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Abstract

This paper introduces an universal and structure-preserving regularization term, called quantile 

sparse image (QuaSI) prior. The prior is suitable for denoising ima ges from various medical 

imaging modalities. We demonstrate its effectiveness on volumetric optical coherence tomography 

(OCT) and computed tomography (CT) data, which show different noise and image 

characteristics. OCT offers high-resolution scans of the human retina but is inherently impaired by 

speckle noise. CT on the other hand has a lower resolution and shows high-frequency noise. For 

the purpose of denoising, we propose a variational framework based on the QuaSI prior and a 

Huber data fidelity model that can handle 3-D and 3-D+t data. Efficient optimization is facilitated 

through the use of an alternating direction method of multipliers (ADMM) scheme and the 

linearization of the quantile filter. Experiments on multiple datasets emphasize the excellent 

performance of the proposed method.
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Introduction

The reliable reduction of image noise poses a constantly recurring problem in todays 

imaging systems. In healthcare, noise may limit the reliability of medical image data for 

subsequent clinical workflows. For instance, in radiology using computed tomography (CT) 

or related morphological imaging modalities, noise affects the analysis of anatomical 

structures and thus impedes diagnostic applications. In optical coherence tomography (OCT) 

for retinal imaging as another example use case, noise limits the measurement of structural 

features in the human eye, e. g. retinal layer properties. Apart from diagnostic applications, 

noise reduction is also a major theme for different interventional imaging modalities like 

fluoroscopically guided procedures. Low dose radiation exposure for patient safety leads to 

noisy and low-contrast fluroscopic sequences (Amiot et al., 2016).

To mitigate these limitations, denoising can be either implemented by means of customized 

hardware or via postprocessing of captured image data. While hardware-based denoising 

often leads to increased system complexities, image-based postprocessing facilitates 

denoising in a cost-effective way using computational methods. Despite the great progress in 

developing general denoising schemes for natural images, adopting them for medical data 

poses several challenges. First and foremost, there is a narrow ridge between achieving 

sufficient noise reduction and unwanted distortions of meaningful medical structures. 

Moreover, noise distributions in medical data often deviate from the commonly employed 

models for natural images like additive, white Gaussian noise (AWGN). For example, noise 
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can follow multiplicative models or structured patterns related to acquisition parameters like 

in CT. General denoising algorithms have been mainly developed for 2-D data, e. g. color 

photographs, but denoising in medical imaging also needs to handle time-resolved and/or 

volumetric data. These requirements desire enhanced and robust denoising methods to be 

applicable within medical workflows.

In this paper, we propose denoising for medical image data within a variational framework. 

As the key contribution, we introduce the class of quantile sparse image (QuaSI) priors to 

model the appearance of noise-free medical data. Specifically, we propose a median filter 

based regularizer that is based on the QuaSI prior using the 0.5 quantile. This follows the 

idea that noise-free data should be a fixed point of the median filter and we show that this 

model facilitates structure-preserving denoising. To approach the resulting non-linear and 

non-convex optimization problem, we present an alternating direction method of multipliers 

(ADMM) scheme. Our algorithm can handle spatio-temporal denoising by processing either 

single images or sequences of consecutive images. Furthermore, it enables denoising of 

volumetric data. Thus, it can be adjusted to the clinical needs within a target application.

This paper is an extension of our prior work in Schirrmacher et al. (2017) and makes the 

following additional contributions:

• The algorithm as well as the QuaSI prior are extended to process volumetric 

medical data.

• An investigation of the convergence and parameter sensitivity of our algorithm is 

conducted

• An extension of our algorithm is presented to process volumetric data in C-arm 

CT imaging.

The remainder of this paper is organized as follows. In Section 2, we review related work on 

spatial and temporal denoising. Section 3 comprises the objective function of the energy 

minimization problem. In Section 4 the QuaSI prior is introduced. The numerical 

optimization of our denoising framework is derived in Section 5. In Section 6, an 

experimental evaluation of our method on publicly available benchmark data, clinical OCT 

scans as well as CT data is reported. Finally, section 7 contains our conclusion.

Related Work

The image-based denoising techniques can be divided into two groups.

2.1. Spatial Denoising Methods

Spatial or single-image denoising has been extensively studied in the image processing 

community and various approaches emerged over the past decades. Local image filters 

perform smoothing of noisy images possibly in an adaptive way to preserve image structures 

(Tomasi and Manduchi, 1998). Non-local filtering also exploits the statistics of similar and 

repeating patches within images. One representative from this class is the successful BM3D 

method by Dabov et al. (2007). However, these methods have been mainly designed for 

natural images under simplified assumptions like additive white Gaussian noise, which is 
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inappropriate to describe speckle noise that is multiplicative in nature. Learning-based 

denoising, e. g. based on multilayer neural networks (Burger et al., 2012), hold the potential 

to handle speckle noise by learning noise distributions from training data. However, large-

scale training data required for such methods is barely available for OCT.

Some spatial filters that have been adopted for OCT denoising are the hybrid median filter, 

Lee filter, Wiener filter, or wavelet thresholding as investigated by Ozcan et al. (2007). 

Global denoising methods for OCT have been introduced by Salinas and Fernandez (2007) 

using non-linear diffusion and later by Duan et al. (2016) using second-order total 

generalized variation. Wong et al. (2010) have proposed structure-adaptive Bayesian 

estimation to handle speckle noise. One interesting approach has been proposed by Fang et 

al. (2012), where dictionary learning based on B-scans with high signal- to-noise ratio 

(SNR) is used to denoise low SNR B-sans.

Single-image denoising offers great flexibility in clinical applications of OCT as few 

assumptions on the scanning protocol are made. However, the noise reduction is limited as 

such methods can utilize single B-scans only.

Temporal Denoising Methods

Temporal or multi-image denoising methods consider coherence of consecutive images to 

improve noise reduction over single-image denoising. Such methods have been widely 

investigated for OCT and exploit sets of B-scans that are acquired sequentially from the 

same location or nearby positions. A popular approach in commercial systems is to register 

multiple of these B-scans and to average the registered scans to cancel out random noise. 

