak CNN classifier and strong classifiers in the “all CNNs” experiment. In case of “CNN+RNN” boosting, the “joint”
strategy is used. HP stands for “handpiece”. On each line, the highest score is marked in bold and the highest score among weak CNN classifiers is marked in italic.
For each dataset, the last row indicates the Pearson correlation between AP in the test set and tool prevalence in the training set (see Table 1).

The next six baselines were proposed to evaluate the rele-
vance of each part of the proposed framework. The first two
tests show that only using the best CNN (NASNet-A in the
“all CNNs” experiment) or the best CNN and the best RNN
(NASNet-A + 1 LSTM) is clearly suboptimal. Interestingly,
the third experiment shows that LSTMs operating on NASNet-
A features (the 4032 features of the next to last NASNet-A
layer) are better than LSTMs operating on NASNet-A predic-
tions (the outputs of the last layer). However, besides being
more computationally intensive, RNNs operating on CNN fea-
tures are not compatible with boosting across multiple CNN
architectures: feature layers would not necessarily have com-
patible shapes and could therefore not be combined linearly.
The fourth experiment shows that the RNN part of the pro-
posed ensemble cannot simply be replaced with a median fil-
ter. The ensemble evaluated in the fifth experiment is simi-
lar to the proposed boosted CNN ensemble, in the sense that
predictions from several CNNs are combined linearly inside
a sigmoid function. The difference is that each CNN (the
seven CNNs studied in this paper) is trained independently;

the weight assigned to each CNN is trained through a gradi-
ent descent. This approach is similar to the ensemble method
proposed by Roychowdhury et al. (2017). The result of this
experiment is rather disappointing: the performance of the re-
sulting ensemble is almost as good as the boosted CNN en-
semble (p = 0.2390 for Az, p = 0.7066 for AP). The only
advantage of the proposed ensemble is that it is more compact:
four CNNs (see Fig. 6) instead of seven. A similar ensem-
ble is evaluated in the sixth experiment: one LSTM is trained
independently on top of each of the seven CNNs and the pre-
dictions of these seven LSTMs is combined linearly inside a
sigmoid function, again with weights obtained through a gra-
dient descent. In CATARACTS, the ensemble predictions are
then smoothed with a median filter. In that case, the proposed
boosting approach is superior. We assume this superiority is
mainly due to the proposed mechanism for boosting CNNs in-
side a “CNN+RNN” network (see section 4.5), since the per-
formance of the linear-combination ensemble is close to that
of the “sequentially” boosted “CNN+RNN”. Ideally, we would
also compare the proposed solution with the end-to-end training

11

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

s
e
n
s
it
iv

it
y

1 − specificity

biomarker
Charleux cannula

hydrodissection cannula
Rycroft cannula

viscoelastic cannula
cotton

capsulorhexis cystotome
Bonn forceps

capsulorhexis forceps
Troutman forceps

needle holder

(a) NASNet-A – CATARACTS

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5
s
e
n
s
it
iv

it
y

1 − specificity

irrigation/aspiration HP
phacoemulsifier HP

vitrectomy HP
implant injector

primary incision knife
secondary incision knife

micromanipulator
suture needle

Mendez ring
Vannas scissors

(b) NASNet-A – CATARACTS

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

s
e
n
s
it
iv

it
y

1 − specificity

grasper
bipolar

hook
scissors

clipper
irrigator

specimen bag

(c) NASNet-A – Cholec80

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

s
e
n
s
it
iv

it
y

1 − specificity

biomarker
Charleux cannula

hydrodissection cannula
Rycroft cannula

viscoelastic cannula
cotton

capsulorhexis cystotome
Bonn forceps

capsulorhexis forceps
Troutman forceps

needle holder

(d) best ensemble – CATARACTS

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

s
e
n
s
it
iv

it
y

1 − specificity

irrigation/aspiration HP
phacoemulsifier HP

vitrectomy HP
implant injector

primary incision knife
secondary incision knife

micromanipulator
suture needle

Mendez ring
Vannas scissors

(e) best ensemble – CATARACTS

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

s
e
n
s
it
iv

it
y

1 − specificity

grasper
bipolar

hook
scissors

clipper
irrigator

specimen bag

(f) best ensemble – Cholec80

Figure 7: Receiver-operating characteristic (ROC) curves for the best weak classifier (NASNet-A) and the best ensemble of the “all CNNs” experiment (jointly
boosted “CNN+RNN” architecture, with median filtering for CATARACTS). Note that only the top left quadrant of the ROC space (sensitivity and specificity ≥
0.5) is displayed for improved visualization.

