
Optimal Surface Segmentation with Convex Priors in Irregularly 
Sampled Space

Abhay Shaha, Michael D. Abrámoffa,b, and Xiaodong Wua,c

aDepartment of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 
52242, USA

bDepartment of Ophthalmology and Visual Sciences University of Iowa, Iowa City, IA, 52242, USA

cDepartment of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA

Abstract

Optimal surface segmentation is a state-of-the-art method used for segmentation of multiple 

globally optimal surfaces in volumetric datasets. The method is widely used in numerous medical 

image segmentation applications. However, nodes in the graph based optimal surface segmentation 

method typically encode uniformly distributed orthogonal voxels of the volume. Thus the 

segmentation cannot attain an accuracy greater than a single unit voxel, i.e. the distance between 

two adjoining nodes in graph space. Segmentation accuracy higher than a unit voxel is achievable 

by exploiting partial volume information in the voxels which shall result in non-equidistant 

spacing between adjoining graph nodes. This paper reports a generalized graph based multiple 

surface segmentation method with convex priors which can optimally segment the target surfaces 

in an irregularly sampled space. The proposed method allows non-equidistant spacing between the 

adjoining graph nodes to achieve subvoxel segmentation accuracy by utilizing the partial volume 

information in the voxels. The partial volume information in the voxels is exploited by computing 

a displacement field from the original volume data to identify the subvoxel-accurate centers within 

each voxel resulting in non-equidistant spacing between the adjoining graph nodes. The 

smoothness of each surface modeled as a convex constraint governs the connectivity and regularity 

of the surface. We employ an edge-based graph representation to incorporate the necessary 

constraints and the globally optimal solution is obtained by computing a minimum s-t cut. The 

proposed method was validated on 10 intravascular multi-frame ultrasound image datasets for 

subvoxel segmentation accuracy. In all cases, the approach yielded highly accurate results. Our 

approach can be readily extended to higher-dimensional segmentations.
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Green –True Surface, Yellow – Traditional graph based segmentation, Blue – Segmentation from 

proposed method. Brown arrows indicate the deformation in voxels.
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1. Introduction

Optimal surface segmentation method for 3-D surfaces representing object boundaries is 

widely used in image understanding, object recognition and quantitative analysis of 

volumetric medical images (Li et al., 2006; Abràmoff et al., 2010; Withey and Koles, 2008). 

The optimal surface segmentation technique (Li et al., 2006) has been extensively employed 

for segmentation of complex objects and surfaces, such as knee bone and cartilage (Yin et 

al., 2010; Kashyap et al., 2013), heart (Wu et al., 2011; Zhang et al., 2013), airways and 

vessels tress (Liu et al., 2013; Bauer et al., 2014), lungs (Sun et al., 2013), liver (Zhang et 

al., 2010), prostate and bladder (Song et al., 2010), retinal surfaces (Garvin et al., 2009; Lee 

et al., 2010) and fat water decomposition (Cui et al., 2015). The segmentation problem is 

transformed into an energy minimization problem (Li et al., 2006; Ishikawa, 2003; Boykov 

et al., 2001). A graph is then constructed, wherein the graph nodes correspond to the center 

of evenly distributed voxels (equidistant spacing between adjoining nodes). Edges are added 

between the nodes in the graph to correctly encode the different terms in the energy 

function. The energy function can then be minimized using a minimum s-t cut (Li et al., 

2006; Boykov and Kolmogorov, 2004). The resultant minimum s-t cut corresponds to the 

surface position of the target surface in the voxel grid.

The method requires appropriate encoding of primarily the following three types of energy 

terms (Song et al., 2013; Shah et al., 2015) into the graph construction. The data term (also 

commonly known as the data cost term) which measures the inverse likelihood of all voxels 

on a surface, a surface smoothness term (surface smoothness constraint) which specifies the 

regularity of the target surfaces and a surface separation term (surface separation constraint) 

which governs the feasible distance between two adjacent surfaces. A detailed description of 

the energy terms is provided in Section 2.1. Various types of surface smoothness and surface 

separation constraints are used for simultaneous segmentation of multiple surfaces. Optimal 
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surface detection method (Li et al., 2006; Wu and Chen, 2002) uses hard smoothness 

constraints that are a constant in each direction to specify the maximum allowed change in 

surface position of any two adjacent voxels on a feasible surface. It uses hard surface 

separation constraints to specify the minimum and maximum allowed distances between a 

pair of surfaces. Methods employing trained hard constraints (Garvin et al., 2009), use prior 

term to penalize local changes in surface smoothness and surface separation. The constraints 

can also be modeled as a convex function (convex smoothness constraints) as reported in 

Ref. (Song et al., 2013; Dufour et al., 2013). Furthermore, a truncated convex function 

(truncated convex constraints) may also be used to model the surface smoothness and 

surface separation constraints (Kumar et al., 2011; Shah et al., 2014, 2015) to segment more 

complex surfaces but does not guarantee global optimality. A truncated convex constraint 

enforces a convex function based penalty with a bound on the maximum possible penalty.

However, since volumetric data is typically represented as an orthogonal matrix of 

intensities, the surface segmentation cannot achieve a precision greater than a single unit 

voxel, i.e. the distance between two adjoining nodes in the graph space. Accuracy higher 

than a single unit voxel (subvoxel accuracy) can be attained by exploiting partial volume 

effects in the image volumes (Abràmoff et al., 2014; Malmberg et al., 2011) which leads to 

non-equidistant spacing between the adjoining graph nodes resulting in an irregularly 

sampled space. Volumetric images are obtained by discretizing the continuous intensity 

function uniformly sampled by sensors, resulting in partial volume effects (Shannon, 1949; 

Trujillo-Pino et al., 2013). Partial volume effects are inherent in images as voxels ‘combine’ 

partial information from various features (such as tissues) of the imaged object. The spatial 

resolution in images is limited by the detector/sensor design and by the reconstruction 

process, which results in 3-D image blurring introduced by the finite spatial resolution of the 

imaging system (Soret et al., 2007). Mathematically, the finite resolution effect is described 

by a 3-D convolution operation, where the image is formed by the convolution of the actual 

source with the 3-D point spread function of the imaging system, which causes spillover 

between regions. The signal intensity in each voxel is the mean of signal intensities of the 

underlying tissues included in that voxel. The ignored partial volume information can be 

utilized by computing a displacement field directly from the volumetric data (Abràmoff et 

al., 2014) to identify the subvoxel-accurate location of the centers within each voxel, thus 

requiring a generalized construction of the graph with non-equidistant spacing between 

orthogonal adjoining nodes (irregularly sampled space). Increased subvoxel segmentation 

accuracy attained by exploiting the partial volume effects has the potential for better 

diagnosis and treatment of disease.

The optimal surface segmentation technique employing the different types of smoothness 

constraints as discussed above is not capable of efficiently segmenting surfaces with 

subvoxel accuracy in a volume which requires segmentation in a grid comprising of non-

uniformly sampled voxels where the spacing between the orthogonally adjoining nodes is 

not equidistant.

To address this problem, the subvoxel accurate graph search method (Abràmoff et al., 2014) 

was developed to simultaneously segment multiple surfaces in a volumetric image by 

exploiting the additional partial volume information in the voxels. A displacement field is 
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computed from the original volumetric data. The method first creates the graph using the 

conventional optimal surface segmentation method (Li et al., 2006), then deforms it using a 

displacement field and finally adjusts the inter-column edges and inter-surface edges to 

incorporate the modification of these constraints. Specifically, such a deformation shall 

result in non-equidistant spacing between the adjoining nodes which may be considered 

equivalent to a generalized case of a cube volume formed by non-uniform sampling along 

the z dimension for the purposes of 3-D surface segmentation. The method demonstrated 

achievement of subvoxel accuracy compared to the traditionally used optimal surface 

segmentation method (Li et al., 2006). An example is shown in Fig. 1. However, the method 

employs hard surface smoothness which does not allow flexibility in constraining surfaces. 