Averaging is computationally efficient but requires many repetitive acquisitions to 

effectively reduce speckle noise. Mayer et al. (2012) enhance simple averaging based on 

wavelet decompositions of B-scans to estimate local image structures and noise. Denoising 

is conducted in the wavelet domain by weighted averaging of wavelet coefficients according 

to the local image structure. Cheng et al. (2014) formulate OCT denoising from multiple 

scans as a low-rank matrix completion problem. Thapa et al. (2015) follow a similar notion 

and exploit the low-rank property on a patch-based level of multiple B-scans using weighted 

nuclear norm minimization. L. Bian and Dai (2015) have proposed inter-frame and 

intraframe priors for denoising using convex optimization. BM4D is an extension of the 

popular BM3D method to process volumetric data (Maggioni et al., 2013).

All of these multi-image methods have in common that they require multiple input scans. 

This increases the overall acquisition time and therefore might lead to a higher patient 

discomfort. Also, they perform denoising on a B-scan level but ignore coherence of nearby 

B-scans within volumetric OCT data. If denoising of entire volumes is desired, simple 

consecutive processing of individual B-scans can lead to suboptimal results. In this paper, 

we mitigate both limitations by proposing a unified approach to handle denoising on a B-

scan or volumetric level based on single or multiple scans.
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Background

This section presents the variational framework for denoising volumetric data. Figure 1 

illustrates three modi of this framework, namely image denoising, volumetric denoising, and 

volumetric+temporal denoising. The pipelines differ in the number of outputs and are 

therefore divided into multiple-input single-output (MISO) denoising and multiple-input 

multiple-output (MIMO) denoising.

Throughout this paper, we use the following nomenclature. We denote a volume as a vector 

g ∈ ℝ
NzNxy composed of Nz images gz, 𝓏 = 1,..., Nz of size Nxy = NxNy pixels. For the sake 

of convenience, 2-D images of size Nx × Ny are reshaped to vector notation using a row-

wise scanning. A sequence of volumes is denoted as vector G ∈ ℝ
NtNzNxy , where Nt is the 

number of volumes in the sequence. The input to the proposed framework is a sequence of T 
volumes, where 1 ≤ T≤ Nt. For volumetric as well as volumetric+temporal denoising, we 

employ Z consecutive images per volume (1 < Z ≤ Nz), while image denoising is based on a 

single image in each volume (Z = 1).

Noise Model

In this paper, we consider several denoising applications with two different underlying noise 

models. In an additive noise model, a noise-free volume f = (f1,..., fZ)T is related to a noisy 

volume g = (g1,..., gz)T according to:

g = f + n, 1

where n = (n1,..., nz)T denotes an additive noise term. Common instances of this model are 

AWGN with stationary distribution of n or Poisson noise, where the variance of n depends 

on the measured image data.

In a multiplicative noise model, each captured volume g is related to a respective noise-free 

volume f according to:

g = f ⊙ n, 2

where ⊙ is the Hadamard (element-wise) product. We can turn the multiplicative model in 

(2) to the additive one in (1) by transforming it to a logarithmic measurement domain. One 

common instance of this model is speckle noise that appears in OCT imaging (Wong et al., 

2010; Duan et al., 2016).

Energy Minimization Formulation

Given a sequence of T volumes g(t) with t = 1,…, T that are either captured from the same 

position or from nearby positions and registered to each other, we propose MIMO and MISO 

denoising.
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In MISO denoising, we aim at estimating one noise-free volume f . We formulate denoising 

as the minimization of the objective function:

f =argmin
f

∑
t = 1

T
ρ f − g(t) + λRQuaSI(f) + μ ∇f 1 . 3

The first term in (3) denotes the data fidelity of f w.r.t. the input volumes g(t). The second 

term is the proposed quantile sparse image (QuaSI) prior weighted by λ ≥ 0. The third term 

denotes anisotropic total variation (TV) weighted by μ ≥ 0, which regularizes the spatial 

gradient ∇f = (∇xf, ∇yf, ∇zf )T. It is worth noting that the general denoising framework in (3) 

can handle both noise reduction for entire volumes in 3-D as well as for individual images in 

2-D by constraining the domain of both regularization terms.

MIMO denoising follows a similar approach but aims at estimating a sequence of volumes 

F . We formulate MIMO denoising as the minimization of the objective function:

F = argminρ F − G + λRQuaSI F + μ ∇F 1 + ω ∇tF 1 4

where ߜtF denotes the gradient of F in temporal direction and the associated TV 

regularization is weighted by ω ≥ 0.

In (3) and (4), the data fidelity terms use the loss function ρ:ℝN  ℝ0
+ to formulate the 

image formation. In general, the image formation needs to consider a mixture of noise, 

potential misalignments between the input volumes, or motion artifacts. Following prior 

work on mixed noise models in image restoration (Kӧhler et al., 2016), we propose to use 

the Huber loss (Ochs et al., 2015):

ρ(1) = ∑
i = 1

N
ϕ(li), 5

where:

ϕ(l) =

1
2 l2 if l ≤ ϵ

ϵ l − 1
2ϵ otherwise,

6

and 𝜖 > 0 denotes the threshold of the Huber loss. This leads to an outlier-insensitive model 

while the underlying data fidelity is a convex term.
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4. Quantile Sparse Image (QuaSI) Prior

A robust and efficient regularization term is of importance to achieve results with a high 

signal- to-noise ratio (SNR). The better the regularization term is able to model natural or 

medical images, the better the result of the optimization. Structure preservation is a sensitive 

issue when dealing with medical data. The images might contain small morphological 

structures that need to be preserved for the purpose of diagnosis. In order to tackle the 

challenges referred to above, the so called quantile sparse image (QuaSI) prior is introduced.

4.1. Definition of the Prior

The QuaSI prior is based on quantile filtering, where the quantile filter is denoted as f ̃= 

Q(f). The p-quantile with p ∈ [0, 1] is determined within a local neighborhood N(i). The 

local neighborhood consists of d3 voxel, where d denotes the width of the cubic filter kernel. 