CATARACTS Cholec80 p-value (paired sample t-test)
mAz mAP mAz mAP difference in mAz difference in mAP

proposed ensemble 0.9961 0.7980 0.9939 0.9789
boosted CNN 0.9916 0.6513 0.9923 0.9699 2.964 ×10−4 0.001789
boosted CNN (weaker CNNs only) 0.9829 0.6192 0.9880 0.9501 2.479 ×10−4 0.003881
proposed ensemble (weaker CNNs only) 0.9900 0.6748 0.9917 0.9695 0.007271 0.01401
smoothed “sequentially” boosted CNN+RNN 0.9939 0.6956 0.9930 0.9741 0.002679 0.004047
proposed ensemble (unidirectional RNNs) 0.9957 0.7580 0.9936 0.9760 0.05397 0.07474
NASNet-A 0.9831 0.6086 0.9900 0.9623 1.836 ×10−5 5.321 ×10−5

NASNet-A + 1 LSTM 0.9900 0.6949 0.9911 0.9723 0.001088 0.001972
NASNet-A features + 1 LSTM 0.9910 0.7264 0.9913 0.9755 0.02051 0.01078
boosted CNN + smoothing 0.9933 0.6735 0.9917 0.9703 0.001317 0.003009
linear-combination CNN ensemble 0.9913 0.6611 0.9917 0.9674 5.328 ×10−4 0.001204
smoothed linear-combination CNN+LSTM ensemble 0.9937 0.7010 0.9926 0.9733 0.002235 0.004602
EndoNet (Twinanda et al., 2017) n/a n/a 0.810 n/a 0.005394
DResSys (Roychowdhury et al., 2017) 0.9971 n/a n/a 0.2936 n/a
CUMV (Hu and Heng, 2017) 0.9897 n/a n/a 0.001682 n/a
TROLIS (Maršalkaitė et al., 2017) 0.9812 n/a n/a 0.0204 n/a
proposed ensemble (union GT) 0.9938 0.7876 n/a 0.02266 0.2320
proposed ensemble (intersection GT) 0.9958 0.7585 0.001920 0.007045

Table 5: Comparisons between the proposed ensemble (jointly boosted “CNN+RNN” ensemble, with median filtering for CATARACTS) and various baselines,
in terms of mean area under the ROC curve (mAz) and in terms of mean average precision (mAP). Non-significant differences at the 95% confidence level are in
bold. All CNNs are used to build ensembles unless specified otherwise (the weaker CNNs are Inception-ResNet-v2, ResNet-101 and ResNet-152). The last two
experiments evaluate the proposed ensemble using the union or the intersection of tool usage annotations from both experts as ground truth.

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

c
is

io
n

recall

biomarker
Charleux cannula

hydrodissection cannula
Rycroft cannula

viscoelastic cannula
cotton

capsulorhexis cystotome
Bonn forceps

capsulorhexis forceps
Troutman forceps

needle holder

(a) NASNet-A – CATARACTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

c
is

io
n

recall

irrigation/aspiration HP
phacoemulsifier HP

vitrectomy HP
implant injector

primary incision knife
secondary incision knife

micromanipulator
suture needle

Mendez ring
Vannas scissors

(b) NASNet-A – CATARACTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

c
is

io
n

recall

grasper
bipolar

hook
scissors

clipper
irrigator

specimen bag

(c) NASNet-A – Cholec80

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

c
is

io
n

recall

(d) best ensemble – CATARACTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

c
is

io
n

recall

(e) best ensemble – CATARACTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

c
is

io
n

recall

grasper
bipolar

hook
scissors

clipper
irrigator

specimen bag

(f) best ensemble – Cholec80

Figure 8: Precision-recall (PR) curves for the best weak classifier (NASNet-A) and the best ensemble of the “all CNNs” experiment (jointly boosted “CNN+RNN”
architecture, with median filtering for CATARACTS). Fig. (a) and (d) share the same legend. The same applies to Fig. (b) and (e).

of a “CNN+RNN” network, but the complexity of that model
prevents any experimentation.

The next four baselines are recent solutions from the lit-
erature: EndoNet is from the original Cholec80 paper, the
other three solutions are the top-ranking solutions of the
CATARACTS challenge. We can see that the proposed solu-
tion is better than three of these solutions (EndoNet, CUMV
and TROLIS) and not significantly worse than the other one
(DResSys). One advantage of the proposed solution compared
to DResSys is that it is more lightweight (less CNNs processing
smaller images). The other advantage is that its unidirectional
version, which is not significantly different from DResSys nei-
ther (p = 0.07525), allows online video sequencing, while
DResSys jointly analyzes batches of ∼20,000 frames.