Specifically, the previous approach was not capable of incorporating a convex surface 

smoothness constraint in the graph with non-equidistant spacing between adjoining nodes.

Our main contribution is extension of the framework presented in Ref.(Abràmoff et al., 

2014) to incorporate convex surface smoothness/separation constraints for multiple surface 

segmentation in irregularly sampled space. The proposed method is a generalization of the 

graph based optimal surface segmentation with convex priors (Song et al., 2013) in the 

regularly sampled space. Consequently, the graph constructed in the regularly sampled space 

forms a special case in the irregularly sampled space framework where the spacing between 

the adjoining nodes is set to be a constant (equidistant). The use of convex priors allows for 

incorporation of many different prior information in the graph framework as discussed 

previously while attaining subvoxel accuracy. Unlike the subvoxel accurate graph search 

method (Abràmoff et al., 2014), the proposed method does not require a two step process to 

create the graph by the conventional method and then readjust the edges, but instead 

provides a one step function to add edges between nodes from two neighboring columns to 

incorporate the convex prior.

Subvoxel surface segmentation methods employing adaptive grids (Lang et al., 2014) and 

located cuts (Malmberg et al., 2011) have also been used to segment surfaces with subvoxel 

precision. The adaptive grid methodology (Lang et al., 2014) requires a pre-segmentation of 

the target surfaces and generates an application specific grid, wherein, the graph nodes are 

only placed in the region of interest between the inner and outer surfaces by performing 

flattening of the surfaces using a regression model. The surfaces are then segmented using 

the optimal surface segmentation method (Li et al., 2006). The sub pixel segmentation 

method as described in Ref. (Malmberg et al., 2011), utilizes an initial segmentation to 

create fuzzy vertices in the graph using a distance transform. Utilizing the information from 

the fuzzy vertex segmentation, a located cut for the boundary of the vertex segmentation is 

then derived to compute the final segmentation. Both methods essentially make local 

adjustments and improvements to the segmentation in the regularly sampled space, while the 

proposed method computes the globally optimal solution from the graph constructed in the 

irregularly sampled space.

In addition, the adaptive moving grid has been used for solving partial differential equations 

(PDEs) (Budd et al., 2009). The grid adaptivity also finds its application in the quadtree and 

octree methods for improving resolution locally in a hierarchical data representation (Samet, 

1988).
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Note that a straightforward way to solve the problem is to simply up-sample the columns 

and directly apply the graph search method, which increases the graph size proportional to 

the factor of upsampling, thus resulting in very high computation time and is dependent on 

determination of the minimum scale of subvoxel-accurate segmentation. The proposed 

method does not require any such upsampling and is capable of segmenting the target 

surfaces in the available resolution with subvoxel accuracy. Additionally, the proposed 

method does not introduce additional parameters in the formulation in comparison with 

graph search method (Li et al., 2006).

In the following sections, we briefly explain the formulation for the optimal surface 

segmentation method in the regularly sampled space, explain the formulation and 

description of our novel graph construction to incorporate the convex smoothness constraints 

in the irregularly sampled space. Next, the evaluation is performed on intravascular multi-

frame ultrasound image datasets for validation and applicability of the method to 

demonstrate subvoxel segmentation accuracy compared to optimal surface segmentation 

method with convex priors in regularly sampled space (Song et al., 2013). Finally, the proof 

for correctness of graph construction to model the convex surface smoothness constraints is 

presented in Appendix A and B.

2. Methods

2.1. Problem Formulation and Energy Function

The problem formulation for the widely used optimal surface segmentation methods (Li et 

al., 2006; Wu and Chen, 2002; Song et al., 2013) is described as follows. Consider a volume 

I(x, y, z) of size X × Y × Z. A surface is defined as a function S(x, y), where x ∈ x = {0, 1, 
…X − 1}, y ∈ y = {0, 1, …Y − 1} and S(x, y) ∈ z = {0, 1, …Z − 1}. It is worth nothing that 

the the center of voxels are uniformly sampled. Each (x, y)-pair corresponds to a voxel 

column {(I(x, y, z) | z = 0, 1, …, Z − 1}. We use a and b to denote two columns 

corresponding to two neighboring (x, y)-pairs in the domain x × y and Ns to denote the set of 

pairs of neighboring columns. The function S(a) can be viewed as labeling for a with the 

label set z (S(a) ∈ z). For simultaneously segmenting λ(λ ≥ 2) distinct but interrelated 

surfaces, the goal of the problem is to seek the globally optimal surfaces Si(a), where i = 1, 

2, …λ in I with minimum separation dj,j+1 where j = 1, 2, …λ − 1 between each adjacent 

pair of surfaces Sj and Sj+1.

The problem is transformed into an energy minimization problem. The energy function E(S) 

takes the following form as shown in Eqn. (1):

E(S) = ∑
i = 1

λ
∑

a ∈ x × y
Di Si(a) + ∑

(a, b) ∈ Ns

Vab Si(a), Si(b)

+ ∑
i = 1

λ − 1
∑

a ∈ x × y
Ha Si + 1(a), Si(a)  

(1)
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The data cost term ∑a∈x×y Di(Si(a)) measures the total cost of all voxels on a surface Si, 

where Di measures the inverse probability of a voxel belonging to surface Si. The surface 

smoothness term ∑(a, b) ∈ Ns
Vab Si(a), Si(b)  constrains the connectivity of a surface in 3-D 

and regularizes the surface. Intuitively, this defines how rigid the surface is. The surface 

separation term Ha(Si(a), Si+1(a)) constrains the distance of surface Si to Si+1. The energy 

function is appropriately encoded in a graph. A minimum s-t cut is then computed on the 

graph to get solutions for the target surfaces Si’s.

Typically graph construction is done with equidistant spacing between the adjoining nodes 

(regularly sampled space). Our main contribution is to allow for optimal surface 

segmentation in the irregularly sampled space with convex surface smoothness/separation 

constraints by allowing non-equidistant spacing between the nodes.

We formulate the multiple surface segmentation problem in a similar manner for the 

irregularly sampled space. Consider a volume I (x, y, z) where x ∈ x = {0, 1, …X − 1}, y ∈ y 

= {0, 1, …Y − 1} and z ∈ ℝ. Each (x, y)-pair corresponds to a column (I (x, y, z) | z ∈ ℝ, 

denoted by col(x, y). Assume each col(x, y) has exactly Z elements obtained by sampling 

strictly in the increasing order along the z direction which are indexed by 0, 1, …Z − 1
along col(x, y). This yields a volumetric image I(x, y, z) of size X × Y × Z where x ∈ x = {0, 

1, …X − 1}, y ∈ y = {0,1, …Y − 1} and z ∈ z = 0, 1, …Z − 1 , which allows for non-

equidistant spacing between two adjacent elements in the column. As discussed previously a 
and b are used to denote two neighboring columns. For ease of understanding, we assume 

Z = Z for the remainder of this paper.

Note, for purposes of the experiments in this paper, relaxation of equidistance constraint 

concerns the z axis only. As the image domain we consider is an x-y grid, we thus only relax 

the equidistance constraint along the z-axis. It is possible and would be useful to relax the 

equidistance constraint in the x- and y-axes if the image domain is defined on a meshed 

simple surface, that is, the sought surface is monotone to the meshed surface. However, to 

avoid the interference, we may restrict to move the center point around within each voxel.