For the i-th voxel in f we filter according to f ̃ = quantile(i) (fi, p). Inspired by the 

regularization by denoising priors by Romano et al. (2016), the denoised volume is a fixed 

point under the quantile filter. In this way:

RQuaSI(f) = f − Q(f) 1 . 7

Specifically, regularization according to (7) enforces sparsity of the residual f − Q(f). This 

offers a general model for regularization and - depending on the application - various types 

of statistics can be chosen for Q(f). In this paper, we propose the median filter, where f̃ = 

median(i)(fi)· This follows the rationale that median filtering facilitates structure-preserving 

denoising under non-Gaussian noise. Further applications including erosion and dilation are 

not covered in this paper. In the literature (Rohkohl, 2011), quantiles are used to obtain a 

reference image to estimate non-periodic motion. Those examples are suitable applications 

that the QuaSI prior can handle.

To validate the QuaSI prior using median filter regularization for denoising, we study its 

behavior under real measurement noise. For this purpose, we use the publicly available pig 

eye dataset by Mayer et al. (2012), which provides a gold standard OCT B-scan obtained 

from the average of 455 registered noisy OCT B-scans. We compare a noisy OCT B-scan 

fnoisy with the gold standard fgold in Fig. 3a and Fig. 3b. The residuals r = f − Q(f) of the 

QuaSI regularization term are illustrated in Fig. 3c for the noisy B-scan and in Fig. 3d for 

the gold standard. Compared to the gold standard, the noisy B-scan yields a less sparse 

signal as shown in the histograms of both residuals in Fig. 3e and Fig. 3f. Notice that the 

QuaSI regularization does not penalize image discontinuities. The histogram using the noisy 

B-scan contains less zero elements, while the histogram for the gold standard is sparse. Our 

proposed QuaSI prior exploits these observations for structure-preserving regularization in 

our variational denoising framework.
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Linearization

In order to deal with the non-linearity of the quantile operator Q(f) the linearization Q(f) = 

Qf, similar to the work of Pan et al. (2016), is performed. The binary matrix Q is assembled 

element-wise according to:

Qi j = 1 if j = q,
0 otherwise, 8

where q = arg quantiler∈ (i)fr. This operation filters the i-th pixel according to the p-

quantile in its local neighborhood (i). For f’ = f the linearization fullfills Q(f’) = Q f’, while 

otherwise Q serves as an approximation of the quantile filter.

Figure 4 illustrates the construction of the binary matrix Q in 2-D. Each pixel is replaced by 

the quantile within its local neighborhood. The position of the quantile is stored in the binary 

matrix. In this example, the quantile is at position j. Thus, the i-th row of the matrix contains 

a one in the j-th column and zeros otherwise. The multiplication Qf yields the quantile 

filtered result.

5. Deploying QuaSI for Denoising

In this section, we show how the proposed QuaSI prior can be deployed for volumetric and 

temporal denoising. We derive two numerical optimization algorithms for denoising based 

on a MISO and a MIMO mode.

Multiple-Input Single-Output (MISO) Mode

MISO denoising in our framework is based on the energy minimization formulation in (3). 

In order to handle the non-smooth L1 norm terms, we adopt ADMM optimization (Goldstein 

and Osher, 2009). To this end, (3) is reformulated to the constrained optimization problem:

f =argmin
f

∑
t = 1

T
ρ f − g(t) + λ u 1 + μ v 1

suchthatu=f – Q(f),v=∇f,
9

where u and v are auxiliary variables. Then, an unconstrained optimization problem is 

obtained from (9) using quadratic penalty functions according to:

f =argmin
f

∑
t = 1

T
ρ f − g(t) + μ v 1 + λ u 1 + α

2 u−f + Q(f) 2
2 + β

2 v− ∇f 2
2 . 10

The Lagrangian multipliers 𝛼 > 0 and β > 0 enforce the constraints u = f — Q(f) and v = Δf. 
If 𝛼, β → ∞, we end up at the original problem (3). In order to strictly enforce the 
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constraint, the Bregman variables bu and bv are introduced. Then, we minimize the 

augmented Lagrangian:

𝔏AL(f, u, v, bu, bv) = ∑
t = 1

T
ρ f − g(t) + α

2 u−f + Q(f) − bu 2
2 + λ u 1

β
2 v− ∇f − bv 2

2

+ μ v 1 .

11

We iteratively optimize (11) by alternating minimization w.r.t. the individual parameters. 

Hence, three subproblems emerge, where the L1 -Norm is decoupled from the L2-Norm.

The minimization of the augmented Lagrangian (11) w.r.t. f can be solved in a least square 

sense. Therefore, the binary matrix Q is constructed using the result fk from the previous 

iteration, where k denotes the iteration index. In order to cope with the Huber loss, 

iteratively re-weighted least squares (IRLS) is applied. Solving the resulting least squares 

problem leads to the linear system:

Afk + 1 = b 12

A = ∑
t = 1

T
W(t) + β∇Τ ∇ + αMΤM 13

b = ∑
t = 1

T
W(t)g(t) + β∇Τ (v − bv) + αMΤ(u − bu), 14

where M = I-Q with the identity matrix I. In (12) - (14), W(t) are diagonal weight matrices 

constructed from fk. Using the intermediate result fk, we can compute the weights for IRLS 

according to:

W ii
(t) =

ϕ′ f i
k − gi

(t)

f i
k − gi

(t) , 15

where ϕ’(l) is the derivative of the Huber loss. The threshold of the Huber loss is set to ϵ = 

1.345σ to achieve a 95-percent efficiency of the estimator under Gaussian noise (Ochs et al., 

2015). We use the median absolute deviation (MAD) rule to obtain a consistent estimate of 

the standard deviation according to σ = 1.4826 • MAD ( f i
k − gi

(t)) (Rousseeuw and Leroy, 

1987). To solve the linear system (12), conjugate gradient (CG) iterations are used.
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The minimization of the augmented Lagrangian (11) w.r.t. the auxiliary variables can be 

done by exploiting the separability of the problem. Given the estimate for the intermediate 

result fk+1, this leads to the element-wise updates:

ui
k + 1 = shrink([fk + 1 − Qfk + 1 + bu

k]
i
, λ/α), 16

vi
k + 1 = shrink([∇fk + 1 + bv

k]
i
, μ/β) . , 17

where shrink(𝓏,γ) = sign(𝓏) max(𝓏 - γ,0) denotes the shrinkage operator (Goldstein and 

Osher, 2009).