The last two experiments reported in Table 5 evaluate the
impact of the criterion chosen to define the ground truth in
CATARACTS (exclusion of frames without a consensus). In
those experiments, the ground truth is defined either as the

union or the intersection of both expert interpretations, using all
frames in the test videos. We can see that using those evaluation
criteria decreases performance, in part because the most chal-
lenging frames (where experts disagree) are included, in part
because the ground truth is of lower quality (more uncertain).

6.4. Sensitivity Analysis of the Boosted Video Labelers

To visualize what the CNNs have learned, one can rely on
sensitivity analysis (Simonyan et al., 2014) and related metrics.
Sensitivity is the gradient of the CNN predictions with respect
to the pixel values: the pixel values influencing most the CNN
predictions are highlighted. Recently, we proposed a variation
on sensitivity called hue-constrained sensitivity (Quellec et al.,
2017): the interpretation is similar, except that the three color
components of a pixel are analyzed jointly rather than indepen-
dently. Given a CNN h and an input image I with dimensions
W ×H × 3, the hue-constrained sensitivity heatmap π of I for h

13

1

2,3

2,3

4

5

6

6

1

2

3

4

5

6

(a) test video from CATARACTS

7

8

7

8

(b) test video from Cholec80

Figure 9: Sequence labeling for one test video from each dataset using the best ensemble of the “all CNNs” experiment (joint “CNN+RNN” Boosting, with median
filtering for CATARACTS): tool usage according to human experts is in black, automatic predictions are in green. Areas surrounded by red circles are associated
with images on the right. The label of image 1 (capsulorhexis forceps) has been correctly identified, but with a lower confidence level compared to previous images.
The reason probably is that the forceps have remained closed for a long time and are therefore more difficult to recognize. In image 2, the capsulorhexis cystotome
is detected as a hydrodissection cannula. The reason probably is that its distinctive claw-shaped tooltip is hidden in the incision and its distinctive elbow is out of
the field of view. As soon as the elbow becomes visible (image 3), the correct label is assigned. In image 4, the phacoemulsifier handpiece is considered active,
whereas it is not in contact with the eyeball yet. However, it touches the tear film, so the detector is almost correct. In image 5, one of the annotators indicated
that the viscoelastic cannula is being used, although it is not actually visible: only indirect signs of presence (at the bottom) are visible; the detector was not able
to recognize them. In image 6, the micromanipulator is partly mistaken for a Rycroft cannula: the explanation is similar for images 2 and 6. The reason why a
hydrodissection cannula is detected in the former case and a Rycroft cannula in the latter probably comes from the RNN-based temporal modeling: hydrodissection
cannulae are more likely at the beginning, Rycroft cannula are more likely at the end. In image 7, the grasper is not detected, probably because it is occluded by
the hook. Finally, in image 8, a specimen bag is falsely detected, however the white string used for closing the bag is visible: the RNN-based temporal sequencer
probably interpolated predictions from neighboring frames where the bag and the string are both visible.

is defined as:

πx,y =

∣∣∣∣∣∣∂
∑
θ∈Θ h (m ∗ I, θ)
∂mx,y

∣∣∣∣∣∣ , (18)

where tensor m is a matrix of ones with dimensions W × H
and where ’*’ denotes the element-wise tensor multiplication.

It should be noted that m ∗ I = I and that all color components
of a pixel in I are multiplied by the same tensor element in
m, which ensures the desired hue preservation property (Quel-
lec et al., 2017). Fig. 11 reports hue-constrained sensitivity
heatmaps for all seven CNNs. It also reports heatmaps for h2,

14

9

10

9’ 9 10

Figure 10: Sequence labeling for the micromanipulator tool for one test video from CATARACTS: tool usage according to human experts is in black, automatic
predictions are in green. Areas surrounded by red circles are associated with images on the right. In images 9 and 9’, the viscoelastic cannula is falsely detected as
a micromanipulator. In image 10, a Rycroft cannula is falsely detected as a micromanipulator.

