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Abstract

Parkinson’s disease (PD) is the most common neurological disorder, after
Alzheimer’s disease, and is characterized by a long prodromal stage lasting
up to 20 years. As age is a prominent factor risk for the disease, next years
will see a continuous increment of PD patients, making urgent the develop-
ment of efficient strategies for early diagnosis and treatments. We propose
here a novel approach based on complex networks for accurate early diagnoses
using magnetic resonance imaging (MRI) data; our approach also allows us to
investigate which are the brain regions mostly affected by the disease. First
of all, we define a network model of brain regions and associate to each re-
gion proper connectivity measures. Thus, each brain is represented through
a feature vector encoding the local relationships brain regions interweave.
Then, Random Forests are used for feature selection and learning a compact
representation. Finally, we use a Support Vector Machine to combine com-
plex network features with clinical scores typical of PD prodromal phase and
provide a diagnostic index. We evaluated the classification performance on
the Parkinson’s Progression Markers Initiative (PPMI) database, including a
mixed cohort of 169 normal controls (NC) and 374 PD patients. Our model
compares favorably with existing state-of-the-art MRI approaches. Besides,
as a difference with previous approaches, our methodology ranks the brain
regions according to disease effects without any a priori assumption.
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1. Introduction1

Parkinson’s disease (PD) is a heterogeneous progressive neurological dis-2

order, firstly described almost two centuries ago, basically related with early3

death of dopaminergic neurons in the substantia nigra and characterized by4

both motor and non-motor features (Gibb and Lees, 1988; Jankovic, 2008). It5

is recognized that age is the greatest risk factor for PD, its incidence reaches6

a maximum at about 80 years of age, thus the rising life expectancy is ex-7

pected to increase the number of patients at more than 30% by 2030 (Dorsey8

et al., 2007).9

The slow progression is one of the most important features of PD. The10

disease course can be roughly separated in two phases; the first prodromal,11

usually named “premotor”, phase can last up to 20 years and accounts for12

symptoms such as: impaired olfaction, constipation, depression, rapid eye13

movement sleep behavior disorder (RBD) and excessive daytime sleepiness14

(EDS) (Singaram et al., 1995; Gagnon et al., 2002; Chaudhuri et al., 2006).15

In fact, these symptoms could double the individual’s risk of developing the16

disease.17

The second phase is early characterized by insurgence of typical bradyki-18

nesia, tremor and fatigue; then in the advanced stages by psychosis, dyspha-19

gia, freezing of gait, falls and postural instability (Friedman and Friedman,20

1993; Huber et al., 1986). It is known that the average latency between the21

onset of prodromal and motor symptoms is about 12 − 14 years (Postuma22

et al., 2012). Thus, it would be of paramount importance the development23

of diagnostic strategies able to detect the disease in its prodromal phase and24

outline efficient markers. As shown in (Kalia and Lang, 2015), a prominent25

role in early diagnosis should be played by RBD, EDS, Hyposmia, depression26

and mild cognitive impairment (MCI) which are typical of the non-motor,27

prodromal or very early, PD phase, see Figure 1.28

For what concerns imaging, candidate markers include positron emission29

tomography (PET) (Antonini et al., 1997; Hansen et al., 2016; Masdeu, 2017)30

or single photon emission computed tomography (SPECT) (Hirschauer et al.,31

2015; Suwijn et al., 2015; Adeli et al., 2017) methods. In fact, these method-32

ologies can accurately detect PD. However, these methodologies are based33

on the detection of substantial losses of dopaminergic neurons, for example34

in the substantia nigra, whilst it would be desirable to diagnose the disease35
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Figure 1: PD diagnosis is related to the onset of motor symptoms (time 0). The symptoms
characterizing the prodromal phase and the years immediately following the diagnosis are:
Rapid eye movement sleep Behavior Disorder (RBD), Excessive Daytime Sleepiness (EDS),
Hyposmia (a reduced ability to smell and to detect odors) and mild cognitive impairment
(MCI). Accordingly, these symptoms are usually enclosed in models trying to forecast the
disease onset.

before this degeneration has occurred in order to enable early diagnosis be-36

fore the onset of motor symptoms. With this regard, it should be taken into37

account that PD patients could lose up to 80% of dopamine before symptoms38

appear (Miller and O’Callaghan, 2015).39

With this regard, the definition of new markers will play a fundamen-40

tal role. It is clear that a single marker will not be able to allow accurate41

diagnosis and monitor disease progression. Instead, a combination of dif-42

ferent markers should provide a more reasonable approach. As previously43

mentioned, PET and SPECT measures are very effective in the motor phase,44

and they may support the diagnosis as well as monitor disease severity and45

progression. Transcranial sonography is another promising approach whose46

clinical applicability is still controversial (Bouwmans et al., 2013; Pilotto47

et al., 2015).48

MRI markers could monitor structural changes in the brain and suggest49

increased risk for PD (Salvatore et al., 2014) or be employed for differential50

diagnosis of PD syndromes (Duchesne et al., 2009; Marquand et al., 2013;51

Chagas et al., 2017). For example, voxel based morphometry (VBM) has52

revealed significant gray matter reductions in PD patients with dementia53

(Summerfield et al., 2005); MRI has also shown progressive atrophy in PD,54

an effect already detectable in the early stage of the disease (Beyer et al.,55
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2007; Tessa et al., 2014). Thus, it would seem that there is still room to56