We define a mapping function for each column a as La: 0, 1, …Z − 1 ℝ which maps the 

index of sampled points in I(a, z) to I (d, z). For example, La(i) denotes the z coordinate of the 

i+1-th sample along column a, and La(i + 1) > La(i) because of the strictly increasing order 

of sampling along column a. An example is shown in Fig. 2. Further, a surface labeling for 

column a is defined as S(a), where S(a) ∈ z = {0, 1, …Z − 1}. The function La(S(a)) defines 

the “physical” location (the z coordinate) of surface S at column a. For simultaneously 

segmenting λ(λ ≥ 2) surfaces, the goal of the problem is to seek the surface labeling Si(a) 

on all columns in I for each surface Si, where i = 1, 2 … λ, with minimum separation dj,j+1 

where j = 1, 2, … λ − 1 between adjacent pair of surfaces. It is to be noted, that the surfaces 

are ordered, i.e, La(Si+1(a)) ≥ La(Si(a)). The corresponding energy function for this 

formulation is shown in Equation 2:
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E(S) =   ∑
i = 1

λ
∑

a ∈ x × y
Di La Si(a) + ∑

(a, b) ∈ Ns

Vab La Si(a) , Lb Si(b)

+ ∑
i = 1

λ − 1
∑

a ∈ x × y
Ha La Si + 1(a) , La Si(a)

(2)

Herein, the surface smoothness term is modeled as a convex function as shown in Equation 

(3).

Vab La Si(a) , Lb Si(b) = ψ La Si(a) − Lb Si(b) (3)

where, ψ(.) is a convex function, and without loss of generality, we assume that ψ (0) = 0 

Wu and Chen (2002).

For simplicity, the surface separation term is modeled as a hard constraint for enforcing the 

minimum separation between a pair of surfaces as shown in Equation (4).

Ha La Si + 1(a) , La Si(a) =

∞,  if La Si + 1(a) − La Si(a) < di, i + 1
0,  otherwise 

(4)

where di,i+1 is the minimum separation between a pair of adjacent surfaces. The method is 

also capable of incorporating a convex surface separation penalty while enforcing a 

minimum separation constraint in the irregularly sampled space using the same framework 

and is discussed in Section 5.

2.2. Graph Construction

For each surface Si, a subgraph Gi is constructed. Herein, the intra-column edges are added 

to enforce surface monotonicity and encode the data term for cost volume Di (for searching 

Si). Inter-column edges are added between a pair of neighboring columns a and b to enforce 

the surface smoothness penalty term Vab(.). The graph G for the simultaneous search of all 

λ surfaces consists of the union of those λ subgraphs Gi’s. Furthermore, inter-surface edges 

are added between the corresponding columns of subgraphs Gi and Gi+1 to incorporate the 

surface separation term for surface distance changes between two surfaces. A pair of 

columns with respect to the same (x, y)-pairs in the domain x × y of subgraphs Gi, Gi+1 for 

two adjacent surfaces is defined as corresponding columns. The graph G is then solved by 

computing a maximum flow which minimizes the energy function E(S) (Equation. (2)). The 

positions of the λ target surfaces are obtained by mapping the resultant solution to the 

physical space using the mapping function La(.). The graph is constructed using the cost 

volumes generated for λ surfaces from volume I(x, y, z). Each element in the cost volume Di 
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to search Si is represented by a node ni(a, z) (z ∈ z) in Gi. The following edges are added to 

incorporate the different energy terms:

2.2.1. Intra-column Edges—To ensure the monotonicity of the target surfaces (i.e., the 

target surface intersects each column exactly one time) and encode the data cost term; intra-

column edges are added to each subgraph Gi as described in Ref. Li et al. (2006). Along 

every column a for surface Si, each node ni(a, z)(z > 0) has a directed edge with +∞ weight 

to the node immediately below it and an edge with Di(La(z −1)) weight in the opposite 

direction. Additionally, an edge with +∞ weight is added from the source node s to each 

node ni(a, 0) and an edge with Di(La(Z − 1)) weight is added from node ni(a, Z − 1) to the 

terminal node t.

Any s-t cut with finite cost contains only one of the finite weight edges Di(La(.)) for each 

column a, thus enforcing surface monotonicity. This is because, if any s-t cut included more 

than one finite weight edges, then by construction it must include at least one infinite weight 

edge thereby making its cost infinite.

2.2.2. Inter-column Edges—Inter-column arcs are added between pairs of neighboring 

columns a and b to each subgraph Gi to encode the surface smoothness term. For the 

purpose of this paper the incorporation of a convex smoothness term is presented. Denote a 

function operator f(r1, r2) as shown in Equation (5).

f r1, r2 =
0, if r1 < r2

ψ r1 − r2 , otherwise 
(5)

where ψ(.) is a convex function.

A general weight setting function g(.) is used for the inter-column edges between two 

neighboring columns. The following inter-column edges are added:

For all k1 ∈ [0, Z − 1] and k2,∈ [1, Z − 1], a directed edge with weight setting g(k1, k2) as 

shown in Equation (6) is added from node ni(a, k1) to node ni(b, k2). Additionally, a directed 

edge is added from node ni(a, k1) to terminal node t with weight setting g(k1, Z).

g k1, k2 = f La k1 , Lb k2 − 1 − f La k1 − 1 , Lb k2 − 1 − f La k1 , Lb k2
+ f La k1 − 1 , Lb k2

(6)

Where, if k1 = 0, (that is k1 − 1 ∉ z), then f(La(k1 −1), Lb(k2 −1)) = f(La(k1 − 1), Lb(k2)) = 0 

and if k2 = Z, (that is, k2 ∉ z), then f(La(k1), Lb(k2)) = f(La(k1 − 1), Lb(k2)) = 0.

Lemma 1: For any k1 and k2, the function g(k1, k2) is non-negative. (Proof in Appendix A)

In a similar manner, for all k1 ∈ [0, Z − 1] and k2 ∈ [1, Z −1], edges are constructed from 

nodes ni(b, k1) to nodes ni(a, k2) with weight setting g(k1, k2) as shown in Equation (7). 
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Additionally a directed edge is added from node ni(b, k1) to terminal node t with weight 

setting g(k1, Z).

g k1, k2 = f Lb k1 , La k2 − 1 − f Lb k1 − 1 , La k2 − 1 − f Lb k1 , La k2
+ f Lb k1 − 1 , La k2

(7)

It should be noted that the weight setting function g(k1, k2) in Equation (7) is similar to 

Equation (6) with only the column mapping functions La(.) and Lb(.) interchanged. Also, in 

practice we do not add edges with a weight of zero in the graph.

Lemma 2: In any finite s-t cut C, the total weight of the edges between any two adjacent 

columns a and b (denoted by Ca,b) equals to the surface smoothness cost of the resulting 

surface Si with Si(a) = k1 and Si(b) = k2, which is ψ (La(k1) − Lb(k2)), where ψ(.) is a 

convex function. (Proof in Appendix B)

Example of a graph construction of two neighboring columns a and b for a given surface 

with enforcement of convex surface smoothness constraint is shown in Fig. 3. Herein, an 

edge from ni(a, k1) to node ni(b, k2) is denoted as Ei ak1
, bk2

 for the i-th surface. For clarity, 

an edge Ei ak1
, bk2

 is denoted as Type I if k2 > k1, as Type II if k2 = k1 and as Type III if k2 

< k1. The respective edge weights in the graph are summarized in Table 1. The convex 

function used in the example is a linear one, taking the form ψ(k1 − k2) = |k1 − k2|.

The following can be verified from the example shown Fig. 3:

• The correct cost of cut C1 = |21 − 12| = 9. It can be verified that the inter-column 

edges contributing to the cost of cut C1 are Type I edges E(a2, b3) and E(a1, b3). 

Summing the edge weights from Table 1, cost of cut C1 = 5 + 4 = 9.