the second CNN (based on Inception-v4) added to the strong
classifier in the “all CNNs” experiment (where h1 is NASNet-
A). This figure shows that, in CATARACTS, CNNs do not con-
sider solely the tools, but also the anterior segment of the eye:
the lens, which is modified by tools, the cornea, which is tem-
porarily deformed by tools as they move, and the corneoscleral
junction, where tools are inserted. One explanation is that each
tool interacts differently with the eye and, therefore, analyzing
the eye structures helps differentiating tools. Another expla-
nation is that, in this dataset, the target labels are not related
to tool presence, but rather to tool usage. So CNNs must be
able to recognize whenever each tool is in contact with the eye.
This hypothesis is backed up by the observation that responses
from tissues are lower in Cholec80, where tool usage is sim-
ply defined as tool visibility. We notice, however, that the best
CNNs (NASNet-A and VGG-19) have sparser heatmaps and
that those heatmaps are more focused on the tools. Heatmaps
obtained for h1 (i.e NASNet-A) and h2 have been analyzed
jointly to assess their complementarity. Because the first im-
age was already classified well by NASNet-A, the heatmap for
h2 is empty: the detections we see at the corner are just ampli-
fied noise (heatmap intensities have been normalized between
0 and 255). Similarly, in the second image, the phacoemulsifier
handpiece at the center was detected well by NASNet-A, but
not the forceps on the left: h2 seems to focus on the forceps. In
the third image, we note that NASNet-A did not focus primarily
on the tool (it seemed disturbed by specular reflections) but h2
does. In the last image, we also note a more focused heatmap
for h2, compared to NASNet-A, although the grasper on the left
(which was correctly detected by h1) is not detected anymore.
So, overall, h1 and h2 are indeed complementary. And, clearly,
the heatmaps for Inception-v4 before and after a boosting step
are very different.

Because our joint “CNN+RNN” boosting algorithm relies on
the gradients of RNN predictions with respect to CNN predic-
tions [see Eq. (9)], sensitivity analysis is also useful for RNNs
in our case. These gradients are illustrated in a condensed form
in Fig. 12: given an RNN h′, this figure shows ∇φ,θ(h′), where:

∇φ,θ(h′) =
∑
V∈D

∑
t

∑
u

∂h′(Vu, φ)
∂pL(Vt, θ)

. (19)

For a lazy RNN, all coefficients outside the diagonal would be
zero. Here, we observe that the diagonal is not even always

dominant. This is particularly true for tools whose detection
performance increases greatly after RNN boosting, such as nee-
dle holders, suture needles or Cholec80’s scissors (see Tables 3
and 4): the gradients of RNN predictions for those tools with re-
spect to CNN predictions for other tools are very high. Clearly,
RNNs are not lazy and quite useful for this task.

7. Discussion and Conclusions

A solution for labeling tool usage in cataract and cholecys-
tectomy surgery videos has been presented. Following state-of-
the-art video analysis solutions, it relies on convolutional neu-
ral networks (CNNs) for analyzing each frame in the video and
on recurrent neural networks (RNNs) for analyzing the tem-
poral sequencing throughout the entire surgery, based on the
outputs of the CNNs. A novel framework for boosting a se-
quence labeler composed of CNNs and RNNs has been pre-
sented. The main motivation for this framework is the fact that
“CNN+RNN” labelers cannot be trained from end to end, for
complexity reasons. The framework allows to progressively im-
prove the CNN and RNN parts of the system by adding weak
classifiers (CNNs or RNNs) designed to improve the overall
classification accuracy of the join system. In particular, like the
theoretical end-to-end training solution, CNN training is super-
vised based on the outputs of the RNN block.

The proposed framework has several novelties. The main
novelty lies in the boosting algorithm. CNN boosting had been
proposed for multiclass classification problems (Moghimi et al.,
2016). We adapted it for multilabel classification, showed its
applicability to RNN boosting and, more importantly, intro-
duced CNN boosting supervised based on the outputs of the
RNN block. A second novelty lies in the proposed temporal se-
quence augmentation strategy: although very simple, it proved
to be quite effective (see Fig. 5).

The proposed framework is quite general and is likely appli-
cable outside the scope of surgery video analysis. However, it is
of particular relevance for this application because many tools
are very similar to one another (e.g. the cannulae or the forceps
— see Fig. 4) but they are often used in a predefined order:
using the temporal context (e.g. which tools have be used pre-
viously) is quite relevant for differentiating them. Therefore,
it seems particularly useful to guide CNN training or boost-
ing based on the temporal context. Experiments on two recent

15

Figure 11: Hue-constrained sensitivity analysis for multiple CNNs. The first three examples were taken from the the test set of CATARACTS. The last example was
taken from the the test set of Cholec80. h1 and h2 are the first two CNNs selected in the “all CNNs” experiment.

CATARACTS – all CNNsCATARACTS – 3 weakest CNNs

Cholec80 –
3 weakest CNNs

Cholec80 – all CNNs

Figure 12: Sensitivity analysis for h′1, the first added RNN in the two experiments based on joint “CNN+RNN” boosting: the “all CNNs” or “3 weakest CNNs”
experiments. Intensity is proportional to ∇φ,θ(h′1) [see Eq. (19)]: gray means zero, black means negative, white means positive. Rows represent φ, the label index
in RNN predictions. Columns represent θ, the label index in CNN predictions.

datasets (CATARACTS and Cholec80) for the task of tool usage
annotation demonstrated its very good performance: the mean
area under the ROC curve reaches up to mAz = 0.9961 over a
collection of 21 cataract surgery tools and up to mAz = 0.9939
over a collection of 7 cholecystectomy tools.