define effective MRI markers which outline the disease process before the57

death of dopaminergic neurons has triggered irreversible damages.58

Several works have investigated the applicability of machine learning59

strategies to MRI data with fluctuating outcomes. (Focke et al., 2011) tried60

without success to use VBM features for individual classification using a Sup-61

port Vector Machine (SVM). However, (Cherubini et al., 2014) demonstrated62

that VBM features combined with diffusion tensor imaging can effectively63

distinguish PD patients from subjects with progressive supranuclear palsy.64

More recently, a synergistic paradigm combining Kohonen self organizing65

map and SVM claimed that MRI features can reach accurate classification66

performances including subjects with no dopaminergic deficit (Singh and67

Samavedham, 2015). Feature selection strategies seem to play a relevant role68

to define imaging markers accurately distinguishing PD patients from con-69

trols (Adeli et al., 2016). These different approaches share a not negligible70

feature, all of them rely on the supervised selection of PD-related regions of71

interest to obtain statistically significant associations between anatomy and72

clinical phenotype. Although these approaches reach excellent results, they73

can be limiting as they prevent the investigation of novel brain regions.74

In this paper, we use MRI data from the Parkinson’s Progression Markers75

Initiative (PPMI) to extract imaging markers and learn an accurate classifi-76

cation model. With this goal, we introduce a brain connectivity model basing77

on gray matter and white matter voxel distribution. The proposed approach78

adopts a brain patch segmentation, thus it avoids common drawbacks of79

voxel-wise approaches, e.g. the lack of significance due to high dimensional-80

ity of the feature space. Besides, this methodology does not depend on fully-81

automated brain segmentation algorithms, whose accuracy could be poor,82

for region of interest definition. We measure how different brain regions are83

correlated and for each region we measure simple topological quantities; ac-84

cordingly, we build a model including atrophy effects locally induced by the85

disease and accounting for whole-brain modifications thanks to the network86

framework.87

Complex network approaches have already proven their effectiveness in88

several cases, also in neuroimaging applications. MRI provides a useful base89

of knowledge when considering the topological organization of the brain.90

In fact, findings from structural (without excluding the functional) graphs91

point to a loss of highly connected areas in several brain diseases (Tijms92

et al., 2013). Graph theory provides two important methodological insights.93
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Firstly, it associates to each node quantitative measurements characterizing94

its role and importance within the network; secondly, it enables a direct95

description of the whole brain from a global perspective, thus letting emerge96

properties which affect the brain as a system (Bullmore and Sporns, 2009).97

Several examples can be found for Alzheimer’s disease. (Stam et al.,98

2007) investigated small-worldness properties and found that diseased brains99

show a loss of connectivity. Also, the topological organization of the brain100

itself could be used as a marker; in fact, an increment of the shortest path101

length could denote an impaired organization (Lo et al., 2010). Another102

approach to detect the impairment of connectivity consists in measuring103

node-related quantities, as for example the rich-club property (Daianu et al.,104

2014). Finally, in previous works (La Rocca et al., 2017; Amoroso et al.,105

2017), we showed how complex network measures can be used to character-106

ize Alzheimer’s disease. Of course, PD has its specificities, for example it107

cannot be considered a disconnectivity disease. However, as previously men-108

tioned structural changes could be useful markers. It would be interesting109

to evaluate whether PD patients show significant brain structural changes,110

both locally and globally, and whether complex network measures can cap-111

ture these effects. In this work, basing on our previously mentioned works, we112

introduced a novel machine learning approach to combine network and clin-113

ical features within a unique classification score. Besides, we demonstrated114

its effectiveness on PD; as a matter of fact, we could not find any PD study115

investigating the adoption of complex network measures.116

This work offers three main contributions: (i) we propose an unsupervised117

general methodology to model brain connectivity for both healthy subjects118

and patients; (ii) we explore which regions are significantly affected by the119

disease; (iii) we propose a novel learning strategy to combine network and120

clinical features; (iv) we define an accurate diagnostic tool for PD diagnosis121

basing only on MRI features; (v) we highlight the existence of an optimal122

scale to study PD. It is worth mentioning that previous approaches exploited123

a priori definition of regions of interest within the brain and therefore they124

could suffer a loss of information. In brief, the proposed approach can learn125

an accurate model to discriminate controls and patients and, eventually, de-126

tects possible novel imaging markers of the disease. Therefore, the use of127

MRI features becomes strategic for the development of early diagnosis tools128

or a better characterization of PD in its early stages.129
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2. Materials130

Data used in preparation of this work was obtained from the Parkinson’s131

progression markers initiative (PPMI) database1 (Marek et al., 2011). MRI132

data acquired by the PPMI for this study consisted of MPRAGE T1 brain133

scans from 3T SIEMENS MAGNETOM Trio scanners. Images were acquired134

with the following parameters: repetition time 2300 ms, echo time 2.98 ms,135

flip angle 9◦ and voxel size 1× 1× 1 mm3, so that the equivalence 1 voxel =136

1 mm3 holds.137

The PPMI is a clinical study whose main goal is the identification of PD138

markers in order to enhance the comprehension of the disease and eventually139

help the development of disease modifying therapies. The PPMI includes a140

mixed cohort of normal controls (NC) and PD patients; the database also141

includes subjects without dopaminergic deficits, namely SWEDD, that are142

disregarded in this work. Data from PPMI comes from different worldwide143

sites, along with structural MRI it is possible to find other imaging modalities144

such as SPECT or demographic and clinical metadata, such as age, gender145

and cognitive scores. NC subjects are both age- and gender-matched with146

the PD patients. It is worth noting that PD patients are de novo patients in147

that they are unmedicated, an important aspect as PD therapies could not148

have the desired effect of modifying the possible markers. More importantly,149

PD patients enrolled are mostly at the first stages of the disease, according to150

the Hoehn and Yahr scale (Hoehn et al., 1998); in fact, (Marek et al., 2011)151

explains that 98% of the subjects affected by the disease is in stages 1 and 2152

(over 5), corresponding to mild inconvenient without disabling symptoms.153

The database consisted of two populations including respectively 107 male154

and 62 female NC, for a total of 169 subjects, and 243 male and 131 female155

patients, for an overall amount of 374 PD subjects. The populations are156

matched for age (60.2 ± 11.5 for NC and 61.6 ± 9.8 for PD). In the fol-157

lowing Table 1 the baseline values for the Epworth Sleepiness Scale (ESS),158

the Geriatric Depression Scale (GDS), the Montreal Cognitive Assessment159

(MoCA), the Movement Disorder Society Unified Parkinson’s Disease Rating160

Scale (MDS-UPDRS) and the Rapid eye movement sleep Behavior Disorder161

(RBD) are enlisted.162

ESS is a standardized simple measure for sleep propensity (Johns et al.,163

1991). Daytime sleepiness is usually associated to sleep disorders, but it can164

1http://www.ppmi-info.org/data.
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Diagnosis Age ESS GDS MDS-UPDRS MoCA RBD
PD (374) 61.6± 9.8 3 [2, 6] 2 [1, 3] 29 [18, 41] 27 [26, 29] 5 [3, 8]
NC (169) 60.2± 11.5 2 [1, 4]** 1 [0, 2]** 27 [17, 37]* 28 [27, 29]** 5 [3, 8]

Table 1: Demographic and clinical information. Mean age and standard deviation are
given, for other indicators with asymmetric distributions medians and interquartile ranges
are preferred. Significant differences between normal controls (NC) and Parkinson’s disease
(PD) are reported with the Kruskal-Wallis p-value (* for p < 0.05 and ** for p < 0.01).