• The correct cost of cut C2 = |25 − 37| = 12. It can be verified that the inter-

column edges contributing to the cost of cut C2 are Type I edges E(b4, a5), E(b3, 
a4) and Type II edge E(b4, a4). Summing the edge weights from Table 1, cost of 

cut C2 = 3 + 3 + 6 = 12.

• The correct cost of cut C3 = |25 − 3| = 22. It can be verified that the inter-column 

edges contributing to the cost of cut C3 are Type I edges E(a0, b2), E(a1, b2), 

E(a1, b3), E(a2, b3), Type II edge E(a3, b3). Summing the edge weights from 

Table 1, cost of cut C3 = 1 + 8 + 4 + 5 + 4 = 22.

• The correct cost of cut C4 = |25 − 1| = 24. It can be verified that the inter-column 

contributing to edges the cost of cut C4 are Type I edges E(a0, b1), E(a0, b2), 

E(a1, b2), E(a1, b3), E(a2, b3), Type II edge E(a3, b3). Summing the edge weights 

from Table 1, cost of cut C4 = 2 + 1 + 8 + 4 + 5 + 4 = 24.

2.2.3. Inter-surface Edges—The surface separation term Ha(.) between two adjacent 

surfaces is enforced by adding edges in a similar manner as described in Ref. (Abràmoff et 
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al., 2014) from column a in subgraph Gi to corresponding column a in subgraph Gi+1. Along 

every column a in Gi, each node ni(a, z) has a directed edge with +∞ weight to the node 

ni+1(a, z′), (z′ ∈ z, La(z′) − La(z) ≥ di,i+1, La(z′ − 1) La(z′−1)−La(z) < di,i+1). Additionally 

an edge with +∞ weight is added from node ni(a, z) to the terminal node t if La(Z −1)− La 

(z) < di,i+1.

It can be verified, that no finite s-t cut is possible when La(z′) − La(z) < di,i+1, since by 

construction an inter-surface edge of + ∞ weight will be cut, thus making the cost infinite. 

An example of a graph construction for two corresponding columns of adjacent pair of 

surfaces with enforcement of the surface separation constraint is shown in Fig. 4.

Thus the surface separation term Ha(.) is correctly encoded in graph G. Note that if Ha(.) is 

modeled with a convex function, the same graph construction as that for the surface 

smoothness term can be used to encode it in the graph.

2.3. Surface Recovery from Minimum s-t cut

The minimum s-t cut in the graph then defines optimal λ surfaces Si where i = 1, 2 … λ. For 

a given surface Si, the surface label for each col(x, y) ∈ z, where x ∈ x and y ∈ y is given by 

the minimum s-t cut (Li et al., 2006). The final surface positions for each column a is 

recovered by applying the mapping function La: 0, 1, …Z − 1 ℝ, where a ∈ x × y, thereby 

yielding the resultant surface positions for each column La Si(a) ∈ z, where z ∈ ℝ.

3. Experimental Methods

3.1. Intravascular Ultrasound (IVUS) Images

To study the applicability of the proposed method, the segmentation of lumen and media 

with subvoxel accuracy was performed in Intravascular Ultrasound (IVUS) images as shown 

in Fig. 5.

Atherosclerosis, a disease of the vessel wall, is the major cause of cardiovascular diseases 

such as heart attack or stroke (Frostegård, 2005). Early atherosclerosis results in remodeling, 

thus retaining the lumen despite plaque accumulation (Glagov et al., 1987). Atherosclerosis 

plaque is located between lumen and media that can be identified in IVUS images. 

Automated IVUS segmentation of lumen and media is of substantial clinical interest and 

contributes to clinical diagnosis and assessment of plaque (Balocco et al., 2014).

In this experiment we compare the segmentation accuracy of the lumen and media using the 

proposed method with the complete set of methods used in the standardized evaluation of 

IVUS image segmentation (Balocco et al., 2014). The compared methods are namely, P1 - 

Shape driven segmentation based on linear projections (Unal et al., 2008), P2 - geodesic 

active contour based segmentation (Caselles et al., 1997), P3 - Expectation maximization 

based method (Cardinal et al., 2006, 2010), P4 - graph search based method (Downe et al., 

2008), P5 - Binary classification of distinguishing between lumen and non-lumen regions 

based on multi-scale Stacked Sequential learning scheme (Gatta et al., 2011), P6 - Detection 

of Media border by holistic interpretation of the IVUS image (HoliMAb) (Ciompi et al., 
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2012), P7 - Lumen segmentation based on a Bayesian approach (Mendizabal-Ruiz et al., 

2013), P8 - Sequential detection (Bourantas et al., 2008). Herein, method P4 is based on the 

optimal surface segmentation method using hard constraints (Li et al., 2006) applied on 

regularly sampled space. For fair and robust analysis, we also compare the segmentation 

accuracy of the proposed method in the irregularly sampled space to the optimal surface 

segmentation method using convex smoothness constraints in the regularly sampled space 

(OSCS) (Song et al., 2013) and applied deformations to the OSCS segmentation results 

(DOSCS as described in Section 3.1.2). The proposed method, OSCS and DOSCS method 

employ the same parameter settings. Additionally, we compare the measures obtained from 

our method to a deep learning method with a UNET architecture (UNET) which was applied 

on the same dataset and was reported in Ref. (Balakrishna et al., 2018). Overview of each 

method’s feature, including whether the algorithm was applied to lumen and/or media, 

whether the segmentation was done in 2-D or 3-D and whether the method was semi-

automated or fully automated is shown in Table 2.

3.1.1. Data—The data used for this experiment was obtained from the standardized 

evaluation of IVUS image segmentation (Balocco et al., 2014) database. In this experiment 

Dataset B as denoted in Ref. Balocco et al. (2014) was used. The data comprises of a set of 

435 images with a size of 384 × 384 pixels extracted from in vivo pullbacks of human 

coronary arteries from 10 patients. The respective expert manual tracings (subvoxel 

accurate) of lumen and media for the images were also obtained from the reference database. 

The dataset contains 10 multi-frame datasets, in which 3D context from a full pullback is 

provided. Each dataset comprises of between 20 and 50 gated frames extracted from the full 

pullback at the end-diastolic cardiac phase. Further, the obtained data comprised of two 

groups - training and testing set. Approximately one fourth of the images in the dataset were 

grouped in the training set and the remaining were grouped as the testing set, to assure fair 

evaluation of the algorithms with respect to the expert manual tracings. The experiment with 

the proposed method was conducted in conformance with the directives provided for the 

IVUS challenge (Balocco et al., 2014).

3.1.2. Workflow—Each slice of the volumes in the dataset is first converted into a polar 

coordinate image as shown in Fig 6. For each frame, given the center of the image, for each 

angular position θ = {0, 1, …360} degrees on the short-axis view (Balocco et al., 2014), the 

corresponding radial columns are generated by considering the gray-level values of the 

sequence along the radius at the chosen angle and the generated columns are stacked 

consecutively to generate the polar image volumes. The generated polar image volumes 

undergo the application of a 7 × 7 × 7 Gaussian filter with a standard deviation of 4 for 

denoising. Next, the cost image volumes Dlumen and Dmedia are generated for the lumen and 

media respectively. The OSCS method is applied to the cost volumes Dlumen and Dmedia. 

Further the GVF as discussed in Section 3.1.3 is computed on the polar image volumes. The 

deformation field is then applied to cost image volumes and the shifted positions of the 

voxel centers are recorded. The deformed cost function image volumes Dlumen′  and Dmedia′

are then segmented using the proposed method. The deformation obtained from GVF was 

applied to the automated segmentations obtained from the OSCS method, resulting in 
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deformed OSCS (DOSCS) segmentations. Finally the resulting segmentations are mapped 

back to the original coordinate system.