Given an estimate for the intermediate result fk+1 as well as the auxiliary variables uk+1 and 

vk+1, the Bregman variables are updated according to:

bu
k + 1 = bu

k + (fk + 1 − Qfk + 1 − uk + 1), 18

bv
k + 1 = bv

k + (∇fk + 1 − vk + 1), 19

Algorithm 1 summarizes the proposed ADMM based iteration scheme. Overall, we use two 

nested

Algorithm 1 MISO denoising with QuaSI prior

Set u1 = v1 = b1u = b
1
v = 0, u1 = v1 = bu

1 = bv
1 = 0, f1 = 1

T ∑t = 1
T g t

for k = 1, . . . ,Kouter do

    Assemble Q from fk according to (8)

    for i = 1, . . . ,Kinner do

        Update weights W(t) using (15)

        Update fk+1 using CG for (12)

        Update uk+1 and vk+1 using (16) - (17)

        Update bu
k + 1

 and bv
k + 1

 using (18) - (19)

    end for

end for

Algorithm 2 MIMO denoising with QuaSI prior

Set F1 = G, U1 = V1 = D1 = BU
1 = BV

1 = BD
1 = 0

for k = 1, . . . , Kouter do
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    Assemble Q from Fk according to (8)

    for i = 1, . . . ,Kinner do

        Update weights W(t) using (15)

        Update Fk+1 using CG for (21)

        Update Uk+1, Vk+1, Dk+1 using (24) - (26)

        Update BU
k + 1

, BV
k + 1

, BD
k + 1

  using (27) – (29)

    end for

end for

optimization loops to solve (9). We use the mean of the input images as an 

initial guess f1 as well as u1 = v1 = 0, u1 = v1 = 0, bu
1 = bv

1 = 0. The weight 

matrices for IRLS are updated at every iteration.

The linearization Q of the quantile filter is updated every Kinner iterations, assuming the 

position of the quantile does not change within the next Kinner iterations. This assumption 

speeds up the algorithm, as the construction of the matrix is timeconsuming. Note that Kinner 

should not be chosen too large in order to avoid a bad approximation of the quantile filter. A 

proper evaluation of the convergence of the algorithm is presented in Sect. 6.1.5.

Multiple-Input Multiple-Output (MIMO) Mode

MIMO denoising follows a similar optimization approach and is based on the energy 

minimization formulation in (4). To this end, the augmented Lagrangian is given by:

𝔏AL(F, U, V,D, BU, BV, BD) = ρ(F − G)

+ α
2 U−F + Q(F) − Bu 2

2 + λ U 1

+ β
2 V− ∇x, y, xF − BV 2

2 + μ V 1

+ γ
2 D− ∇tF − BD 2

2 + ω D 1,

20

where U, V, and D denote auxiliary variables with the respective Bregman variables BU, BV, 

and Bd to enforce the constraints of spatial TV, QuaSI, and temporal TV regularization, 

respectively.

Following MISO denoising as presented in Section 5.1, we linearize the non-linear quantile 

operator Q(F) = (Q(f1),..., Q(fT))T using (8). Then, we have Q(F) = QF, where Q = (Q1,..., 

Qt)t and for each volume ft in the sequence F we have Q(ft) = Qtft. Based on this 

linearization, we solve (20) with an alternating scheme by minimizing w.r.t. the individual 

parameters. The minimization w.r.t. F leads to the linear system:

AFk + 1 = b 21

Schirrmacher et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A = W + β∇x, y, z
Τ ∇x, y, z + γ ∇t

Τ ∇t + αMΤM 22

b = 2WG + β∇x, y, z
Τ (Dx, y, z − Bx, y, z) + γ ∇t

Τ (Dt − Bt) + αMΤ(U − Bu), 23

where W is a diagonal weight matrix associated with Fk and constructed from the Huber 

loss according to (15). We then solve (23) using CG iterations.

The auxiliary variables U, V, and D are updated element-wise according to:

Ui
k + 1 = shrink([Fk + 1 − QFk + 1 + BU

k ]
i
, λ/α) 24

V i
k + 1 = shrink([∇x, y, zFk + 1 + BV

k ]
i
, μ/β) 25

Di
k + 1 = shrink([∇tF

k + 1 + BD
k ]

i
, ω/γ) . 26

Given the intermediate sequence Fk+1 along with the auxiliary variables Uk+1, Vk+1, and 

Dk+1, the Bregman variables are updated according to:

BU
k + 1 = BU

k + (Fk + 1 − QFk + 1 − Uk + 1) 27

BV
k + 1 = BV

k + (∇x, y, zFk + 1 − Vk + 1) 28

BD
k + 1 = BD

k + (∇tF
k + 1 − Dk + 1) . 29

An illustration of the proposed optimization scheme is given in Algorithm 2.

6. Applications and Evaluation

In order to show the applicability of the proposed framework for image, volumetric and 

volu- metric+temporal denoising, we evaluate our framework in different diagnostic and 

interventional imaging workflows namely OCT as well as C-arm CT. Specifically, we 
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benchmark our method on different datasets including comparisons to the state-of-the- art in 

the respective fields.

Optical Coherence Tomography Denoising

Throughout all experiments on the OCT data, we adopted our framework to image and 

volumetric denoising. For denoising on a B-scan level, the parameters were set to μ = 0.075 · 

T, λ = 5.0 · T, α = 100.0 · T, β =1.5 · T, Kouter = 20 and Kinner = 2 for T B-scans and 3×3 

median filtering to setup the QuaSI prior. In order to find appropriate standard parameter for 

the proposed method, we proceeded as follows. The parameter search was conducted on the 

pig eye dataset, using a clinical relevant image section of eye position 11 and 12 with 5 

noisy B-scans each. First, the parameter of the proposed algorithm with pure TV 

regularization were set using a grid search approach for μ and β. To quantify the image 

quality, peak-signal-to-noise ratio (PSNR) and structural similarity index (SSIM) evaluated 

in addition to a qualitative investigation. Second, the parameter of the proposed algorithm 

with QuaSI + TV regularization were set, using the optimal TV weights from the previous 

investigation.