If we look into the details of the proposed boosting solu-
tion, we first note that CNN boosting alone is disappointing:
we found no significant difference between CNN boosting and
a weighted sum of independently trained CNNs (p = 0.2390
for Az, p = 0.7066 for AP), although the resulting architecture

is more lightweight. The ability to boost CNNs based on the
outputs of RNNs, on the other hand, leads to a significant im-
provement: joint “CNN+RNN” boosting is indeed significantly
better than sequential “CNN+RNN” boosting (p = 0.002679
for Az, p = 0.004047 for AP — see Table 5). Our explana-
tion is that, when the CNN part is boosted independently of
RNNs, much boosting effort is spent on trying to correct la-
beling errors, caused by previously selected CNNs, that RNNs
could easily correct based on the temporal context: using
temporally-filtered outputs to supervise boosting makes more

16

sense. These observations support our hypothesis that CNNs
should be trained to be complimentary to RNNs.

One advantage of the proposed approach is that its online
version, which relies on unidirectional RNNs, does not perform
significantly worse than its offline version, relying on bidirec-
tional RNNs (p = 0.05397 for Az, p = 0.07474 for AP — see
Table 5). With slightly better performance, the offline version
would be the preferred solution for report generation, surgical
workflow optimization and surgical skill assessment. The on-
line version, however, is the only valid solution for intraoper-
ative warning or recommendation generation, provided that it
is fast enough. Similarly to the bidirectional version (see Fig.
6), the online version relies on three weak CNNs: one based
on NASNet-A, one based on Inception-v4 and one based on
VGG-16. All three together, processing one frame takes 50.9
ms using one GeForce GTX 1080 Ti GPU by Nvidia (see Table
2). Videos of the CATARACTS dataset have a frame rate of 30
image per second (i.e. 33.3 ms per image). It means a faster
GPU would be required for real-time video analysis. Alterna-
tively, two GPUs can be used, as the CNN classifiers can be
run in parallel (GPU 1: NASNet-A→ 24.6 ms per image, GPU
2: Inception-v4 and VGG-16→ 26.3 ms per image). Note that
the use of median filters (with radii of 32 frames at most) de-
lays predictions by one second. In Cholec80, the frame rate is
1 image per second, so computation times are not an issue.

The proposed framework compares favorably with state-of-
the-art competing solutions (Twinanda et al., 2017; Hu and
Heng, 2017; Maršalkaitė et al., 2017). In terms of Az, it does
not differ significantly from the winner of the CATARACTS
challenge (Roychowdhury et al., 2017). However, it has the ad-
vantage of being more lightweight and, more importantly, of
allowing online video analysis.

This study has a few limitations. In particular, the same
dataset was used to train CNNs and RNNs. Because CNN pre-
dictions are likely better in the learning set than in the validation
and test sets, RNNs are trained under too favorable conditions,
which could lead to overfitting. Because the number of learn-
ing videos is limited, we decided to use all of them for training
CNNs and RNNs. We simply relied on early stopping to dis-
card overfitted configurations. Another limitation is that we did
not explore data rebalancing techniques (Sahu et al., 2017) or
weighted cost functions to deal with multi-label imbalance, as-
suming that boosting can deal with it satisfactorily.

In conclusion, an accurate solution for labeling tool usage in
surgery videos has been presented. In view of the good per-
formance, automatic surgery monitoring can now be envisaged
seriously (Charrière et al., 2017). We are currently exploring
solutions to provide useful feedbacks to the surgeon, based on
information collected during the surgery. Support to beginners
is a particular relevant application, but many more can be envi-
sioned for the near future.

References
Al Hajj, H., Lamard, M., Charrière, K., Cochener, B., Quellec, G., 2017. Sur-

gical tool detection in cataract surgery videos through multi-image fusion
inside a convolutional neural network. In: Proc IEEE EMBC. Jeju Island,
Korea.

Bodenstedt, S., Wagner, M., Katić, D., Mietkowski, P., Mayer, B., Kenngott, H.,
Müller-Stich, B., Dillmann, R., Speidel, S., Feb. 2017. Unsupervised tem-
poral context learning using convolutional neural networks for laparoscopic
workflow analysis. Tech. Rep. arXiv:1702.03684 [cs], Karlsruhe Institute of
Technology.