3.1.3. Gradient Vector Field—A gradient vector field (GVF) (Xu and Prince, 1998) is 

a feature preserving diffusion of the gradient in a given image volume. In this study, GVF is 

used as a deformation field F (x, y, z) obtained directly from the input volume data acting on 

the center of each voxel (x, y, z) to shift the evenly distributed voxels to the deformed space. 

The voxel centers are thus displaced towards the regions where salient transitions of image 

properties are more likely to occur. The shift of the centers of the voxels is given by 

Equation (8).

x′, y′, z′ = (x, y, z) + γF(x, y, z) (8)

where γ is a normalization factor. The displacement of each voxel center is confined to the 

same voxel. Therefore, F (x, y, z) is normalized such that the maximum deformation is equal 

to half of the voxel size δ. The normalization factor takes the following form as show in 

Equation (9).

λ = δ
2 × max(x, y, z) ∈ (X, Y , Z) F(x, y, z) (9)

3.1.4. Cost Function Design—To detect the lumen and media, a machine learning 

approach is adopted to generate cost images. For each pixel of the polar image in the 

training set, a total of 148 features were generated. The following operators are applied in 

order to generate the features:

• 16 features are generated by applying a set of 16 Gabor filters to the image 

according to the following kernel shown in (Equation 10).

G(x, y) = 1
2πσxσy

e
−0.5 × x

σx

2
+ y

σy

2
+ i2π(Ux + Vy)

(10)

The parameters U and V (scaling and orientation) used are U = (0.0442, 0.0884, 

0.1768, 0.3536), V = (0, π/4, π/2, 3π/4), σx = 0.5622U and σy = 0.4524U .

• 2 features are generated by applying a 3 × 3 Sobel kernel to the image in the x 
and y directions.

• 6 features are generated by computing the mean value (m), standard deviation (s) 

and the ratio m
s  of pixel intensities in a sliding window of size 1 × 10 pixels in 

the x and y directions.
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• 2 features defined as shadow (Sh) and relative shadow (Sr) related to the 

cumulative gray level of the image are generated as shown in the following 

Equations (11),(12).

Sh(x, y) = 1
NrNc

∑
ys = y

Nr
BI x, ys (11)

Sr(x, y) = 1
NrNc

∑
ys = y

Nr
ysBI x, ys (12)

where BI(x, y) is a binary image obtained by thresholding the image with a 

thresholding value = 14 and (Nr, Nc) are the image dimensions.

• 1 feature is generated by computing the local binary pattern (Ojala et al., 2002).

• 121 features are generated by using a 11 × 11 window centered at each pixel in 

the image, comprising of the intensity values of each pixel in the given window.

Using the expert manual tracings for the training set two separate random forest classifiers 

(Breiman, 2001) for lumen and media with 10 trees are trained on all the pixels of the 

images in the training set to learn the probability maps which indicate the likelihood of a 

pixel belonging to lumen or media respectively. Finally, the trained classifiers are then 

applied to each pixel of the testing set to obtain the two cost images Dlumen, Dmedia for 

lumen and media.

3.1.5. Parameter Setting—A linear (convex) function, ψ(k1 − k2) = |k1 − k2 | was used 

to model the surface smoothness term Vab(.). The surface separation term Ha(.) is modeled 

as a hard constraint for enforcing the minimum separation between the lumen and media 

with dlumen,media = 2.

4. Results

The quantitative analysis was carried out by comparing the segmentations obtained by the 

proposed and compared methods with the expert manual tracings (subvoxel accurate). Three 

evaluation measures were used to quantify the accuracy of the segmentations. The measures 

used are:

Jaccard Measure (JM) - Quantifies how much the segmented area overlaps with the manual 

delineated area as shown in Equation (13):

JM Rauto, Rman =
Rauto ∩ Rman
Rauto ∪ Rman

(13)
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where Rauto and Rman are two vessel regions defined by the manual annotated contour Cman 

and of the automated segmented outline Cauto respectively.

Percentage of Area Difference (PAD) - Computes the segmentation area difference as shown 

in Equation (14) :

PAD =
Aauto − Aman

Aman
(14)

where Aauto and Aman are the vessel areas for the automatic and manual contours 

respectively.

Hausdroff Distance (HD) - Computes locally the distance between the manual and 

automated contours as shown in Equation (15).

HD Cauto, Cman = maxp ∈ Cauto
maxq ∈ Cman

[d(p, q)] (15)

where p and q are points of the curves Cauto and Cman, respectively, and d(p, q) is the 

Euclidean distance.

The quantitative results are summarized in Table 3. The results demonstrate that our method 

performs better than methods P1, P2, P4, P5, P6, P8 and is comparable to methods P3 and 

P7 with respect to segmentation error measures for lumen and media. Our method segments 

both the lumen and media simultaneously while method P7 segments the lumen only. 

Furthermore, our method is fully automated while methods P3 and P7 are semi-automated. 

Finally, methods P3 and P7 perform slice by slice segmentation in 2-D while our method 

performs the segmentation in 3-D and not slice by slice.

For the UNET method (Balakrishna et al., 2018), the authors published the performance of 

their method with respect to Jaccard Metric. It can be seen from the results that based on the 

Jaccard metric, the proposed method outperforms the UNET method.

The quantitative results also show that the proposed method yields more accurate 

segmentations than the OSCS and DOSCS methods for both the Lumen and the Media 

surfaces. The JM obtained from the segmentation results by our proposed method were 

significantly higher (p<0.01) than the JM computed with the segmentation results from the 

OSCS and the DOSCS methods. The PAD and HD metrics computed with the proposed 

method were significantly lower (p<0.01) than the PAD and HD metrics computed with the 

segmentation results from the OSCS and the DOSCS methods. We did not have access to the 

actual segmentation results from the P1-P8 methods to perform a paired t-test for 

significance determination and to qualitatively compare the segmentation results.

The average computation time was 105.48 seconds for the OSCS method, 135.27 seconds 

for the DOSCS method and 187.35 seconds for the proposed method. The increase in 
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average computation time for the DOSCS method as compared to the OSCS method is 

because the DOSCS method requires additional steps of computing the deformation and 

applying the computed deformation to the OSCS solution. The increased computation time 

of the proposed method as compared to the OSCS and DOSCS method is attributed to the 

increase in the complexity of the graph which results in higher computation time. For the 

general convex smoothness function ψ(), the constructed graphs for the OSCS and the 

proposed method have the same number of nodes and edges, that is, each node in a given 

column has an edge to every node in each of its neighboring columns. In our IVUS 

experiments, we used a special smoothness function ψ(d) = |d|. Thus, in the OSCS graph 

construction, the weight of many of those edges became 0, which were not necessary to be 

kept in the graph; while in the graph for the proposed method, there were more non-zero 

weighted edges. Hence, we observed the increase of computation time for the proposed 

method over OSCS.

Qualitative results are shown in Fig 7 and 8. Fig 7 demonstrates that our method produced 

very good segmentation of the lumen and the media. It can also be seen from the illustration 

that the segmentations from our method are consistent for varying shapes of the lumen and 

media. Fig 8 shows the comparison of OSCS, DOSCS and the proposed method for lumen 

and media segmentation. It can be seen from the illustration that the DOSCS method 

improves upon the OSCS method by applying the deformation to the OSCS segmentation 

results, while the proposed method achieves more accuracy than DOSCS for both lumen and 

media. Constructing the graph with the shifted voxel centers provides a more accurate 

encoding of the lumen and media surface positions due to the application of the GVF by 

adaptively changing the regional node density so that it is higher in regions where the target 

surface is expected to pass through. Employing a subvoxel accuracy approach allows the 

segmentation to obtain a higher precision with respect to the OSCS and DOSCS method 

segmentations.

5. Discussion

A novel approach for segmentation of multiple surfaces with convex priors in irregularly 

sampled space (non-equidistant spacing between orthogonal adjoining nodes) was proposed. 