For volumetric denoising based on Z = 6 adjacent B-scans, the parameters were set to μ = 

0.0007 · T, λ =1.0 · T, α = 120.0 · T, β = 0.05 · T, Kouter = 20 and Kinner, 2 for T volumes 

and 3×3×3 median filtering. The proposed algorithm for volumetric denoising was evaluated 

on clinical data only. The selection of standard parameters was performed in the same way 

as for denoising on a B-scan level. Using Z = 6 adjacent B-scans in T = 5 volumes from only 

1 patient, the TV weights followed by the QuaSI weights were set.

Datasets—To evaluate the performance of the proposed de- noising algorithm, we 

conducted experiments on two different OCT datasets. This comprises ex-vivo benchmark 

data and real clinical data.

For an evaluation of denoising on B-scan level, we used the publicly available pig eye 

dataset provided by Mayer et al. (2012). The dataset comprises 455 B-scans corresponding 

to 35 eye positions with 13 scans per position and was captured ex-vivo with a Spectralis 

HRA & OCT. The published B-scans were registered to each other to compensate for 

geometric shifts. We apply denoising to sets of T registered B-scans with T ∈ [1, 13] to 

demonstrate the influence of different numbers of input B-scans on the denoising result. The 

pig eye dataset provides a gold standard B-scan that was obtained by averaging all 455 

registered scans. The quality of the denoising algorithm was evaluated by assessing the 

fidelity of a denoised B-scan w.r.t. the gold standard using the peak-signal-to-noise ratio 

(PSNR) as well as the structural similarity index (SSIM).

In order to evaluate and compare B-scans with volumetric denoising, we use clinical data. A 

prototype ultrahigh-speed swept-source OCT system with 1050 nm wavelength and a 

sampling rate of 400,000 A-scans per second (W.Choi et al., 2013) was used to acquire 

volumetric data of 14 human subjects. Proliferative and non-proliferative diabetic 

retinopathy, early age-related macular degeneration and one healthy subject were imaged on 

two volumes per subject, where each B-scan was acquired five times in immediate 

succession. We use 500 A-scans by 500 B-scans for a field size of 3 × 3 mm.
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For denoising on a B-scan level, the central B- scan of each volume is used, while 

volumetric de- noising is performed on adjacent B-scans including the central one. As the 

clinical data does not provide a gold standard, we follow prior work by Fang et al. (2012); 

Ozcan et al. (2007); Wong et al. (2010) and measure the noise reduction using the mean-to-

standard-deviation ratio (MSR) and the contrast-to-noise ratio (CNR) according to:

MSR =
μ f
σ f

30

CNR =
μ f − μb

1
2 (σ f

2 + σb
2)

, 31

where μf and μb as well as σf and σb are the means and standard deviations of the intensities 

in a foreground and a background region, respectively. The regions to determine MSR and 

CNR were manually selected for the central B-scan, see Fig. 8a.

Comparison to the State-of-the-Art—We compared our method against seven 

competing denoising approaches. As representatives of general-purpose methods, we 

evaluated BM3D (Dabov et al., 2007) as well as a deep denoising CNN (DnCNN) (Zhang et 

al., 2017), which are state-of- the-art in the field of natural image denoising. We also 

evaluated non-local means-based speckle noise filtering (BNLM2D) that has been originally 

proposed for ultrasound image denoising (Coupe et al., 2009). In terms of spatial filters 

customized for OCT, we used Bayesian estimation denoising (BED) (Wong et al., 2010). In 

the field of temporal methods using multiple registered B-scans, we evaluate simple 

averaging (AVG) as a baseline as well as wavelet multi-frame denoising (WMF) (Mayer et 

al., 2012). To ensure fair comparisons between spatial and temporal methods, we provide the 

average of all B-scans as input for single-image denoising (BM3D, BNLM2D, DnCNN, and 

BED). In contrast, AVG and WMF are pure temporal approaches that process multiple 

registered B-scans. Notice that all of these methods can only operate on individual 2-D B-

scans to denoise volumetric data and are therefore compared to our proposed method on a B-

scan level. The parameters of the competing methods were set according to suggestions of 

the authors and adapted to the OCT data.

First, we conducted experiments for denoising on B-scan level on the pig eye dataset. Figure 

5 depicts the mean PSRN and SSIM of the competing denois- ing methods w.r.t. the gold 

standard for different numbers of input B-scans. We observed quantitatively that our 

proposed method consistently outperforms the competing BM3D, BED, and WMF 

denoising methods regardless of the number of input frames. Moreover, using only T = 2 

input B-scans, our spatio-temporal method achieved comparable results to averaging T = 5 

B-scans. The proposed method performs better than BNLM2D for T < 5 input B-scans. This 

reveals that our method is more economic regarding the number of required input scans. 

This property is essential for clinical applications, where acquiring more scans might lead to 
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unacceptable long acquisition times. Figure 6 depicts qualitative results for T = 5 B-scans. 

Here, the proposed algorithm using the QuaSI prior achieved superior performance in terms 

of noise reduction, while anatomical structures like retinal layers are preserved. Comparable 

results are achieved by BNLM2D, but the latter suffers from small streak-like artifacts. 

DnCNN achieved comparable results to simple averaging both regarding quantitative 

measures and qualitative assessment.

Second, denoising on a B-scan level was studied on our clinical datasets using the non-

reference MSR and CNR measures for a quantitative evaluation. Figure 7 depicts the 

averaged MSR and CNR measures for different numbers of input images. Overall, we 

observed that BNLM2D and our proposed method achieved the best noise reduction 

expressed by both measures. Figure 8 compares the denoising performance on one example 

dataset. We found that AVG, WMF, and BED facilitate structure-preserving denoising but 

were prone to noise breakthroughs in homogeneous areas, which lowers their MSR and 

CNR. In contrast, BM3D achieved superior noise reduction but suffered from streak 

artifacts. Similar observations were made in related work on OCT denoising (Fang et al., 

2012) and can be explained by the assumption of additive white Gaussian noise used for 

BM3D. The proposed method achieved a decent tradeoff between noise reduction and 

structure preservation.