Bouget, D., Allan, M., Stoyanov, D., Jannin, P., 2017. Vision-based and marker-
less surgical tool detection and tracking: a review of the literature. Med
Image Anal 35, 633–654.

Cadène, R., Robert, T., Thome, N., Cord, M., Oct. 2016. M2cai workflow
challenge: convolutional neural networks with time smoothing and hidden
Markov model for video frames classification. Tech. Rep. arXiv:1610.05541
[cs], Université de Pierre et Marie Curie.

Charrière, K., Quellec, G., Lamard, M., Martiano, D., Cazuguel, G., Coatrieux,
G., Cochener, B., Nov. 2017. Real-time analysis of cataract surgery videos
using statistical models. Multimed Tools Appl 76 (21), 22473–22491.

Chen, H., Chen, J., Hu, R., Chen, C., Wang, Z., Mar. 2017. Action recognition
with temporal scale-invariant deep learning framework. China Communica-
tions 14 (2), 163–172.

Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y., Oct. 2014. On the
properties of neural machine translation: Encoder-decoder approaches. In:
Proc SSST. Doha, Qatar, pp. 103–111, arXiv: 1409.1259.

Dergachyova, O., Bouget, D., Huaulmé, A., Morandi, X., Jannin, P., Jun. 2016.
Automatic data-driven real-time segmentation and recognition of surgical
workflow. Int J Comput Assist Radiol Surg 11 (6), 1081–1089.

Dipietro, R., Lea, C., Malpani, A., Ahmidi, N., Vedula, S., Lee, G., Lee, M.,
Hager, G., Oct. 2016. Recognizing surgical activities with recurrent neural
networks. In: Proc MICCAI. Athens, Greece, pp. 551–558.

Donahue, J., Hendricks, L., Rohrbach, M., Venugopalan, S., Guadarrama, S.,
Saenko, K., Darrell, T., Apr. 2017. Long-term recurrent convolutional net-
works for visual recognition and description. IEEE Trans Pattern Anal Mach
Intell 39 (4), 677–691.

Feng, Y., Li, Y., Luo, J., Dec. 2016. Learning effective gait features using
LSTM. In: Proc IEEE ICPR. Cancun, Mexico, pp. 325–330.

Freund, Y., Schapire, R. E., Aug. 1997. A Decision-theoretic generalization of
on-line learning and an application to boosting. J Comput Syst Sci 55 (1),
119–139.

Friedman, J. H., Oct. 2001. Greedy function approximation: A gradient boost-
ing machine. Ann Stat 29 (5), 1189–1232.

Gammulle, H., Denman, S., Sridharan, S., Fookes, C., Mar. 2017. Two stream
LSTM: A deep fusion framework for human action recognition. In: Proc
IEEE WACV. Santa Rosa, CA, USA, pp. 177–186.

Gao, Y., Rong, W., Shen, Y., Xiong, Z., Jul. 2016. Convolutional neural net-
work based sentiment analysis using Adaboost combination. In: Proc IEEE
IJCNN. Vancouver, Canada, pp. 1333–1338.

He, K., Zhang, X., Ren, S., Sun, J., Jun. 2016a. Deep residual learning for
image recognition. In: Proc CVPR. Las Vegas, NV, USA, pp. 770–778.

He, K., Zhang, X., Ren, S., Sun, J., Oct. 2016b. Identity mappings in deep
residual networks. In: Proc ECCV. Lecture Notes in Computer Science.
Springer, Cham, Amsterdam, The Netherlands, pp. 630–645.

Hochreiter, S., Schmidhuber, J., Nov. 1997. Long short-term memory. Neural
Comput 9 (8), 1735–1780.

Hu, X., Heng, P.-A., Nov. 2017. Surgical tool annotation in cataract surgery
videos. Tech. rep., Chinese University of Hong Kong.

Huang, G., Liu, Z., Maaten, L. v. d., Weinberger, K. Q., Jul. 2017. Densely con-
nected convolutional networks. In: Proc IEEE CVPR. Honolulu, HI, USA,
pp. 2261–2269.

Ji, S., Xu, W., Yang, M., Yu, K., Jan. 2013. 3D convolutional neural networks
for human action recognition. IEEE Trans Pattern Mach Intell 35 (1), 221–
231.

Jin, Y., Dou, Q., Chen, H., Yu, L., Heng, P.-A., Oct. 2016. EndoRCN: recurrent
convolutional networks for recognition of surgical workflow in cholecystec-
tomy procedure video. Tech. rep., The Chinese University of Hong Kong.

Khorrami, P., Le, P., Brady, K., Dagli, C., Huang, T., Sep. 2016. How deep
neural networks can improve emotion recognition on video data. In: Proc
IEEE ICIP. Phoenix, AZ, USA, pp. 619–623.