Our method advances the graph based segmentation framework in several important ways. 

First, the proposed energy function incorporates a convex surface smoothness penalty in 

irregularly sampled space through a convex function. Second, the approach allows 

simultaneous segmentation of multiple surfaces in the irregularly sampled space with the 

enforcement of a minimum separation constraint. Third, our method guarantees global 

optimality. Lastly, the proposed method demonstrates utility in achieving subvoxel 

segmentation accuracy while employing a convex penalty to model surface smoothness. To 

the best of our knowledge, this is the first method that fulfills these four aims at the same 

time. The hallmark of the proposed method is the ability to perform the segmentation task in 

an irregularly sampled space which generalizes the optimal surface segmentation 

framework. The proposed method was employed in rapid fat water segmentation in MRI 

images and demonstrated increased efficiency and accuracy (Cui et al., 2018).
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The proposed method is also capable of incorporating convex surface separation penalty 

while enforcing a minimum separation in the irregularly sampled space. The incorporation 

of such a penalty would involve modifying the surface separation term in the proposed 

energy function to impose a convex function based penalty when the minimum separation 

constraint is not violated. The graph construction to enforce such a penalty can be done 

using the same framework of the proposed method for enforcing the surface smoothness 

constraint.

The method can be used in conjunction with the method proposed by Abrámoff et. al 

(Abràmoff et al., 2014) to incorporate prior information using trained hard and soft 

constraints (Dufour et al., 2013) to achieve subvoxel accuracy. Furthermore, the method can 

also be incorporated in the image segmentation framework using truncated convex priors 

(Shah et al., 2015) to achieve subvoxel accuracy by constructing the convex part of the graph 

in the irregularly sampled space, thus providing a potential use for generic modeling of 

variety of surface constraints to achieve subvoxel accuracy.

The improved segmentation quality of the proposed method is evident from the illustration 

in Fig. 8, and shows that segmentation performed in the irregularly sampled space based on 

the displacement of the voxel centers to correctly encode the partial volume information is 

more accurate compared to the segmentation performed without any use of partial volume 

information. The results on IVUS images demonstrates that the methods achieves high 

accuracy with respect to subvoxel accurate expert tracings as compared to the methods 

reported in the IVUS challenge (Balocco et al., 2014) while being fully automated and 

performing segmentation in 3-D. The approach is not limited to these two modalities for 

which the experiments were conducted.

The proposed method is designed for segmentation problems wherein column structures 

contain non-equidistant spacing between consecutive elements. Specifically, for subvoxel 

image segmentation tasks, the voxels centers are deformed. The deformation results in 

decreased spacing between consecutive voxel centers along a column in certain areas and 

likewise, increased spacing between voxel centers in certain regions. This creates subvoxel 

resolution in areas with decreased spacing while super-voxel resolution in areas with 

increased spacing between the voxel centers. The effect of the super-voxel resolution in 

those areas is alleviated due to subvoxel resolution in areas containing voxels with high 

likelihood for presence of the surface boundary.

Recently, deep learning methods have also been extensively used in various medical image 

analysis and segmentation applications (Litjens et al., 2017). However, deep learning 

algorithms are inherently limited to amount of training data and corresponding availability 

of expert annotated truth. While the proposed method is capable of performing subvoxel-

accurate segmentations, majority of the deep learning methods are applied at a voxel level 

segmentation/classification tasks. The result from the UNET method demonstrated the 

superior performance of the proposed method over traditional deep learning methods. 

However, it should be noted that the UNET method was applied in 2-D while UNETs can 

also be applied in 3-D, which may result in improvement of results. Furthermore, many 

more sophisticated 2-D/3-D deep learning methods such as conditional GANs have recently 
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been developed and have shown to achieve high accuracy in segmentation tasks. Application 

of such state-of-the-art deep learning methods may also result in improvement of 

segmentation performance.

6. Conclusion

We presented a general framework for simultaneous segmentation of multiple surfaces in the 

irregularly sampled space with convex priors to achieve subvoxel and super resolution 

segmentation accuracy. An edge-weighted graph representation is presented and a globally 

optimal solution with respect to the employed objective function is achieved by solving a 

maximum flow problem. The surface smoothness and surface separation constraints provide 

a flexible means for modeling various inherent properties and interrelations of the desired 

surfaces in an irregularly sampled grid space. The method is readily extensible to higher 

dimensions.

Appendix A

Lemma 1: For any k1 and k2, the function g(k1, k2) is non-negative.

Proof: Let us consider the function g(k1, k2) for edges from column a to neighboring 

column b as shown in Equation (6). We need to prove that g(k1, k2) ≥ 0

g k1, k2 = f La k1 , Lb k2 − 1 − f La k1 − 1 , Lb k2 − 1 − f La k1 , Lb k2
+ f La k1 − 1 , Lb k2

The reader should recall because of the strictly increasing order of sampling, La(k1) > La(k1 

− 1) and Lb(k2) > Lb(k2 −1). ψ(·) is a convex function with ψ(0) = 0. The proof is presented 

in a case-by-case basis.

Case 1: La(k1) < Lb(k2 −1)

Thus, La(k1 − 1) < Lb(k−1). As Lb(k2) > Lb(k2 − 1), we have La(k1) < Lb(k2) and La(k1 − 1) 

< Lb(k2). Since f(r1, r2) = 0 if r1 < r2. It is straight forward to verify that g(k1, k2) = 0 in 

Equation (6).

Case 2: La(k1) ≥ Lb(k2 − 1) and La(k1) < Lb(k2)

In this case, as La(k1) > La(k1 − 1), we have La(k1 − 1) < Lb(k2). Thus, g(k1, k2) takes the 

following form in Equation (6).

g k1, k2 = f La k1 , Lb k2 − 1 − f La k1 − 1 , Lb k2 − 1

If La(k1 − 1) < Lb(k2 − 1), then g(k1, k2) = f(La(k1), Lb(k2 − 1)) = ψ(La(k1) − Lb(k2 − 1)). 

Thus, g(k1, k2) ≥ 0 as ψ(La(k1)−Lb(k2 −1)) ≥ 0 with La(k1) ≥ Lb (k2 −1).
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If La(k1 − 1) < Lb(k2 − 1), then g(k1, k2) = ψ(La(k1)− Lb(k2 −1)) − ψ(La(k1 − 1) − Lb( k2 

− 1)). We know that La(k1) −Lb (k2− 1)>La (k1 − 1) − Lb(k2 − 1) > 0. Thus, g(k1, k2) > 0 as 

ψ(0) = 0. Therefore, in this case g(k1, k2) > 0.

Case 3: La(k1) ≥ Lb(k2)

In this case, La(k1) > Lb(k2 − 1) as Lb(k2) > Lb(k2 − 1). We distinguish three subcases: 1) 

La(k1 − 1) < Lb(k2 − 1), 2) La(k1 − 1) < Lb(k2) and La(k1 − 1) ≥ Lb(k2 − 1), and 3) La(k1 

− 1) ≥ Lb(k2).

Subcase 1): If La(k1 – 1) < Lb(k2 − 1), then

g k1, k2 = f La k1 , Lb k2 − 1 − f La k1 , Lb k2 = ψ La k1 − Lb k2 − 1 − ψ La k1 − Lb k2

Since Lb(k2 − 1) < Lb(k2), we have La(k1) − Lb(k2 − 1) > La(k1) − Lb (k2). Thus,g(k1, k2) > 
0 as ψ(0) = 0.