Impact of the QuaSI Prior—We used the pig eye dataset as well as clinical data to 

evaluate the performance of our spatio-temporal denoising algorithm with and without the 

QuaSI prior. Figure 9 illustrates the impact of the QuaSI prior on the denoising result for the 

pig eye data compared to simple averaging and pure TV regularization. In terms of noise 

reduction, the proposed variational framework outperformed simple averaging. Especially in 

the enlarged region, a noticeable difference between averaging and the proposed de- noising 

algorithm is shown. In homogeneous areas, the algorithm considerably suppressed speckle 

noise, while preserving important structures. The noise reduction was superior when using a 

combination of the QuaSI prior and the TV prior for regularization as shown for the retinal 

structures in the enlarged region. In addition, the QuaSI prior contributed to structure-

preservation and avoided staircasing artifacts that typically appear in TV denoising.

Figure 10 illustrates the impact of the QuaSI prior using PSNR and SSIM (for the pig eye 

data) as well as MSR and CNR (for clinical data) for different numbers of input scans. Here, 

our denoising framework with QuaSI prior outperformed TV denoising in terms of all 

measures.

B-scan vs. Volumetric Denoising—So far, we evaluated denoising of volumetric OCT 

data by simply processing individual B-scans. In order to evaluate the impact of true 

volumetric denois- ing to simple B-scan wise denoising in our proposed framework, we used 

our clinical dataset. Volumetric denoising processes 6 consecutive B-scans including the 

central one. That way, CNR and MSR measures from the previous experiments can be used 

for comparison. Table 1 shows the mean MSR and CNR using T =1 and T = 5 registered 

input volumes. The proposed method is compared to BM4D (Maggioni et al., 2013) using T 
=1 volume and the average of T = 5 volumues as an input. Here, we found that our 

volumetric denoising achieved better results in terms of noise reduction for T =1 input 
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volume, as adjacent B-scans affect denoising positively. For T = 5 input volumes, we found 

that our B-scan denoising achieved slightly better results in terms of noise reduction. 

However, as opposed to noise reduction, volumetric denoising achieved superior 

performance in structure preservation by exploiting coherence between adjacent B-scans. 

This is depicted in Fig. 11, where the retinal layers in the magnified region can be better 

distinguished.

Convergence and Parameter Sensitivity—The convergence of the proposed algorithm 

is shown experimentally on a B-scan level. By our definition, the algorithm converges if a 

stationary point of the objective function (3) is reached. The value of the objective, 

hereinafter referred to as energy, is computed after every update of the intermediate image 

fk+1. In addition, PSNR and SSIM of the intermediate image are computed. Based on the 

optimal parameter setting μ = 0.075 · T, λ = 5.0 · T, β = 100.0 · T, P =1.5 · T, Kouter = 30, 

Kinner = 10 and Kcg = 3 for B-scan denoising, we denoise the pig eye dataset 9 with T = 8 B-

scans.

Figure 12 shows the impact of Kouter, Kinner, and Kcg on the convergence using three 

different parameter settings, where Kouter · Kinner = 300 for a fair comparison. The 

approximation of the QuaSI prior is updated every Kinner iterations. We found that 

increasing numbers of inner iterations (Kinner = 10) or CG iterations (Kcg = 30) impair the 

convergence properties of the algorithm as shown by the peaks of the energy and the PSNR. 

This is mainly caused by the rare update of the linearization Q. If the linearization is updated 

every iteration (Kinner = 1), the convergence is improved as no approximation is necessary 

but the computational complexity is increased. The optimal setting (Kouter − 30, Kinner − 10, 

Kcg − 3) provides an excellent tradeoff between stable convergence and low computational 

complexity.

Figure 13 shows the influence of the QuaSI regularization weight λ to the convergence of 

our algorithm. We found that with decreasing λ, the PSNR and SSIM measures increase 

slower due to the low impact of the QuaSI prior. For the optimal setting λ − 5.0, we 

observed a fast convergence of our iteration scheme. Notice that further increasing λ does 

not affect the convergence, which underlines effectiveness of the proposed QuaSI prior and 

the robustness of our iteration scheme.

Figure 14 depicts the influence of the Lagrangian multiplier α, which enforces the constraint 

u − f − Q(f) in our ADMM optimization. For 𝛼 → ∞, the augmented Lagrangian (11) 

results in the objective function (3). Hence, decreasing α impairs the convergence as shown 

by the peaks in the PSNR and SSIM measures over the iterations. Choosing α too large 

resulted in slower convergence compared to the proposed parameter setting α − 100.

In order to show the interplay of the QuaSI regularization weight λ and the corresponding 

La- grangian multiplier α used for ADMM, Fig. 15 depicts the influence of different 

configurations to B-scan denoising using fixed TV parameters (μ = 0.075, β = 1.5). We 

evaluated the denois- ing performance in terms of the PSNR and SSIM measures for a 

clinical relevant region showing retinal layers. Overall, we observed that increasing λ and 

thus the impact of QuaSI consistently improved denoising, whereas the sensitivity against α 
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is lower over several orders of magnitudes. Notice that our QuaSI prior was insensitive 

against oversmoothing as shown by the convergence of PSNR and SSIM for large λ.

6.2. C-Arm Computed Tomography Denoising

C-arm computed tomography (CT) denotes an imaging modality where an X-ray source and 

detector are mounted on opposing sides of a C-shaped gantry. That gantry is further able to 

rotate around a patient lying on a table, thus allowing to acquire CT-like projection images. 

Using image reconstruction techniques (Zeng, 2010; Strobel et al., 2009), these projection 

images can finally be transformed into a volumetric representation of the object under 

consideration.

Clinically, C-arm CT is both used for acquiring single volumetric images as well as for 

acquiring sequences of volumes, as it is for example used in perfusion imaging for acute 

stroke diagnosis (Fiesel- mann and Manhart, 2013). While single volumes just provide static 

information about the morphology itself, the acquisition of volume sequences typically 

involves injection of contrast agent during the acquisition, thus making the volume 

sequences provide additional temporal information.