also be a symptom of prodromal PD phase along with RBD. Like constipation165

and olfactory disturbance, RBD can precede the development of the motor166

signs of Parkinson’s disease and longitudinal data suggest that RBD heralds167

the onset of motor symptoms in up to 40% of patients (Chaudhuri et al.,168

2006). RBD is measured according to the screening questionnaire proposed169

in (Stiasny-Kolster et al., 2007). ESS and RBD scores lie within ranges of170

normalcy for both NC and PD subjects, however PD patients showed a small171

but significant increment in ESS (Kruskal-Wallis p-value < 0.01).172

GDS score is based on a questionnaire of 30 items with binary outputs173

(Yesavage and Sheikh, 1986). For each affirmative answer 1 point is scored;174

healthy people should score 5±4, mildly depressed and very depressed people175

15±6 and 23±5 respectively. In particular, for the present study, the shorter176

form was used (Yesavage et al., 2000). Accordingly, the subjects of the study177

were neither mildly nor very depressed, nevertheless PD patients showed a178

significantly higher GDS score (Kruskal-Wallis p-value < 0.01).179

The motor symptoms are taken into account by the Movement Disor-180

der Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz181

et al., 2008). It is important to recall how the MDS-PD criteria assign a cen-182

tral role to motor symptoms to define clinical PD (Postuma et al., 2015); how-183

ever, also non-motor manifestations are present in many patients so that the184

related indicators can play a fundamental role for diagnosis, even though they185

cannot capture the complexity of this heterogeneous disease. As expected,186

MDS-UPDRS significantly distinguishes (Kruskal-Wallis p-value < 0.05) the187

NC and PD cohorts.188

Mild cognitive impairment (MCI) is a symptom commonly found in PD189

patients; it usually occurs with the onset of motor symptoms and may be a190

harbinger of dementia. MCI condition could be related to early PD symp-191

toms, such as RBD, in any case it is known that it may be found in up to192

80% of long term PD patients (Litvan et al., 2012). The Montreal Cognitive193

Assessment (MoCA) index is the preferred measure for accurate screening of194
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cognition in PD (Dalrymple-Alford et al., 2010). A final MoCA score of 26195

and above is considered normal: PD and NC cohorts of this study resulted196

normal on average with 27.0 ± 2.3 and 28 ± 1 respectively. A small but197

significant difference was observed (Kruskal-Wallis p-value < 0.01).198

3. Methods199

The proposed approach aims at using MRI data to extract novel and effi-200

cient PD markers for early diagnosis. MRI scans from PPMI were processed201

to be both intensity and spatially normalized. Then, we introduced a con-202

nectivity model for each brain and obtained a feature representation using203

measures derived from the network description. Finally, we used the fea-204

ture representation to learn a supervised classification model within a nested205

cross-validation framework. Besides, as the NC and PD classes are not bal-206

anced, we performed a stratified cross-validation by granting for each round207

that the same number of subjects was sampled for the two classes. The clas-208

sification consists of three distinct steps: firstly, Random Forest classifiers209

(Breiman, 2001) are used as a wrapper for feature selection; then, the im-210

portant features are used to feed, within the same cross-validation cycle, a211

second RF classifier in order to obtain a classification score for each subject;212

finally, an SVM classifier (Cortes and Vapnik, 1995) combines these scores213

and the other clinical features to discriminate the NC and PD classes. A214

schematic overview of the method is shown in the following Figure 2.215

The main goal of the method is to provide a classification score for PD.216

Besides, the methodology can be used to investigate which regions are mostly217

affected by the disease and rank them according to statistical significance.218

3.1. Image processing and network construction219

MRI scans were skull stripped and aligned with an affine registration us-220

ing the FSL library developed by the Oxford Centre for Functional MRI of221

the Brain (FMRIB), specifically the Brain Extraction Tool (BET) (Smith,222

2002) and the FMRIB’s Linear Image Registration Tool (FLIRT) (Jenkinson223

and Smith, 2001; Jenkinson et al., 2002) were employed. Both the proce-224

dures were performed with default parameters, the reference image used for225

registration was the T1 MNI152 template with 1 × 1 × 1 mm3 voxel size.226

Then, the scans were segmented in rectangular non overlapping boxes (from227

now onwards patches) of volume V = l1 × l2 × l3 using the medial longitu-228

dinal fissure to separate the left and right hemispheres. Accordingly, each229
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Figure 2: Methodology flowchart. MRI scans are processed to obtain a network repre-
sentation, in particular they are preliminarily registered to the MNI152 brain template
with an affine transformation. Then, for each node several features are computed and a
feature representation is obtained. These features evaluate the node importance within
the networks. The most informative features are selected with Random Forest wrapper
and summarized in a classification score, then a Support Vector Machine combines these
score with clinical features to distinguish NC and PD groups. The entire classification
process is performed in 10-fold cross-validation.

hemisphere was divided in an equal number of patches. These patches were230

considered the nodes of a weighted network having as weights the pairwise231

Pearson’s correlation measured between each pair of nodes throughout the232

whole brain.233

The number of patches, a brain can be divided into, depends on the234

volume V . As typical normalized volumes of substantia nigra range from 153235

to 221 mm3 (Kwon et al., 2012), we chose V = 125 mm3 with l1 = l2 = l3 = 5236

mm. Thus, the resulting networks consisted of 12219 nodes, each node of237

the network consisting of a patch including 125 voxels. To evaluate the238

presence of a link between two nodes we represented each patch through239

a 125−dimensional vector and measured the pairwise Pearson’s correlation.240

This measure emphasizes how similar two patches are, indeed, two patches241

are highly correlated if, voxel by voxel, their gray levels are similar and242

therefore if, spatially the distributions of white matter, gray matter and243

cerebrospinal fluid (corresponding to voxel intensities of decreasing intensity)244

are similar as well.245

Correlations were measured in absolute value, thus disregarding left-right246

symmetries, but keeping intact the informative content about structural mod-247

ifications.248
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Thus, for each subject we introduced a complex network model. This249