Krizhevsky, A., Sutskever, I., Hinton, G. E., Dec. 2012. ImageNet classification
with deep convolutional neural networks. In: Proc NIPS. Vol. 25. Granada,
Spain, pp. 1097–1105.

Lalys, F., Jannin, P., May 2014. Surgical process modelling: a review. Int J
Comput Assist Radiol Surg 9 (3), 495–511.

Lea, C., Vidal, R., Hager, G. D., May 2016a. Learning convolutional action

17

primitives for fine-grained action recognition. In: Proc IEEE ICRA. Stock-
holm, Sweden, pp. 1642–1649.

Lea, C., Vidal, R., Reiter, A., Hager, G., Oct. 2016b. Temporal convolutional
networks: a unified approach to action segmentation. In: Proc ECCV. Ams-
terdam, The Netherlands, pp. 47–54.

Maršalkaitė, G., Bialopetravičius, J., Armaitis, J., Nov. 2017. Towards robust
tool identification for cataract surgery. Tech. rep., Oxipit, UAB.

Mason, L., Baxter, J., Bartlett, P. L., Frean, M. R., Dec. 1999. Boosting algo-
rithms as gradient descent. In: Proc NIPS. Vol. 12. Denver, CO, USA, pp.
512–518.

Mishra, K., Sathish, R., Sheet, D., Jul. 2017. Learning latent temporal connec-
tionism of deep residual visual abstractions for identifying surgical tools in
laparoscopy procedures. In: Proc IEEE CVPR Works. Honolulu, HI, USA,
pp. 2233–2240.

Moghimi, M., Saberian, M., Yang, J., Li, L.-J., Vasconcelos, N., Belongie, S.,
Sep. 2016. Boosted convolutional neural networks. In: Proc BMVC. York,
UK.

Primus, M., Putzgruber-Adamitsch, D., Taschwer, M., Münzer, B., El-
Shabrawi, Y., Böszörmenyi, L., Schoeffmann, K., Feb. 2018. Frame-based
classification of operation phases in cataract surgery videos. In: Proc MMM.
Vol. 10704 LNCS. Bangkok, Thailand, pp. 241–253.

Quellec, G., Charrière, K., Boudi, Y., Cochener, B., Lamard, M., Jul. 2017.
Deep image mining for diabetic retinopathy screening. Med Image Anal 39,
178–193.

Quellec, G., Lamard, M., Cochener, B., Cazuguel, G., Dec. 2014. Real-time
segmentation and recognition of surgical tasks in cataract surgery videos.
IEEE Trans Med Imaging 33 (12), 2352–2360.

Quellec, G., Lamard, M., Cochener, B., Cazuguel, G., Apr. 2015. Real-time
task recognition in cataract surgery videos using adaptive spatiotemporal
polynomials. IEEE Trans Med Imaging 34 (4), 877–887.

Raju, A., Wang, S., Huang, J., Oct. 2016. M2CAI surgical tool detection chal-
lenge report. Tech. rep., University of Texas at Arlington.

Roychowdhury, S., Bian, Z., Vahdat, A., William G., M., Nov. 2017. Identi-
fication of surgical tools using deep neural networks. Tech. rep., D-Wave
Systems Inc.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., Fei-Fei, L., Apr. 2015.
ImageNet large scale visual recognition challenge. Int J Comput Vis 115 (3),
211–252.

Sahu, M., Mukhopadhyay, A., Szengel, A., Zachow, S., Oct. 2016.
Tool and phase recognition using contextual CNN features. Tech. Rep.
arXiv:1610.08854 [cs.CV], Zuse Institute Berlin.

Sahu, M., Mukhopadhyay, A., Szengel, A., Zachow, S., Jun. 2017. Addressing
multi-label imbalance problem of surgical tool detection using CNN. Int J
Comput Assist Radiol Surg 12 (6), 1013–1020.

Schuster, M., Paliwal, K. K., Nov. 1997. Bidirectional recurrent neural net-
works. IEEE Trans Signal Process 45 (11), 2673–2681.

Shen, D., Wu, G., Suk, H.-I., Jun. 2017. Deep learning in medical image anal-
ysis. Annu Rev Biomed Eng 19, 221–248.

Simonyan, K., Vedaldi, A., Zisserman, A., Apr. 2014. Deep inside convolu-
tional networks: visualising image classification models and saliency maps.
In: ICLR Workshop. Calgary, Canada.

Simonyan, K., Zisserman, A., Dec. 2014. Two-stream convolutional networks
for action recognition in videos. In: Proc NIPS. Vol. 27. Montreal, Canada,
pp. 568–576.