Similar to conventional CT, photon effects as well as patient movement and angular 

undersampling usually deteriorate the image quality by introducing both structured and 

unstructured noise, see Fig. 16 b, Fig. 17 a.

For our experiments, the noise n in reconstructed CT volumes is modeled as additive noise 

according to (1), and is further composed of both shot noise p and structured noise s, i. e.

n = p + s . 32

While shot noise in the acquired projection data results from fluctuations measured by the 

sensor, various processing steps during the reconstruction process complicate an exact 

statistical description of the noise in the resulting volumetric data (Fessler, 2014). Structured 

noise comes in the form of highfrequent streak artifacts, causes by angular undersampling.

Datasets—We applied the proposed denoising algorithm on simulated C-arm CT data as 

well as on acquired, real patient data.

For our application, this results in two cases: single volumes can be denoised using 

volumetric de- noising (for the sake of convenience, we further refer to this method as SISO 

- single volume input, single volume output), while sequences of volumes are processed 

using volumetric + temporal denoising (MIMO - multiple volume input, multiple volume 

output), cf. Fig. 1.

order to evaluate the denosing, we particularly investigated simulated data since it provides a 

known ground truth. The simulated data is based on a digital brain CT phantom (Aichert et 

al., 2013), which was used in combination with a simulation framework mimicking the 

acquisition process of a C-arm CT system (Maier et al., 2013). We added Poisson noise and 
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simulated minor patient movement during the generation of the simulated data by rotating 

the head up to a total of 5° around z-axis between the individual scans. After reconstructing 

the generated projection data, the individual volumes are co-registered again to assert pixel 

correspondence between the volumes. Due to the slight different positions of the head within 

individual volumes, the resulting streak artifacts slightly differ between the co-registered 

individual volumes.

For a numerical comparison of different algorithms, we calculate the peak signal to noise 

ratio (PSNR) and the structured similarity index measure (SSIM) (Wang et al., 2004) using 

the digital phantom data as ground truth.

In addition to the simulated data, we also apply the proposed methods to real patient data 

which was clinically acquired during a perfusion imaging procedure.

Comparison to the State-of-the-Art—Current approaches towards noise reduction in 

CT imaging are, for example, based on anisotropic filtering or rely on a heuristic detection 

of streaks and vessel structures (Maier and Fahrig, 2015; Maier et al., 2011; Manhart et al., 

2014).

We compared the results from the proposed methods to the results from BM4D (Maggioni et 

al., 2013), which processes volumetric data and is an extension to the well-known BM3D 

(Dabov et al., 2007). We set the parameters of our method to α = 0.1, λ = 0.0005, β = 0.1, μ 
= 0.005, γ = 90 and ω = 0.8. These parameters have been optimized by investigating grid 

search on a small patch of the phantom data. The median filter regularization is computed on 

a 3 × 3 × 3 kernel.

The algorithms are applied to and evaluated on a subset of the brain volume consisting of 30 

consecutive slices. The slices, see Fig. 16 for synthetic and Fig. 17 for the real data, show 

the complete head and contain all structures of interest such as bones, white matter, gray 

matter and (contrast- enhanced) vessels. The results from the evaluation of the realistic brain 

phantom show that the proposed denoising algorithm outperforms BM4D with regards to 

PSNR and SSIM, see Table 2. Vessel structures are well-preserved within both volumes and 

boundaries between gray and white matter are perceivable. Further, a qualitative comparison 

between processed data with and without the use of the QuaSI prior (Fig. 16 c,d and e,f) 

shows that the QuaSI prior is able to further lower the amount of noise in the volumetric 

image data.

7. Conclusion

In this paper, we have presented the quantile sparse image (QuaSI) prior and a 

corresponding spatio-temporal denoising algorithm suitable for volumetric OCT or CT data. 

For OCT denoising, we proposed two pipelines to either process B-scans or volumetric OCT 

data. The numerical optimization is derived using a linearization of the quantile filter and an 

alternating direction method of multipliers scheme for efficient minimization. We can show 

that a combination of QuaSI and Total Variation regularization outperforms state-of-the-art 

methods in terms of quantitative measures. Interestingly, our method can be applied to both 

CT and OCT data through minor modifications of the denoising pipeline. This suggests that 
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it may be worthwhile to evaluate the potential of the QuaSI prior for inverse problems of 

other imaging modalities in future work.
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Highlights

• Algorithm enables noise reduction in volumetric OCT data while preserving 

important morphological structures

• Algorithm outperformes state-of-the-art methods in terms of quantitative 

measures

• Interestingly a slightly modified version of the algorithm successfully 

removes noise in volumetric CT data
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Figure 1: We propose three modi of our spatio-temporal denoising algorithm.
In the first modus (top), hereinafter called image denoising, single images or a sequence of 

registered images are processed. The second modus (middle) processes volumes as well as a 

sequence of registered volumes and is called volumetric denoising. The third modus 

(bottom) processes volumes as well as a sequence of registered volumes, outputs a sequence 

of volumes, and is called volumetric + temporal denoising.
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Figure 2: Method overview: The proposed spatio-temporal denoising algorithm is based on an 
energy minimization formulation with three terms.
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Figure 3: Analysis of our proposed QuaSI prior using median filtering Q(·) to model the 
appearance of OCT B-scans.
(a) and (b) depict a noisy B-scan along with the respective gold standard taken from the pig 

eye dataset Mayer et al. (2012). (c) and (d) show the residual r = f − Q(f) of the QuaSI 

regularization term, where brighter pixels express higher residuals (contrast enhanced for 

visualization). (e) and (f) depict the corresponding histograms of the both residuals, where 

the histogram for the gold standard is sparse. Our QuaSI prior exploits the sparsity of r = f − 