Subcase 2): If La(k1−1) < Lb(k2) and La(k1 − 1) ≥ Lb(k2 − 1) then g(k1, k2) takes the form 

shown in Equation (6) as La(k1) ≥ Lb(k2) > La(k1 − 1) ≥ Lb (k2 − 1).

g k1, k2 = f La k1 , Lb k2 − 1
− f La k1 − 1 , Lb k2 − 1 − f La k1 , Lb k2
= ψ La k1 − Lb k2 − 1

− ψ La k1 − 1 − Lb k2 − 1 − ψ La k1 − Lb k2

Let La(k1) − Lb(k2) = δ1, Lb(k2) − La(k1 − 1) = δ2 and La(k1 − 1) − Lb(k2 − 1) = δ3, where 

δ1 ≥ 0, δ2 > 0 and δ3 ≥ 0. Rewriting Equation (6) and substituting these values, we get the 

following expression expression,

g k1, k2 = ψ La k1 − Lb k2 − 1 − ψ La k1 − 1 − Lb k2 − 1 − ψ La k1 − Lb k2
= ψ δ1 + δ2 + δ3 − ψ δ3 − ψ δ1

It can be verified that g(k1, k2) > 0 as ψ(·) is convex.

Subcase 3): If La(k1 − 1) ≥ Lb(k2), then La(k1) − Lb(k2 − 1) > 0, La(k1− 1)− Lb (k2) ≥ 0, 

Lb(k2−1) > 0.and La(k1)−Lb(k2) > 0. Hence,

g k1, k2 = ψ La k1 − Lb k2 − 1 − ψ La k1 − 1 − Lb k2 − 1 − ψ La k1 − Lb k2
+ ψ La k1 − 1 − Lb k2 .

In this subcase, let La(k1) − La(k1 − 1) = δ1, La(k1 − 1)− Lb (k2) = δ2 and Lb(k2) − Lb (k2 

− 1) = δ3 where δ1 > 0, δ2 ≥ 0 and δ3 > 0. Substituting this in the expression for g(k1, k2), 

we get
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g k1, k2 = ψ δ1 + δ2 + δ3 − ψ δ2 + δ3 − ψ δ1 + δ2 + ψ δ2 .

Let us first consider the case, δ2 = 0, we get the following expression,

g k1, k2 = ψ δ1 + δ3 − ψ δ3 − ψ δ1

It can be verified that g(k1, k2) > 0 as ψ(·) is convex.

Next, consider the case when δ2 > 0. It can be observed that δ1+δ2+δ3 > δ1 + δ2 > δ2. 

Therefore, δ1 + δ2 can be expressed as, δ1 + δ2 = λ1δ2 + (1 −λ1)(δ1 + δ2 + δ3)

Solving for λ1, we get λ1 =
δ3

δ1 + δ3
.

Similarly, it can be observed that δ1 + δ2 + δ3 > δ2 + δ3 > δ2 and δ2 + δ3 can be expressed 

as, δ2 + δ3 = λ2δ2 + (1 − λ2)(δ1 + δ2 + δ3), where λ2 =
δ1

δ1 + δ3
.

From the definition of a convex function, and adding above two expressions, we get the 

following,

ψ δ1 + δ2 + ψ δ2 + δ3 ≤ λ1 + λ2 ψ δ2 + 2 − λ1 − X2 ψ δ1 + δ2 + δ3 .

Substituting the value of λ1 and λ2, we get ψ(δ1 + δ2) + ψ(δ2 + δ3) ≤ ψ(δ2) + ψ (δ1 + δ2+ 

δ3)Therefore it can be verified that g(k1, k2) ≥ 0.

Thus, through these exhaustive cases, it is shown that for any k1 and k2, the function g(k1, 
k2) ≥ 0 or in other words is non-negative.

Appendix B

Lemma 2: In any finite s-t cut C, the total weight of the edges between any two adjacent 

columns a and b (denoted by Ca,b) equals to the surface smoothness cost of the resulting 

surface Si with Si(a) = k1 and Si(b) = k2, which is ψ(La(k1) − Lb(k2)), where ψ(.) is a convex 

function.

Proof: Denote an edge from ni(a, k1) to node ni(b, k2) as Ei ak1
, bk2

 for the i-th surface. 

Assume k1 ≥ k2. Proof for the case when k2 ≥ k1 can be done in a similar manner by 

interchanging the notations for column a and column b.

To show: cost of cut Ca,b = ψ(La(k1) − Lb(k2)).

We start by observing such a s-t cut Ca,b will consist of only the following inter-column 

edges:
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Ei am, bn , 0 ≤ m ≤ k1, k2 + 1 ≤ n ≤ Z

Note, here we use the index Z to denote the terminal node t as described in Section 2.2.2.

Summing up the weights of the above edges using Equation 6, we obtain the following 

expression:

Ca, b = g k1, Z + g k1, Z − 1 + g k1, Z − 2
+… + g k1, k2 + 1
+g k1 − 1, Z + g k1 − 1, Z − 1 + g k1 − 1, Z − 2
+ … + g k1 − 1, k2 + 1
⋅
⋅
⋅
+g(0, Z) + g(0, Z − 1) + g(0, Z − 2)
+… + g 0, k2 + 1

Let us first evaluate part of Equation (6) for k, where 0 ≤ k ≤ k1 as shown below:

g(k, Z) + g(k, Z − 1) + g(k, Z − 2) + … + g k, k2 + 1
= f La(k), Lb(Z − 1) − f La(k − 1), Lb(Z − 1)
− f La(k), Lb(Z) + f La(k − 1), Lb(Z)
+ f La(k), Lb(Z − 2) − f La(k − 1), Lb(Z − 2)
− f La(k), Lb(Z − 1) + f La(k − 1), Lb(Z − 1)
+ f La(k), Lb(Z − 3) − f La(k − 1), Lb(Z − 3)
− f La(k), Lb(Z − 2) + f La(k) − 1 , Lb(Z − 2))
.
.
.
+ f La(k), Lb k2 − f La(k − 1), Lb k2
− f La(k), Lb k2 + 1 + f La(k − 1), Lb k2 + 1
= f La(k), Lb k2 − f La(k − 1), Lb k2
− f La(k), Lb(Z) + f La(k − 1), Lb(Z)

As described in Section 2.2.2,

f La(k), Lb(Z) = 0, f La(k − 1), Lb(Z) = 0 ( ∵ Z ∉ z) = f La(k), Lb k2
− f La(k − 1), Lb k2

(B1)

By simplifying Equation (6) using Equation (B1), it follows that:
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Ca, b = f La k1 , Lb k2 − f La k1 − 1 , Lb k2
+ f La k1 − 1 , Lb k2 − f La k1 − 2 , Lb k2
.
.
.
+ f La(1), Lb k2 − f La(0), Lb k2
+ f La(0), Lb k2 − f La( − 1), Lb k2
= f La k1 , Lb k2 − f La( − 1), Lb k2

As described in Section 2.2.2,

f La( − 1), Lb k2 = 0, ( ∵ − 1 ∉ z) = ψ La k1 − Lb k2 , Using Equation (5)

Therefore, for this case it is shown that cost of cut Ca,b = ψ(La(k1) − Lb(k2)).