Simonyan, K., Zisserman, A., May 2015. Very deep convolutional networks for
large-scale image recognition. In: Proc ICLR. San Diego, CA, USA.

Singh, B., Marks, T., Jones, M., Tuzel, O., Shao, M., Jan. 2016. A multi-stream
bi-directional recurrent neural network for fine-grained action detection. In:
Proc IEEE CVPR. Las Vegas, NV, USA, pp. 1961–1970.

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., Feb. 2017. Inception-v4,
Inception-ResNet and the impact of residual connections on learning. In:
Proc AAAI. San Francisco, CA, USA, pp. 4278–4284.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A., Jun. 2015a. Going deeper with convolutions.
In: Proc IEEE CVPR. Boston, MA, USA, pp. 1–9.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., Dec. 2015b.
Rethinking the Inception architecture for computer vision. Tech. Rep.
arXiv:1512.00567 [cs], Google.

Tao, L., Zappella, L., Hager, G. D., Vidal, R., Sep. 2013. Surgical gesture seg-
mentation and recognition. In: Proc MICCAI. Nagoya, Japan, pp. 339–346.

Tran, D., Sakurai, R., Yamazoe, H., Lee, J.-H., 2017. Phase segmentation meth-
ods for an automatic surgical workflow analysis. Int J Biomed Imaging 2017,
1985796.

Trikha, S., Turnbull, A. M. J., Morris, R. J., Anderson, D. F., Hossain, P., Apr.
2013. The journey to femtosecond laser-assisted cataract surgery: new be-
ginnings or a false dawn? Eye (Lond) 27 (4), 461–473.

Twinanda, A. P., Mutter, D., Marescaux, J., de Mathelin, M., Padoy, N., Oct.
2016. Single- and multi-task architectures for surgical workflow challenge
at M2cai 2016. Tech. Rep. arXiv:1610.08844 [cs], University of Strasbourg.

Twinanda, A. P., Shehata, S., Mutter, D., Marescaux, J., de Mathelin, M., Padoy,
N., Jan. 2017. EndoNet: A deep architecture for recognition tasks on laparo-
scopic videos. IEEE Trans Med Imaging 36 (1), 86–97.

Walach, E., Wolf, L., Oct. 2016. Learning to count with CNN boosting. In: Proc
ECCV. Vol. 9906. Amsterdam, The Netherlands, pp. 660–676.

Wang, X., Gao, L., Song, J., Shen, H., Apr. 2017. Beyond frame-level CNN:
saliency-aware 3D CNN with LSTM for video action recognition. IEEE Sig-
nal Processing Letters 24 (4), 510–514.

Zappella, L., Béjar, B., Hager, G., Vidal, R., Oct. 2013. Surgical gesture classi-
fication from video and kinematic data. Med Image Anal 17 (7), 732–745.

Zhang, F., Du, B., Zhang, L., Mar. 2016. Scene classification via a gradient
boosting random convolutional network framework. IEEE Trans Geosci Re-
mote Sens 54 (3), 1793–1802.

Zia, A., Castro, D., Essa, I., Oct. 2016. Fine-tuning deep architectures for sur-
gical tool detection. Tech. rep., Georgia Institute of Technology.

Zoph, B., Vasudevan, V., Shlens, J., Le, Q. V., Jul. 2017. Learning transferable
architectures for scalable image recognition. arXiv:1707.07012 [cs, stat].

18

	1 Introduction
	2 State of the Art
	2.1 Deep Learning for Video Analysis
	2.2 Temporal Analysis of Surgery Videos
	2.3 Deep Learning for Surgical Tool Detection
	2.4 Proposed Solution

	3 ``CNN+RNN'' Networks
	3.1 Notations
	3.2 RNNs Processing CNN Predictions
	3.3 RNNs on Long Video Sequences
	3.4 Training Complexity for ``CNN+RNN'' Networks

	4 Boosted ``CNN+RNN'' Networks (see Fig. 3)
	4.1 Context
	4.2 Gradient Boosting Machine
	4.3 Loss Function for Boosting Neural Networks
	4.4 Efficiently Training Neural Networks as Weak Learners
	4.5 Boosting CNNs inside a ``CNN+RNN'' Network
	4.6 Joint CNN and RNN Boosting

	5 Surgery Video Datasets
	5.1 CATARACTS Dataset
	5.2 Cholec80 Dataset
	5.3 Training and Validation Subsets

	6 Experiments
	6.1 Architectures
	6.2 Performance of Boosted Video Labelers
	6.3 Comparisons with Baseline Solutions
	6.4 Sensitivity Analysis of the Boosted Video Labelers

	7 Discussion and Conclusions