model was investigated with measures borrowed by graph theory, particularly250

concerning weighted graphs. In order to remove noisy connections and avoid251

as far as possible the loss of strategical links, we thresholded the networks252

disregarding connections corresponding to less than moderate correlations253

(|r| < 0.3). A study on how the threshold affects the capability of the254

network features to reveal pathological changes is reported in ??.255

3.2. Feature representation256

The underlying hypothesis of the proposed approach is that structural257

changes of the brain, measured by correlations, affect the connectivity pat-258

terns. We expect that these changes mostly concern (i) the intensity of the259

connections of a node, (ii) the number of connections a node has and (iii)260

which nodes it is connected with.261

The first assumption holds because atrophic changes affecting a brain262

region tend to weaken the correlations of that specific region with other263

healthy GM/WM regions and enforce correlations with other atrophic regions264

or regions containing mostly CSF. As GM, WM and CSF are not evenly265

distributed, these changes should be detectable. The second assumption266

stands with the first one; as the intensity of connections changes, the number267

of connections must change too. Finally, the third assumption is a direct268

consequence of the first two: modifying the intensity of connections and the269

number of connections is equivalent to remove some links and create new270

ones. Accordingly, the organization itself of the networks should change;271

these effects can be detected with some specific complex network measures.272

The intensity of connections of a network is, by definition, the strength273

of the network nodes. In order to detect how these structural changes of the274

brain are locally distributed, we considered the strength si of each node i of275

the network, i. e. the intensity of connections of a single patch.276

Strength provides insight on the intensity of the connections of a partic-277

ular brain region, however without taking into account if the number of con-278

nections is preserved. Of course, this second aspect should not be neglected,279

in fact it is in principle, possible, that a node i preserves its strength even280

losing or acquiring some connections, provided that the sum of the weights281

remains unchanged. Thus, to detect this effect, we measured, in addition282

to the strength, the inverse participation ratio Y −1i which evaluates how un-283

evenly the weights of the links of the node i are distributed (Menichetti et al.,284

2014):285
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Yi =
N∑
j=1

(
wij

si

)2

. (1)

to detect variations in brain connectivity among nodes with the same286

degree k, which is the number of connections existing upon a node, we eval-287

uated also the conditional values of strength s(k) and inverse participation288

ratio Y −1(k) for each subject and for each degree k ranging from 1 to 12219:289

s(k) =
1

Nk

N∑
i=1

siδ(ki, k); (2)

Y (k) =
1

Nk

N∑
i=1

Yiδ(ki, k); (3)

where Nk is node number having degree k and δ is the Kronecker function290

that is 1 when a node i has degree k and 0 otherwise. These measures291

relate the intensity of the connections and their importance in the degree292

distribution of the single subject networks. Finally, to better capture inter-293

subject variations we considered the degree distribution of the whole training294

cohort kglobal, an array whose elements kglobali indicate the number of links295

connected to a node i over all the training subjects and we obtained the296

previous 4 quantities s Y −1 s(k) and Y −1(k) weighing them on the global297

degree kglobal and thus according to an overall perspective:298

s′i =
N∑
j=1

wijk
global
i ; (4)

Y ′i =
N∑
j=1

(
wij

si

)2

kglobali ; (5)

s′(k) =
1

Nk

N∑
i=1

s′iδ(ki, k); (6)

Y ′(k) =
1

Nk

N∑
i=1

Y ′i δ(ki, k). (7)

Thus, we obtained a 8-dimensional feature representation: s, Y −1, s′ and299

Y ′−1 for each node and s(k), Y −1(k), s′(k) and Y ′−1(k) for each degree.300
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3.3. Feature selection and Classification301

Removing null mean and variance features and highly correlated features302

with a threshold of 0.7 from the feature representation obtained, 4048 fea-303

tures remain. For the feature reduction, we chose a moderate correlation304

threshold in order to reduce the great mole of features without losing in-305

formation. Using all the original features as input into Random Forest, be-306

sides being computationally intensive and time consuming, would not allow307

us to reduce high dimensionality of the model to increase its generalization308

and give a deep insight into underlying mechanisms. After the first feature309

reductions the still elevated dimensionality of the model required a higher310

future selection level. There are three distinct approaches one could choose311

to tackle this task (Saeys et al., 2007): filter methods are fast and scalable,312

but they ignore possible interactions among the features; wrapper methods313

are computationally intensive in that they explore the space of features by314

evaluating random subsets and using supervised classifiers to find optimal315

configurations, but they are able to take into account feature interactions;316

embedded techniques are those for which the search for best discriminating317

features is built within the model.318

We chose a hybrid approach in that we used Random Forests for feature319

selection but not for the model. Random Forests are an ensemble of clas-320

sification trees, whose trees are grown by bootstrapping training data and321

randomly selecting at each split a candidate set of features. Given f fea-322

tures, at each split
√
f features are randomly picked and each tree is grown323

unpruned to obtain low-bias models; the main idea behind Random Forests324

is the use of random variable selection resulting in low correlation of single325

trees; as a consequence, the overall classifier yields a model that can achieve326

both low bias and low variance (Breiman, 1996).327

Random Forests are particularly suitable for the present analysis where328

the number of variables exceeds the observations (Dı́az-Uriarte and De An-329

dres, 2006). Moreover, it is a robust and easy-to-tune model, it does not330

overfit thanks to internal bagging and, more importantly, it provides a con-331

tinuous measure of feature importance. For our experiments we used the332

implementation provided by R version 3.2.2 with the package randomForest333

version 4.6 − 10; a standard configuration was used: each forest was grown334

with 500 trees.335

We adopted a hierarchical combination of two forests. For each 10-336

fold cross-validation round, the first forest, for each split, randomly picked337 √
f =

√
4048 features and selected a number of features, which were on338
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average 60. Features found by the first classifier were chosen in order to339

exceed in importance the third quartile of importance distribution computed340

in terms of mean accuracy decrease. Then a second forest within the same341

cross-validation cycle, was trained with these selected features to obtain a342

classification score. The results of this procedure were twofold: on one hand343

we selected the most discriminative features and on the other hand we sum-344

marized the whole information content provided by the complex network345

measures in a unique score. Thus, this score outlined which subjects had346

shown brain structural and topological changes significantly associated to347

the diagnosis. The presence of brain regions with modified centrality, the348

disrupt of connectivity, along with the previously mentioned properties con-349

cerning for example the intensity or the uniformity of connections, were all350

included in the classification score.351

We designed this approach as the number of features deriving from the352

complex network description can be overwhelming if compared to the avail-353

able clinical features of Table 1. It is important to remind that for each354

subject clinical features are provided at the baseline. Accordingly, a diag-355

nostic model relying on clinical features of prodromal or early PD phase and356

structural MRI data was designed. Finally, for the discrimination of PD pa-357

tients and normal controls, we trained a third radial Support Vector Machine358

(SVM) classifier combining the classification score and the clinical features359

and keeping fixed the training and validation set of the previous 10-fold cross-360

validation. For our analysis we used the R package e1071 version 1.6-7 with361

the default implementation (cost = 1 and gamma = 0.003).362

4. Results363

4.1. Classification performance364

The proposed methodology both detects which regions are mostly affected365

by the disease and uses the network measures to provide a classification score.366