In a similar manner when k2 ≥ k1, the s-t cut Cb,a will consist of the following inter-column 

edges:

Ei bm, an , 0 ≤ m ≤ k2, k1 + 1 ≤ n ≤ Z

Summing up the weights of the above edges using Equation 7, we obtain the following 

expression:

Cb, a = g k2, Z + g k2, Z − 1 + g k2, Z − 2 + … + g k2, k1 + 1
g k2 − 1, Z + g k2 − 1, Z − 1 + g k2 − 1, Z − 2 + … + g k2 − 1, k1 + 1
.
.
.
g(0, Z) + g(0, Z − 1) + g(0, Z − 2)
+ … + g 0, k1 + 1

Similar to the previous case, let us first evaluate part of Equation (7) for k, where 0 ≤ k ≤ k2 

as shown below:
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g(k, Z) + g(k, Z − 1) + g(k, Z − 2) + … + g k, k1 + 1
= f Lb(k), La(Z − 1) − f Lb(k − 1), La(Z − 1)
− f Lb(k), La(Z) + f Lb(k − 1), La(Z)
+ f Lb(k), La(Z − 2) − f Lb(k − 1), La(Z − 2)
− f Lb(k), La(Z − 1) + f Lb(k − 1), La(Z − 1)
+ f Lb(k), La(Z − 3) − f Lb(k − 1), La(Z − 3)
− f Lb(k), La(Z − 2) + f Lb(k − 1), La(Z − 2)
.
.
.
+ f Lb(k), La k1 − f Lb(k − 1), La k1
− f Lb(k), La k1 + 1 + f Lb(k − 1), La k1 + 1
= f Lb(k), La k1 − f Lb(k − 1), La k1
− f Lb(k), La(Z) + f Lb(k − 1), La(Z)

As described in Section 2.2.2,

f Lb(k), La(Z) = 0, f Lb(k − 1), La(Z) = 0 ( ∵ Z ∉ z) = f Lb(k), La k1
− f Lb(k − 1), La k1

(B2)

By simplifying Equation (6) using Equation (B2), it follows that:

Cb, a = f Lb k2 , La k1 − f Lb k2 − 1 , La k1
+ f Lb k2 − 1 , La k1 − f Lb k2 − 2 , La k1
.
.
.
+ f Lb(1), La k1 − f Lb(0), La k1
+ f Lb(0), La k1 − f Lb( − 1), La k1
= f Lb k2 , La k1 − f Lb( − 1), La k1

As described in Section 2.2.2,

f Lb( − 1), La k1 = 0, ( ∵ − 1 ∉ z) = ψ Lb k2 − La k1 ,  Using Equation (5)

Therefore, for this case it is shown that cost of cut Cb,a = ψ(Lb(k2) − La(k1)).

This completes the proof.
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Highlights

• Graph based method for optimal multiple surface segmentation with subvoxel 

accuracy is proposed. The method does not require upsampling of volume or 

adjustment of local edges/parameters to perform segmentation in the original 

solution space.

• Method relies on a novel graph construction in irregularly sampled space.

• Results show applicability of method for subvoxel accurate segmentation.

• The method was validated on Intravascular Ultrasound (IVUS) images.
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Figure 1: 
Example of a 3×3 voxel grid to demonstrate subvoxel accuracy. Each voxel is represented by 

a red node in the graph space. (a)Graph nodes with equidistant spacing between them. True 

subvoxel accurate surface is shown in green. The segmented surface using optimal surface 

segmentation method with hard constraints is shown in yellow. (b) The displacement field 

derived from the grid is applied to the central nodes displacing the centers to exploit the 

information from the partial volume effect shown by brown arrows. The resultant 

segmentation with the subvoxel accurate graph search is shown in blue.
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Figure 2: 
Example of column structure for irregularly sampled space using mapping function.
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Figure 3: 
Example graph construction of two neighboring columns a and b to demonstrate 

enforcement of convex surface smoothness constraints in irregularly sampled space.
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Figure 4: 
An example graph for incorporation of surface separation constraint between two 

corresponding columns is shown. Only the inter-surface edges are shown for clarity. The 

minimum separation constraint di,i+1 = 2. It can be seen that cut C1 is a feasible cut since the 

minimum separation constraint is not violated while cut C2 is infeasible since the minimum 

separation constraint is violated as La(z′ = 1) − La(z = 1) < di,i+1
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Figure 5: 
(a) A single frame of an IVUS multiframe dataset (b) Expert manual tracings of the Lumen 

(red) and Media (green).
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Figure 6: 
(a) A single frame of an IVUS multiframe dataset (b) Polar transformation of (a). Red - 

Lumen, Green - Media.
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Figure 7: 
Qualitative illustrations of lumen and media segmentation using our method. Each image is 

a single frame of an IVUS multiframe dataset. Red - Lumen expert tracing, Green - Media 

expert tracing, Yellow - Lumen segmentation (our method), Blue - Media segmentation (our 

method).
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Figure 8: 
Qualitative illustrations of lumen and media segmentation using OSCS, DOSCS and our 

method. The first column shows the same single frame of an IVUS multiframe dataset. The 

second column shows a magnified version of the lumen and media segmentation for each 

compared method. Red - Lumen expert tracing, Green - Media expert tracing, Yellow - 

Automated lumen segmentation, Blue - Automated media segmentation.
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Table 1:

Summary of inter-column edge weights of the graph construction in Fig. 3, based on a linear function of the 

form ψ(k1 − k2) = |k1 − k2|

Edge Type Weight Edge Type Weight

E(ao, b1) I 2 E(b2, a1) III 8

E(ao, b2) I 1 E(b3, a1) III 4

E(a1, b2) I 8 E(b3, a2) III 5

E(a1, b3) I 4 E(b3, a3) II 4

E(a2, b3) I 5 E(b3, a4) I 3

E(a3, b3) II 4 E(b4, a4) II 6

E(a4, b3) III 3 E(b4, a5) I 3

E(a4, b4) II 6 E(b5, a5) II 13

E(a5, b4) III 3

E(a5, b5) II 13

E(a5, b6) I 2
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Table 2:

Overview of the compared method features

Methods Category Automation 2-D/3-D

P1 (Shape driven) Lumen and Media Semi 2-D

P2 (Active contour) Lumen Semi 2-D

P3 (Expectation maximization) Lumen and Media Semi 2-D

P4 (Graph search) Lumen and Media Fully 3-D

P5 (Sequential learning) Lumen Fully 3-D

P6 (HoliMAb) Media Fully 2-D

P7 (Bayesian) Lumen Semi 2-D

P8 (Sequential detection) Lumen and Media Fully 2-D

UNET (Deep learning based) Lumen and Media Fully 2-D

OSCS Lumen and Media Fully 3-D

DOSCS Lumen and Media Fully 3-D

Our Method Lumen and Media Fully 3-D
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Table 3:

Evaluation measures of each method with respect to expert manual tracings. Error measures expressed as 

mean and (standard deviation). An empty table cell indicates that the method was not applied to Lumen or 

Media. OM-Our Method

Methods Lumen Media

JM PAD HD JM PAD HD

P1 0.81 (0.12) 0.14 (0.13) 0.47 (0.39) 0.76 (0.13) 0.21 (0.16) 0.64 (0.48)

P2 0.83 (0.08) 0.14 (0.12) 0.51 (0.25)

P3 0.88 (0.05) 0.06 (0.05) 0.34 (0.14) 0.91 (0.04) 0.05 (0.04) 0.31 (0.12)

P4 0.77 (0.09) 0.15 (0.12) 0.47 (0.22) 0.74 (0.17) 0.23 (0.19) 0.76 (0.48)

P5 0.79 (0.08) 0.16 (0.09) 0.46 (0.30)

P6 0.84 (0.10) 0.12 (0.12) 0.57 (0.39)

P7 0.84 (0.08) 0.11 (0.12) 0.38 (0.26)

P8 0.81 (0.09) 0.11 (0.11) 0.42 (0.22) 0.79 (0.11) 0.19 (0.19) 0.60 (0.28)

UNET 0.80 () 0.81 ()

OSCS 0.80 (0.09) 0.13 (0.07) 0.43 (0.19) 0.81 (0.08) 0.11 (0.14) 0.51 (0.19)

DOSCS 0.82 (0.08) 0.12 (0.07) 0.41 (0.17) 0.84 (0.06) 0.10 (0.14) 0.48 (0.16)

OM 0.86 (0.04) 0.09 (0.03) 0.37 (0.14) 0.90 (0.03) 0.07 (0.03) 0.43 (0.12)
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