Q(f) for regularization in our variational denoising framework.
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Figure 4: Construction of the binary matrix to approximate the quantile filter Q(f) = Qft.
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Figure 5: Quantification of noise reduction in terms of mean PSNR and SSIM for different 
denoising methods on the pig eye dataset for different numbers of input images.
The points on the curves denote the average PSNR, and SSIM respectively, over the entire 

pig eye dataset using the number of input images denoted on the x-axis.
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Figure 6: Denoising on position 9 from the pig eye dataset using 5 B-scans.
(a) Noisy image, (b) - (h) AVG, BED (Wong et al., 2010), BM3D (Dabov et al., 2007), 

WMF (Mayer et al., 2012), BNLM2D (Coupe et al., 2009), DnCNN (Zhang et al., 2017) and 

the proposed method.
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Figure 7: Quantification of noise reduction in terms of mean MSR and CNR measures for 
denoising on a B-scan level on our clinical dataset for different numbers of input images.
The plots illustrate the mean MSR and CNR of the whole clinical dataset and the 5 

foreground regions. Each point on the curves denotes the mean MSR and CNR using the 

number of input images specified on the x-axis as input to state-of-the-art denoising methods 

and the proposed algorithm with the QuaSI prior.
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Figure 8: Visual comparison of denoising results using our clinical dataset with the central B-
scan of T = 5 volumes from a 46 years old male patient with diabetic retinopathy.
(a) Noisy image with manually selected background (red) and foreground regions (green) to 

determine MSR and CNR. (b) - (h) AVG, BM3D (Dabov et al., 2007), BED (Wong et al., 

2010), WMF (Mayer et al., 2012), DnCNN (Zhang et al., 2017), BNLM2D (Coupe et al., 

2009), and the proposed method.
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Figure 9: This comparison aims at demonstrating the improvement of the proposed spatio-
temporal denoising with TV + QuaSI regularization (third row) compared to simple averaging of 
registered B-scans (top row) and the proposed spatio-temporal denoising with TV regularization 
only (second row) for different numbers of input images.
For the comparison, dataset 27 from the pig eye dataset was used to evaluate the proposed 

algorithm with and without the QuaSI prior using the standard parameter.
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Figure 10: Mean PSNR, SSIM, MSR and CNR measures to quantify noise reduction with and 
without the QuaSI prior for 1, 5 and 13 input images.
The two bar graphs on the left hand side illustrate the average PSNR and SSIM over the 

entire pig eye dataset using the proposed algorithm with and without QuaSI prior and the 

standard parameters. The average MSR and CNR over the entire clinical dataset is shown in 

the two bar graphs on the right hand side.
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Figure 11: 
Denoising on the clincial dataset using T = 5 registered volumes from a 67 years old male 

patient with non-proliferative diabetic retinopathy. The left column illustrates the results of 

the proposed method on a B-scan level with Z =1 scan (c) and on a volumetric level (e) as 

well as BM4D (a) with Z = 6 consecutive scans using T = 1 input volume. The right column 

illustrates the results of the proposed method on a B-scan level with Z = 1 scan (d) and on a 

volumetric level (f) as well as BM4D (b) with Z = 6 consecutive scans using T =5 registered 

input volumes.
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Figure 12: 
Convergence analysis for our proposed optimization scheme in OCT B-scan denoising using 

different combinations of iteration numbers Kouter, Kinner and Kcg. For each combination, we 

depict the value of the energy function optimized by ADMM along the with PSNR of the 

intermediate denoised images over the iterations.
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Figure 13: 
Convergence analysis for our proposed optimization scheme in OCT B-scan denoising using 

different QuaSI regularization weights λ. For each parameter setting, we depict the 

influence of λ using the PSNR and SSIM of the intermediate denoised image over the 

iterations.
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Figure 14: 
Convergence analysis for our proposed algorithm in OCT B-scan denoising using different 

Lagrangian multiplier 𝛼 for ADMM optimization. For each parameter setting, we depict the 

influence of 𝛼 using the PSNR and SSIM of the intermediate denoised image over the 

iterations.
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Figure 15: 
Parameter sensitivity analysis for the interplay of the QuaSI regularization weight λ and the 

Lagrangian multiplier 𝛼 used for ADMM to B-scan denoising. The PSNR and SSIM 

measures were evaluated for a clinical relevant region of position 11 from the pig eye 

dataset. Each measure was determined for different QuaSI parameters λ and 𝛼 while keeping 

the TV regularization weight μ = 0.075 and the corresponding Lagrangian multiplier β =1.5 

fixed.
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Figure 16: 
Denoising on simulated C-arm CT data. (a) and (b) denote the ground truth data and the 

noisy input to the algorithm, respectively. (c) and (d) denote the denoised result with and 

without the QuaSI prior when using only a single volume (SISO) of the sequence. (e) and (f) 

denote the denoised result with and without the QuaSI prior, when using 1 volume (MISO). 

Note that for MISO, the input to the algorithm is not just the single volume as shown in the 

figure, but consists of a sequence of volumetric data.
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Figure 17: 
Denoising on real clinical C-arm CT data. (a) denotes the noisy input, (b) denotes the 

denoised result when using only a single volume (SISO) of the sequence. (c) denotes the 

denoised result when using a volume sequence (MIMO). Note that for MIMO, the input to 

the algorithm is not just the single volume as shown in the figure, but consists of a sequence 

of volumetric data.
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Table 1:

Mean MSR and CNR measures for 1 and 5 registered input volumes on the clinical data. For B-scan 

denoising, the central B-scan is used and for volumetric denoising 6 adjacent B-scans including the central one 

are used. The B-scan-wise average of T = 5 input volumes served as input to BM4D (Maggioni et al., 2013).

BM4D (Maggioni et al., 2013) T = 1 volume
B-scan

denoising

Volumetric
denoising

BM4D (Maggioni et al., 2013) T = 5 volumes
B-scan

denoising

Volumetric
denoising

MSR 5.16 5.35 5.77 5.38 6.50 6.31

CNR 5.00 5.27 5.60 5.23 6.38 6.18
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Table 2:

PSNR and SSIM for the input data, BM4D Maggioni et al. (2013) and the QuaSI methods.

Input BM4D QuaSI
(SISO)

QuaSI
(MISO)

PSNR 32.105 32.485 32.462 34.788

SSIM 0.883 0.914 0.925 0.943
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