Besides, the use of clinical features concerning the PD prodromal phase or367

the disease onset can support the early diagnosis. In order to evaluate the368

effectiveness of the proposed procedure we used standard machine learning369

techniques, such as the previously mentioned Random Forests and SVM algo-370

rithms. All the presented results were acquired with a 10-fold cross-validation371

framework. We measured the informative content provided by our complex372

network approach combined with the clinical features training an SVM classi-373

fier. Besides, we separately evaluated the informative content of respectively374
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the network measures, using the classification score of a Random Forest (RF)375

classifier, and the clinical features, training an SVM classifier. The results376

are shown in Figure 3.377

Figure 3: Classification performance in terms of area under the receiver operating char-
acteristics curve (AUC). The combined use of network features (NF) and clinical features
(CF) reaches the highest AUC = 0.97±0.02 (cyan dashed line). CF on their own reach an
AUC = 0.74± 0.02 (dark green continuous line), which is reasonable for baseline subjects
whose symptoms are mild. NF provide effective markers for PD, in fact basing on these
feature it is possible to diagnose PD with an AUC = 0.94± 0.01 (dark red dash-dot line).

The combined use of MRI and clinical features gives the best performance378

as summarized in Table 2.379

Area under the receiver operating characteristics AUC = 0.97 ± 0.02,380

accuracy ACC = 0.93 ± 0.04, sensitivity sens = 0.92 ± 0.06 and specificity381

spec = 0.93±0.07. These results were significantly higher than those obtained382

by using only the complex network measures; in fact, we found in this case383

AUC = 0.94 ± 0.01, ACC = 0.88 ± 0.06, sens = 0.85 ± 0.09 and spec =384

0.88 ± 0.09. These results were averaged on 1000 cross-validation rounds385
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features AUC ACC sens spec
Network measures 0.94± 0.01 0.88± 0.06 0.85± 0.09 0.88± 0.09
Clinical scores 0.77± 0.01 0.70± 0.08 0.65± 0.12 0.75± 0.11
Both 0.97± 0.02 0.93± 0.04 0.93± 0.06 0.92± 0.07

Table 2: NC vs PD classification performances for feature typology. Area under the
receiver operating characteristics (AUC), accuracy (ACC), sensitivity (sens) and specificity
(spec) are reported with the relative standard deviations. Best performance (bold) is
obtained with a combined use of network and clinical features.

and significance was assessed with z-tests; for all comparisons we found 1%386

significance.387

Clinical features resulted in a classification performance significantly lower388

than those previously reported. Thus, the information content provided by389

the proposed model gives a significant contribution. In particular, we found390

when using only the clinical features: AUC = 0.77±0.01, ACC = 0.70±0.08,391

sens = 0.66± 0.12 and spec = 0.73± 0.11. Figure 4 allows us to appreciate392

this effect from a different perspective.393

Classification scores based only on clinical features consistently tend to394

overlap and assign to PD subjects low scores. In fact, sensitivity, which is ba-395

sically the discriminative power for positive subjects, is lower than specificity.396

On the contrary, the discrimination of the two classes is greatly enhanced397

when introducing complex network markers.398

4.2. Comparison with standard methods399

In order to assess the effectiveness of the proposed approach, we com-400

pared its classification accuracy with that of two standard approaches. In401

particular, we used FreeSurfer Fischl (2012) to extract some structural fea-402

tures, such as grey matter and white matter volumes of subcortical brain403

structures or the average cortical thickness of specific regions for a total of404

181 ROI features. Then, we performed a standard VBM pipeline Ashburner405

and Friston (2000) to detect voxels showing a significant (p-value < 0.01)406

association with the diagnosis, these voxels provided another feature repre-407

sentation. Both, the ROI and the VBM descriptions were used to feed the408

classification framework previously described. In this way, we obtained a409

direct comparison evaluating the informative power of the proposed method-410

ology and ROI/VBM approaches, see Figure 5.411

The proposed method (AUC = 0.97±0.02) compares favorably with VBM412

(AUC = 0.93± 0.04) and ROI (AUC = 0.82± 0.06) descriptions. It is worth413
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Figure 4: The classification score distribution using (a) only clinical features and (b)
combining them with network measures. Each column of the histogram contains the
number of NC subjects (blue) and PD patients (orange) whose score lies in that bin.
Classification scores obtained using both network and clinical features show a greatly
enhanced class separation.
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Figure 5: Classification performance in terms of area under the receiver operating char-
acteristics curve (AUC). The combined use of network features (NF) and clinical features
(CF) reaches the highest AUC = 0.97±0.02 (cyan dashed line). The combination of Voxel
Based Morphometry (VBM) features and CF reaches an AUC = 0.93± 0.06 (light green
dash-dot line). Finally, FreeSurfer features (FS) combined to CF give an AUC = 0.82±0.06
(magenta continuous line).
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mentioning that even when not considering clinical features, the network414

description remaines the most effective (AUC = 0.94± 0.01) both in respect415

of VBM (AUC = 0.87 ± 0.05) and ROI (AUC = 0.70 ± 0.06) approach. A416

summary of this comparison is presented in Table 3.417

features AUC ACC sens spec
NF + CF features 0.97± 0.02 0.93± 0.04 0.93± 0.06 0.92± 0.07
VBM + CF 0.93± 0.04 0.86± 0.06 0.88± 0.08 0.86± 0.08
FS + CF 0.82± 0.06 0.72± 0.07 0.74± 0.10 0.71± 0.12
NF 0.94± 0.01 0.88± 0.06 0.85± 0.09 0.88± 0.09
VBM 0.87± 0.05 0.79± 0.08 0.77± 0.12 0.77± 0.11
FS 0.70± 0.06 0.63± 0.07 0.60± 0.11 0.66± 0.11

Table 3: NC vs PD classification performances for network features (NF), Voxel Based
Morphometry (VBM) and FreeSurfer (FS) obtained with and without the combination of
clinical features (CF). Area under the receiver operating characteristics (AUC), accuracy
(ACC), sensitivity (sens) and specificity (spec) are reported with the relative standard de-
viations. Best performance (bold) is obtained with a combined use of network and clinical
features (NF+CF). The combination with the clinical features improves the performances
in all three cases (NF+CF,VBM+CF,FS+CF).

4.3. Regions of interest418

The high discriminative power shown by the features and evaluated in the419

previous section demonstrates the reliability of the complex network mea-420

sures as PD markers. Besides the diagnostic support that these features can421

provide, it is interesting to evaluate which regions result to be affected by the422

disease and eventually rank them according to their statistical significance.423

For each cross-validation round we recorded which features were selected424

as the most important for classification and outlined the brain regions related425

to them. Accordingly, for each cross-validation round we counted whether or426

not a particular anatomic district had been selected and tested the hypothesis427

that these occurrences had happened by chance. The null hypothesis is that428

a region should be selected according to a Bernoulli distribution with an a429

priori probability 1/12219, which is the total number of patches. We tested430

the occurrence of a specific region against the random occurrence rate which431

was in our case equal to 1/patch number (1/12219), which is in conclusion432

the number of the carried tests. Figure 6 shows some of the significant regions433

associated to the diagnosis.434
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Figure 6: A qualitative overview of significant PD-related patches, as they are outlined by
complex network measures, is represented along sagittal planes. More significant patches
have a lighter shade of yellow and little by little less significant patches have a darker
shade of yellow. The negative planes belong to the left hemisphere while the positive
planes belong to the right one.
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According to the proposed method, 186 significant patches were detected:435

43% within the right hemisphere and 40% within the left one; 9% of patches436

were located in the cerebellum; brainstem regions appeared in 3% of cases.437

There is not a great difference between GM and WM regions, in fact the438

GM regions selected are 53%, the WM ones 46%. The vast majority of439

brain regions affected by PD lies in the Frontal (27%), Occipital (21%) and440

Temporal (15%) lobes. For a complete overview of the selected regions and441

the relative p-values please refer to the Appendix. Instead, we provide in the442

following Table 4 a compact overview of the first 15 selected patches.443

Region p-value
(L) Temporal Lobe. Middle Temporal Gyrus. GM-WM. Ba 39. 7.2 · 10−7

(R) Temporal Lobe. Superior and Inferior Temporal Gyrus. GM-WM. Ba 22. 7.2 · 10−7

(R) Occipital Lobe. Sub-Gyral (WM). 3.6 · 10−6

(L) Occipital Lobe. Superior Occipital Gyrus GM-WM. Ba 19. 4.6 · 10−6

(R) Frontal Lobe. Middle Frontal Gyrus (WM). 5.3 · 10−6

(L-c) Anterior Lobe. Culmen (GM). 5.9 · 10−6

(R) Frontal Lobe. Medial Frontal Gyrus (WM). 5.9 · 10−6

(R) Frontal Lobe. Precentral Gyrus. GM. Ba 44. 5.9 · 10−6

(L) Limbic Lobe. Cingulate Gyrus. GM. Ba 24. 5.9 · 10−6

(R) Parietal Lobe. Precuneus (WM). 5.9 · 10−6

(L) Frontal Lobe. Middle Frontal Gyrus. GM. Ba 46. 6.2 · 10−6

(L) Brainstem. Midbrain 6.6 · 10−6

(L) Temporal Lobe. Fusiform Gyrus GM-WM. Ba 37. 7.2 · 10−6

(R-c) Posterior Lobe. Declive. GM. 7.2 · 10−6

(R) Temporal Lobe.Fusiform Gyrus. WM. 7.2 · 10−6

Table 4: The regions selected according to complex network measures and the inherent
level of significance with respect of diagnosis. (L) and (R) denotes the left and right hemi-
spheres; cerebellum regions are denoted with c. Brodmann areas (Ba) are also outlined
when appropriate.

These regions have been already detected in several PD studies (Li et al.,444

2017; Warmuth-Metz et al., 2001; Kim et al., 2013; Wen et al., 2015), an-445

other indirect validation of the proposed methodology in that the selected446

regions consistently correspond to regions whose relationship with the disease447

is established.448

4.4. Robustness of the method449

In this section we demonstrate that the proposed complex network de-450

scription does not require any fine tuning, accordingly we used for both image451

processing and classification standard configurations, then we evaluated, a452
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posteriori, that choosing other configurations would not have affected the453

obtained results. We evaluated the relation between the threshold used to454

remove some edges from the network and the classification accuracy; a wide455

range of thresholds was explored, see Figure 7. Threshold was varied from456

0 to 0.9 with 0.1 steps and with a fixed patch volume of 125 voxels. The457

maximum value of the classification accuracy was obtained at 0.3 threshold.458

It is worth noting that this value also corresponded to minimum variance.459

Accuracy remained constant at 0.93 for a wide range of correlations [0.3, 0.5],460

thus confirming that the method does not require a fine tuning of threshold461

values. For higher threshold values, there was a significant performance drop,462

suggesting that too high threshold values cause the loss of important links.463

Figure 7: The figure shows the accuracy as a function of the threshold that changes from
0 to 0.9. In correspondence of a threshold value of 0.3, the best accuracy and the minimal
standard deviation were reached.

As demonstrated in section 4.1, the proposed complex network approach464

significantly enhances the discriminative power of clinical features. The465

network measures derived from MRI data effectively characterize PD pat-466

terns. To evaluate the robustness of the informative content provided by our467

method, we explored the hyperparameter space. Firstly, we evaluated the468

cost parameter which plays a fundamental role for Support Vector Machines,469

see Figure 8.470

In fact, the cost determines how much the SVM model should fit the471

training data by varying the margins of the decision hyperplane, larger values472
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Figure 8: The classification performance in terms of AUC remains stable by varying the
cost parameter. For tiny cost values the decision hyperplane margins are too large and
the performance drops.

of cost correspond to smaller margins. The results show that for a wide range473

of cost values the classification performance remains stable granting robust474

results. When the cost reaches the 0.01 value the performance drops, this475

means that the margins have become so large that the model cannot just fit476

the data. Moreover, we investigated the model robustness with respect of477

the gamma parameter which defines how far the region of influence of each478

training example should extend, see Figure 9.479

As gamma controls the variance of the model, by varying gamma one480

can move from a high-bias to a high-variance model. Of course, the optimal481

classification region stands between these two cases. The results show that for482

the present model a wide stability region exists, in fact the AUC consistently483

remains over the 0.90 value for a gamma variation of more than 4 orders of484

magnitude.485

4.5. Evaluation of the informative content486

To evaluate the goodness of complex network measures as PD markers487

it is not sufficient to demonstrate that these features allow an accurate and488

robust classification. First of all, looking at the classification performance it489

is not possible to guess if credit should be given to the SVM classification490

model or the informative content of the features. As such, we compared491

the classification performance of several state-of-the-art classifiers, specifi-492

cally we investigated Random Forest (RF), Naive Bayes (NB) and Neural493
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Figure 9: Varying the gamma parameter it is possible to switch from high-bias to high-
variance models, in this case however the optimal classification region extends for more
than 4 orders of magnitude.

Network (NN) classifiers. For each method we explored within a nested494

cross-validation the hyperparameter space and several configurations, only495

optimal configuration results are reported in the following Table 5.496

method AUC ACC sens spec
Neural Network 0.94± 0.04 0.89± 0.05 0.90± 0.08 0.88± 0.07
Random Forest 0.97± 0.02 0.91± 0.05 0.90± 0.07 0.91± 0.07
Naive Bayes 0.97± 0.03 0.92± 0.05 0.91± 0.07 0.93± 0.07
Support Vector Machine 0.97± 0.02 0.93± 0.04 0.93± 0.06 0.92± 0.07

Table 5: A comparison between different machine learning methods (Neural Networks,
Random Forests, Naive Bayes and Support Vector Machine classifiers) shows that the
proposed complex network approach allows a robust diagnosis independently from the
choice of the classifier, although Support Vector Machine reaches slightly better results
(in bold) for almost each metric: area under the receiving operating characteristics (AUC),
accuracy (ACC), sensitivity (sens) and specificity (spec).

The table shows that no significant difference can be found between dif-497

ferent models, even if SVM would seem to perform slightly better than the498

others. These results demonstrate that beyond the differences due to the ma-499

chine learning models adopted, the proposed approach yields an outstanding500

base of knowledge for PD discrimination.501

However, this test does not evaluate the agreement between the models.502

In fact, in principle two distinct models could perform equally but misclassi-503
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fying different subjects. In order to assess the agreement between our chosen504

SVM model and the other models, we investigated the relationships existing505

between the classification scores. The results are presented in Figure 10.506

Figure 10: From left to right the agreement between the scores obtained with Support
Vector Machine (SVM) and those obtained by: Random Forest (RF), Naive Bayes (NB)
and Neural Network (NN) classifiers. The scores are densely distributed in top right and
bottom left quadrants, where their predictions agree. Looking at the top left and bottom
right quadrants it can be noted that, when in disagreement, SVM scores tend to be slightly
more accurate than other scores.

The classification scores are densely distributed in the top right and bot-507

tom left quadrants. The top right quadrant includes subjects whose classifi-508

cation scores exceed the 0.5 value, it is the case of subjects diagnosed with509

PD from both the SVM model, which is always reported on the x axis, and510

the other models, which are reported instead on the y axis. Analogously,511

the bottom left quadrant includes those subjects, whose classification scores512

are lower than 0.5, for which the models agree assigning a NC status. As513

expected from previous measures, the models correctly distinguish the two514

classes, in fact in the top right quadrant the vast majority of subjects is515

shown in orange, as subjects have mostly a PD diagnosis, and in the bottom516

left the vast majority is in blue, as subjects are mainly NC.517

The top left and bottom right quadrants are the regions of disagreement.518

In these regions, in fact, the SVM model assigns a diagnosis different from519

other models. For example, a subject belonging to the bottom right quadrant520

has an SVM score > 0.5 and it is accordingly diagnosed as PD but a RF521

score (or NB/NN) < 0.5 and it is therefore labeled as NC. First of all, it522

is worth noting that these two quadrants are sparsely populated, especially523

compared to the top right and bottom left ones, therefore this is a further524

demonstration of the agreement between the models; besides, SVM tends to525

be more accurate.526
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Keeping on with our example, in the bottom right quadrant for all the527

three cases the majority of subjects is orange, meaning that their true label528

is PD. This means that the SVM predictions is the right one. The same529

consideration holds for the top left quadrant, where the majority of subjects530

is represented in blue, and, again SVM correctly labels them as NC.531

4.6. Scale study and VBM532

The proposed approach depends on the size of the brain patches used for533

the complex network model. In our previous studies concerning Alzheimer’s534

disease (La Rocca et al., 2017; Amoroso et al., 2017) we observed that one key535

aspect of complex network descriptions is that they let naturally emerge a536

dimensional scale, which is typical of the disease. For example, for Alzheimer537

characterization the best results were obtained with patches having approxi-538

mately a volume of 3000 mm3. Accordingly, in this work we explored a wide539

range of patch volumes and measured the training classification accuracy, see540

Figure 11.541

Figure 11: The optimal patch dimension expresses the existence of a preferred dimension
or scale for PD markers. In particular, best classification accuracy 0.95± 0.04 is obtained
with smaller patches (5×5×5 voxels). For larger patch dimensions the performance drops
and reaches a stable plateau.
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The classification accuracy decreases monotonically. The best perfor-542

mance was obtained with patches of 5 × 5 × 5 voxels. This result is sig-543

nificantly different from what we observed in Alzheimer. Moreover, when544

the patch volume reaches 4000 voxels (we remind here that for the present545

study voxels and mm3 can be interchangeably used) the accuracy remains546

constantly around 0.73.547

We used a standard VBM pipeline to segment gray and white matter of548

each MRI scan. Then we normalized each subject to the MNI152 template549

and extracted the t-Student maps to determine if some clusters of voxels550

(> 30) exhibit an association with the diagnosis. We found a good agree-551

ment with the regions detected with our complex network description, see552

Figure 12 for an overview, but, remarkably, the number of regions showing553

an association with the clinic was consistently reduced.554

Figure 12: Voxel based morphometry shows the presence of some clusters (the sagittal
plane is reported), however these regions represent only a subset of those outlined by our
approach.

However, as explained in Section 1, voxel-wise approaches have an intrin-555

sic drawback in that the need for thousands of multiple comparisons dramat-556

ically lowers the statistical power of commonly available datasets. Indeed,557

we found no significant association after Bonferroni corrections.558
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5. Discussion559

The PD onset is characterized by clinical symptoms which emerge when560

the dopaminergic deficit has reached a considerable level. Therapies or drugs561

could easily be ineffective at this stage. This is why the identification of562

accurate markers, and hopefully of a diagnostic framework, based on symp-563

toms related to the prodromal or early phases of the disease is urgent. Our564

approach uses complex network measures to characterize PD patterns and565

develop a fully-automated machine learning diagnosis support system. The566

proposed methodology is robust and accurate. In addition, it provides de-567

tailed information about the brain regions mostly affected by the disease as568

it ranks them by associating an easy-to-interpret level of significance; thus,569

this method opens the possibility for further comprehension of PD patterns.570

The proposed approach reaches an accurate diagnosis (AUC = 0.97±0.02571

and ACC = 0.93 ± 0.04) and these results compare favorably with other572

state-of-the-art approaches. Among the most recent methodologies, the joint573

feature-sample selection algorithm by (Adeli et al., 2016) reports an 82% ac-574

curacy and currently achieves one of the best classification performances575

when using only MRI data. It is worth mentioning that other studies us-576

ing structural MRI features reported interesting results, such as (Salvatore577

et al., 2014) whose VBM-based methodology allowed an accuracy of 83.2%,578

although a significantly smaller sample including only 28 controls and 28 PD579

subjects.580

It has been recently shown that accurate diagnosis (97.5%) can be ob-581

tained when combining both MRI and SPECT data (Adeli et al., 2017).582

However, such a study demonstrates that the classification accuracy almost583

relies on SPECT as SPECT provides a diagnostic accuracy of 95.6% when584

used without MRI. Thus, MRI data seems to slightly contribute to diagnosis585

accuracy. Nevertheless, as SPECT detects the substantial loss of dopamin-586

ergic neurons, markers based on this imaging modalities could be better587

employed in later stages of the disease, for example when motor symptoms588

appear.589

Our work emphasizes the possibility to conveniently use complex network590

measures as PD markers. We demonstrated that, besides the high accuracy,591

MRI features based on complex networks bring a significant improvement to592

classification based only on clinical features. Classification is balanced, in593

fact specificity and sensitivity give similar results, unlike what we observed594

with clinical features which tend to be more specific but less sensitive. This595
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can be expected as the subjects included in this study are all considered at596

the baseline when the clinical symptoms are still mild.597

Previous studies have usually investigated PD patterns basing on a re-598

stricted list of regions of interest (Braak et al., 2003; Burke et al., 2008).599

The reasons for such a choice are twofold: firstly, from a clinical perspective600

it is known that some regions are affected by the disease only at its later601

stages, as a consequence these regions can be safely disregarded; secondly,602

whole brain analysis can be too computationally intensive and when data603

samples are small it is easy to lack the statistical power required to detect604

small effects.605

On the other hand, focusing on some regions can prevent the detection of606

interesting effects in the brain regions excluded or decrease the discrimination607

power of the approach. For example, (Worker et al., 2014) found no signif-608

icant cortical changes between PD patients and controls when examining a609

restricted list of brain regions.610

It is worth noting that ROI-based approaches are intrinsically biased by611

segmentation errors which can prevent the methodologies to reach optimal612

sensitivity. This is why, even if using an ROI approach, we preferred a whole613

brain description. Our complex network approach significantly reduced the614

computational burden yielded by voxel-based approaches even if the number615

of examined regions was higher than in ROI-based studies.616

In addition, our method is more sensitive than a standard VBM; as re-617

ported in previous studies, see for example (Focke et al., 2011), with VBM we618

observed no significant changes in cortical morphology when comparing NC619

and PD subjects. On the other hand the regions outlined with the proposed620

methodology are consistent with previous studies. Temporal and Frontal621

Gyri changes have shown atrophic patterns, especially in patients with de-622

mentia (Burton et al., 2004; Xia et al., 2013); cognitive impairment seems623

to acquire a relevant role for diagnosis also because of the inclusion of Brod-624

mann areas 24, 37, 44 and 46 as shown also in (Burton et al., 2004; Hughes625

et al., 1992; Nagano-Saito et al., 2005). As expected, Substantia Nigra and626

brain midstem also play a relevant role for the diagnosis. We found that627

most of the significant regions are not adjacent, indeed there is no a priori628

reason why adjacent patches (which can often include distinct anatomical629

districts) should share the same informative content, as neurodegenerative630

diseases may have a diffuse effect that involves multiple voxels not necessarily631

belonging to the same anatomical region Burton et al. (2004).632

Our results outline the important role of combining MRI and clinical633

28



features for an accurate early diagnosis. In fact, besides the increment of634

the classification accuracy, it is manifest that the use of clinical features is635

biased towards the NC class. We demonstrated that classification scores636

based only on clinical features were poorly sensitive, with lots of PD patients637

misclassified as controls; this effect is reasonable as in the early phase of the638

disease clinical symptoms are mild. On the other hand this result outlines639

the importance of complex network markers to improve both sensitivity and640

specificity of the classification.641

6. Conclusions642

In this work, we have demonstrated how complex networks can profi-643

ciently be used to define a novel brain connectivity and consequently intro-644

duce accurate markers for PD. We evaluated the robustness and the accuracy645

of the proposed methodology with both a direct evaluation, involving the646

measure of classification metrics, and an indirect check, regarding the brain647

regions mostly affected by the disease. We validated our method on a mixed648

cohort of controls and patients from the PPMI dataset; the proposed method-649

ology compares well with other state-of-the-art approaches for what concerns650

NC/PD classification. In addition, our method allowed an investigation of651

the brain regions related to the disease starting from a segmentation com-652

pletely unsupervised over the whole brain without the necessity to a priori653

focus on specific anatomical regions, a fundamental aspect when looking for654

novel markers. Our results confirm what has been found in other studies and655

outlines new interesting aspects, specifically: (i) our work demonstrates that656

MRI data, and in particular complex network measures, provide an efficient657

and accurate description of PD patterns; (ii) novel MRI markers combined658

with clinical scores typical of prodromal PD can be used for an accurate659

early diagnosis; this approach (iii) compares favorably with state-of-the-art660

methodologies basing on MRI data and (iv) compares well with methodolo-661

gies including other imaging modalities such as SPECT. In brief, our work662

shows that the connectivity of several brain regions is significantly related to663

PD. Thus, we hope this result will stimulate further investigations to better664

understand the disease and its mechanisms. These results also suggest the665

applicability of the methodology to support PD diagnosis in clinical practice666

and possibly other disease affecting brain connectivity. Further studies could667

investigate how to improve this methodology, for example using multi-modal668

imaging data. In addition, it would be interesting to provide a comprehen-669
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sive model for the regions outlined by our approach from a more specifically670

clinical perspective.671
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